OSPF路由协议各种类型详解
OSPF_协议的解析及详解
OSPF_协议的解析及详解OSPF协议的解析及详解OSPF(Open Shortest Path First)是一种内部网关协议(IGP),用于在大型企业网络中进行路由选择。
本文将对OSPF协议进行解析和详解,包括其工作原理、协议格式、路由选择算法等内容。
一、OSPF协议的工作原理OSPF协议基于链路状态路由(LSR)算法,通过交换链路状态信息来计算最短路径。
它将网络拓扑信息分发给所有路由器,每个路由器都会构建一个链路状态数据库(LSDB),并根据该数据库计算最短路径树。
OSPF协议使用Hello消息来发现邻居路由器,并建立邻居关系。
一旦建立了邻居关系,路由器就会交换链路状态更新消息(LSU)来更新链路状态数据库。
每个路由器都会根据链路状态数据库计算最短路径,并将其存储在路由表中。
二、OSPF协议的协议格式OSPF协议使用IP协议号89,其协议格式如下:1. OSPF报文头部:- 版本号:用于指示OSPF协议的版本。
- 报文类型:用于指示报文的类型,如Hello、数据库描述、链路状态请求等。
- 报文长度:指示整个报文的长度。
- 路由器ID:唯一标识一个路由器。
- 区域ID:将网络划分为不同的区域,用于控制链路状态数据库的大小。
2. OSPF Hello消息:- 网络类型:指示网络类型,如点对点、广播、NBMA等。
- 路由器优先级:用于选举DR(Designated Router)和BDR(Backup Designated Router)。
- 邻居列表:列出与该路由器相邻的所有路由器。
3. OSPF LSU消息:- 序列号:用于标识链路状态数据库的更新。
- 链路状态记录:包含了与该路由器相邻的所有路由器的链路状态信息。
4. OSPF LSR消息:- 链路状态请求列表:列出了需要请求的链路状态信息。
三、OSPF协议的路由选择算法OSPF协议使用Dijkstra算法来计算最短路径树。
该算法通过不断更新最短路径表来选择最短路径。
OSPF路由协议基础科普
OSPF路由协议基础(一)OSPF(O p en Short Path First)最优路径算法路山协议。
OSPF路山协议的Dis tance值为11 0 ,它拥有一个Met r i c值,此值是OSPF路由协议用来衡量链路好坏的,当一条链路的Metric值越小,则证明此条链路越好,反之此条链路越差。
路由协议按数据传输方式分,分为有类(Clas sfull)和无类(C I assle s s)两种,有类路山协议是指传输可达性路山信息(NLRI)时不带子网掩码;无类路山协议是指传输可达性路山信息(NLRI)时带子网掩码。
路山协议按数据传输类型分,分为距离向量(Distance Ve c t or)和链路状态(Link S t ate)两种,距离向量(DV)路由协议没有路由器ID(Router-ID),并且只传递可达性路由信息(NLRI);链路状态(LS)路ill协议限制每一台路山器必须要有一个未被使用过的路山器ID(Router-ID),而且它无条件转发任何从邻居传来的可达性路山信息(N LR I )。
OSPF路由协议基础(二)距离向量路由协议:此时,假如Route r A后面有一个1.0网段,RouterB后面有一个2.0网段,Rout e rA告诉RouterB通过我(Router A )可以到达1.0网段,Rout erB告诉R ou t e rC通过我(RouterB)可以到达1 .0网段,此时,Ro u t erA到达1.0 网段的路断了,那么,他会查找它的邻居Route rB,而此时RouterC也要到I . 0网段,他也会去查找它的邻居Rou t erB,这时Rout e rB的路由表里有 1.0网段的路ill,Route r A和Route「C都会将数据发到RouterB,可是,Ro uter B到不了1.0网段,这样就形成了路山环路。
各种距离向量路山协议都有它自己解决路由环路的方法,在此暂不讨论。
ospf路由协议
Osfp 路由协议1、OSPF协议概述OSPF(Open Short Path First)开放最短路径优先协议,是一种基于链路状态的内部网协议(Interior Gateway Protocol),主要用于规模较大的网络中。
2、OSPF的特点●适应范围广:支持各种规模的网络,最多可支持数百台路由器。
●快速收敛:在网络拓扑结构发生变化后立即发送更新报文,使这一变化在自治系统中被处理。
●无环路由:根据收集到的链路状态用最短路径树算法计算路由。
●区域划分:允许自治系统内的网络被划分成区域来管理,区域间传送的路由信息被汇聚,从而减少了占用的网络资源。
●路由分级:使用4类不同的路由,按照优先顺序分别是区域间路由、区域路由、第一类路由、第二类路由。
3、OSPF的基本概念●自治系统(Autonomous System,AS):为一组路由器使用相同路由协议交换路由信息的路由器。
●路由器ID号:运行OSPF协议的路由器,每一个OSPF进程必须存在自己的Router-ID。
●OSPF邻居:OSPF路由器启动后,便会通过OSPF接口向外发送Hello报文,收到Hello报文的OSPF路由器会检查报文中所定义的参数,使双方成为邻居。
●OSPF连接:只有当OSPF路由器双方成功交换DD报文,交换LSA并达到LSDB的同步后,才能形成邻接关系。
4、OSPF路由的计算过程每台路由器根据自己周围的网络拓扑结构生成链路状态通告(State Advertisement,LSA),并通过更新报文将LSA发送给网络中的其他OSPF路由器。
