《与二次函数有关的综合问题》解析
二次函数与方程综合问题
二次函数与方程综合问题1.已知函数f(x)=|x﹣1|,g(x)=﹣x2+6x﹣5.(1)若g(x)≥f(x),求实数x的取值范围;(2)求g(x)﹣f(x)的最大值.2.已知二次函数f(x)=ax2+bx+1,对于任意的实数x1、x2(x1≠x2),都有成立,且f(x+2)为偶函数.(1)求a的取值范围;(2)求函数y=f(x)在[a,a+2]上的值域;(3)定义区间[m,n]的长度为n﹣m.是否存在常数a,使的函数y=f(x)在区间[a,3]的值域为D,且D的长度为10﹣a3.3.设a为非零实数,偶函数f(x)=x2+a|x﹣m|+1,x∈R.(1)求实数m的值;(2)试确定函数f(x)的单调区间(不需证明);(3)若函数f(x)在区间(﹣3,﹣2)上存在零点,试求实数a的取值范围.4.对于函数f(x)=ax2+bx+(b﹣1)(a≠0)(1)当a=1,b=﹣2时,求函数f(x)的零点;(2)若对任意实数b,函数恒有两个相异的零点,求实数a的取值范围.5.已知函数f(x)=|x2﹣1|+x2+kx.(2)若函数f(x)在区间(0,2)上有两个不同的零点,求k的取值范围.6.已知函数f(x)=ax2+ax﹣4(a∈R).(1)若函数f(x)恰有一个零点,求a的值;(2)若对任意a∈[1,2],f(x)≤0恒成立,求x的取值范围;(3)设函数g(x)=(a+1)x2+2ax+2a﹣5,是否存在实数a,使得当x∈(﹣2,﹣1)时,函数g(x)的图象始终在f(x)图象的上方,若存在,试求出a的取值范围,若不存在,请说明理由.7.已知函数f(x)=mx+3,g(x)=x2+2x+m(2)设函数G(x)=f(x)﹣g(x)﹣1 ①若|G(x)|在[﹣1,0]上是减函数,求实数m的取值范围;②是否存在整数a,b,使得a≤G(x)≤b的解集恰好是[a,b],若存在,求出a,b的值;若不存在说明理由.8.已知函数f(x)=x2﹣4x+a+3,g(x)=mx+5﹣2m.(Ⅰ)若y=f(x)在[﹣1,1]上存在零点,求实数a的取值范围;(Ⅱ)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围;(Ⅲ)若函数y=f(x)(x∈[t,4])的值域为区间D,是否存在常数t,使区间D的长度为7﹣2t?若存在,求出所有t的值;若不存在,请说明理由(注:区间[p,q]的长度为q﹣p).二次函数与方程综合问题参考答案与试题解析1.已知函数f(x)=|x﹣1|,g(x)=﹣x2+6x﹣5.(2)求g(x)﹣f(x)的最大值.分析:(1)去掉f(x)的绝对值,由g(x)≥f(x),求出x的取值范围;(2)由(1)知g(x)﹣f(x)的最大值在[1,4]上取得,求出即可.解答:解:(1)当x≥1时,f(x)=x﹣1;∵g(x)≥f(x),∴﹣x2+6x﹣5≥x﹣1;整理,得(x﹣1)(x﹣4)≤0,解得x∈[1,4];当x<1时,f(x)=1﹣x;∵g(x)≥f(x),∴﹣x2+6x﹣5≥1﹣x,整理,得(x﹣1)(x﹣6)≤0,解得x∈[1,6],又,∴x∈∅;综上,x的取值范围是[1,4].(2)由(1)知,g(x)﹣f(x)的最大值在[1,4]上取得,∴g(x)﹣f(x)=(﹣x2+6x+5)﹣(x﹣1)=﹣+≤,∴当x=时,g(x)﹣f(x)取到最大值是.点评:本题考查了含有绝对值的函数的应用问题,解题时应先去掉绝对值,再进行讨论解答.3.设a为非零实数,偶函数f(x)=x2+a|x﹣m|+1,x∈R.(1)求实数m的值;(2)试确定函数f(x)的单调区间(不需证明);(3)若函数f(x)在区间(﹣3,﹣2)上存在零点,试求实数a的取值范围.分析:(1)根据偶函数的定义建立恒等式f(﹣x)=f(x)在R上恒成立,从而求出m的值即可;(2)根据函数的解析式,结合二次函数的性质,可分析出的函数的图象与性质,进而得到函数f(x)的单调区间(3)函数f(x)在区间(﹣3,﹣2)上存在零点,根据零点存在定理,可得f(﹣2)•f(﹣3)<0,由此构造关于a的不等式,解不等式即可得到实数a的取值范围.解答:解:(1)∵f(x)是偶函数,∴f(﹣x)=f(x)在R上恒成立,即(﹣x)2+|﹣x﹣m|+1=x2+|x﹣m|+1,化简整理,得mx=0在R上恒成立,(3分)(2)由已知,可得f (x )=x 2+a|x|+1,则当a >0时,递增区间为(0,+∞),递减区间为(﹣∞,0)当a <0时,递增区间为[,0]和[﹣,+∞)递减区间(﹣∞,)和(0,)(3)当a >0时,在区间(﹣3,﹣2)上f (x )>0恒成立,不满足要求;当a <0时,若函数f (x )在(﹣3,﹣2)上只有一个零点则f (﹣2)•f (﹣3)<0即(5+2a )•(10+3a )<0 解得:<a <点评: 本题考查的知识点是偶函数,函数的单调性的判断与证明,函数的零点,(1)的关键是根据偶函数的定义,构造关于m 的方程,(2)的关键是对a 进行分类讨论,(3)的关键是根据零点存在定理,构造关于a 的不等式.2.已知二次函数f (x )=ax 2+bx+1,对于任意的实数x 1、x 2(x 1≠x 2),都有成立,且f (x+2)为偶函数.(1)求a 的取值范围;(2)求函数y=f (x )在[a ,a+2]上的值域;(3)定义区间[m ,n]的长度为n ﹣m .是否存在常数a ,使的函数y=f (x )在区间[a ,3]的值域为D ,且D 的长度为10﹣a 3.分析: (1) 确定二次函数f (x )的对称轴,找出 a 、b 的关系,由已知不等式得出a 的范围.(2)区间[a ,a+2]可能包含函数的对称轴,也可能在对称轴的右边,二次函数f (x )图象是开口向上的抛物线,当区间[a ,a+2]包含对称轴时,求函数值域需考虑对称轴是靠近区间左端点,还是靠近区间右端点,从而确定函数值域.当区间[a ,a+2]在对称轴右边时,函数在区间上是增函数,易求函数值域.(3)当区间[a ,3]包含对称轴时,求函数值域需考虑对称轴是靠近区间左端点,还是靠近区间右端点,从而确定函数值域.看满足且D 的长度为10﹣a 3的a 值是否存在.当区间[a ,3]在对称轴右边时,函数在区间上是增函数,易求函数值域.再看满足且D 的长度为10﹣a 3的a 值是否存在.解答: 解:(1)由f (x+2)为偶函数可得f (x )关于直线x=2对称,则,f (x )=ax 2﹣4ax+1; 对于任意的实数x 1、x 2(x 1≠x 2),都有成立,则=,因为x 1≠x 2,所以(x 1﹣x 2)2>0,故a >0.(2)f (x )=ax 2﹣4ax+1=a (x ﹣2)2+1﹣4a ,因为a >0,所以a+2>2.当a+1≤2时,即0<a ≤1时,f (x )min =1﹣4a ,f (x )max =a 3﹣4a 2+1,函数y=f (x )的值域为[1﹣4a ,a 3﹣4a 2+1];当1<a ≤2时,f (x )min =1﹣4a ,f (x )max =a 3﹣4a+1,函数y=f (x )的值域为[1﹣4a ,a 3﹣4a+1];当a >2时,f (x )min =a 3﹣4a 2+1,f (x )max =a 3﹣4a+1,函数y=f (x )的值域为[a 3﹣4a 2+1,a 3﹣4a+1].(3)f (x )=ax 2﹣4ax+1=a (x ﹣2)2+1﹣4a ,当0<a ≤1时,f (x )min =1﹣4a ,f (x )max =a 3﹣4a 2+1,f (x )max ﹣f (x )min =a 3﹣4a 2+1﹣(1﹣4a )=a (a ﹣2)2,由0<a ≤1时,1≤(a ﹣2)2<4,则a (a ﹣2)2<4,而10﹣a 3>9,不合题意;当1<a <2时,f (x )min =1﹣4a ,f (x )max =1﹣3a ,f (x )max ﹣f (x )min =1﹣3a ﹣(1﹣4a )=a ,由1<a <2,得10﹣a 3>2,所以a ≠10﹣a 3,不合题意;当2≤a <3时,f (x )min =a 3﹣4a 2+1,f (x )max =1﹣3a ,f (x )max ﹣f (x )min =1﹣3a ﹣(a 3﹣4a 2+1)=10﹣a 3, 故4a 2﹣3a ﹣10=0,(4a+5)(a ﹣2)=0,因为2≤a <3,所以a=2.综上所述:存在常数a=2符合题意.点 本题综合考查函数的奇偶性、单调性、对称性、值域、抽象函数等知识.注意分类讨论的数学思想方法.4.(2006•广州模拟)对于函数f(x)=ax2+bx+(b﹣1)(a≠0)(1)当a=1,b=﹣2时,求函数f(x)的零点;(2)若对任意实数b,函数恒有两个相异的零点,求实数a的取值范围.考点:函数零点的判定定理;函数的零点.专题:计算题.分析:(1)把所给的数字代入解析式,得到函数的解析式,要求函数的零点,只要使函数等于0就可以,解一元二次方程,得到结果.(2)函数恒成立问题,首先函数恒有两个相异的零点,得到函数的判别式大于0,对于b的值,不管b取什么,都能够使得不等式成立,注意再次使用函数的判别式.解答:解:(1)∵a=1,b=﹣2∴f(x)=x2﹣2x﹣3令f(x)=0,则x2﹣2x﹣3=0∴x=3或x=﹣1此时f(x)的零点为3和﹣1.(2)由题意可得a≠0则△=b2﹣4a(b﹣1)>0对于b∈R恒成立∴0<a<1点评:本题考查函数的零点的判定,在第二问中,注意两次使用函数的判别式,这是函数的综合题目中常见的一种题型.5.已知函数f(x)=|x2﹣1|+x2+kx.(1)若k=2,求函数f(x)的零点;(2)若函数f(x)在区间(0,2)上有两个不同的零点,求k的取值范围.考点:函数的零点.专题:计算题;压轴题.分析:(1)分类讨论,去掉绝对值,化简函数的解析式,求出函数的零点.(2)把函数解析式化为分段函数的形式,在每一段上研究函数的零点情况,从而求出k的取值范围.解答:解:(1)∵k=2,当x≥1或x≤﹣1时,2 x2+2x﹣1=0,解方程得.当﹣1<x<1时,,所以函数f(x)的零点为.(3分)(2)∵,(4分)①两零点在(0,1],(1,2)各一个:由于f(0)=1>0,∴.(6分)②两零点都在(1,2)上时,显然不符合根与系数的关系x1x2=﹣<0.综上,k的取值范围是:.(8分)点评:本题考查函数零点的求法,以及函数零点存在的条件,体现了分类讨论的数学思想,属于基础题.6.已知函数f(x)=ax2+ax﹣4(a∈R).(1)若函数f(x)恰有一个零点,求a的值;(2)若对任意a∈[1,2],f(x)≤0恒成立,求x的取值范围;(3)设函数g(x)=(a+1)x2+2ax+2a﹣5,是否存在实数a,使得当x∈(﹣2,﹣1)时,函数g(x)的图象始终在f(x)图象的上方,若存在,试求出a的取值范围,若不存在,请说明理由.考点:函数的零点与方程根的关系;函数恒成立问题.专题:函数的性质及应用.分析:(1)函数f(x)=ax2+ax﹣4仅有一个零点,分函数是一次函数还是二次函数讨论,即a=0和a≠0讨论,特别a≠0时,转化为二次函数图象与x轴只有一个交点,△=0即可求得结果.(2)由题意得:因为任意a∈[1,2],f(x)≤0恒成立,令H(a)=ax2+ax﹣4=(x2+x)a﹣4,本题等价于:H(a)≤0在a∈[1,2]上恒成立,再利用一次函数的性质求解即得.(3)对于存在性问题,可先假设存在,即假设存在这样的实数a,则必有F(x)=x2+ax+2a﹣1>0在区间(﹣2,﹣1)上恒成立,再利用二次函数的图象与性质,求出实数a,若出现矛盾,则说明假设不成立,即不存在;否则存在.解答:解:(1)当a=0时,f(x)=﹣4无零点,舍去…(1分)当a≠0时,有△=a2+16a=0解得a=﹣16或a=0(舍去)…(3分)综合得:a=﹣16…(4分)(2)由题意得:因为任意a∈[1,2],f(x)≤0恒成立,令H(a)=ax2+ax﹣4=(x2+x)a﹣4所以,本题等价于:H(a)≤0在a∈[1,2]上恒成立.…(7分)又H(0)=﹣4所以,H(2)=2(x2+x)﹣4≤0即x2+x﹣2≤0,解得:﹣2≤x≤1…(10分)假设存在这样的实数a,则必有F(x)=x2+ax+2a﹣1>0在区间(﹣2,﹣1)上恒成立.又因为F(x)对称轴方程,所以有:①…(13分)解得:所以a≥4②…(14分)解得:所以0≤a≤2③解得:所以2<a<4…(15分)综合以上得:a≥0所以,存在这样的实数a,当实数a≥0时,函数g(x)的图象始终在f(x)图象的上方.…(16分)备注:解答题其它解题方法酌情给分.点评:考查函数零点与函数图象与x轴的交点问题、函数恒成立问题,体现了转化的思想方法,对函数的类型讨论,体现了分类讨论的思想,也是易错点,属中档题.7.(2010•南京三模)已知函数f(x)=mx+3,g(x)=x2+2x+m(1)求证:函数f(x)﹣g(x)必有零点(2)设函数G(x)=f(x)﹣g(x)﹣1①若|G(x)|在[﹣1,0]上是减函数,求实数m的取值范围;②是否存在整数a,b,使得a≤G(x)≤b的解集恰好是[a,b],若存在,求出a,b的值;若不存在,说明理由.考点:函数的零点;函数单调性的性质;不等式.专题:计算题;证明题.分析:(1)由函数f(x)=mx+3,g(x)=x2+2x+m,我们易给出函数f(x)﹣g(x)的零点,判断对应方程的△与0的关系,易得结论.(2)由函数f(x)=mx+3,g(x)=x2+2x+m,我们易给出函数G(x)=f(x)﹣g(x)﹣1,①若|G(x)|在[﹣1,0]上是减函数,根据对折变换函数图象的特征,我们分△≤0和△>0两种情况进行讨论,可得到满足条件的m的取值范围;②若a≤G(x)≤b的解集恰好是[a,b],则将a,b代入消去m,可以求出a,b的值.解答:证明:(1)f(x)﹣g(x)=﹣x2+(m﹣2)x+3﹣m.令f(x)﹣g(x)=0.则△=(m﹣2)2﹣4(m﹣3)=m2﹣8m+16=(m﹣4)2≥0恒成立.所以方程f(x)﹣g(x)=0有解.所以函数f(x)﹣g(x)必有零点.(2)①G(x)=f(x)﹣g(x)﹣1=﹣x2+(m﹣2)x+2﹣m.①令G(x)=0,△=(m﹣2)2﹣4(m﹣2)=(m﹣2)(m﹣6).当△≤0,即2≤m≤6时,G(x)=﹣x2+(m﹣2)x+2﹣m≤0恒成立,所以|G(x)|=x2﹣(m﹣2)x+m﹣2.因为|G(x)|在[﹣1,0]上是减函数,所以≥0.解得m≥2.所以2≤m≤6.当△>0,即m<2或m>6时,|G(x)|=|x2﹣(m﹣2)x+m﹣2|.因为|G(x)|在[﹣1,0]上是减函数,所以方程x2﹣(m﹣2)x+m﹣2=0的两根均大于零或一根大于零另一根小于零且x=≤﹣1.所以或解得m>2或m≤0.所以m≤0或m>6.综上可得,实数m的取值范围为(﹣∞,0]∪[2,+∞).②因为a≤G(x)≤b的解集恰好是[a,b],所以由消去m,得ab﹣2a﹣b=0,显然b≠2.所以a==1+.因为a,b均为整数,所以b﹣2=±1或b﹣2=±2.解得或或或因为a<b,且a≤≤b所以或点评:本题考查的知识点是函数的零点,函数图象的对折变换,函数的单调性,函数的值域,(1)中解答的关键是“三个二次”之间的辩证关系,即函数有零点,则对应的方程有根;(2)中①的切入点是函数图象对折变换后的函数图象特征;②中消参思想是解答的关键.8.已知函数f(x)=x2﹣4x+a+3,g(x)=mx+5﹣2m.(Ⅰ)若y=f(x)在[﹣1,1]上存在零点,求实数a的取值范围;(Ⅱ)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围;(Ⅲ)若函数y=f(x)(x∈[t,4])的值域为区间D,是否存在常数t,使区间D的长度为7﹣2t?若存在,求出所有t的值;若不存在,请说明理由(注:区间[p,q]的长度为q﹣p).考点:函数的零点;函数的值域;函数恒成立问题.专题:计算题.分析:(1)y=f(x)在[﹣1,1]上单调递减函数,要存在零点只需f(1)≤0,f(﹣1)≥0即可(2)存在性问题,只需函数y=f(x)的值域为函数y=g(x)的值域的子集即可(3)研究函数y=f(x)(x∈[t,4])的值域,需要对t进行讨论,研究单调性解答:解:(Ⅰ):因为函数f(x)=x2﹣4x+a+3的对称轴是x=2,所以f(x)在区间[﹣1,1]上是减函数,因为函数在区间[﹣1,1]上存在零点,则必有:即,解得﹣8≤a≤0,故所求实数a的取值范围为[﹣8,0].(Ⅱ)若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,只需函数y=f(x)的值域为函数y=g(x)的值域的子集.f(x)=x2﹣4x+3,x∈[1,4]的值域为[﹣1,3],下求g(x)=mx+5﹣2m的值域.①当m=0时,g(x)=5﹣2m为常数,不符合题意舍去;②当m>0时,g(x)的值域为[5﹣m,5+2m],要使[﹣1,3]⊆[5﹣m,5+2m],需,解得m≥6;③当m<0时,g(x)的值域为[5+2m,5﹣m],要使[﹣1,3]⊆[5+2m,5﹣m],需,解得m≤﹣3;综上,m的取值范围为(﹣∞,﹣3]∪[6,+∞)(Ⅲ)由题意知,可得.①当t≤0时,在区间[t,4]上,f(t)最大,f(2)最小,所以f(t)﹣f(2)=7﹣2t即t2﹣2t﹣3=0,解得t=﹣1或t=3(舍去);②当0<t≤2时,在区间[t,4]上,f(4)最大,f(2)最小,所以f(4)﹣f(2)=7﹣2t即4=7﹣2t,解得t=;③当2<t<时,在区间[t,4]上,f(4)最大,f(t)最小,所以f(4)﹣f(t)=7﹣2t即t2﹣6t+7=0,解得t=(舍去)综上所述,存在常数t满足题意,t=﹣1或.。
二次函数综合专题分类解析
二次函数综合专题分类解析
二次函数与各种几何问题的结合是代数几何综合的常见考察,每年中考都会有类似的题型出现。
数形结合在此类问题中大放光彩,成为一个必不可少的解题思想。
今天来盘点一下二次函数抛物线与几何结合在一起有哪些常见的题型。
一、二次函数与面积
1.纵割法(铅锤法)
2.等积变形
3.倍分面积问题
二、二次函数与角度
1.角度与等腰三角形
2.角度与全等三角形
③45°角度构造
三、二次函数与特殊图形
1.二次函数与等腰三角形
2.二次函数与直角三角形
3.二次函数与平行四边形
4.二次函数与正方形
四、二次函数与定点
1.与参系数无关
2.用几何条件求定点
3.对称点与定点
五、二次函数与定值
1.等长线段
2.线段之和
3.线段之差
4.线段之积
5.线段之比
六、二次函数与最值问题
1.配方法→建立二函数最值模型
2.化斜为直法
七、抛物线的平行弦问题
1.横坐标之差为定值
2.线段差为定值
3.面积差为定值
八、抛物线的切线问题
666。
二次函数的综合运用
二次函数的综合运用二次函数是一种形式为 y = ax² + bx + c 的函数,其中 a、b、c 是常数且a ≠ 0。