每台OSPF路由器都会收到其他路由器通告的LSA,所有的LSA放在一起便组成了链路状态数据库(Link State Database,LSD)。
LSA是对路由器周围网络拓扑结构的描述,LSDB 则是对整个自治系统的网络拓扑结构的描述。
OSPF路由器将LSDB转换成一张带权的有向图,这张图便是对整个网络拓扑结构的真实反映。
OSPF路由协议详解
2024/2/18
R1
TWO-WAY
Hello
Hello
R2
Init
TWO-WAY
带有Active Neighbor字段
17
邻接关系的过程
R1
TWO-WAY
Hello
Hello
R2
Init
TWO-WAY
之后如果链路类型为广播网络,则开始DR/BDR的选举 DR/BDR与LSA链路状态上的其他路由器都建立邻接关系后路由器之间才能交换 链路状态信息
2002244//22//188
OSPF术语
• Router-ID • 度量值cost • 链路状态 • OSPF区域 • 邻居与邻接 • DR和BDR
2002244//22//188
邻居表的建立
2002244//22//188
拓扑表的建立
2002244//22//188
路由表的建立
• 列出通过SPF算法计算出的到达每个相连网络的最佳路径
DBD Exchange
DBD
25
邻接关系的过程
R1发给R2的第三个DBD报文:
2024/2/18
R1
R2
Exchange
DBD
Excha的过程
R2发给R1的第三个DBD报文:
2024/2/18
R1
Exchange
Loading
R2
DBD Exchange
用来存储路由器在某个ospf接口上发现 的邻居,初始的hello没有该字段。
15
邻接关系的过程
点击打开第一个深红色的包(R2发给R1):
2024/2/18
R1
R2
Init Hello
OSPF中7种类型LSA
OSPF中7种类型LSAOSPF(Open Shortest Path First)是一个用于构建内部网关协议的动态路由协议。
在OSPF中,路由器通过交换Link State Advertisements(LSA)来维护网络拓扑信息并计算最短路径。
在OSPF中有七种类型的LSA,在本文中我们将逐一介绍每种类型。
1. Type 1:Router LSAType 1 LSA(路由器LSA)用于描述每个OSPF路由器的链路状态。
每个路由器都会生成一个该类型的LSA,并将其发送到相邻的路由器。
Type 1 LSA包含了该路由器的邻居路由器列表、连接接口以及链路度量等信息,以便其他路由器构建网络拓扑。
2. Type 2:Network LSAType 2 LSA(网络LSA)用于描述OSPF广播和非广播多点链路上的网络。
这种类型的LSA由网络中的DR(Designated Router)和BDR (Backup Designated Router)生成,并广播到该网络上的所有路由器。
Type 2 LSA包含了与该网络连接的路由器列表以及链路度量等信息。
3. Type 3:Summary LSAType 3 LSA(摘要LSA)用于描述其它区域的网络信息,通常由区域边界路由器(ABR,Area Border Router)生成并分发。
ABR收集来自该区域内部路由器的Type 1、2和4 LSA,并将这些信息打包成Type 3 LSA 广播到其他区域的ABR。
Type 3 LSA包含了来自一个区域的路由器和网络的摘要信息,以及到达该区域的度量值。
4. Type 4:ASBR-Summary LSAType 4 LSA(ASBR摘要LSA)用于描述ASBR(AS Boundary Router)的摘要信息。
当一个ASBR连接到一个不同的AS时,它会将该外部AS的路由信息装入一个特殊的LSA,这个LSA就是Type 4 LSA。
OSPF协议开放最短路径优先路由协议详解
OSPF协议开放最短路径优先路由协议详解OSPF(Open Shortest Path First)协议是一种开放的链路状态路由协议,广泛用于大型企业网络和互联网中。
它采用了最短路径优先策略,通过计算路由器之间的链路成本来选择最优的路径,以实现数据在网络中的快速传输。
一、OSPF协议的基本概念与特点1. 链路状态路由协议OSPF是一种链路状态路由协议,它通过交换链路状态信息,即路由器之间的网络拓扑信息,来计算最短路径。
每个路由器都会构建一个拓扑数据库,记录网络中的所有链路和节点信息。
2. 开放的协议OSPF是一种开放的协议,意味着它的协议规范是公开的,任何厂商和组织都可以基于这个协议进行实现和部署。
这为网络设备的互操作性和标准化提供了便利。
3. 分层体系结构OSPF协议采用了分层的体系结构,将整个网络分为区域(Area)、区域边界路由器(Area Border Router,ABR)和自治系统边界路由器(Autonomous System Boundary Router,ASBR)。
通过在不同的层次中交换信息,提高了网络的可扩展性和管理性。
4. 成本度量OSPF协议中,每条链路都有一个与之相关的成本,成本越低表示链路质量越好。
路由器通过比较链路的成本来选择最优路径,这样可以使得数据传输的延时和带宽利用率达到最优。
5. 动态更新和适应性OSPF协议支持动态更新,当网络拓扑发生变化时,路由器可以自动更新拓扑数据库,并重新计算最短路径。
这种自适应的特性使得OSPF协议能够应对网络的变化和故障,保证网络的稳定性和可用性。
二、OSPF协议的工作原理1. 邻居发现与状态交换在OSPF协议中,路由器首先要通过Hello消息来发现相邻路由器,并建立邻居关系。
一旦建立了邻居关系,路由器之间就可以交换链路状态信息,在数据库中记录邻居路由器的信息。
2. 构建拓扑数据库每个OSPF路由器都会根据收到的链路状态信息构建拓扑数据库。
OSPF_协议的解析及详解
OSPF_协议的解析及详解OSPF(Open Shortest Path First),即开放式最短路径优先协议,是一种用于路由选择的广泛应用的动态路由协议。
OSPF协议通过建立邻居关系和交换链路状态信息(LSA)来计算路由表,实现网络之间的最短路径选择。
首先,OSPF协议使用一个特殊的Hello报文来建立邻居关系。
当OSPF路由器被配置为OSPF路由器并启动时,它将向相邻路由器发送Hello报文,以确认对方是否也是OSPF路由器,并建立邻居关系。
Hello 报文还包含了一些其他的信息,如路由器ID、网络类型等。
建立邻居关系后,OSPF路由器将开始交换链路状态信息(LSA)。
每个OSPF路由器都维护着一个链路状态数据库(LSDB),其中存储了网络拓扑和链路状态的信息。
路由器将通过将LSA广播到整个OSPF区域来交换LSA,并在收到的LSA中更新其链路状态数据库。
链路状态信息包括了路由器的ID、邻接路由器的ID、链路的状态(如开启、关闭等)、链路的带宽等。
在交换链路状态信息的过程中,OSPF使用Dijkstra算法来计算出最短路径。
Dijkstra算法将使用下面的几个参数来计算路径的开销:-路由器的ID-链路的带宽-路由器到邻接路由器的开销-链路连接状态利用这些参数,OSPF路由器将计算出从源路由器到所有其他路由器的最短路径,并将结果存储在路由表中。
OSPF路由器将通过路由表选择最佳路径来转发数据包。
此外,OSPF还支持网络分割和级别的概念。
网络分割意味着将大的OSPF网络划分为多个区域,每个区域有一个主要的路由器来处理该区域内部的路由选择。
级别是指区域之间的层次结构,底层的区域将汇总上层的信息,以减少网络的规模。
OSPF协议具有以下优点:-支持大规模网络:OSPF可以处理复杂的网络拓扑,适用于大型企业网络和因特网。
-支持快速收敛:OSPF可以快速适应网络拓扑的变化,重新计算最短路径并更新路由表。
OSPF_协议的解析及详解
OSPF_协议的解析及详解OSPF协议的解析及详解OSPF(Open Shortest Path First)是一种用于在IP网络中进行路由选择的动态路由协议。
它基于链路状态算法,通过交换链路状态信息来计算最短路径,并维护一个最短路径树,从而实现网络中的路由选择。
一、OSPF协议的概述OSPF是一种开放式协议,它具有以下特点:1. OSPF是基于链路状态的路由协议,每个路由器通过交换链路状态信息来计算最短路径。
2. OSPF支持VLSM(可变长度子网掩码),可以更好地利用IP地址资源。
3. OSPF使用Hello协议来发现邻居路由器,建立邻居关系,并交换链路状态信息。
4. OSPF使用Dijkstra算法计算最短路径,并维护一个最短路径树。
5. OSPF支持分层设计,可以将网络划分为不同的区域,减少链路状态信息的交换量。
6. OSPF支持多种路由类型,如内部路由、外部路由、汇总路由等。
二、OSPF协议的工作原理1. 邻居关系建立OSPF使用Hello协议来发现邻居路由器,并建立邻居关系。
路由器通过发送Hello消息来宣告自己的存在,并等待其他路由器的响应。
当两个路由器之间的Hello消息交换成功时,它们就建立了邻居关系。
2. 链路状态信息交换OSPF邻居路由器之间通过交换链路状态信息(LSA)来了解网络拓扑,并计算最短路径。
每个路由器将自己的链路状态信息发送给邻居路由器,邻居路由器将收到的链路状态信息存储在链路状态数据库(LSDB)中。
3. 最短路径计算OSPF使用Dijkstra算法来计算最短路径。
每个路由器根据收到的链路状态信息,计算出到达目标网络的最短路径,并维护一个最短路径树。
最短路径树由根节点和各个子节点组成,根节点为网络的出口路由器。
4. 路由表生成OSPF根据最短路径树生成路由表,将最短路径信息存储在路由表中。
路由表包含了到达目标网络的下一跳路由器和距离等信息,路由器根据路由表来进行数据转发。
OSPF_协议的解析及详解
OSPF_协议的解析及详解OSPF协议的解析及详解一、引言OSPF(开放式最短路径优先)是一种用于计算机网络中的链路状态路由协议。
它是一个开放的标准协议,用于在大型IP网络中进行路由选择。
本协议旨在提供高效、稳定和可扩展的路由选择机制。
本文将对OSPF协议进行解析和详解。
二、OSPF协议的基本原理1. 链路状态路由协议OSPF是一种链路状态路由协议,它通过交换链路状态信息来构建网络拓扑图,并计算最短路径。
每个路由器都维护一个链路状态数据库(LSDB),其中包含了整个网络的拓扑信息。
2. 路由器之间的邻居关系OSPF协议通过建立邻居关系来交换链路状态信息。
路由器之间通过Hello消息进行邻居发现,并通过交换数据库描述(DBD)消息来同步链路状态数据库。
一旦邻居关系建立,路由器之间将周期性地交换链路状态更新(LSU)消息。
3. SPF算法OSPF使用SPF(最短路径优先)算法来计算最短路径。
SPF算法基于Dijkstra算法,通过遍历链路状态数据库来确定最短路径。
每个路由器根据自己的链路状态数据库计算出最短路径树,并将其作为路由表的基础。
4. 区域划分为了提高OSPF协议的可扩展性,网络可以被划分为多个区域。
每个区域内部的路由器只维护自己区域的链路状态信息,而不需要了解整个网络的拓扑。
区域之间的边界路由器负责将区域内的路由信息与其他区域交换。
三、OSPF协议的消息格式OSPF协议定义了多种消息类型,用于在路由器之间交换信息。