二次函数在数学中有广泛的应用,涉及到诸如物理学、经济学和工程学等多个领域。
本文将探讨二次函数在各个领域中的综合运用,包括最值问题、图像分析、实际问题的建模等。
一、最值问题对于二次函数 y = ax² + bx + c,其中a ≠ 0,我们可以通过一些方法求得其最值。
为了简化讨论,我们以函数 y = x² + 2x - 3 为例。
1. 定义域和值域首先,我们需要确定该二次函数的定义域和值域。
对于二次函数 y= x² + 2x - 3,由于 x²的值始终大于等于 0,所以该函数的定义域为全体实数。
而二次函数在开口向上的情况下,其最小值即为函数的值域的下界。
根据二次函数的顶点公式,可以求得该函数的顶点为(-1, -4),因此该函数的最小值为 -4。
2. 求解极值点我们可以通过求导数的方法求得二次函数的极值点。
对于函数 y =x² + 2x - 3,将其对 x 求导后可得 y' = 2x + 2。
令 y' = 0,解得 x = -1。
将 x = -1 代入函数 y = x² + 2x - 3 中可得 y = -4,即函数在 x = -1 处取得极小值 -4。
同样,对于开口向下的二次函数,可以通过类似的方法求得其极大值。
二、图像分析二次函数的图像一般为抛物线,通过分析图像可以获得更多关于函数的信息。
下面以函数 y = x² + 2x - 3 为例进行具体分析。
1. 对称轴和顶点二次函数的对称轴是由函数的一阶导数确定的直线,其方程形式为x = -b/(2a)。
对于函数 y = x² + 2x - 3,对称轴的方程为 x = -1。
根据二次函数的顶点公式,可以求得该函数的顶点坐标为 (-1, -4)。
二次函数综合(动点与三角形)问题方法与解析
二次函数综合(动点与三角形)问题一、知识准备:抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常见的基本形式。
(1)抛物线上的点能否构成等腰三角形;(2)抛物线上的点能否构成直角三角形;(3)抛物线上的点能否构成相似三角形;解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。
二、例题精析㈠【抛物线上的点能否构成等腰三角形】(2013•铜仁地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c 例一.经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.考点:二次函数综合题专题:综合题.分析:(1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式;(2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算;(3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论,①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案.解答:解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点,∴可得A(1,0),B(0,﹣3),把A、B两点的坐标分别代入y=x2+bx+c得:,解得:.∴抛物线解析式为:y=x2+2x﹣3.(2)令y=0得:0=x2+2x﹣3,解得:x1=1,x2=﹣3,则C点坐标为:(﹣3,0),AC=4,故可得S△ABC=AC×OB=×4×3=6.(3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意:讨论:①当MA=AB时,,解得:,∴M1(﹣1,),M2(﹣1,﹣);②当MB=BA时,,解得:M3=0,M4=﹣6,∴M3(﹣1,0),M4(﹣1,﹣6),③当MB=MA时,,解得:m=﹣1,∴M5(﹣1,﹣1),答:共存在五个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣6),M5(﹣1,﹣1)使△ABM为等腰三角形.点评:本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解.㈡【抛物线上的点能否构成直角三角形】(2013鞍山)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c 例二.的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.考点:二次函数综合题.分析:(1)根据y=0.5x+2交x轴于点A,与y轴交于点B,即可得出A,B两点坐标,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.得出可设二次函数y=ax2+bx+c=a (x﹣2)2,进而求出即可;(2)根据当B为直角顶点,当D为直角顶点,以及当P为直角顶点时,分别利用三角形相似对应边成比例求出即可.解答:解:(1)∵y=0.5x+2交x轴于点A,∴0=0.5x+2,∴x=﹣4,与y轴交于点B,∵x=0,∴y=2∴B点坐标为:(0,2),∴A(﹣4,0),B(0,2),∵二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2∴可设二次函数y=a(x﹣2)2,把B(0,2)代入得:a=0.5∴二次函数的解析式:y=0.5x2﹣2x+2;(2)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴=,∴=,得:OP1=1,∴P1(1,0),(Ⅱ)作P2D⊥BD,连接BP2,将y=0.5x+2与y=0.5x2﹣2x+2联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时∵∠DAP2=∠BAO,∠BOA=∠ADP2,∴△ABO∽△AP2D,∴=,=,解得:AP2=11.25,则OP2=11.25﹣4=7.25,故P2点坐标为(7.25,0);(Ⅲ)当P为直角顶点时,过点D作DE⊥x轴于点E,设P3(a,0)则由Rt△OBP3∽Rt△EP3D得:,∴,∵方程无解,∴点P3不存在,∴点P的坐标为:P1(1,0)和P2(7.25,0).点评:此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.㈢【抛物线上的点能否构成相似三角形】例三.(2013•恩施州)如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB 沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.考点:二次函数综合题.分析: (1)由待定系数法求出直线BD 和抛物线的解析式;(2)首先确定△MCD 为等腰直角三角形,因为△BND 与△MCD 相似,所以△BND 也是等腰直角三角形.如答图1所示,符合条件的点N 有3个;(3)如答图2、答图3所示,解题关键是求出△PBD 面积的表达式,然后根据S △PBD =6的已知条件,列出一元二次方程求解.解答: 解:(1)∵直线l :y=3x+3与x 轴交于点A ,与y 轴交于点B ,∴A (﹣1,0),B (0,3);∵把△AOB 沿y 轴翻折,点A 落到点C ,∴C (1,0).设直线BD 的解析式为:y=kx+b ,∵点B (0,3),D (3,0)在直线BD 上,∴,解得k=﹣1,b=3,∴直线BD 的解析式为:y=﹣x+3.设抛物线的解析式为:y=a (x ﹣1)(x ﹣3),∵点B (0,3)在抛物线上,∴3=a ×(﹣1)×(﹣3),解得:a=1,∴抛物线的解析式为:y=(x ﹣1)(x ﹣3)=x 2﹣4x+3.(2)抛物线的解析式为:y=x 2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1).直线BD :y=﹣x+3与抛物线的对称轴交于点M ,令x=2,得y=1,∴M (2,1).设对称轴与x 轴交点为点F ,则CF=FD=MN=1,∴△MCD 为等腰直角三角形.∵以点N 、B 、D 为顶点的三角形与△MCD 相似,∴△BND 为等腰直角三角形.如答图1所示:(I )若BD 为斜边,则易知此时直角顶点为原点O ,∴N1(0,0);(II)若BD为直角边,B为直角顶点,则点N在x轴负半轴上,∵OB=OD=ON2=3,∴N2(﹣3,0);(III)若BD为直角边,D为直角顶点,则点N在y轴负半轴上,∵OB=OD=ON3=3,∴N3(0,﹣3).∴满足条件的点N坐标为:(0,0),(﹣3,0)或(0,﹣3).(3)假设存在点P,使S△PBD=6,设点P坐标为(m,n).(I)当点P位于直线BD上方时,如答图2所示:过点P作PE⊥x轴于点E,则PE=n,DE=m﹣3.S△PBD=S梯形PEOB﹣S△BOD﹣S△PDE=(3+n)•m﹣×3×3﹣(m﹣3)•n=6,化简得:m+n=7 ①,∵P(m,n)在抛物线上,∴n=m2﹣4m+3,代入①式整理得:m2﹣3m﹣4=0,解得:m1=4,m2=﹣1,∴n1=3,n2=8,∴P1(4,3),P2(﹣1,8);(II)当点P位于直线BD下方时,如答图3所示:过点P作PE⊥y轴于点E,则PE=m,OE=﹣n,BE=3﹣n.S△PBD=S梯形PEOD+S△BOD﹣S△PBE=(3+m)•(﹣n)+×3×3﹣(3﹣n)•m=6,化简得:m+n=﹣1 ②,∵P(m,n)在抛物线上,∴n=m2﹣4m+3,代入②式整理得:m2﹣3m+4=0,△=﹣7<0,此方程无解.故此时点P不存在.综上所述,在抛物线上存在点P,使S△PBD=6,点P的坐标为(4,3)或(﹣1,8).点评:本题是中考压轴题,综合考查了二次函数的图象与性质、待定系数法、相似三角形的判定与性质、图形面积计算、解一元二次方程等知识点,考查了数形结合、分类讨论的数学思想.第(2)(3)问均需进行分类讨论,避免漏解.三、形成训练1.(2013•湘西州)如图,已知抛物线y=﹣x 2+bx+4与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知A 点的坐标为A (﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C 的坐标,连接AC 、BC 并求线段BC 所在直线的解析式;(3)试判断△AOC 与△COB 是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线解析式,利用配方法或利用公式x=求出对称轴方程;(2)在抛物线解析式中,令x=0,可求出点C坐标;令y=0,可求出点B坐标.再利用待定系数法求出直线BD的解析式;(3)根据,∠AOC=∠BOC=90°,可以判定△AOC∽△COB;(4)本问为存在型问题.若△ACQ为等腰三角形,则有三种可能的情形,需要分类讨论,逐一计算,避免漏解.解答:解:(1)∵抛物线y=﹣x2+bx+4的图象经过点A(﹣2,0),∴﹣×(﹣2)2+b×(﹣2)+4=0,解得:b=,∴抛物线解析式为y=﹣x2+x+4,又∵y=﹣x2+x+4=﹣(x﹣3)2+,∴对称轴方程为:x=3.(2)在y=﹣x2+x+4中,令x=0,得y=4,∴C(0,4);令y=0,即﹣x2+x+4=0,整理得x2﹣6x﹣16=0,解得:x=8或x=﹣2,∴A(﹣2,0),B(8,0).设直线BC的解析式为y=kx+b,把B(8,0),C(0,4)的坐标分别代入解析式,得:,解得k=,b=4,∴直线BC的解析式为:y=x+4.(3)可判定△AOC∽△COB成立.理由如下:在△AOC与△COB中,∵OA=2,OC=4,OB=8,∴,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB.(4)∵抛物线的对称轴方程为:x=3,可设点Q(3,t),则可求得:AC===,AQ==,CQ==.i)当AQ=CQ时,有=,25+t2=t2﹣8t+16+9,解得t=0,∴Q1(3,0);ii)当AC=AQ时,有=,t2=﹣5,此方程无实数根,∴此时△ACQ不能构成等腰三角形;iii)当AC=CQ时,有=,整理得:t2﹣8t+5=0,解得:t=4±,∴点Q坐标为:Q2(3,4+),Q3(3,4﹣).综上所述,存在点Q,使△ACQ为等腰三角形,点Q的坐标为:Q1(3,0),Q2(3,4+),Q3(3,4﹣).点评: 本题考查了二次函数与一次函数的图象与性质、待定系数法、相似三角形的判定、勾股定理、等腰三角形的判定等知识点.难点在于第(4)问,符合条件的等腰三角形△ACQ 可能有多种情形,需要分类讨论.2 :已知:直线112y x =+与y 轴交于A ,与x 轴交于D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).(1)求抛物线的解析式;(2)动点P 在x 轴上移动,当△P AE 是直角三角形时,求点P 的坐标.3、如图,抛物线212222y x x =-++与x 轴交于A B 、两点,与y 轴交于C 点.(1)求A B C 、、三点的坐标;(2)证明ABC △为直角三角形;(3)在抛物线上除C 点外,是否还存在另外一个点P ,使ABP △是直角三角形,若存在,请求出点P 的坐标,若不存在,请说明理由.4、如图,已知抛物线224233y x x =-++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D . 点M 从O 点出发,以每秒1个单位长度的速度向B 运动,过M 作x 轴的垂线,交抛物线于点P ,交BC 于Q .(1)求点B 和点C 的坐标;(2)设当点M 运动了x (秒)时,四边形OBPC 的面积为S ,求S 与x 的函数关系式,并指出自变量x 的取值范围.(3)在线段BC 上是否存在点Q ,使得△DBQ成为以.BQ ..为一腰...的等腰三角形?若存在, 求出点Q 的坐标,若不存在,说明理由.5、(09年成都)在平面直角坐标系xOy 中,已知抛物线y=2(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M,若直线MC 的函数表达式为3y kx =-,与x 轴的交点为N ,且COS ∠BCO =31010。
二次函数代数推理综合问题解析
二次函数代数推理综合问题解析二次函数是一种常见的二次曲线,其一般形式为:y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。
在代数推理的综合问题中,有一些与二次函数相关的问题需要解析。
下面将介绍几个常见的二次函数代数推理综合问题,并给出解析。
问题一:已知二次函数y = ax^2 + bx + c的顶点坐标为(2,3),且过点(-1,0),求该函数的表达式。
解析:由题可知,二次函数的顶点坐标为(2,3),则顶点坐标中的x坐标为2,代入函数表达式可以得到:3=a*2^2+b*2+c另外,已知过点(-1,0),把该点的坐标代入函数表达式可以得到:0=a*(-1)^2+b*(-1)+c将上述两个方程组成一个方程组:4a+2b+c=3----(1)a-b+c=0----(2)解决方程组(1)和(2),可以采用消元法或代入法:将公式(2)的c解出来得到c=-a+b,代入公式(1)可以得到:4a+2b+(-a+b)=3,整理得到3a+3b=3,整理为a+b=1由公式a+b=1可以得到a=1-b,代入公式(2)可以得到(1-b)-b+c=0,整理得到c=2b-1综上所述,函数表达式为:y = (1 - b)x^2 + bx + (2b - 1)。
问题二:已知二次函数y = ax^2 + bx + c的两个零点为-2和5,求该函数的表达式。
解析:已知二次函数的两个零点为-2和5,可得到两个方程:a*(-2)^2+b*(-2)+c=0a*5^2+b*5+c=0整理得到:4a-2b+c=0----(3)25a+5b+c=0----(4)解决方程组(3)和(4),可以采用消元法或代入法:将公式(3)的c解出来得到c=2b-4a,代入公式(4)可以得到:25a+5b+(2b-4a)=0,整理得到-21a+7b=0,整理为-3a+b=0。
由公式-3a+b=0可以得到b=3a,代入公式(3)可以得到4a-2(3a)+c=0,整理得到c=2a。
中考数学专题复习二次函数的综合题及答案解析
中考数学专题复习二次函数的综合题及答案解析一、二次函数1.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100,解得:x =40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w ,根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6), ∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为:y =233642x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()AE 16425+=,分三种情况讨论:当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.4.二次函数y=x 2-2mx+3(m >)的图象与x 轴交于点A (a ,0)和点B (a+n ,0)(n >0且n 为整数),与y 轴交于C 点.(1)若a=1,①求二次函数关系式;②求△ABC 的面积;(2)求证:a=m-;(3)线段AB (包括A 、B )上有且只有三个点的横坐标是整数,求a 的值.【答案】(1)y=x 2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A 的坐标,然后代入二次函数的解析式,求得m 的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m ,然后根据A 、B 两点关于x=m 对称得到a+n-m=m-a ,从而确定a 、m 、n 之间的关系;(3)根据a=m-得到A (m-,0)代入y=(x-m )2-m 2+3得0=(m--m )2-m 2+3,求得m 的值即可确定a 的值.试题解析:(1)①∵a=1,∴A (1,0),代入y=x 2-2mx+3得1-2m+3=0,解得m=2,∴y=x 2-4x+3;②在y=x 2-4x+3中,当y=0时,有x 2-4x+3=0可得x=1或x=3,∴A (1,0)、B (3,0),∴AB=2再根据解析式求出C 点坐标为(0,3),∴OC=3,△ABC 的面积=×2×3=3;(2)∵y=x 2-2mx+3=(x-m )2-m 2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.5.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.【答案】(1)A(0,﹣3),B(4,﹣3);(2)﹣3<a≤0;【解析】【分析】(1)由题意直接可求A,根据平移点的特点求B;(2)图形M与线段AB恰有两个公共点,y=a要在AB线段的上方,当函数经过点A时,AB与函数两个交点的临界点;【详解】解:(1)A(0,﹣3),B(4,﹣3);(2)当函数经过点A时,a=0,∵图形M与线段AB恰有两个公共点,∴y=a要在AB线段的上方,∴a>﹣3∴﹣3<a≤0;【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.6.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题7.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M 与O 重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5),∴S △OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.8.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