以下是OSPF 协议中常用的消息类型及其格式:1. Hello消息Hello消息用于邻居发现和建立邻居关系。
它包含了发送Hello消息的路由器的ID、邻居路由器的ID等信息。
2. 数据库描述(DBD)消息DBD消息用于同步链路状态数据库。
它包含了链路状态数据库的摘要信息,如序列号、LSA类型等。
3. 链路状态更新(LSU)消息LSU消息用于交换链路状态信息。
它包含了链路状态数据库中的LSA(链路状态广告)。
OSPF_协议的解析及详解
OSPF_协议的解析及详解OSPF(Open Shortest Path First)协议的解析及详解一、引言OSPF是一种用于路由选择的链路状态路由协议,广泛应用于大型企业网络和互联网中。
本协议的目标是通过计算最短路径来实现网络中的数据转发,并提供高可靠性和快速收敛的路由选择机制。
二、协议概述OSPF协议基于链路状态数据库(Link State Database)来构建网络拓扑,并通过计算最短路径树来确定数据的转发路径。
它使用了Dijkstra算法来计算最短路径,并支持分层的网络设计,可以适应复杂的网络环境。
三、OSPF协议的工作原理1. 邻居关系建立OSPF协议通过Hello消息来建立邻居关系,邻居关系的建立是协议正常工作的前提。
Hello消息包含了路由器的标识、优先级、网络类型等信息,用于建立邻居关系。
2. 链路状态数据库同步邻居关系建立后,路由器之间开始交换链路状态信息。
每个路由器将自己的链路状态信息广播给邻居,邻居收到后更新自己的链路状态数据库。
通过链路状态信息的交换,所有路由器最终达到链路状态数据库的同步。
3. 最短路径计算在链路状态数据库同步完成后,路由器使用Dijkstra算法计算最短路径树。
最短路径树是基于链路状态数据库构建的,它表示了从当前路由器到其他所有路由器的最短路径。
4. 路由表生成最短路径计算完成后,每个路由器根据最短路径树生成自己的路由表。
路由表中包含了到达目的网络的下一跳路由器和距离等信息。
5. 路由更新和收敛当网络发生变化时,路由器会发送路由更新消息通知邻居。
邻居收到路由更新消息后,根据收到的信息更新自己的链路状态数据库,并重新计算最短路径。
通过路由更新和最短路径计算,网络可以快速收敛到新的状态。
四、OSPF协议的特点1. 分层设计OSPF协议支持分层的网络设计,可以将大型网络划分为多个区域(Area),每个区域内部使用独立的链路状态数据库和最短路径计算,减少了网络的复杂性。
OSPF_协议的解析及详解
OSPF_协议的解析及详解OSPF协议的解析及详解一、引言OSPF(Open Shortest Path First)是一种内部网关协议(IGP),用于在大型IP 网络中实现路由器之间的动态路由选择。
本协议旨在为网络提供快速、可靠的数据传输,并具备自动适应网络拓扑变化的能力。
本文将详细解析OSPF协议的工作原理、协议格式和相关的概念。
二、OSPF协议的工作原理1. 链路状态数据库(Link State Database):每个OSPF路由器都维护一个链路状态数据库,其中存储了网络中所有路由器的链路状态信息。
链路状态信息包括路由器的邻居关系、链路状态类型、链路状态序列号等。
2. 链路状态通告(Link State Advertisement,LSA):路由器通过链路状态通告向邻居路由器广播自己的链路状态信息,以便其他路由器更新其链路状态数据库。
LSA分为多种类型,如路由器LSA、网络LSA、网络连接LSA等。
3. 最短路径优先计算(Shortest Path First,SPF):每个路由器根据链路状态数据库中的信息计算出到达目标网络的最短路径,并将结果存储在路由表中。
OSPF 使用Dijkstra算法来进行最短路径计算。
4. 邻居关系建立:OSPF路由器通过Hello消息交换来建立邻居关系。
Hello消息中包含路由器的ID、优先级、Hello间隔等信息,用于验证邻居关系的可靠性。
5. 路由器类型:OSPF定义了多种路由器类型,如主路由器(DR)、备份主路由器(BDR)和普通路由器。
主路由器和备份主路由器用于减少链路状态通告的数量,提高网络稳定性。
三、OSPF协议的格式OSPF协议使用IP协议号89,其数据包格式如下:1. OSPF包头:包括版本号、包类型、包长度等字段,用于标识和解析数据包。
2. OSPF消息头:包括路由器ID、区域ID、检验和等字段,用于标识和验证消息的完整性。
3. OSPF消息体:根据不同的消息类型,消息体的格式会有所不同。
OSPF_协议的解析及详解
OSPF_协议的解析及详解OSPF协议的解析及详解一、介绍OSPF(Open Shortest Path First)是一种用于互联网协议(IP)网络中的动态路由协议。
它是一种链路状态路由协议,用于在路由器之间交换路由信息,以确定最短路径并进行路由选择。
本协议详解将介绍OSPF协议的工作原理、协议数据单元(Protocol Data Unit,PDU)格式、邻居关系建立、路由计算算法以及网络拓扑维护等内容。
二、OSPF协议的工作原理1. 链路状态数据库(Link State Database,LSDB):每个OSPF路由器都维护一个LSDB,其中包含了整个网络的链路状态信息。
LSDB中的每一条链路状态都包含了该链路的状态、成本、邻居路由器等信息。
2. 链路状态广播:OSPF路由器通过链路状态广播(Link State Advertisement,LSA)向相邻的路由器发送链路状态信息。
这些LSA包含了路由器所知道的链路状态信息。
3. 链路状态数据库同步:当一个OSPF路由器收到LSA时,它会更新自己的LSDB,并将新的LSA广播给其他相邻路由器。
通过这种方式,所有的OSPF路由器能够保持LSDB的同步。
4. 最短路径计算:OSPF使用最短路径优先算法(Shortest Path First,SPF)来计算最短路径。
该算法基于Dijkstra算法,通过比较链路的成本来确定最短路径。
5. 路由选择:每个OSPF路由器根据最短路径计算的结果选择最佳路径,并将该路径添加到自己的路由表中。
三、OSPF协议数据单元(PDU)格式OSPF协议使用不同类型的PDU来交换路由信息。
以下是常见的OSPF PDU类型及其格式:1. Hello PDU:用于邻居关系建立和维护。
包含了路由器的ID、优先级、Hello间隔等信息。
2. Database Description (DBD) PDU:用于在邻居路由器之间交换链路状态数据库的摘要信息。
OSPF协议包含的五种报文简述
OSPF协议包含的五种报⽂简述OSPF使⽤5种不同的报⽂类型。
每种类型⽤于⽀持不同的,专门的⽹络功能。
这5种类型是:·HELLO报⽂(类型1 )。
·数据库描述报⽂(类型2 )。
·链路-状态请求报⽂(类型3 )。
·链路-状态更新报⽂(类型4 )。
·链路-状态应答报⽂(类型5 )。
⼀、HELLO报⽂OSPF包含⼀个⽤于建⽴和维护相邻站点之间关系的协议( HELLO协议)。
这些关系称为连接性。
连接性是OSPF交换路由数据的基础。
通过这个协议和报⽂类型, OSPF节点能发现区中的其他OSPF节点。
它的名字表明了其含义,HELLO协议在可能的相邻路由器之间建⽴通信。
HELLO协议使⽤特别的⼦报⽂结构,这个结构附加到标准2 4字节的OSPF头后⾯。
这些结构共同构成HELLO报⽂。
OSPF⽹络中的所有路由器必须遵守⼀定的规则,这个规则在整个⽹络中要⼀致。
这些规则包括:⽹络掩码。
HELLO报⽂⼴播的间隔。
⽹络中的其他路由器认为⼀个没有反应的路由器为死节点的时间(路由器死时间间隔)。
OSPF中的所有路由器对这些参数必须使⽤相同值,否则⽹络可能不会正常⼯作。
这些参数通过HELLO报⽂进⾏交换。
它们⼀起构成相邻节点之间通信的基础。
它们要确保在不同⽹络的路由器之间不形成相邻关系(连接性),并且⽹络中的所有成员要对多久彼此联系⼀次成达共识。
HELLO报⽂也包括最近已与其联系过的其他路由器列表(使⽤它们⾃⼰惟⼀的路由器I D )。
这个N e i g h b o r (相邻者)域使邻居发现过程成为可能。
HELLO报⽂还包括⼏个其他的域,如Designated Router(指定路由器)、Backup Designated Router(备份指定路由器)和其他⼀些域。
这些域对于维护连接性,⽀持OSPF⽹络的稳定周期和收敛都是有⽤的。
⼆、DD报⽂当OSPF中的两个路由器初始化连接时要交换数据库描述(DD)报⽂。
OSPF路由协议详解
(3)由于一条 LSA 是对一台路由器周围网络拓扑结构的描述,那么 LSDB 则是对整个网络的拓扑结构的描述。路由器很容易将 LSDB 转换成一张带权的有向图,这张图便是对整个网络拓扑结构的真实反映。显然,4 台路由器得到的是一张完全相同的图。
LSR报文(Link State Request Packet):
两台路由器互相交换过DD报文之后,知道对端的路由器有哪些LSA是本地的LSDB所缺少的或是对端更新的LSA,这时需要发送LSR报文向对方请求所需的LSA。内容包括所需要的LSA的摘要。
LSU报文(Link State Update Packet):
2.本路由器和状态可能与对端路由器的状态不相同。例如本路由器的邻居状态是Full,对端的邻居状态可能是Loading。
1.7 链路状态数据库的同步过程
上图显示了两台路由器之间如何通过发送5种协议报文来建立邻接关系,以及邻居状态机的迁移。
1.RT1的一个连接到广播类型网络的接口上激活了OSPF协议,并发送了一个HELLO报文(使用组播地址224.0.0.5)。由于此时RT1在该网段中还未发现任何邻居,所以HELLO报文中的Neighbor字段为空。
DD报文(Database Description Packet):
两台路由器进行数据库同步时,用DD报文来描述自己的LSDB,内容包括LSDB中每一条LSA的摘要(摘要是指LSA的HEAD,通过该HEAD可以唯一标识一条LSA)。这样做是为了减少路由器之间传递信息的量,因为LSA的HEAD只占一条LSA的整个数据量的一小部分,根据HEAD,对端路由器就可以判断出是否已经有了这条LSA。
OSPF_协议的解析及详解
OSPF_协议的解析及详解协议名称:OSPF(开放最短路径优先)协议的解析及详解一、引言OSPF(Open Shortest Path First)协议是一种用于在IP网络中进行路由选择的动态路由协议。
它是一种链路状态(Link-State)协议,通过收集网络中所有路由器的链路状态信息,计算出最短路径,并将其作为路由表的依据。
本协议的目的是为了提供高效、可靠、可扩展的路由选择机制,以满足大规模IP网络的需求。
二、协议概述1. 协议目标OSPF协议的目标是实现以下功能:- 提供快速、准确的路由选择机制;- 支持多种网络拓扑结构,包括点对点、广播、非广播多点等;- 支持路由器之间的动态邻居发现和链路状态信息的交换;- 支持路由器之间的可靠性和冗余备份。