专题62 二次函数与圆综合性问题(解析版)
例题精讲【例1】.如图,抛物线的顶点为A(0,2),且经过点B(2,0).以坐标原点O为圆心的圆的半径r=,OC⊥AB于点C.(1)求抛物线的函数解析式.(2)求证:直线AB与⊙O相切.(3)已知P为抛物线上一动点,线段PO交⊙O于点M.当以M,O,A,C为顶点的四边形是平行四边形时,求PM的长.解:(1)∵抛物线的顶点为A(0,2),∴可设抛物线的解析式为:y=ax2+2,∵抛物线经过点B(2,0),∴4a+2=0,解得:a=﹣,∴抛物线的解析式为:y=﹣x2+2;(2)证明:∵A(0,2),B(2,0),∴OA=OB=2,∴AB=2,∵OC⊥AB,∴•OA•OB=•AB•OC,∴×2×2=×2•OC,解得:OC=,∵⊙O的半径r=,∴OC是⊙O的半径,∴直线AB与⊙O相切;(3)∵点P在抛物线y=﹣x2+2上,∴可设P(x,﹣x2+2),以M,O,A,C为顶点的四边形是平行四边形时,可得:AC=OM=,CM=OA=2,∵点C是AB的中点,∴C(1,1),M(1,﹣1),设直线OM的解析式为y=kx,将点M(1,﹣1)代入,得:k=﹣1,∴直线OM的解析式为y=﹣x,∵点P在OM上,∴﹣x2+2=﹣x,解得:x1=1+,x2=1﹣,∴y1=﹣1﹣,y2=﹣1+,∴P1(1+,﹣1﹣),P2(1﹣,﹣1+),如图,当点P位于P1位置时,OP1===(1+)=+,∴P1M=OP1﹣OM=+﹣=,当点P位于P2位置时,同理可得:OP2=﹣,∴P2M=OP2﹣OM=﹣﹣=﹣2;综上所述,PM的长是或﹣2.变式训练【变1-1】.如图,抛物线y=ax2+bx+2与直线AB相交于A(﹣1,0),B(3,2),与x轴交于另一点C.(1)求抛物线的解析式;(2)在y上是否存在一点E,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;(3)以C为圆心,1为半径作⊙O,D为⊙O上一动点,求DA+DB的最小值解:(1)把A(﹣1,0)、B(3,2)代入y=ax2+bx+2,得,解得,∴抛物线的解析式为y=x2+x+2.(2)存在.如图1,作AE⊥AB交y轴于点E,连结CE;作BF⊥x轴于点F,则F(3,0).当y=0时,由x2+x+2=0,得x1=1,x2=4,∴C(4,0),∴CF=AO=1,AF=3﹣(﹣1)=4;又∵BF=2,∴,∵∠BFC=∠AFB=90°,∴△BFC∽△AFB,∴∠CBF=∠BAF,∴∠ABC=∠CBF+∠ABF=∠BAF+∠ABF=90°,∴BC∥AE,∵∠BCF=90°﹣∠BAC=∠EAO,∠BFC=∠EOA=90°,∴△BCF≌△EAO(ASA),∴BC=EA,∴四边形ABCE是矩形;∵OE=FB=2,∴E(0,﹣2).(3)如图2,作FL⊥BC于点L,连结AL、CD.由(2)得∠BFC=90°,BF=2,CF=1,∴CF=CD,CB==.∵∠FLC=∠BFC=90°,∠FCL=∠BCF(公共角),∴△FCL∽△BCF,∴=,∴=,∵∠DCL=∠BCD(公共角),∴△DCL∽△BCD,∴=,∴LD=DB;∵DA+LD≥AL,∴当DA+LD=AL,即点D落在线段AL上时,DA+DB=DA+LD=AL最小.∵CL=CF=,∴BL==,∴BL2=()2=,又∵AB2=22+42=20,∴AL===,DA+DB的最小值为.【例2】.如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.(1)求抛物线的表达式;(2)判断△BCE的形状,并说明理由;(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP 的值最小,若存在,请求出最小值;若不存在,请说明理由.解:(1)∵抛物线的顶点坐标为E(2,8),∴设该抛物线的表达式为y=a(x﹣2)2+8,∵与y轴交于点C(0,6),∴把点C(0,6)代入得:a=﹣,∴该抛物线的表达式为y=x2+2x+6;(2)△BCE是直角三角形.理由如下:∵抛物线与x轴分别交于A、B两点,∴令y=0,则﹣(x﹣2)2+8=0,解得:x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),∴BC2=62+62=72,CE2=(8﹣6)2+22=8,BE2=(6﹣2)2+82=80,∴BE2=BC2+CE2,∴∠BCE=90°,∴△BCE是直角三角形;(3)⊙C上存在点P,使得BP+EP的值最小且这个最小值为.理由如下:如图,在CE上截取CF=(即CF等于半径的一半),连结BF交⊙C于点P,连结EP,则BF的长即为所求.理由如下:连结CP,∵CP为半径,∴==,又∵∠FCP=∠PCE,∴△FCP∽△PCE,∴==,即FP=EP,∴BF=BP+EP,由“两点之间,线段最短”可得:BF的长即BP+EP为最小值.∵CF=CE,E(2,8),∴由比例性质,易得F(,),∴BF==.变式训练【变2-1】.在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,当△ACP是以AC为直角边的直角三角形时,求点P的坐标;(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D.交OM于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.解:(1)把A(﹣2,0),B(4,0)代入y=x2+bx+c得:,解得,∴二次函数的解析式为y=x2﹣x﹣4;(2)如图:由y=x2﹣x﹣4可得C(0,﹣4),设P(x,x2﹣x﹣4),∴AC2=(﹣2﹣0)2+(0+4)2=20,CP2=x2+(x2﹣x)2,AP2=(x+2)2+(x2﹣x ﹣4)2,∵△ACP是以AC为直角边的直角三角形,∴AC2+CP2=AP2,即20+x2+(x2﹣x)2=(x+2)2+(x2﹣x﹣4)2,∴20+x2+(x2﹣x)2=x2+4x+4+(x2﹣x)2﹣8(x2﹣x)+16,解得x=0(与C重合,舍去)或x=3,∴P(3,﹣);(3)点P在运动过程中线段DE的长不变,理由如下:连接AP、BE,如图:∵=,=,∴∠APD=∠DBE,∠DAP=∠DEB,∴△ADP∽△EDB,∴=,∴DE=,设P(m,m2﹣m﹣4),则D(m,0),∵A(﹣2,0),B(4,0),C(0,﹣4),∴AD=m+2,BD=4﹣m,PD=﹣(m2﹣m﹣4)=﹣m2+m+4,∴DE===2,∴DE是定值2,∴点P在运动过程中线段DE的长不变,是定值2.1.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与坐标轴相切时,圆心P的坐标可以是(,2)或(﹣,2)或(2,1)或(﹣2,1).解:分两种情况:(1)当⊙P与x轴相切时,依题意,可设P(x,2)或P(x,﹣2).①当P的坐标是(x,2)时,将其代入y=x2﹣1,得2=x2﹣1,解得x=±,此时P(,2)或(﹣,2);②当P的坐标是(x,﹣2)时,将其代入y=x2﹣1,得﹣2=x2﹣1,无解.(2)当⊙P与y轴相切时,∵⊙P的半径为2,∴当⊙P与y轴相切时,点P到y轴的距离为2,∴P点的横坐标为2或﹣2,当x=2时,代入y=x2﹣1可得y=1,当x=﹣2时,代入y=x2﹣1可得y=1,∴点P的坐标为(2,1)或(﹣2,1),综上所述,符合条件的点P的坐标是(,2)或(﹣,2)或(2,1)或(﹣2,1);故答案为:(,2)或(﹣,2)或(2,1)或(﹣2,1).2.如图1,抛物线与x轴交于O、A两点,点B为抛物线的顶点,连接OB.(1)求∠AOB的度数;(2)如图2,以点A为圆心,4为半径作⊙A,点M在⊙A上.连接OM、BM,①当△OBM是以OB为底的等腰三角形时,求点M的坐标;②如图3,取OM的中点N,连接BN,当点M在⊙A上运动时,求线段BN长度的取值范围.解:(1)令y=0,则﹣2x=0,解得:x=0或8.∴A(8,0).∴OA=8.∵y=﹣2x=﹣4,∴B(4,﹣4).过点B作BD⊥OA于点D,如图,则OD=4,BD=4,∴OD=BD,∴∠AOB=∠OBD=45°;(2)①设⊙A与x轴交于点C,则C(4,0).连接BC,如图,∵B(4,﹣4),∴BC⊥OA.∵CO=CB=4,∴△CBO是以OB为底的等腰三角形.∴点M与点C重合时,△MBO是以OB为底的等腰三角形.此时点M(4,0);过点A作AM⊥x轴,交⊙A于点M,延长MA交⊙A于点E,连接BE,过点M作MF⊥y轴于点F,如图,则M(8,4),E(8,﹣4),F(,4).∴MF=ME=8.∵B(4,﹣4),∴BE∥x轴.∴BE⊥ME,BE=4.∴∠BEM=∠MFO=90°,BE=OF=4.在△MOF和△MBE中,,∴△MOF≌△MBE(SAS).∴MO=MB.∴△MBO是以OB为底的等腰三角形.此时点M(8,4);综上,当△OBM是以OB为底的等腰三角形时,点M的坐标为(4,0)或(8,4);②设⊙A与x轴交于点C,则C(4,0).连接BC,CN,AM,如图,∵A(8,0),∴点C是OA的中点.∵N为OM的中点,∴CN是△OMA的中位线.∴CN=AM=2.当点M在⊙A上运动时,由三角形的三边的关系定理可知:BC﹣CN≤BN≤BC+CN.∵BC=4,∴4﹣2≤BN≤4+2.∴线段BN长度的取值范围为:2≤BN≤6.3.如图,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,且OB=OC.(1)求抛物线的解析式;(2)如图1,若点P是线段BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,将△PCM沿CM对折,如果点P的对应点N恰好落在y轴上,求此时点P的坐标;(3)如图2,若第四象限有一动点E,满足BE=OB,过E作EF⊥x轴于点F,设F坐标为(t,0),0<t<3,△BEF的内心为I,连接CI,直接写出CI的最小值.解:(1)在y=ax2﹣2ax﹣3a(a>0)中,令y=0,得:ax2﹣2ax﹣3a=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∴OB=3,∵OB=OC,∴OC=3,∴C(0,﹣3),∴﹣3a=﹣3,∴a=1,∴抛物线解析式为:y=x2﹣2x﹣3.(2)设直线BC解析式为y=kx+b,∵B(3,0),C(0,﹣3),∴,解得:,∴直线BC解析式为:y=x﹣3,设M点坐标为(m,m2﹣2m﹣3),∵PM⊥x轴,∴P(m,m﹣3),∴PM=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∵OB=OC,∠BOC=90°,∴CB=OB,∴CP=m,∵△PCM沿CM对折,点P的对应点N恰好落在y轴上,∴∠PCM=∠NCM,∵PM∥y轴,∴∠NCM=∠PMC,∴∠PCM=∠PMC,∴PC=PM,∴m=﹣m2+3m,整理得:m2+(﹣3)m=0,解得:m1=0(舍去),m2=3﹣,∴当m=3﹣时,m﹣3=﹣,∴P(3﹣,﹣).(3)如图2,连接BI,OI,EI,作△OBI的外接圆⊙M,连接OM,BM,MI,CM,过M作MH⊥y轴于H,∵EF⊥x轴,∴∠BFE=90°,∴∠FBE+∠FEB=90°,∵△BEF的内心为I,∴BI,EI分别平分∠FBE,∠FEB,∴∠IBE=∠FBE,∠IEB=∠FEB,∴∠IBE+∠IEB=(∠FBE+∠FEB)=45°,∴∠BIE=135°,在△BIO和△BIE中,,∴△BIO≌△BIE(SAS),∴∠BIO=∠BIE=135°,∵⊙M是△OBI的外接圆,∴∠OMB=2×(180°﹣∠BIO)=90°,∴OM=BM=OB=,∴MI=OM=,∴∠MOB=∠MOH=45°,∵MH⊥y轴,∴∠HOM=∠HMO=45°,∴OH=HM=OM=,∴CH=OH+OC=+3=,∴CM==,∵CI≥CM﹣MI,当且仅当C、M、I三点共线时,CI取得最小值,∴CI的最小值为﹣.4.已知抛物线y=x2﹣(2m﹣1)x+4m﹣6.(1)试说明对于每一个实数m,抛物线都经过x轴上的一个定点;(2)设抛物线与x轴的两个交点A(x1,0)和B(x2,0)(x1<x2)分别在原点的两侧,且A、B两点间的距离小于6,求m的取值范围;(3)抛物线的对称轴与x轴交于点C,在(2)的条件下,试判断是否存在m的值,使经过点C及抛物线与x轴的一个交点的⊙M与y轴的正半轴相切于点D,且被x轴截得的劣弧与是等弧?若存在,求出所有满足条件的m的值;若不存在,说明理由.解:(1)由题意可知:y=(x﹣2)(x﹣2m+3),因此抛物线与x轴的两个交点坐标为:(2,0)(2m﹣3,0),因此无论m取何值,抛物线总与x轴交于(2,0)点;(2)令y=0,有:x2﹣(2m﹣1)x+4m﹣6=0,则:x1+x2=2m﹣1,x1x2=4m﹣6;∵AB<6∴x2﹣x1<6,即(x2﹣x1)2<36,(x1+x2)2﹣4x1x2<36,即(2m﹣1)2﹣4(4m﹣6)<36,解得﹣<x<.①根据A、B分别在原点两侧可知:x1x2<0,即4m﹣6<0,m<.②综合①②可得﹣<m<;(3)假设存在这样的m,设圆M与y轴的切点为D,过M作x轴的垂线设垂足为E.①当C点在x轴正半轴时,x=>0,因此<m<,∵弧BC=弧CD,因此BC=CD.OC=,CD=BC=OB﹣OC=2﹣=,EC=BC=,OE=MD=OC+CE=+=.易知:OD=ME,即OD2=ME2∴CD2﹣OC2=CM2﹣CE2,()2﹣()2=()2﹣()2;解得m=,符合m的取值范围.②当C点在x轴负半轴时,x=<0,因此﹣<m<,同①可求得OC=,CD=AC=,CE=,MD=OE=.同理有:CD2﹣OC2=MC2﹣CE2()2﹣()2=()2﹣()2化简得:m2=,∴m=±,均不符合m的取值范围,因此这种情况不成立.综上所述,存在符合条件的m,且m=.5.已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求的值.解:(1)令y=0,∴x2+mx﹣2m﹣4=0,∴△=m2﹣4[﹣2m﹣4]=m2+8m+16,∵m>0,∴Δ>0,∴该抛物线与x轴总有两个不同的交点;(2)令y=0,∴x2+mx﹣2m﹣4=0,∴(x﹣2)[x+(m+2)]=0,∴x=2或x=﹣(m+2),∴A(2,0),B(﹣(m+2),0),∴OA=2,OB=m+2,令x=0,∴y=﹣2(m+2),∴C(0,﹣2(m+2)),∴OC=2(m+2),①通过定点(0,1)理由:如图,∵点A,B,C在⊙P上,∴∠OCB=∠OAF,在Rt△BOC中,tan∠OCB===,在Rt△AOF中,tan∠OAF===,∴OF=1,∴点F的坐标为(0,1);②如图1,由①知,点F(0,1),∵D(0,1),∴点D在⊙P上,∵点E是点C关于抛物线的对称轴的对称点,∴∠DCE=90°,∵⊙P是△ABC的外接圆,∴点P在抛物线的对称轴上,∴点E在⊙P上,∴DE是⊙P的直径,∴∠DBE=90°,∵∠BED=∠OCB,∴tan∠BED=,设BD=n,在Rt△BDE中,tan∠BED===,∴BE=2n,根据勾股定理得,DE==n,∴l=BD+BE+DE=(3+)n,r=DE=n,∴==.6.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M (4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;=8S△QAB,(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN 且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.解:(1)如图,连接OC,∵M(4,0),N(0,3),∴OM=4,ON=3,∴MN=5,∴OC=MN=,∵CD为抛物线对称轴,∴OD=MD=2,在Rt△OCD中,由勾股定理可得CD===,∴PD=PC﹣CD=﹣=1,∴P(2,﹣1);(2)∵抛物线的顶点为P(2,﹣1),∴设抛物线的函数表达式为y=a(x﹣2)2﹣1,∵抛物线过N(0,3),∴3=a(0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(3)在y=x2﹣4x+3中,令y=0可得0=x2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,=S△OMP+S△OMN=OM•PD+OM•ON=×4×1+×4×3=8=8S△QAB,∴S四边形OPMN=1,∴S△QAB设Q点纵坐标为y,则×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,﹣1).7.如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F(0,1)作x轴的平行线交二次函数的图象于M、N两点.(1)求二次函数的表达式;(2)P为平面内一点,当△PMN是等边三角形时,求点P的坐标;(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y=﹣1相切.