2. 协议特点OSPF协议具有以下特点:- 基于链路状态的路由选择机制,通过收集网络中所有路由器的链路状态信息,计算最短路径;- 支持VLSM(Variable Length Subnet Masking)技术,可以对不同子网使用不同的子网掩码;- 支持路由器之间的动态邻居发现,使用邻居关系数据库来管理邻居关系;- 支持多种网络拓扑结构,包括点对点、广播、非广播多点等;- 支持路由器之间的可靠性和冗余备份,通过选举DR(Designated Router)和BDR(Backup Designated Router)来提高网络稳定性。
三、协议工作原理1. 链路状态数据库(LSDB)每个OSPF路由器都维护一个链路状态数据库(LSDB),其中存储了该路由器所知道的网络中所有路由器的链路状态信息。
LSDB中的每个条目包含了邻居路由器的ID、链路状态类型、链路状态序列号、链路状态生存时间等信息。
2. 链路状态通告(LSA)OSPF路由器通过链路状态通告(LSA)来交换链路状态信息。
LSA是一种数据包,其中包含了路由器所知道的链路状态信息,如邻居路由器的ID、链路状态类型、链路状态序列号等。
OSPF的LSA七种类型
OSPF的LSA七种类型OSPF(Open Shortest Path First)是一种用于互联网协议(IP)网络的动态路由协议,用于帮助数据包在网络中选择最佳路径。
在OSPF中,路由器通过交换LSA(Link State Advertisement)来了解网络拓扑,并基于这些信息计算最短路径。
LSA(链路状态广告)是OSPF中用于描述路由器分布情况和网络拓扑结构的信息包。
OSPF定义了七种类型的LSA,每种LSA都承载着特定类型的信息。
下面是关于这七种LSA的详细介绍:1. Type 1 LSA:也称为路由器LSA(Router LSA),由每个路由器在本地链路上生成和分发。
Type 1 LSA描述了一个路由器连接到的所有链路,以及每个链路的状态和度量。
2. Type 2 LSA:也称为网络LSA(Network LSA),由DR (Designated Router)或BDR(Backup Designated Router)在其所在的广播网络上产生。
Type 2 LSA描述了邻接的DR和网络连接到的所有路由器。
这样的LSA只在多播网络上出现。
3. Type 3 LSA:也称为网络汇总LSA(Summary LSA),由ABR(Area Border Router)在与其他区域相邻的区域之间生成。
Type 3 LSA描述了目标区域中的网络,ABR用它来广播到其他区域。
4. Type 4 LSA:也称为ASBR摘要LSA(ASBR Summary LSA),由ASBR(Autonomous System Boundary Router)生成,用于在本地区域中广播到它连接的其他网络。
Type 4 LSA描述ASBR连接的网络和ASBR的度量。
5. Type 5 LSA:也称为外部LSA(External LSA),由ASBR生成,用于向其他区域广播到外部网络。
Type 5 LSA描述了ASBR连接的外部网络和它们的度量。
OSPF四种网络类型
OSPF四种网络类型Loopback接口是一个类似于物理接口的逻辑接口,即软接口。
它的特点是始终UP的,常用语线路的环回测试中。
OSPFv3选举Router-ID的规则与OSPFv2相同,OSPFv3也是选举路由器上的Ipv4地址作为Router-ID,如果设备上没有配置Ipv4地址,那么必须手工指定Router-ID.NBMA网络是OSPF协议四种网络类型中的一种。
NBMA用于精确刻画X.25和帧中继多点接入网络,但不支持广播和组播。
其它三种网络类型为广播、点对点和点对多点。
在NBMA设置里,OSPF一次只发送一个呼叫包,而不是多播或广播。
呼叫计时器要延迟10~30秒,死路由计时器要延迟10到30s。
OSPF网络类型:根据路由器所连接的物理网络不同,OSPF将网络划分为四种类型:广播多路访问型(Broadcast multiAccess)、非广播多路访问型(None Broadcast multiAccess)、点到点型(Point-to-Point)、点到多点型(Point-to-MultiPoint)广播多路访问型网络如:Ethernet、Token Ring、FDDI。
NBMA类型网络如:Frame Relay、X.25、SMDS。
Point-to-Point型网络如PPP、HDLC。
Designated Router(DR):多路访问网络中为避免router间建立完全相邻关系而引起大量开销,OSPF在区域中选举一个DR。
每个Router都与之建立完全相邻关系。
Router用Hello信息选举一个DR。
在广播型网络里Hello信息使用多播地址224.0.0.5周期性广播,并发现邻居,在非广播型多路访问网络中,DR负责向其他router逐一发送Hello信息Backup designated touter(BDR):多路访问网络中DR的备用router,BDR 从拥有adjacency关系的router接收路由更新,但是不会转发LSA更新。
OSPF的路由类型
OSPF的路由类型:1 、O 域内路由2 、OIA 域间路由3 、OE1 域外路由,会累加METRIC值(默认20)4 、OE2 域外路由,不累加METRIC值(默认20),由外部重分布进来默认使用OE2。
5 、ON1和ON2类似OE1和OE2,由NSSA的ASBR重发布而来,NSSA区域中的路由器没有LSA5,用LSA7算出的external路由,就标记为ON1/2OE1和OE2的区别:它们代表的是外部路由1和外部路由2,它们的区别就在于是否加内部路由(度量花销)。