若存在,求出点E的坐标,并求⊙E的半径;若不存在,说明理由.解:(1)∵二次函数的图象顶点在原点,故设二次函数表达式为:y=ax2,将(2,1)代入上式并解得:a=,故二次函数表达式为:y=x2;(2)将y=1代入y=x2并解得:x=±2,故点M、N的坐标分别为(﹣2,1)、(2,1),则MN=4,∵△PMN是等边三角形,∴点P在y轴上且PM=4,∴PF=2;∵点F(0,1),∴点P的坐标为(0,1+2)或(0,1﹣2);(3)假设二次函数的图象上存在一点E满足条件,设点Q是FN的中点,则点Q(1,1),故点E在FN的中垂线上.∴点E是FN的中垂线与y=x2图象的交点,∴y=×12=,则点E(1,),EN==,同理EF==,点E到直线y=﹣1的距离为|﹣(﹣1)|=,故存在点E,使得以点E为圆心半径为的圆过点F,N且与直线y=﹣1相切.8.已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,b>0,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.解:①二次函数y=﹣x2+bx+c+1的对称轴为x=,当b=1时,=,∴当b=1时,求这个二次函数的对称轴的方程为x=.②二次函数y=﹣x2+bx+c+1的顶点坐标为(,),∵二次函数的图象与x轴相切且c=﹣b2﹣2b,∴,解得:b=,∴b为,二次函数的图象与x轴相切.③∵AB是半圆的直径,∴∠AMB=90°,∴∠OAM+∠OBM=90°,∵∠AOM=∠MOB=90°,∴∠OAM+∠OMA=90°,∴∠OMA=∠OBM,∴△OAM∽△OMB,∴,∴OM2=OA•OB,∵二次函数的图象与x轴交于点A(x1,0),B(x2,0),∴OA=﹣x1,OB=x2,x1+x2,=b,x1•x2=﹣(c+1),∵OM=c+1,∴(c+1)2=c+1,解得:c=0或c=﹣1(舍去),∴c=0,OM=1,∵二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,∴AD=BD,DF=4DE,DF∥OM,∴△BDE∽△BOM,△AOM∽△ADF,∴,,∴DE=,DF=,∴×4,∴OB=4OA,即x2=﹣4x1,∵x1•x2=﹣(c+1)=﹣1,∴,解得:,∴b=﹣+2=,∴二次函数的表达式为y=﹣x2+x+1.9.已知抛物线y=ax2+bx+c过点A(0,2).若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足;当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且△ABC 有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.解:①当x1<x2<0时,x1﹣x2<0,∵(x1﹣x2)(y1﹣y2)>0,∴y1﹣y2<0,∴当x<0时,y随x的增大而增大,当0<x1<x2时,x1﹣x2<0,∵(x1﹣x2)(y1﹣y2)<0,∴y1﹣y2>0,∴当x>0时,y随x的增大而减小.∴抛物线关于y轴对称,∴b=0,∵抛物线y=ax2+bx+c过点A(0,2),∴c=2,如图,连接OB、OC,设BC y轴于点D.由对称性可知,△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC是等边三角形,∴OD=OA=1,CD=OD=,∴B(﹣,﹣1),C(,﹣1),将C点坐标代入y=ax2+2可求得a=﹣1,∴抛物线的解析式为y=﹣x2+2.②设直线OM的解析式为y=k1x,∵O、M、N三点共线,∴x1≠0,x2≠0,且=,化为x1﹣x2=,∵x1≠x2,∴x1x2=﹣2,∴,∴,设点N关于y轴的对称点为N',则N'的坐标为,∵点P是点O关于点A的对称点,∴OP﹣2OA=4,即点P的坐标为(0,4),设直线PM的解析式为y=k2x+4,∵点M的坐标为,∴,∴,∴直线PM的解析式为x+4.∵,即N'在直线PM上,∴PA平分∠MPN.10.如图,在平面直角坐标系xOy中,O为坐标原点,点A(4,0),点B(0,4),△ABO 的中线AC与y轴交于点C,且⊙M经过O,A,C三点.(1)求圆心M的坐标;(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在(2)的条件下,在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF =4时,求点P的坐标.解:(1)点B(0,4),则点C(0,2),∵点A(4,0),则点M(2,1);(2)应该是圆M与直线AD相切,则∠CAD=90°,设:∠CAO=α,则∠CAO=∠ODA=∠PEH=α,tan∠CAO===tanα,则sinα=,cosα=,AC=,则CD==10,则点D(0,﹣8),将点A、D的坐标代入一次函数表达式:y=mx+n并解得:直线AD的表达式为:y=2x﹣8;(3)抛物线的表达式为:y=a(x﹣2)2+1,将点B坐标代入上式并解得:a=,故抛物线的表达式为:y=x2﹣3x+4,过点P作PH⊥EF,则EH=EF=2,cos∠PEH=,解得:PE=5,设点P(x,x2﹣3x+4),则点E(x,2x﹣8),则PE=x2﹣3x+4﹣2x+8=5,解得x=或2,则点P(,)或(2,1).11.如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.解:(1)令ax2+6ax=0,ax(x+6)=0,∴A(﹣6,0);(2)①证明:如图,连接PC,连接PB,延长交x轴于点M,∵⊙P过O、A、B三点,B为顶点,∴PM⊥OA,∠PBC+∠BDM=90°,又∵PC=PB,∴∠PCB=∠PBC,∵CE为切线,∴∠PCB+∠ECD=90°,又∵∠BDM=∠CDE,∴∠ECD=∠CDE,∴CE=DE.②解:设OE=m,点D的坐标为(t,0),∵∠CAE=∠CBO,∠CAE=∠OBE,∴∠CBO=∠EBO,由角平分线成比例定理可得:,即:,∴,∴,∴,=,=.12.抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点B,D的坐标分别为(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处,当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,点Q是“M”形新图象上一动点.①直接写出“M”形图象AB段的函数关系式;②是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)令y=0,则﹣x2+x﹣1=0,解得x=3或x=,∴B(3,0),A(,0),令x=0,则y=﹣1,∴C(0,﹣1),∵y=﹣x2+x﹣1=﹣(x﹣)2+,∴顶点D(,),故答案为:(3,0),(,);(2)∵E与D关于直线y=t对称,∴E(,2t﹣),设直线BC的解析式为y=kx+b,将B(3,0),C(0,﹣1)代入,得,∴,∴y=x﹣1,当x=时,y=﹣,∵E点在△ABC内(含边界),∴2t﹣≥﹣,∴t≥,∵2t﹣≤0,∴t≤,∵t<,∴t的取值范围是≤t≤;(3)①当t=0时,y=﹣x2+x﹣1关于x轴对称的函数为y=x2﹣x+1,∴“M”形图象AB段的函数关系式为y=x2﹣x+1(≤x≤3);②存在点P,理由如下:设Q点的横坐标为m,∵以CQ为直径的圆与x轴相切于点P,∴P点的横坐标为m,当m>3或m<时,Q(m,﹣m2+m﹣1),∵△CPQ为直角三角形,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,解得m=或m=,∴P(,0)或P(,0);当≤m≤3时,Q(m,m2﹣m+1),∵△CPQ为直角三角形,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,解得m=2或m=,∴P(,0)或P(1,0);综上所述:存在以CQ为直径的圆与x轴相切于点P,P点坐标为(,0)或(,0)或(,0)或P(1,0).13.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与抛物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与抛物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,∴x1﹣x2=﹣,∴x1x2=﹣2,即x2=﹣,∴点N的坐标为(﹣,﹣+2).设点N关于y轴的对称点为点N′,则点N′的坐标为(,﹣+2).∵点P是点O关于点A的对称点,∴OP=2OA=4,∴点P的坐标为(0,4).设直线PM的解析式为y=k2x+4,∵点M的坐标为(x1,﹣+2),∴﹣+2=k2x1+4,∴k2=﹣,∴直线PM的解析式为y=﹣x+4.∵﹣•+4==﹣+2,∴点N′在直线PM上,∴PA平分∠MPN.14.如图,已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3,0),B(4,1),且与y 轴交于点C,连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M的坐标;(3)若将抛物线沿射线BA方向平移,平移后点A、B、C的对应点分别记为点A1、B1、C1,△A1B1C1的外接圆记为⊙M1,是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.解:(1)把点A(3,0),B(4,1)代入y=ax2+bx+3中,,解得:,所以所求函数关系式为:y=x2﹣x+3;(2)△ABC是直角三角形,过点B作BD⊥x轴于点D,易知点C坐标为:(0,3),所以OA=OC,所以∠OAC=45°,又∵点B坐标为:(4,1),∴AD=BD,∴∠DAB=45°,∴∠BAC=180°﹣45°﹣45°=90°,∴△ABC是直角三角形,圆心M的坐标为:(2,2);(3)存在取BC的中点M,过点M作ME⊥y轴于点E,∵M的坐标为:(2,2),∴MC==,OM=2,∴∠MOA=45°,又∵∠BAD=45°,∴OM∥AB,∴要使抛物线沿射线BA方向平移,且使⊙M1经过原点,则平移的长度为:2﹣或2+;∵∠BAD=45°,∴抛物线的顶点向左、向下均分别平移=个单位长度或=个单位长度,∵y=x2﹣x+3=(x﹣)2﹣,∴平移后抛物线的关系式为:y=(x﹣+)2﹣﹣,即y=(x﹣)2﹣,或y=(x﹣+)2﹣﹣,即y=(x﹣)2﹣.综上所述,存在一个位置,使⊙M1经过原点,此时抛物线的关系式为:y=(x﹣)2﹣或y=(x﹣)2﹣.15.已知抛物线C1:y=ax2过点(2,2)(1)直接写出抛物线的解析式y=x2;(2)如图,△ABC的三个顶点都在抛物线C1上,且边AC所在的直线解析式为y=x+b,若AC边上的中线BD平行于y轴,求的值;(3)如图,点P的坐标为(0,2),点Q为抛物线上C1上一动点,以PQ为直径作⊙M,直线y=t与⊙M相交于H、K两点是否存在实数t,使得HK的长度为定值?若存在,求出HK的长度;若不存在,请说明理由.解:(1)把点(2,2)坐标代入y=ax2,解得:a=,∴抛物线的解析式为y=x2;(2)把y=x+b和y=x2得:x2﹣2x﹣2b=0,设A、C两点的坐标为(x1,y1)、(x2,y2),则:x1+x2=2,x1•x2=﹣2b,点D坐标为(,),即;D(1,1+b),B坐标为(1,),AC2=[(x2﹣x1)]2=16b+8BD=+b,∴=16;(3)设点Q坐标为(a,a2),点P的坐标为(0,2),由P、Q坐标得点M的坐标为(,a2+1),设圆的半径为r,由P(0,2)、M两点坐标可以求出r2=+(a2﹣1)2=a4﹣a2+1,设点M到直线y=t的距离为d,则d2=(a2+1﹣t)2=a4+a2+1+t2﹣2t﹣a2t,则HK=2=2,当t﹣=0时,HK为常数,t=,HK=.16.定义:平面直角坐标系xOy中,过二次函数图象与坐标轴交点的圆,称为该二次函数的坐标圆.(1)已知点P(2,2),以P为圆心,为半径作圆.请判断⊙P是不是二次函数y=x2﹣4x+3的坐标圆,并说明理由;(2)如图1,已知二次函数y=x2﹣4x+4图象的顶点为A,坐标圆的圆心为P,求△POA 周长的最小值;(3)如图2,已知二次函数y=ax2﹣4x+4(0<a<1)图象交x轴于点A,B,交y轴于点C,与坐标圆的第四个交点为D,连结PC,PD.若∠CPD=120°,求a的值.解:(1)对于二次函数y=x2﹣4x+3,当x=0时,y=3;当y=0时,解得x=1或x=3,∴二次函数图象与x轴交点为A(1,0),B(3,0),与y轴交点为C(0,3),∵点P(2,2),∴PA=PB=PC=,∴⊙P是二次函数y=x2﹣4x+3的坐标圆.(2)如图1,连接PH,∵二次函数y=x2﹣4x+4图象的顶点为A,坐标圆的圆心为P,∴A(2,0),与y轴的交点H(0,4),∴△POA周长=PO+PA+OA=PO+PH+2≥OH+2=6,∴△POA周长的最小值为6.(3)如图2,连接CD,PA,设二次函数y=ax2﹣4x+4图象的对称轴l与CD交于点E,与x轴交于点F,由对称性知,对称轴l经过点P,且l⊥CD,∵AB=,∴AF=BF=,∵∠CPD=120°,PC=PD,C(0,4),∴∠PCD=∠PDC=30°,设PE=m,则PA=PC=2m,CE=m,PF=4﹣m,∵二次函数y=ax2﹣4x+4图象的对称轴l为,∴,即,在Rt△PAF中,PA2=PF2+AF2,∴,即,化简,得,解得,∴.17.如图,在平面直角坐标系中,抛物线y=x2﹣bx﹣c交x轴于点A,B,点B的坐标为(4,0),与y轴于交于点C(0,﹣2).(1)求此抛物线的解析式;(2)在抛物线上取点D,若点D的横坐标为5,求点D的坐标及∠ADB的度数;(3)在(2)的条件下,设抛物线对称轴l交x轴于点H,△ABD的外接圆圆心为M(如图1),过点B作⊙M的切线交于点P(如图2),设Q为⊙M上一动点,则在点运动过程中的值是否变化?若不变,求出其值;若变化,请说明理由.解:(1)将点B、C的坐标代入抛物线表达式得:,解得:,∴抛物线的解析式为y=x2﹣x﹣2;(2)当x=5时,y=x2﹣x﹣2=3,故D的坐标为(5,3),令y=0,则x=4(舍去)或﹣1,故点A(﹣1,0),如图,连接BD,作BN⊥AD于N,∵A(﹣1,0),B(4,0),C(0,﹣2),∴AD=3,BD=,AB=5,==,∵S△ABD∴BN=,∴sin∠BDN===,∴∠BDN=45°,∴∠ADB=∠BDN=45°;(3)不变.如图,连接MQ,MB,∵过点B作⊙M的切线交1于点P,∴∠MBP=90°,∵∠MBO=45°,∴∠PBH=45°,∴PH=HB=2.5,∵==,==,∵∠HMQ=∠QMP,∴△HMQ∽△QMP,∴==,∴在点Q运动过程中的值不变,其值为.18.如图,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,﹣2)为抛物线的顶点.(1)求该抛物线的解析式;(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E,交x轴于B、C两点,点M为⊙E上一点.①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.解:(1)由抛物线顶点式表达式得:y=a(x﹣2)2﹣2,将点A的坐标代入上式并解得:a=,故抛物线的表达式为:y=(x﹣2)2﹣2=x2﹣2x①;(2)①点E是OA的中点,则点E(2,0),圆的半径为1,则点B(1,0),当点P在x轴下方时,如图1,∵tan∠MBC=2,故设直线BP的表达式为:y=﹣2x+s,将点B(1,0)的坐标代入上式并解得:s=2,故直线BP的表达式为:y=﹣2x+2②,联立①②并解得:x=±2(舍去﹣2),故m=2;当点P在x轴上方时,同理可得:m=4±2(舍去4﹣2);故m=2或4+2;②存在,理由:连接BN、BD、EM,则BN是△OEM的中位线,故BN=EM=,而BD==,在△BND中,BD﹣BN≤ND≤BD+BN,即﹣0.5≤ND≤+0.5,故线段DN的长度最小值和最大值分别为﹣0.5和+0.5.19.如图,在平面直角坐标系上,一条抛物线y=ax2+bx+c(a≠0)经过A(1,0)、B(3,0)、C(0,3)三点,连接BC并延长.(1)求抛物线的解析式;(2)点M是直线BC在第一象限部分上的一个动点,过M作MN∥y轴交抛物线于点N.1°求线段MN的最大值;2°当MN取最大值时,在线段MN右侧的抛物线上有一个动点P,连接PM、PN,当△PMN的外接圆圆心Q在△PMN的边上时,求点P的坐标.解:(1)把A、B、C三点的坐标代入抛物线y=ax2+bx+c(a≠0)中,得,解得,,∴抛物线的解析式为:y =x 2﹣4x +3;(2)1°设直线BC 的解析式为y =mx +n (m ≠0),则,解得,,∴直线BC 的解析式为:y =﹣x +3,设M (t ,﹣t +3)(0<t <3),则N (t ,t 2﹣4t +3),∴MN =﹣t 2+3t =﹣,∴当t =时,MN 的值最大,其最大值为;2°∵△PMN 的外接圆圆心Q 在△PMN 的边上,∴△PMN 为直角三角形,由1°知,当MN 取最大值时,M (),N (),①当∠PMN =90°时,PM ∥x 轴,则P 点与M 点的纵坐标相等,∴P 点的纵坐标为,当y =时,y =x 2﹣4x +3=,解得,x =,或x =(舍去),∴P ();②当∠PNM =90°时,PN ∥x 轴,则P 点与N 点的纵坐标相等,∴P 点的纵坐标为﹣,当y =﹣时,y =x 2﹣4x +3=﹣,解得,x =,或x =(舍去),∴P (,);③当∠MPN =90°时,则MN 为△PMN 的外接圆的直径,∴△PMN的外接圆的圆心Q为MN的中点,∴Q(),半径为,过Q作QK∥x轴,与在MN右边的抛物线图象交于点K,如图②,令y=,得y=x2﹣4x+3=,解得,x=<(舍),或x=,∴K(,),∴QK=>,即K点在以MN为直径的⊙Q外,设抛物线y=x2﹣4x+3的顶点为点L,则l(2,﹣1),连接LK,如图②,则L到QK的距离为,LK=,设Q点到LK的距离为h,则,∴=,∴直线LK下方的抛物线与⊙Q没有公共点,∵抛物线中NL部分(除N点外)在过N点与x轴平行的直线下方,∴抛物线中NL部分(除N点外)与⊙Q没有公共点,∵抛物线K点右边部分,在过K点与y轴平行的直线的右边,∴抛物线K点右边部分与⊙Q没有公共点,综上,⊙Q与MN右边的抛物线没有交点,∴在线段MN右侧的抛物线上不存在点P,使△PMN的外接圆圆心Q在MN边上;综上,点P的坐标为()或().20.如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣10123…y…03430…(1)求出这条抛物线的解析式;(2)如图1,直线y=kx+1(k<0)与抛物线交于P,Q两点,交抛物线的对称轴于点T,若△QMT的面积是△PMT面积的两倍,求k的值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.解:(1)根据表格可得出A(﹣1,0),B(3,0),C(0,3),设抛物线解析式为y=a(x+1)(x﹣3),将C(0,3)代入,得:3=a(0+1)(0﹣3),解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3,∴该抛物线解析式为y=﹣x2+2x+3;(2)设P(x1,y1),Q(x2,y2),令y=kx+1=﹣x2+2x+3,整理得:x2+(k﹣2)x﹣2=0,∴x1+x2=2﹣k,x1x2=﹣2①,∵△QMT的面积是△PMT面积的两倍,∴MT•(x2﹣1)=2×MT•(1﹣x1),∴2x1+x2=3,即x2=3﹣2x1②,将②代入①得:2x12﹣3x1﹣2=0,解得:x1=2或,∴或,∴k=1或,∵k<0,∴k=﹣;(3)线段EF的长为定值1,如图,连接BE,设D(t,﹣t2+2t+3),且t>3,∵EF⊥x轴,∴DF=﹣(﹣t2+2t+3)=t2﹣2t﹣3,∵F(t,0),∴BF=OF﹣OB=t﹣3,AF=t﹣(﹣1)=t+1,∵四边形ABED是圆内接四边形,∴∠DAF+∠BED=180°,∵∠BEF+∠BED=180°,∴∠DAF=∠BEF,∵∠AFD=∠EFB=90°,∴△AFD∽△EFB,∴,∴,∴EF===1,∴线段EF的长为定值1.21.如图,抛物线y=﹣x2+2x+3与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴.(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②△BCF的面积为S,求S与m的函数关系式,并求出S的最大值.(3)现有一个以原点O为圆心,长为半径的圆沿y轴正半轴方向向上以每秒1个单位的速度运动,问几秒后⊙O与直线AC相切?解:(1)设0=﹣x2+2x+3,解得:x=﹣1或3,∵抛物线y=﹣x2+2x+3与x相交于AB(点A点B左侧),∴A(﹣1,0),B(3,0),∵抛物线与y轴相交于点C,∴C(0,3),∴抛物线的对称轴是:直线x=1.(2)①设直线BC的函数关系式为y=kx+b,把B(3,0),C(0,3)分别代入,得,解得:k=﹣1,b=3∴直线BC的函数关系式为y=﹣x+3.当x=1时,y=﹣1+3=2,∴E(1.2).当x=m时,y=﹣m+3,∴P(m,﹣m+3)在y=﹣x2+2x+3中,当x=1时,y=4,∴D(1,4).当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3),∴线段DE=4﹣2=2,线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∵PF∥DE∴当PF=DE时,四边形PEDF为平行四边形.由﹣m2+3m=2,解得m=2或m=1(不合题意,舍去).因此,当m=2时,四边形PEDF为平行四边形.②设直线PF与x轴交于点M,由B(3,0),O(0,0),可得OB=OM+MB=3.+S△CPF,∵S=S△EPF即S=PF•BM+PF•OM=PF(BM+OM)=PF•OB,∴S=×3(﹣m2+3m)=﹣m2+m(0≤m≤3)∴当m=﹣=时S最大值=;。
二次函数综合题专项讲解(经典)
初中二次函数综合题专项讲解引言:二次函数综合题题目难度较大,也称压轴题。
解压轴题有三个步骤:认真审题;理解题意、探究解题思路;正确解答。
审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。
二次函数一般会出现在选择题(或填空题)、解答题的倒数几个题目中。
选择题和填空题时易时难。
解答题较难,一般有2—3小题。
第 1 小题通常是求解析式:这一小题简单,直接找出坐标或者用线段长度而确定坐标,进而用待定系数法求出解析式即可。
第2—3 小题通常是以动点为切入口,结合三角形、四边形、圆、平移、对称、解方程(组)与不等式(组)等知识呈现,知识面广,难度大;解这类题要善于运用转化、数形结合、分类讨论等数学思想,认真分析条件和结论、图形的几何特征与代数式的数量结构特征的关系,确定解题的思路和方法;同时需要心态平和,切记急躁:当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和在联系;既要防止钻牛角尖,又要防止轻易放弃。
一、一中13—14 学年度上期半期考试二次函数习题212.如图,直线y kx c 与抛物线y ax2bx c 的图象都经过y 轴上的 D点,抛物线与x轴交于A、B 两点,其对称轴为直线x 1 ,且OA OD.直线y kx c与x轴交于点C(点C在点B的右侧).则下列命题中正确命题的个数是().①abc 0; ② 3a b 0; ③ 1 k 0;④k a b; ⑤ ac k 0A .1 B.2 C.3 D.416.如右图是二次函数y ax2bx c 的部分图象,由图象可知ax2bx c 0时x的取值围是_______________________________________________ .1218.已知抛物线y x22x 的图象如左图所示,点N 为抛物线2的顶点,直线ON 上有两个动点P和Q,且满足PQ 2 2 ,在直线ON 下方的抛物线上存在点M ,使PQM 为等腰直角三角形,则点M 的坐标为_______________________________________________125.如图,在平面直角坐标系中,直线y x 2 与坐标轴分别交于 A 、B 两点,过 A 、B22两点的抛物线为y x2bx c ,点 E 为第二象限抛物线上一动点,连接AE,BE.1)求抛物线的解析式;2)当ABE 面积最大时,求点E的坐标,并求出此时ABE 的面积;3)当EAB OAB 时,求点E的坐标.二、二次函数基础2(一)概念:一般地,形如y ax2bx c(a,b,c是常数, a 0 )的函数,叫做二次函数。
新教材高一课外辅导材料06--与二次函数有关的综合问题
第六讲 与二次函数的相关的综合问题[基本概念]1. 二次函数)0()(2≠++=a c bx ax x f 的图象是以a b x 2-=为对称轴的抛物线,顶点坐标为)4,2(aa b △--. 2. 二次如函数在一区间上的最值是通过图象来求得的,有时需要讨论对称轴是否在所给区间内.3. 0>△时,抛物线在x 轴上截得的线段长为:||4)(||212121a x x x x x x △=-+=-. 4. 当0>a ,0<△时,图象与x 轴没有交点,都在x 轴上方,0)(>x f 恒成立;当0<a ,0>△时,图象与x 轴没有交点,都在x 轴下方,0)(<x f 恒成立.[例题与练习]1. 已知方程0622=++-m mx x 的两实根是21,x x ,求2221)(x x m f +=的最小值. 2. 已知y x ,是实数,且x y x 92322=+,求22y x +的最大值与最小值.3. 对任意实数x ,不等式05)2(8824>+--+m x m x 恒成立,求实数m 的取值范围.4. 已知322+-=x x y 在区间],0[a 上的最大值是3,最小值为2,求实数a 的取值范围.5. 已知函数b a ax ax x f ++-=222)(2的定义域是]1,0[,值域是]1,5[-,求实数ba ,的值.6. 若关于x 二次函数12)2(24)(22+----=p p x p x x f 在区间[-1,1]内至少存在一点c ,使,0)(>c f 求实数p 的取值范围.7. m 为何值时,关于x 的一元二次方程0622=++-m mx x :⑴有两正根; ⑵两根异号.8. 如果函数c bx x x f ++=2)(对任意实数t 都有)2()2(t f t f -=+,试判断)1(f ,)2(f ,)4(f 的大小.9. 已知3)(2--=x x g ,)(x f 是二次函数,当]2,1[-∈x 时,)(x f 的最小值是1,且)()(x f x g +是奇函数,求)(x f 的表达式.10. 已知函数),,(1)(2Z c b a cbx ax x f ∈++=是奇函数,又2)1(=f ,3)2(<f ,求c b a ,,的值。
二次函数综合应用 知识归纳+真题解析
二次函数综合应用知识归纳+真题解析【知识归纳】一.二次函数与一元二次方程的关系一元二次方程ax 2+bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2+bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。
抛物线y=ax 2+bx+c(a ≠0)与x 轴的公共点有三种情况:公共点(即有两个交点),公共点,公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0),一元二次方程ax 2+bx+c=0有个不等实根⇔△=b 2-4ac 0。
(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即为顶点(2b a -,0)⇔一元二次方程ax 2+bx+c=0有实根,122b x x a ==-⇔ (3)抛物线y=ax 2+bx+c 与x 轴没有公共点,一元二次方程ax 2+bx+c=0 根⇔△=b 2-4ac0.二.二次函数的应用.利用二次函数能解决生活实际问题如物体运动规律、销售问题、利润问题、几何图形变化问题等等.【知识归纳答案】一.二次函数与一元二次方程的关系两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0),一元二次方程ax 2+bx+c=0有两个不等实根⇔△=b 2-4ac >0。
(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即为顶点(2b a -,0)⇔一元二次方程ax 2+bx+c=0有两个相等实根,122b x x a ==-⇔240b ac -= (3)抛物线y=ax 2+bx+c 与x 轴没有公共点,一元二次方程ax 2+bx+c=0没有实数根⇔△=b 2-4ac <0.二.二次函数的应用.利用二次函数能解决生活实际问题如物体运动规律、销售问题、利润问题、几何图形变化问题等等. 真题解析一.选择题(共5小题)1.设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m﹣1)a+b>0 D.若m<1,则(m﹣1)a+b<0【考点】H4:二次函数图象与系数的关系.【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a<0,(m﹣1)a+b与0无法判断.当m<1时,(m﹣1)a>0,(m﹣1)a+b>0.故选:C.2.如图,是二次函数y=ax2+bx+c的图象,对下列结论①ab>0,②abc>0,③<1,其中错误的个数是()A.3 B.2 C.1 D.0【考点】H4:二次函数图象与系数的关系.【分析】根据抛物线的开口方向,判断a的符号,对称轴在y轴的右侧判断b的符号,抛物线和y轴的交点坐标判断c的符号,以及抛物线与x轴的交点个数判断b2﹣4ac的符号.【解答】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴b<0,∴ab<0,故①错误;∵抛物线和y轴的负半轴相交,∴c<0,∴abc>0,故②正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴<1,故③正确;故选C.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④【考点】H4:二次函数图象与系数的关系.【分析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右侧,可得出﹣>0,结论④错误.综上即可得出结论.【解答】解:①∵抛物线开口向上,∴a>0,结论①正确;②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右侧,∴﹣>0,结论④错误.故选C.4.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E,F,则的值为()A.B.C.D.【考点】H5:二次函数图象上点的坐标特征.【分析】可以设A、B横坐标为a,易求得点E、F、D的坐标,即可求得OE、CE、AD、BF的长度,即可解题.【解答】解:设点A、B横坐标为a,则点A纵坐标为a2,点B的纵坐标为,∵BE∥x轴,∴点F纵坐标为,∵点F是抛物线y=x2上的点,∴点F横坐标为x==,∵CD∥x轴,∴点D纵坐标为a2,∵点D是抛物线y=上的点,∴点D横坐标为x==2a,∴AD=a,BF=a,CE=a2,OE=a2,∴则==×=,故选D.5.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.【考点】H6:二次函数图象与几何变换.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+4.故选D.二.填空题(共5小题)6.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣,﹣ }=﹣;若min{(x﹣1)2,x2}=1,则x= 2或﹣1.【考点】H3:二次函数的性质;2A:实数大小比较.【分析】首先理解题意,进而可得min{﹣,﹣ }=﹣,min{(x﹣1)2,x2}=1时再分情况讨论,当x=0.5时,x>0.5时和x<0.5时,进而可得答案.【解答】解:min{﹣,﹣ }=﹣,∵min{(x﹣1)2,x2}=1,当x=0.5时,x2=(x﹣1)2,不可能得出,最小值为1,∴当x>0.5时,(x﹣1)2<x2,则(x﹣1)2=1,x﹣1=±1,x﹣1=1,x﹣1=﹣1,解得:x1=2,x2=0(不合题意,舍去),当x<0.5时,(x﹣1)2>x2,则x2=1,解得:x1=1(不合题意,舍去),x2=﹣1,故答案为:;2或﹣1.7.若抛物线y=ax2+bx+c的开口向下,则a的值可能是﹣1.(写一个即可)【考点】H3:二次函数的性质.【分析】根据二次项系数小于0,二次函数图象开口向下解答.【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,∴a的值可能是﹣1,故答案为:﹣1.8.已知抛物线:y=ax2+bx+c(a>0)经过A(﹣1,1),B(2,4)两点,顶点坐标为(m,n),有下列结论:①b<1;②c<2;③0<m<;④n≤1.则所有正确结论的序号是①②④.【考点】H4:二次函数图象与系数的关系.【分析】根据点A、B的坐标,利用待定系数法即可求出b=﹣a+1、c=﹣2a+2,结合a>0,可得出b<1、c<2,即结论①②正确;由抛物线顶点的横坐标m=﹣,可得出m=﹣,即m<,结论③不正确;由抛物线y=ax2+bx+c(a >0)经过A(﹣1,1),可得出n≤1,结论④正确.综上即可得出结论.【解答】解:∵抛物线过点A(﹣1,1),B(2,4),∴,∴b=﹣a+1,c=﹣2a+2.∵a>0,∴b<1,c<2,∴结论①②正确;∵抛物线的顶点坐标为(m,n),∴m=﹣=﹣=﹣,∴m<,结论③不正确;∵抛物线y=ax2+bx+c(a>0)经过A(﹣1,1),顶点坐标为(m,n),∴n≤1,结论④正确.综上所述:正确的结论有①②④.故答案为:①②④.9.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是2≤m≤8.【考点】H6:二次函数图象与几何变换.【分析】根据向下平移横坐标不变,分别代入B的横坐标和D的横坐标求得对应的函数值,即可求得m的取值范围.【解答】解:设平移后的解析式为y=y=(x+1)2﹣m,将B点坐标代入,得4﹣m=2,解得m=2,将D点坐标代入,得9﹣m=1,解得m=8,y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是2≤m≤8,故答案为:2≤m≤8.10.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A (1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是②⑤.(只填写序号)【考点】HC:二次函数与不等式(组);H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可.【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的实数根,故②正确.根据对称性可知抛物线与x轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1<x<4时,有y2<y1,故④错误,因为x=1时,y1有最大值,所以ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故⑤正确,所以②⑤正确,故答案为②⑤.三.解答题(共7小题)11.设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}=5,max{0,3}=3;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.【考点】H7:二次函数的最值;F3:一次函数的图象;F5:一次函数的性质;H2:二次函数的图象.【分析】(1)根据max{a,b}表示a、b两数中较大者,即可求出结论;(2)根据max{3x+1,﹣x+1}=﹣x+1,即可得出关于x的一元一次不等式,解之即可得出结论;(3)联立两函数解析式成方程组,解之即可求出交点坐标,画出直线y=﹣x+2的图象,观察图形,即可得出max{﹣x+2,x2﹣2x﹣4}的最小值.【解答】解:(1)max{5,2}=5,max{0,3}=3.故答案为:5;3.(2)∵max{3x+1,﹣x+1}=﹣x+1,∴3x+1≤﹣x+1,解得:x≤0.(3)联立两函数解析式成方程组,,解得:,,∴交点坐标为(﹣2,4)和(3,﹣1).