默认是OE2就是不加内部路由,假设我的网络只有一个出口,那么使用OE1和OE2都一样;A、如果有多个ASBR宣告一条到达同一外部AS的外部路由时候用只需要比较域外部开销,只需考虑外部开销更小就可以了,不需要考虑内部开销。
所以优先选择OE2。
B、单出口(ASBR),计不计算域内开销已经没有意义,所以默认OE2。
C、如果我们只有一个出口那么OE2就能帮我们解决所有问题,如果我们有多个出口这时我们可以使用OE1,它能够让我们在做路由决策的时候变得更加精确。
因此多出口,建议用OE1。
下面来篇转载文章以加深印象:如果在一个ospf域里面如果只有一个ASBR可以到达某个特定的外部路由(俗称:单点单向重分布),无论是做E1还是E2的重定向都会是带来同样的路径选择,在这种环境下两种类型的外部路由的区别只是在路由表上看到的Metric不同,其他就没有区别。
不过如果在一个ospf域中有多个ASBR可以通往同一个外部路由(俗称:单点多向重分布),这种说法就不同了。
今天要补充的就是这一问题。
先看个拓扑。
这个拓扑是在一个ospf域中有两个ASBR通往同一个EIGRP AS,也就是二者都可以到达同一个外部路由。
而对于OSPF域内部的路径来看,上面一条路径由于都是100M的链路,因此cost要远远低于下面的10M链路,这对于E1类型的外部路由来说,很明显在R6上会选择上面的路径来通向EIGRP AS,这个大家都明白。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OSPF各种类型详解一、OSPF数据包类型1.Hello包:用于建立和维护相邻的两个OSPF路由器的邻接关系,该数据包是周期性地发送的。
2.Database Description(数据库描述包DBD):用于描述整个数据库,该数据包仅在OSPF初始化时发送。
3.Link state request(链路状态请求包LSQ):用于向相邻的OSPF路由器请求部分或全部的数据,这种数据包是在当路由器发现其数据已经过期时才发送的。
4.Link state update(链路状态更新包LSU):这是对link state请求数据包的响应,即通常所说的LSA数据包。
5.Link state acknowledgment(链路状态确认包LSAck):是对LSA数据包的确认,以确保可靠地传输和信息交换。
二、OSPF网络类型OSPF链路类型有3种:点到点,广播型,NBMA。
在3种链路类型上扩展出5种网络类型:点到点,广播,NBMA,点到多点,虚链路。
其中虚链路较为特殊,不针对具体链路,而NBMA链路对应NBMA和点到多点两种网络类型。
以上是RFC的定义,在Cisco路由器的实现上,我们应记为3种链路类型扩展出8种网络类型,其中NBMA链路就对应5种,即在RFC的定义基础上又增加了3种类型。
首先分析一下3种链路类型的特点:1. 点到点:一个网络里仅有2个接口,使用HDLC或PPP封装,不需寻址,地址字段固定为FF;2. 广播型:广播型多路访问,目前而言指的就是以太网链路,涉及IP 和Mac,用ARP 实现二层和三层映射;3. NBMA:网络中允许存在多台Router,物理上链路共享,通过二层虚链路(VC)建立逻辑上的连接。
NBMA网络不是没有广播的能力,而是广播针对每一条VC发送,这样就使得一台路由器在不是Full-Mesh的NBMA拓扑中,发送的广播或组播分组可能无法到达其他所有路由器。
在点到点链路上运行OSPF没有必要选举DR,因为就是两点一线,简单得很;而在NBMA 网络中运行OSPF由于是多路访问,DR可以存在,通过调整成手动发现邻居可以防止过多的Hello 开销。
下面具体分析一下RFC中定义的5种网络类型:1. 点到点:串行封装HDLC或PPP,OSPF会自动检测接口类型(发现封装模式为PPP或HDLC,就认为是点到点),OSPF数据包使用224.0.0.5发送,不知道DR是什么东西,就知道对端是谁,OSPF hello间隔为10s,失效为40s。
2. 广播型:选举DR/BDR,自动发现邻居。
Hello间隔为10s,失效为40s (这里比较一下,NBMA类型的 Hello和Dead 隔分别为30s 和120s。
)3-4. NBMA:思科路由器在NBMA网络上实现的链路类型有5个,2 × RFC + 3 ×Cisco,区分较为复杂。
这5种类型形式上的差异在于:1)是否选举DR2)是否自动发现邻居3)更新时间这5种NBMA类型应用上的差异在于:1)NBMA拓扑是否是Full-Mesh2)NBMA接口是否在同一IP子网3)Frame-Relay 在定义Map时是否支持广播,即是否加了关键字broadcast。
默认情况下OSPF 不能通过NBMA接口自动与邻居建立邻接关系,RFC 2328为OSPF在NBMA拓扑中的运行定义了两种模式:NBMA和点到多点,分别对应的接口模式为: ipospf network non-broadcast / point-to-multipoint在Non-Broadcast 模式下是模仿OSPF在广播型链路中的运行,通常在Full-Mesh 者Partial-Mesh 使用,如果不是Full-Mesh必须手动选举DR/BDR。
路由器接口处于同一IP 子网,手动指定邻居,选举DR/BDR且必须与DRother在VC上直连。
在 Point-to-Multipoint 模式下是将NBMA视为一系列点到点的集合,通常用于Hub-and-Spoke 者Partial-Mesh,接口处于同一IP子网,使用OSPF组播自动发现邻居,不选举DR/BDR。
Cisco为NBMA多设计了三种模式,分别为广播,点到多点非广播和点到点。