画出直线y=﹣x+2,如图所示,观察函数图象可知:当x=3时,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而增大,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当时P在对称轴的右侧时,y随x的增大而减小,由m<n,得<x0<1,综上所述:m<n,求x0的取值范围0<x0<1.13.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S△COE,求P点坐标.(3)若点P在第一象限内的抛物线上,且S△ABP注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【考点】H4:二次函数图象与系数的关系;H3:二次函数的性质;H5:二次函数图象上点的坐标特征;H8:待定系数法求二次函数解析式;HA:抛物线与x 轴的交点.【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c 的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标;(3)设P(x,y)(x>0,y>0),根据题意列出方程即可求得y,即得D点坐标.【解答】解:(1)由点A(﹣1,0)和点B(3,0)得,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)令x=0,则y=3,∴C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(3)设P(x,y)(x>0,y>0),S△COE=×1×3=,S△ABP=×4y=2y,=4S△COE,∴2y=4×,∵S△ABP∴y=3,∴﹣x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,∴P(2,3).14.如图,△AOB的顶点A、B分别在x轴,y轴上,∠BAO=45°,且△AOB的面积为8.(1)直接写出A、B两点的坐标;(2)过点A、B的抛物线G与x轴的另一个交点为点C.①若△ABC是以BC为腰的等腰三角形,求此时抛物线的解析式;②将抛物线G向下平移4个单位后,恰好与直线AB只有一个交点N,求点N的坐标.【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换;KH:等腰三角形的性质.【分析】(1)首先证明OA=OB,利用三角形的面积公式,列出方程即可求出OA、OB,由此即可解决问题;(2)①首先确定A、B、C的坐标,再利用的待定系数法即可解决问题;②抛物线G向下平移4个单位后,经过原点(0,0)和(4,﹣4),设抛物线的解析式为y=mx2+nx,把(4,﹣4)代入得到n=﹣1﹣4m,可得抛物线的解析式为y=mx2+(﹣1﹣4m)2x,由,消去y得到mx2﹣4mx﹣4=0,由题意△=0,可得16m2+16m=0,求出m的值即可解决问题.【解答】解:(1)在Rt△AOB中,∵∠BAO=45°,∴AO=BO,∴•OA•OB=8,∴OA=OB=4,∴A(4,0),B(0,4).(2)①由题意抛物线经过C(﹣4,0),B(0,4),A(4,0),顶点为B(0,4),时抛物线解析式为y=ax2+4,(4,0)代入得到a=﹣,∴抛物线的解析式为y=﹣x2+4.②抛物线G向下平移4个单位后,经过原点(0,0)和(4,﹣4),设抛物线的解析式为y=mx2+nx,把(4,﹣4)代入得到n=﹣1﹣4m,∴抛物线的解析式为y=mx2+(﹣1﹣4m)2x,由,消去y得到mx2﹣4mx﹣4=0,由题意△=0,∴16m2+16m=0,∵m≠0,∴m=﹣1,∴抛物线的解析式为y=﹣x2+3x,由,解得,∴N(2,2).15.已知抛物线C1:y=ax2﹣4ax﹣5(a>0).(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】(1)将a=1代入解析式,即可求得抛物线与x轴交点;(2)①化简抛物线解析式,即可求得两个定点的横坐标,即可解题;②根据抛物线翻折理论即可解题;(3)根据(2)中抛物线C2解析式,分类讨论y=2或﹣2,即可解题;【解答】解:(1)当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,∴对称轴为x=2;∴当y=0时,x﹣2=3或﹣3,即x=﹣1或5;∴抛物线与x轴的交点坐标为(﹣1,0)或(5,0);(2)①抛物线C1解析式为:y=ax2﹣4ax﹣5,整理得:y=ax(x﹣4)﹣5;∵当ax(x﹣4)=0时,y恒定为﹣5;∴抛物线C1一定经过两个定点(0,﹣5),(4,﹣5);②这两个点连线为y=﹣5;将抛物线C1沿y=﹣5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;∴抛物线C2解析式为:y=﹣ax2+4ax﹣5,(3)抛物线C2的顶点到x轴的距离为2,则x=2时,y=2或者﹣2;当y=2时,2=﹣4a+8a﹣5,解得,a=;当y=﹣2时,﹣2=﹣4a+8a﹣5,解得,a=;∴a=或;16.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W 最大?并求出最大值.(利润=销售总额﹣总成本)【考点】HE:二次函数的应用.当50<t≤100时,设y与t的函数解析式为y=k2t+n2,将点(50,25)、代入,得:,解得:,∴y与t的函数解析式为y=﹣t+30;②由题意,当0≤t≤50时,W=20000(t+15)﹣=3600t,∵3600>0,∴当t=50时,W 最大值=180000(元); 当50<t ≤100时,W=(﹣t +30)﹣=﹣10t 2+1100t +150000 =﹣10(t ﹣55)2+180250, ∵﹣10<0,∴当t=55时,W 最大值=180250(元),综上所述,放养55天时,W 最大,最大值为180250元.17.我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y 1(百件)与时间t (t 为整数,单位:天)的部分对应值如下表所示,网上商店的日销售量y 2(百件)与时间t (t 为整数,单位:天)的部分对应值如图所示.(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y 1与t 的变化规律,并求出y 1与t 的函数关系式及自变量t 的取值范围; (2)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大,并求出此时的最大值.【考点】HE:二次函数的应用.【分析】(1)根据观察可设y1=at2+bt+c,将(0,0),(5,25),(10,40)代入即可得到结论;(2)当0≤t≤10时,设y2=kt,求得y2与t的函数关系式为:y2=4t,当10≤t ≤30时,设y2=mt+n,将(10,40),(30,60)代入得到y2与t的函数关系式为:y2=k+30,10<t≤30时,得到(3)依题意得y=y1+y2,当0≤t≤10时,得到y最大=80;当y最大=91.2,于是得到结论.【解答】解(1)根据观察可设y1=at2+bt+c,将(0,0),(5,25),(10,40)代入得:,解得,∴y1与t的函数关系式为:y1=﹣t2+6t(0≤t≤30,且为整数);(2)当0≤t≤10时,设y2=kt,∵(10,40)在其图象上,∴10k=40,∴k=4,∴y2与t的函数关系式为:y2=4t,当10≤t≤30时,设y2=mt+n,将(10,40),(30,60)代入得,解得,∴y2与t的函数关系式为:y2=k+30,综上所述,y2=;(3)依题意得y=y1+y2,当0≤t≤10时,y=﹣t2+6t+4t=﹣t2+10t=﹣(t﹣25)2+125,∴t=10时,y最大=80;当10<t≤30时,y=﹣t2+6t+t+30=﹣t2+7t+30=﹣(t﹣)2+,∵t为整数,∴t=17或18时,y最大=91.2,∵91.2>80,∴当t=17或18时,y最大=91.2(百件).。
中考数学二次函数综合经典题含答案解析
一、二次函数 真题与模拟题分类汇编(难题易错题)1.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元 【解析】 【分析】 (1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可. 【详解】(1)()()()80802320w x y x x =-=--+, 2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-; (2)()2224802560021203200w x x x =-+-=--+, 2080160x -<≤≤,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元. (3)当2400w =时,()2212032002400x --+=. 解得:12100140x x ,.== ∵想卖得快,2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.2.如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【解析】 【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标; (3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3; (2)令y=0,则x 2﹣4x+3=0, 解得:x=1或x=3, ∴B (3,0), ∴2点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=32,∴OP=OC+PC=3+32或OP=PC﹣OC=32﹣3∴P1(0,3+32),P2(0,3﹣32);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=1×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,2当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x 轴上方2个单位处或点N在对称轴上x轴下方2个单位处.3.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、 Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ. ①若点P 的横坐标为12-,求△DPQ 面积的最大值,并求此时点D 的坐标; ②直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x 2+2x+3;(2)①点D ( 31524,);②△PQD 面积的最大值为8 【解析】分析:(1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I )由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+6x+72,再利用二次函数的性质即可解决最值问题; (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+4(t+2)x-2t 2-8t ,再利用二次函数的性质即可解决最值问题. 详解:(1)将A (-1,0)、B (3,0)代入y=ax 2+bx+3,得:309330a b a b -+⎧⎨++⎩==,解得:12a b -⎧⎨⎩==, ∴抛物线的表达式为y=-x 2+2x+3. (2)(I )当点P 的横坐标为-12时,点Q 的横坐标为72,∴此时点P 的坐标为(-12,74),点Q 的坐标为(72,-94).设直线PQ 的表达式为y=mx+n ,将P (-12,74)、Q (72,-94)代入y=mx+n ,得:17247924m n m n ⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154m n -⎧⎪⎨⎪⎩==,∴直线PQ 的表达式为y=-x+54. 如图②,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54), ∴DE=-x 2+2x+3-(-x+54)=-x 2+3x+74, ∴S △DPQ =12DE•(x Q -x P )=-2x 2+6x+72=-2(x-32)2+8.∵-2<0, ∴当x=32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154).(II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t ,-t 2+2t+3),点Q 的坐标为(4+t ,-(4+t )2+2(4+t )+3), 利用待定系数法易知,直线PQ 的表达式为y=-2(t+1)x+t 2+4t+3.设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3), ∴DE=-x 2+2x+3-[-2(t+1)x+t 2+4t+3]=-x 2+2(t+2)x-t 2-4t , ∴S △DPQ =12DE•(x Q -x P )=-2x 2+4(t+2)x-2t 2-8t=-2[x-(t+2)]2+8. ∵-2<0,∴当x=t+2时,△DPQ 的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8. 点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I )利用三角形的面积公式找出S △DPQ =-2x2+6x+72;(II)利用三角形的面积公式找出S△DPQ=-2x2+4(t+2)x-2t2-8t.4.对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n等于5.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.【答案】(1)y=−1x有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m=﹣m2﹣3m,解得,m=0或m=﹣4,∴n=0﹣(﹣4)=4,∴﹣2<m≤2,由上可得,当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.5.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN 沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.【答案】(1)(1,4)(2)①点M坐标(﹣12,74)或(﹣32,﹣94);②m的值为3172±或1172±【解析】【分析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA=2233m mMGBG m-++=-,tan∠BDE=BEDE=12,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.【详解】(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到930{3b cc-++==,解得2{3bc==,∴抛物线的解析式为y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4);(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=2233m mMGBG m-++=-,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B (3,0), ∴BE=2,∴tan ∠BDE=BE DE =12, ∵∠MBA=∠BDE ,∴2233m m m-++-=12, 当点M 在x 轴上方时,2233m m m-++- =12, 解得m=﹣12或3(舍弃), ∴M (﹣12,74), 当点M 在x 轴下方时,2233m m m--- =12, 解得m=﹣32或m=3(舍弃), ∴点M (﹣32,﹣94), 综上所述,满足条件的点M 坐标(﹣12,74)或(﹣32,﹣94); ②如图中,∵MN ∥x 轴,∴点M 、N 关于抛物线的对称轴对称, ∵四边形MPNQ 是正方形,∴点P 是抛物线的对称轴与x 轴的交点,即OP=1, 易证GM=GP ,即|﹣m 2+2m+3|=|1﹣m|, 当﹣m 2+2m+3=1﹣m 时,解得317±, 当﹣m 2+2m+3=m ﹣1时,解得m=1172±, ∴满足条件的m 317±117±.【点睛】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.6.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【答案】(1)抛物线解析式为y=﹣x2+6x﹣5;(2)①P点的横坐标为4或412或5-41 2;②点M的坐标为(136,﹣176)或(236,﹣76).【解析】分析:(1)利用一次函数解析式确定C(0,-5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程-x2+6x-5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以2,接着根据平行四边形的性质得到2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到2PQ=4,设P(m,-m2+6m-5),则D(m,m-5),讨论:当P点在直线BC上方时,PD=-m2+6m-5-(m-5)=4;当P点在直线BC下方时,PD=m-5-(-m2+6m-5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM 1B=2∠ACB ,再确定N (3,-2), AC 的解析式为y=5x-5,E 点坐标为(12,-52),利用两直线垂直的问题可设直线EM 1的解析式为y=-15x+b ,把E (12,-52)代入求出b 得到直线EM 1的解析式为y=-15x-125,则解方程组511255y x y x -⎧⎪⎨--⎪⎩==得M 1点的坐标;作直线BC 上作点M 1关于N 点的对称点M 2,如图2,利用对称性得到∠AM 2C=∠AM 1B=2∠ACB ,设M 2(x ,x-5),根据中点坐标公式得到3=13+62x ,然后求出x 即可得到M 2的坐标,从而得到满足条件的点M 的坐标.详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5),当y=0时,x ﹣5=0,解得x=5,则B (5,0),把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得253005a c c ++=⎧⎨=-⎩,解得15a b =-⎧⎨=-⎩, ∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0),∵B (5,0),C (0,﹣5),∴△OCB 为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM ⊥BC ,∴△AMB 为等腰直角三角形,∴, ∵以点A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ ,∴PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,则∠PDQ=45°,∴PD=2PQ=2×22=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=5+412,m2=5-412,综上所述,P点的横坐标为4或5+412或5-412;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC 的解析式为y=5x ﹣5,E 点坐标为(12,﹣52, 设直线EM 1的解析式为y=﹣15x+b , 把E (12,﹣52)代入得﹣110+b=﹣52,解得b=﹣125, ∴直线EM 1的解析式为y=﹣15x ﹣125 解方程组511255y x y x =-⎧⎪⎨=--⎪⎩得136176x y ⎧=⎪⎪⎨⎪=-⎪⎩,则M 1(136,﹣176); 作直线BC 上作点M 1关于N 点的对称点M 2,如图2,则∠AM 2C=∠AM 1B=2∠ACB , 设M 2(x ,x ﹣5),∵3=13+62x∴x=236, ∴M 2(236,﹣76). 综上所述,点M 的坐标为(136,﹣176)或(236,﹣76). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.7.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.【答案】(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(1,)2+-或317(1,)2--. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-.(注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得: 13172t +=,23172t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,2⎛⎫+- ⎪ ⎪⎝⎭或3171,2⎛⎫-- ⎪ ⎪⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.8.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94.【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩. ∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.9.如图,抛物线2y ax bx c =++的图象过点(10)(30)(03)A B C ﹣,、,、,.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAM PAC S S ∆∆=?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =++-;(2)存在,点(12)P ,1032;(3)存在,点M 坐标为(14), 【解析】【分析】(1)由于条件给出抛物线与x 轴的交点1030A B (﹣,)、(,),故可设交点式13y a x x +=()(﹣),把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x =对称,故有PA PB =,则PAC C AC PC PA AC PC PB ∆++++==,所以当C 、P 、B 在同一直线上时,PAC C AC CB ∆+=最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x =代入即求得点P 纵坐标.(3)由PAM PAC S S ∆∆=可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标.【详解】解:(1)∵抛物线与x 轴交于点1030A B (﹣,)、(,)∴可设交点式13y a x x +=()(﹣) 把点03C (,)代入得:33a ﹣=1a ∴=﹣21323y x x x x ∴+++=-()(﹣)=﹣∴抛物线解析式为223y x x ++=-(2)在抛物线的对称轴上存在一点P ,使得PAC ∆的周长最小.如图1,连接PB 、BC∵点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称PA PB ∴=PAC C AC PC PA AC PC PB ∆∴++++==∵当C 、P 、B 在同一直线上时,PC PB CB +=最小103003A B C (﹣,)、(,)、(,)AC BC ∴===PAC C AC CB ∆∴+=设直线BC 解析式为3y kx +=把点B 代入得:330k +=,解得:1k =﹣∴直线BC :3y x +=﹣132P y ∴+=﹣=∴点12P (,)使PAC ∆. (3)存在满足条件的点M ,使得PAM PAC S S ∆∆=.∵PAM PAC S S ∆∆=S △PAM =S △PAC∴当以PA 为底时,两三角形等高∴点C 和点M 到直线PA 距离相等∵M 在x 轴上方//CM PA ∴1012A P (﹣,),(,),设直线AP 解析式为y px d += 02p d p d -+=⎧∴⎨+=⎩ 解得:p 1d 1=⎧⎨=⎩ ∴直线1AP y x +:=∴直线CM 解析式为:3y x +=2323y x y x x =+⎧⎨=-++⎩解得:1103x y =⎧⎨=⎩(即点C ),2214x y =⎧⎨=⎩ ∴点M 坐标为14(,)【点睛】考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x 轴上方,无需分类讨论,解法较常规而简单.10.在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A(1,4),B(3,0).(1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由;(3)应用:如图2,P(m ,n)是抛物线在第四象限的图象上的点,且m+n =﹣1,连接PA 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +). 【答案】(1)y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由见解析;(3)点N(43,﹣73). 【解析】【分析】 (1)函数表达式为:y =a(x ﹣1)2+4,将点B 坐标的坐标代入上式,即可求解;(2)利用同底等高的两个三角形的面积相等,即可求解;(3)由(2)知:点N是PQ的中点,根据C,P点的坐标求出直线PC的解析式,同理求出AC,DQ 的解析式,并联立方程求出Q点的坐标,从而即可求N点的坐标.【详解】(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由:如图1,∵DE∥AO,S△ODA=S△OEA,S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,∴S△OME=S△OBM,∴S四边形OMAD=S△OBM;(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,解得:m=﹣1或4,故点P(4,﹣5);如图2,故点D作QD∥AC交PC的延长线于点Q,由(2)知:点N是PQ的中点,设直线PC的解析式为y=kx+b,将点C(﹣1,0)、P(4,﹣5)的坐标代入得:45k bk b-+=⎧⎨+=-⎩,解得:11 kb=-⎧⎨=-⎩,所以直线PC的表达式为:y=﹣x﹣1…①,同理可得直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x=﹣43,即点Q(﹣43,13),∵点N是PQ的中点,由中点公式得:点N(43,﹣73).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N是PQ的中点,是本题解题的突破点.。
例析二次函数与几何综合题的最值问题
得 PA +PC 最小? 若存在,请求 出 点 P 的 坐 标;若 不
存在,请说明理由 .
分 析:要在对称轴上找点 P ,使得 PA +PC 最小,
则要 作 出 点 A 关 于 对 称 轴 的 对 称 点,而 点 A 和 点 B
例 2 如 图 2,已 知 抛 物 线
2
y= -x -4x +5 与 x 轴 相 交
当 d>
R +r 时,两 圆 外 离;当 R -r<d <R +r 时,两 圆 相
交.
同样,利用“数”与 “形”的 结 合,还 可 对 “两 圆 外 切”
“两圆内切”等进行描述 .
数学是揭示数量 关 系 和 空 间 形 式 的 科 学 .
正如华
罗庚所说 的 “数 缺 形 时 少 直 观,形 缺 数 时 难 入 微 ”,通
只 需 求 出 AF + DE 的 最 小 值
法 2:当三角形没有边在坐标轴上时,则 作 辅 助 线
即可 .
由图可知,点 D 与 点 C 关
将三角形的 面 积 转 化 为 其 他 三 角 形 面 积 的 和 或 差 进
于 抛 物 线 的 对 称 轴 m 对 称,所
行求解 .
通常作平行于坐标轴的直线,转化为两个 同 底
点的横 坐 标 或 者 纵 坐 标 的 绝 对 值
就是此三 角 形 的 高 .
如 图 4,
AB 在
分 析:求 四 边 形 ADEF 的
图4
x 轴上,过点 C 作 三 角 形 的 高 线 CD ,即 可 表 示 出 三 角
周长 时,可 以 看 出 线 段 AD 和
线段 EF 的长度是固定 值,因 此
形面积的函数表达式 .
为最小值 .
解:(
高中二次函数综合问题解析
学习二次函数,可以从两个方面入手:一是解 析式,二是图像特征. 从解析式出发,可以进行纯 粹的代数推理,这种代数推理、论证的能力反映出 一个人的基本数学素养;从图像特征出发,可以实 现数与形的自然结合,这正是中学数学中一种非常 重要的思想方法. 本文将从这两个方面研究涉及二 次函数的一些综合问题.
二次函数的图像为抛物线,具有许多优美的性 质,如对称性、单调性、凹凸性等. 结合这些图像 特征解决有关二次函数的问题,可以化难为易., 形象直观.
方法:
1.二次函数的图像关于直线对称轴对称, 特别关系—两根之和的 关系也反映了二次函数的一种对称性.
2. 二次函数的图像具有连续性。 3. 因为二次函数在各自区间上分别单调,所以函数在闭区间上的最 大值、最小值必在区间端点或顶点处取得。
代理推理
数形结合
Hale Waihona Puke 深入研究由于二次函数的解析式简捷明了,易于变形(一般式、 顶点式、零点式等),所以,在解决二次函数的问题时, 常常借助其解析式,通过纯代数推理,进而导出二次函数 的有关性质.
方法:
1. 二次函数的一般式中有三个参数. 解题的关键在于:通过三个独 立条件“确定”这三个参数.
2.利用函数与方程根的关系,写出二次函数的零点式 3. 紧扣二次函数的顶点式对称轴、最值、判别式显合力
进入二次函数世界
二次函数是中学代数的基本内容之一,它既简 单又具有丰富的内涵和外延. 作为最基本的初等函 数,可以以它为素材来研究函数的单调性、奇偶性、 最值等性质,还可建立起函数、方程、不等式之间 的有机联系;作为抛物线,可以联系其它平面曲线 讨论相互之间关系. 这些纵横联系,使得围绕二次 函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展 紧密联系,是学生进入高校继续深造的重要知识基 础. 因此,从这个意义上说,有关二次函数的问题 在高考中频繁出现,也就不足为奇了.
二次函数综合题分类解析
二次函数综合题分类解析二次函数是高中数学中常见的函数,它是一些常见的一元二次多项式的求导函数,在考试中也是比较重要的知识点。
关于二次函数的综合题也是比较多见的,这些题型中涉及到的知识点也是比较多,因此,了解二次函数综合题的分类以及解题方法是非常有必要的。
首先,让我们来看一下关于二次函数综合题的分类:一、求函数值这类题目主要涉及求二次函数的值,比如已知二次函数y=ax2+bx+c的参数a、b、c值,当x的值给定时,求二次函数的函数值y。
此类题的解题思路是:根据y=ax2+bx+c的表达式,把参数a、b、c和x的值带入到表达式中,即可求得y的值。
二、求函数图象这类题主要涉及求二次函数的图象,比如已知ax2+bx+c=0的参数a、b、c值,求这个二次函数的图象。
此类题的解题思路是:根据a、b、c的值可以先求得直线y=ax2+bx+c的方程,然后根据方程的极值或者零点可以求得二次函数的图象。
三、求函数的最大值、最小值这类题目主要涉及求二次函数的最大值或者最小值,比如已知ax2+bx+c=0的参数a、b、c值,求这个二次函数的最大值或者最小值。
此类题的解题思路是:根据二次函数y=ax2+bx+c的形式,求解出它的最大和最小值,即可求得最大值和最小值。
四、求函数的极值点这类题目主要涉及求二次函数的极值点,比如已知ax2+bx+c=0的参数a、b、c值,求这个二次函数的极大值点或者极小值点。
此类题的解题思路是:根据二次函数y=ax2+bx+c的形式,求出它的极值点,即可求得极值点。
五、求函数的零点此类题目主要涉及求二次函数的零点,比如已知ax2+bx+c=0的参数a、b、c值,求这个二次函数的零点。
此类题的解题思路是:根据二次函数y=ax2+bx+c的形式,采用二元一次方程组的求解方法,求出它的零点,即可求得零点。
六、求函数的对称轴这类题目主要涉及求二次函数的对称轴,即求出它的离散点集中所包含的点关于对称轴对称的概念。
二次函数综合问题集中突破
二次函数综合问题集中突破二次函数是高中数学中的重要内容,也是考试中常见的题型。
掌握二次函数的性质与解题方法对于高中数学的学习和应试都非常重要。
下面将综合一些常见的二次函数题目,突破二次函数的问题。
一、平移问题平移是二次函数中的重要概念,平移可以改变二次函数的图像在直角坐标系中的位置。
1.已知函数y=f(x)的图像上有点(A)坐标为(1,2),求f(x-1)的图像上的对应点的坐标。
解:我们先看一下f(x-1)的含义,它表示对于f(x)图像上的每一个点P(x,y),将其横坐标向右平移1个单位得到的新点P'(x-1,y),纵坐标不变。
因此,对于点A(1,2),将其横坐标向右平移1个单位得到的新点A'(0,2)就是f(x-1)的图像上的对应点。
所以,f(x-1)的图像上的对应点的坐标为(0,2)。
2.已知函数y=f(x)的图像上有点(B)坐标为(-3,4),求f(x+2)的图像上的对应点的坐标。
解:我们先看一下f(x+2)的含义,它表示对于f(x)图像上的每一个点P(x,y),将其横坐标向左平移2个单位得到的新点P'(x+2,y),纵坐标不变。
因此,对于点B(-3,4),将其横坐标向左平移2个单位得到的新点B'(-1,4)就是f(x+2)的图像上的对应点。
所以,f(x+2)的图像上的对应点的坐标为(-1,4)。
二、对称问题对称是二次函数中另一个重要的概念,如何找到二次函数的对称轴和顶点是解题的关键。
1.已知函数y=f(x)的图像关于x轴对称,顶点坐标为(1,2),求它的解析式。
解:由题意,可以知道对于f(x)图像上的每一个点P(x,y),它关于x轴对称的点P'(x,-y)也在图像上。
所以,对于顶点坐标为(1,2),它关于x轴对称的点A'(1,-2)也在图像上。
而对于对称轴的位置,我们可以发现顶点坐标横坐标为1,这个横坐标也就是对称轴的方程。
因此,对于函数y=f(x),它的对称轴方程为x=1由于对称轴方程所表示的是图像的横坐标值,而不是纵坐标值,所以对称轴方程中不包含常数项,故解析式中只有一次项和二次项。
二次函数综合(定值)问题与解析