ipospf network broadcastipospf network point-to-multipoint non-broadcastipospf network point-to-pioint1. 如果说non-broadcast是在模仿广播型链路,那么broadcast就是将NBMA完全当成广播型链路,使用OSPF组播Hello来自动发现邻居,而不是像non-broadcast为每个PVC 提供一个LSA拷贝。
应用这种模式的前提是NMBA拓扑为Full-Mesh,且在FR Map中使用了关键字broadcast。
2. 如果在VC上没有启用组播和广播功能,即定义Map时没有使用关键字broadcast,那么就要应用point-to-multipoint non-broadcast 相应的取消组播hello功能,代以手动配置邻居。
3. 如果链路中涉及多个子网,那么一定要用到Point-to-Point类型,也一定会用到子接口。
子接口分为两种模式,点到点和点到多点,其中点到多点子接口和主接口配置方式一致,而点到点子接口则有些变化:interface Serial0/0 interface Serial0/0.2 multipointencapsulation frame-relay ip address 20.1.1.1 255.255.255.0frame-relay lmi-type ansiipospf network point-to-pointinterface Serial0/0.1 point-to-point frame-relay map ip 20.1.1.2 105 broadcast ip address 10.1.1.1 255.255.255.0 frame-relay map ip 20.1.1.3 106 broadcast frame-relay interface-dlci 101 frame-relay map ip 20.1.1.4 107 broadcast 若子接口使用point-to-point模式,则意味着这个子接口对应的子网里只有一台路由器,即这个IP子网只有两个节点;而使用multipoint模式时,意味着这个子接口对应多条VC,IP子网内有多于两台的路由器。
通过配置就可以理解为什么说点到多点是点到点链路的集合。
PS:最初创建子接口的目的在于解决在NBMA上运行距离矢量协议引起的水平分割问题,即从一接口收到的路由信息不会再从这个接口发出去。
而这个接口本身可能连着多个邻居,这样就阻碍了网络中路由信息的传递,子接口是物理接口在逻辑上的划分,能很好的解决水平分割带来的问题。
5.虚链路:可以认为是点到点的一种特殊配置,在虚链路上OSPF数据包是以单播形式发送,并不在意物理链路是什么类型,关键是虚链路两端可以实现互通。
三、OSPF LSA类型1类LSA(路由器LSA):每台路由器都通告1类LSA,描述了与路由器直连的所有链路(接口)状态,只能在本区域内扩散;2类LSA(网络LSA):只有DR才有资格产生,只能在本区域内扩散,描述了多路访问网络的所有路由器(Router ID)和链路的子网掩码;3类LSA(汇总LSA):只有ABR可以产生,能在整个OSPF自治系统扩散,描述了目的网路的路由(还可能包含汇总路由);4类LSA(汇总LSA):仅当区域中有ASBR时,ABR才会产生,该LSA标识了ASBR,提供一条前往该ASBR的路由;5类LSA(外部LSA):只能由ASBR产生,描述了前往OSPF自治系统外的网络的路由,被扩散到整个AS(除各种末节区域外);7类LSA(用于NSSA的LSA):只能由NSSA ASBR产生,只能出现在NSSA,而NSSA ABR将其转换为5类LSA并扩散到整个OSPF自治系统。
四、OSPF区域类型标准区域:默认的区域类型,它接收链路更新、汇总路由和外部路由;骨干区域:骨干区域为Area 0,其他区域都与之相连以交换路由信息,该区域具有标准区域的所有特征;末节区域:它不接收4类汇总LSA和5类外部LSA,但接收3类汇总LSA,使用默认路由到到AS外部网络(自动生成),该区域不包含ABR(除非ABR也是ASBR);绝对末节区域:这个是Cisco专用。
它不接收3类、4类汇总LSA和5类外部LSA,使用默认路由到AS外部网络(自动生成),该区域不包含ABR(除非ABR也是ASBR);NSSA:它不接收4类汇总LSA和5类外部LSA,但接收3类汇总LSA且可以有ASBR,使用默认路由前往外部网络,默认路由是由与之相连的ABR生成的,但默认情况下不会生成,要让ABR生成默认路由,可使用命令area area-id nssa default-information-originate;绝对末节NSSA:这个是Cisco专用。
它不接收3类、4类汇总LSA和5类外部LSA且可以有ASBR,使用默认路由到AS外部网络,默认路由是自动生成的。
五、OSPF路由类型1.区域内路由:所有路由器都计算前往其所有在区域中每个目的地的最佳路径,并将他们加入到路由表中。
这些是1类LSA和2类LSA,在路由表中用路由指示符O(OSPF)表示。
2.区域间路由:所有路由器都计算前往互联网络中其他区域的最佳路径。
在这些路径是区域间路由(3类和4类LSA),在路由表中用路由指示灯IA(区域间)表示。
3.外部路由:.除末节区域内的路由器外,所有路由器都计算前往外部自治系统中目标网络的最佳路径(5类)。
这些路由是1类外部路由(E1)还是2类外部路由(E2)取决于配置。
在路由表中,1类外部路由用O E1表示,2类外部路由用O E2表示。
类似的还有ON1/ON2,与OE1/OE2相同,不过是来自NSSA区域的路由。