市中考压轴题〔二次函数〕精选【例一】.如图,抛物线y=ax2+c〔a≠0〕经过C〔2,0〕,D〔0,﹣1〕两点,并与直线y=kx交于A、B两点,直线l过点E〔0,﹣2〕且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.〔1〕求此抛物线的解析式;〔2〕求证:AO=AM;〔3〕探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.考点:二次函数综合题.专题:代数几何综合题.分析:〔1〕把点C、D的坐标代入抛物线解析式求出a、c,即可得解;〔2〕根据抛物线解析式设出点A的坐标,然后求出AO、AM的长,即可得证;〔3〕①k=0时,求出AM、BN的长,然后代入+计算即可得解;②设点A〔x1,x12﹣1〕,B〔x2,x22﹣1〕,然后表示出+,再联立抛物线与直线解析式,消掉未知数y得到关于x的一元二次方程,利用根与系数的关系表示出x1+x2,x1•2,并求出x12+x22,x12•x22,然后代入进展计算即可得解.解答:〔1〕解:∵抛物线y=ax2+c〔a≠0〕经过C〔2,0〕,D〔0,﹣1〕,∴,解得,所以,抛物线的解析式为y=x2﹣1;〔2〕证明:设点A的坐标为〔m,m2﹣1〕,那么AO==m2+1,∵直线l过点E〔0,﹣2〕且平行于x轴,∴点M的纵坐标为﹣2,∴AM=m 2﹣1﹣〔﹣2〕=m 2+1,∴AO=AM;〔3〕解:①k=0时,直线y=kx 与x 轴重合,点A 、B 在x 轴上, ∴AM=BN=0﹣〔﹣2〕=2, ∴+=+=1;②k 取任何值时,设点A 〔x 1,x 12﹣1〕,B 〔x 2,x 22﹣1〕, 那么+=+==, 联立,消掉y 得,x 2﹣4kx ﹣4=0,由根与系数的关系得,x 1+x 2=4k ,x 1•x 2=﹣4, 所以,x 12+x 22=〔x 1+x 2〕2﹣2x 1•x 2=16k 2+8, x 12•x 22=16,∴+===1,∴无论k 取何值,+的值都等于同一个常数1.点评: 此题是二次函数综合题型,主要考察了待定系数法求二次函数解析式,勾股定理以与点到直线的距离,根与系数的关系,根据抛物线上点的坐标特征设出点A 、B 的坐标,然后用含有k 的式子表示出+是解题的关键,也是此题的难点,计算量较大,要认真仔细.【例二】. 如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为〔10,0〕,顶点B 在第一象限,且AB sin ∠OAB=5. 〔1〕假设点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;〔2〕在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?假设存在,求出点P 的坐标;假设不存在,请说明理由;〔3〕假设将点O 、点A 分别变换为点Q 〔 -2k ,0〕、点R 〔5k ,0〕〔k>1的常数〕,设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积Q NR S ∆,求QMN S ∆∶Q NR S ∆的值.解:〔1〕如图,过点B 作BD OA ⊥于点D . 在Rt ABD △中,35AB =5sin OAB ∠=5sin 353BD AB OAB ∴=∠==. 又由勾股定理, 得2222(35)36AD AB BD =-=-=.1064OD OA AD ∴=-=-=.点B 在第一象限,∴点B 的坐标为(43),. ∴点B 关于x 轴对称的点C 的坐标为(43)-,. ································· 2分 设经过(00)(43)(100)O C A -,,,,,三点的抛物线的函数表达式为 2(0)y ax bx a =+≠.由11643810010054a ab a b b ⎧=⎪+=-⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩,.∴经过O C A ,,三点的抛物线的函数表达式为21584y x x =-.··················· 2分〔2〕假设在〔1〕中的抛物线上存在点P ,使以P O C A ,,,为顶点的四边形为梯形. ①点(43)C -,不是抛物线21584y x =-的顶点, ∴过点C 作直线OA 的平行线与抛物线交于点1P .那么直线1CP 的函数表达式为3y =-.y F P 3BEC D A P 2P 1O对于21584y x x =-,令34y x =-⇒=或6x =. 1143x y =⎧∴⎨=-⎩,;2263x y =⎧⎨=-⎩,.而点(43)C -,,1(63)P ∴-,. 在四边形1P AOC 中,1CP OA ∥,显然1CP OA ≠.∴点1(63)P -,是符合要求的点. ·············································· 1分 ②假设2AP CO ∥.设直线CO 的函数表达式为1y k x =. 将点(43)C -,代入,得143k =-.134k ∴=-. ∴直线CO 的函数表达式为34y x =-.于是可设直线2AP 的函数表达式为134y x b =-+. 将点(100)A ,代入,得131004b -⨯+=.1152b ∴=. ∴直线2AP 的函数表达式为31542y x =-+.由223154246001584y x x x y x x ⎧=-+⎪⎪⇒--=⎨⎪=-⎪⎩,即(10)(6)0x x -+=. 11100x y =⎧∴⎨=⎩,;22612x y =-⎧⎨=⎩,;而点(100)A ,,2(612)P ∴-,.过点2P 作2P E x ⊥轴于点E ,那么212P E =.在2Rt AP E △中,由勾股定理,得220AP ===.而5CO OB ==.∴在四边形2P OCA 中,2AP CO ∥,但2AP CO ≠.∴点2(612)P -,是符合要求的点.·············································· 1分 ③假设3OP CA ∥.设直线CA 的函数表达式为22y k x b =+.将点(100)(43)A C -,,,代入,得22222211002435k b k k b b ⎧+==⎧⎪⇒⎨⎨+=-⎩⎪=-⎩,.∴直线CA 的函数表达式为152y x =-. ∴直线3OP 的函数表达式为12y x =.由22121401584y x x x y x x ⎧=⎪⎪⇒-=⎨⎪=-⎪⎩,即(14)0x x -=. 1100x y =⎧∴⎨=⎩,;22147x y =⎧⎨=⎩,. 而点(00)O ,,3(147)P ∴,. 过点3P 作3P F x ⊥轴于点F ,那么37P F =.在3Rt OP F △中,由勾股定理,得3OP ===而CA AB ==∴在四边形3POCA 中,3OP CA ∥,但3OP CA ≠.∴点3(147)P ,是符合要求的点. ··············································· 1分 综上可知,在〔1〕中的抛物线上存在点123(63)(612)(147)P P P --,,,,,, 使以P O C A ,,,为顶点的四边形为梯形. ···································· 1分 〔3〕由题知,抛物线的开口可能向上,也可能向下.①当抛物线开口向上时,那么此抛物线与y 轴的负半轴交于点N . 可设抛物线的函数表达式为(2)(5)(0)y a x k x k a =+->.即22310y ax akx ak =--2234924a x k ak ⎛⎫=-- ⎪⎝⎭.如图,过点M 作MG x ⊥轴于点G .3(20)(50)02Q k R k G k ⎛⎫- ⎪⎝⎭,,,,,,22349(010)24N ak M k ak ⎛⎫-- ⎪⎝⎭,,,,3||2||7||2QO k QR k OG k ∴===,,, 22749||||10||24QG k ON ak MG ak ===,,.23117103522QNR S QR ON k ak ak ∴==⨯⨯=△.QNM QNO QMG ONMG S S S S =+-△△△梯形111()222QO ON ON GM OG QG GM =++- 2222114931749210102242224k ak ak ak k k ak ⎛⎫=⨯⨯+⨯+⨯-⨯⨯ ⎪⎝⎭ 3314949212015372884ak ak ⎛⎫=++⨯-⨯= ⎪⎝⎭. 3321::(35)3:204QNM QNR S S ak ak ⎛⎫∴== ⎪⎝⎭△△. ································ 2分②当抛物线开口向下时,那么此抛物线与y 轴的正半轴交于点N .同理,可得:3:20QNM QNR S S =△△. ··········································· 1分 综上可知,:QNM QNR S S △△的值为3:20.【例三】、 如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . 〔1〕求m 的值与抛物线的函数表达式;〔2〕设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?假设存在,求出点E 的坐标与相应的平行四边形的面积;假设不存在,请说明理由;〔3〕假设P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y ,,222M ()x y ,两点,试探究2112P PM M M M ⋅ 是否为定值,并写出探究过程.考点:二次函数综合题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与二次函数有关的综合问题复习策略根据大纲要求本章的学习目标主要有以下五点:(1)通过对实际问题的分析,体会二次函数的意义。
(2)会用描点法画出二次函数的图象,通过图象了解二次函数的性质。
(3)会用配方法将二次函数的一般式化为顶点式,并能由此得到二次函数的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单的实际问题。
(4)会利用二次函数的图象求一元二次方程的近似解。
(5)求二次函数的解析式。
结合大纲要求及近五年的中考命题的特点和规律,主要是考查学生综合运用知识的能力,以二次函数为载体,对几何进行考查,主要涉及二次函数与三角形、四边形等综合考查。
从学生的解题情况来看,考生对二次函数压轴题不得其法,普遍畏惧压轴题,得分率偏低,这往往导致中考高分不多。
为此,我们对中考试卷二次函数命题方向及解题策略进行了一些探索,希望能帮助学生在中考中提高解二次函数压轴题的能力。
首先:帮助学生了解并掌握二次函数综合题常见的类型1.函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
2.几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
3.存在性问题:存在性问题则主要考查分类讨论的数学思想,常见的存在性是:是否存在等腰三角形、是否存在直角三角形、是否存在三角形相似,是否存在平行四边形等。
有些题在分类讨论列方程求解后,还要检验,排除干扰。
4.最值型问题:这类题则需要根据条件,创设函数,利用函数性质(一般是二次函数)求解。
同时注意求最值时要注意自变量的取值范围。
解这类问题要注重在图形的形状或位置的变化过程中寻找函数与几何的联系,需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。
解题过程中应注意以下两点1.抓住“关键点”---利用面积和周长公式、三角形相似、勾股定理、特殊等式等手段建构二次函数关系。
2.突破“难点”---(1)求最值的常见方法:利用“两点之间线段最短”的性质求一动点到两定点的距离之和的最小值;利用二次函数的性质求最值。
(2)分类讨论的常见形式:等腰三角形问题常按已知线段是底还是腰来分类;直角三角形问题常按哪个角是直角来分类;平行四边形问题常按已知线段是边还是对角线来分类;相似三角形问题常按对应边不同来分类;动点问题常按动点运动的分界点来分类。
一:常见题型:例1 如图39-1,抛物线y =ax 2+bx +C 经过点A (-3,0),C (0,4),点B 在抛物线上,CB ∥x 轴,且AB 平分∠CAO .(1)求抛物线所对应的函数解析式.(2)线段AB 上有一动点P ,过点P 作y 轴的平行线,交拋物线于点Q ,求线段PQ 的最大值.图39-1分析:解:(1)点A 的坐标为(-3,0),点C 的坐标为(0,4),∴AC =5.∵AB 平分∠CAO ,∴∠CAB =∠BAO . ∵CB ∥x 轴,∴∠CBA =∠BAO , ∴∠CAB =∠CBA ,∴AC =BC =5, ∴点B 的坐标为(5,4). 将A (-3,0),C (0,4),B (5,4)代入y =ax 2+b x +c ,得⎩⎪⎨⎪⎧0=9a -3b +c ,4=c ,4=25a +5b +c ,解得⎩⎪⎪⎨⎪⎪⎧a =-16,b =56,c =4,(2)设直线AB 所对应的函数解析式为y =k x +n ,把A (-3,0),B (5,4)代入,得⎩⎪⎨⎪⎧0=-3k +n ,4=5k +n ,解得⎩⎪⎨⎪⎧k =12,n =32,∴直线AB 所对应的函数解析式为y =12x +32.设点P 的坐标为(x ,12x +32),则点Q 的坐标为(x ,-16x 2+56x+4),P Q =-16x 2+56x +4-(12x +32)=-16(x -1)2+83,故当x =1时,线段P Q 的值最大,最大值为83.探究二 二次函数与四边形的结合求四边形面积的函数解析式,一般是利用割补法把四边形的面积转化为三角形面积的和或差. 例2如图39-2,在平面直角坐标系中,二次函数y =x 2+bx +C 的图象与x 轴交于A ,B 两点,点B 的坐标为(3,0),与y 轴交于点C (0,-3),点P 是直线BC 下方抛物线上的动点.(1)求这个二次函数的解析式.(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP ′C ,那么是否存在点P ,使得四边形POP ′C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时点P 的坐标和四边形ABPC 的最大面积.分析:(1)图中已知抛物线上几个点?将点B ,C 的坐标代入二次函数的解析式.(2)画出四边形POP ′C ,若四边形POP ′C 为菱形,那么点P 必在OC 的垂直平分线上,由此能求出点P 的坐标吗?(3)由于△ABC 的面积为定值,求四边形ABPC 的最大面积,即求△BPC 的最大面积.解:(1)将B ,C 两点的坐标代入y =x 2+b x +c ,得⎩⎨⎧9+3b +c =0,c =-3,解得⎩⎨⎧b =-2,c =-3,∴这个二次函数的解析式为y =x 2-2x -3.(2)如图①,假设抛物线上存在点P (x POP ′C 为菱形.连接PP ′交CO 于点E .∵四边形POP ′C 为菱形,∴PC =PO ,PE ⊥CO ,∴OE =EC =32,∴点P的纵坐标为-32,即x2-2x-3=-32,解得x1=2+102,x2=2-102(不合题意,舍去),∴存在点P(2+102,-32),使得四边形POP′C为菱形.(3)如图②,过点P作y轴的平行线交BC于点Q,交OB于点F,设点P的坐标为(x,x2-2x-3).由x2-2x-3=0,得点A的坐标为(-1,0).∵点B的坐标为(3,0),点C的坐标为(0,-3),∴直线BC的解析式为y=x-3,∴点Q的坐标为(x,x-3),∴AB=4,CO=3,BO=3,P Q=-x2+3x,∴S四边形ABPC=S△ABC+S△BP Q+S△CP Q=12AB·CO+12P Q·BF+12P Q·FO=12AB·CO+12P Q·(BF+FO)=12AB·CO+12P Q·BO=12×4×3+12(-x2+3x)×3=-32x2+92x+6=-32⎝⎛⎭⎫x-322+758,∴当x=32时,四边形ABPC的面积最大.此时点P的坐标为⎝⎛⎭⎪⎫32,-154,四边形ABPC的最大面积为75 8.探究三二次函数与相似三角形的结合例3[2014·厦门]如图39-3,已知C<0,抛物线y=x2+bx+C与x轴交于A(x1,0),B(x2,0)两点(x2>x1),与y轴交于点C.(1)若x2=1,BC=5,求函数y=x2+bx+C的最小值;(2)过点A作AP⊥BC,垂足为P(点P在线段BC上),AP交y轴于点M.若OAOM=2,求抛物线y=x2+bx+C顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.此类问题常涉及运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定.要注意的是当相似三角形的对应边和对应角不明确时,要分类讨论,以免漏解。
分析:(1)A (x 1,0),B (x 2,0)转化为坐标轴上的线段是什么?能求出点C 的坐标吗?(2)先根据点B ,C 的坐标,用待定系数法求出二次函数y =x 2+bx +C 的解析式.(3)Rt △OAM ∽Rt △OCB 吗?如何证明?(4)由三角形相似,根据对应边成比例,得OC OB =OAOM =2,即OC =2OB ,所以-C =2x 2,利用x 22+bx 2+C =0,求得C =2b -4.将此关系式代入抛物线的顶点坐标,即可求得所求函数解析式.解:(1)∵x 2=1,∴OB =1.∵BC =5,∴OC =2.∵c <0,∴c =-2. 将B (1,0)代入y =x 2+bx +c , 得1+b -2=0,解得b =1,故二次函数的解析式为y =x 2+x -2=(x +12)2-94,∴二次函数y =x 2+x -2的最小值是-94.(2)∵AP ⊥BC ,∴∠PMC +∠PCM =90°.∵∠OAM +∠OMA =90°,∠OMA =∠PMC , ∴∠OAM =∠PCM , ∴Rt △OAM ∽Rt △OCB , ∴OA OM =OCOB =2,即OC =2OB . ∵x 1<0,x 2>0, ∴-c =2x 2.由x 22+bx 2+c =0,得c =2b -4,∴二次函数y =x 2+bx +c =x 2+bx +2b -4.它的顶点坐标是(-b 2,-b 2+8b -164).∵-b 2+8b -164=-(-b 2)2-4·(-b 2)-4,∴顶点的纵坐标随横坐标变化的函数解析式是y =-x 2-4x -4(x >-34本题考查了二次函数的综合运用,关键是用菱形、圆的性质,形数结合解题。
2012年23.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;考点:翻折变换(折叠问题);二次函数的最值;全等三角形的判定与性质;正方形的性质。
分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)利用已知得出△EFM≌△BPA,进而利用在Rt△APE中,(4﹣BE)2+x2=BE2,利用二次函数的最值求出即可.解答:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH﹣∠EPB=∠EBC﹣∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)△PHD的周长不变为定值8.证明:如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90°,BP=BP,∴△ABP≌△QBP.∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH.∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.此题主要考查了翻折变换的性质以及全等三角形的判定与性质和勾股定理、二次函数的最值问题等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.本题考查了相似三角形的判定及性质的运用,待定系数法求函数的解析式的运用,三角形的面积公式的运用,二次函数的顶点式的运用。