无损检测工艺规程(对接焊缝射线)

合集下载

01射线检测通用工艺规程_NB_T47013(2019)

01射线检测通用工艺规程_NB_T47013(2019)

1适用范围1.1本工艺规程适用于承压设备金属熔化焊对接接头的x射线和γ射线检测技术和质量分级要求。

1.2本部分适用的金属熔化焊焊接接头的金属包括钢、铜及铜合金、铝及铝合金、钛及钛合金、镍及镍合金。

焊接接头的型式包括板及管的对接接头对接焊缝(以下简称“对接焊缝”)、插入式和安放式接管角接接头对接焊缝(以下简称“管座角焊缝”)。

1.3承压设备其它金属材料、支承件和结构件的焊接接头的射线检测也可参照使用。

1.4本工艺规程规定射线检测技术等级分为三级:A级—低灵敏度技术;AB级—中灵敏度技术;B级—高灵敏度技术。

1.5如采用本工艺规程未引用的检测标准,应遵照原标准要求进行检测。

2编制依据NB/T 47013.1 承压设备无损检测第1部分:通用要求NB/T 47013.2 承压设备无损检测第2部分:射线检测3一般要求3.1射线检测人员3.1.1检测人员必须经过培训,按照国家特种设备无损检测人员考核的相关规定取得相应的无损检测资格。

3.1.2无损检测人员资格分为Ⅰ级、Ⅱ级和Ⅲ级。

3.1.3不同资格的无损检测人员,只能从事与该资格相应的无损检测工作。

3.1.4从事射线检测的人员在上岗前应进行辐射安全知识的培训,并按照有关法律、法规、标准的要求取得相应证书。

3.1.5射线检测人员的视力不应低于5.0,测试方法按GB 11533规定进行。

从事评片的人员每年检查一次视力。

3.2检测设备和器材3.2.1X 射线机、γ射线机(Ir192或Se75)、X射线管道爬行器、γ射线管道爬行器(Ir192或Se75),应视检测工程的具体情况选用适合的射源种类、仪器型号。

3.2.2观片灯3.2.2.1.观片灯的主要性能应符合GB/T19802的有关规定。

3.2.2.2.为评定黑度为4.5的射线底片,观片灯的最大亮度不得低于316228Lx。

3.2.3黑度计3.2.3.1.黑度计可测量的最大黑度值应不小于4.5,测量值的误差应不超过0.05。

射线检测通用工艺规程

射线检测通用工艺规程

射线检测通用工艺规程1主题内容与适应范围1.1 本规程规定了熔化焊对接接头的X射线和γ射线检测的一般方法和要求。

1.2 本规程适用于本公司对接焊接接头的射线检测。

2总则射线检测除符合本规程的规定外,还应遵守国家颁布的有关法令、法规、标准、本公司其它相应规程和图样及专用工艺文件的要求。

3一般要求3.1检测人员要求从事射线检测的人员必须按照《特种设备无损检测人员考核与监督管理规则》的要求取得相应无损检测资格,各级检测人员只能从事与其等级相应的无损检测工作。

3.1.1未持证的实习人员只能在持证人员的指导下,从事检测的辅助工作。

3.1.2 I级人员在II、III级人员的指导下或按照工艺要求进行检测操作,记录检测数据并整理检测资料。

3.1.3 II,III级人员负责编写专用工艺,指导并参与实际操作,评定检测结果,签发检测报告。

3.2射线防护射线检测应尽可能安排在曝光室内进行,由于设备结构及其他原因需要现场拍片时,应按有关规定划定控制区和管理区、设置警告标志,检测作业人员应备有相关的报警器或剂量仪,以测定工作环境的射线剂量。

3.3设备与器材检测人员应按下列条件或探伤专用工艺的要求选用设备与器材。

3.3.1射线源及射线能量的选择根据工件厚度及现有设备条件选用适当的透照设备(RF200、RF250、RF300、XXH300、GHC300、γ射线机),射线能量的选择参照JB4730.2图1“不同透照厚度允许的X射线最高管电压”及表4“γ射线源和能量1MeV以上X射线设备的透照厚度范围”的要求和相应曝光曲线进行。

3.3.2 胶片探伤用胶片应采用中粒或细粒胶片,如无特殊说明推荐使用天III或天Ⅴ胶片(胶片规格为300×80mm、300×100mm、150×80mm、180×80mm)3.3.3 增感屏钢制压力容器焊缝及钢制压力管道对接焊缝检测必需采用金属增感屏,根据公司目前压力容器及钢制压力管道生产情况,推荐使用铅箔增感屏,增感屏规格为前屏厚0.03mm,后屏厚0.1mm。

射线检测通用工艺规程 nb t47013

射线检测通用工艺规程 nb t47013

1 适用范围1.1 适用于承压设备的制造、安装、在用检测中对接焊接接头的X射线检测。

用于制作焊接头的金属材料包括碳素钢、低合金钢、不锈钢、铜及铜合金、铝及铝合金和钛及钛合金、镍及镍合金。

1.2 承压设备其他金属材料、支承件和结构件的焊接接头的射线检测也可参照使用。

2 编制依据NB/T 47013.1-2015《承压设备无损检测》第1部分:通用要求NB/T 47013.2-2015《承压设备无损检测》第2部分:射线检测3 一般要求3.1 射线检测人员3.1.1 从事射线检测人员上岗前应进行辐射安全知识的培训,并取得放射工作人员证和无损检测人员资格证书。

3.1.2 射线检测人员未经矫正或经矫正的近(距)视力和远(距)视力应不低于5.0(小数记录值为1.0),测试方法应符合GB 11533的规定。

从事评片的人员应每年检查一次视力。

3.2 射线胶片3.2.1 胶片系统按照GB/T 19348.1分为六类,即C1、C2、C3、C4、C5和C6类。

Cl 为最高类别,C6为最低类别,胶片系统的特性指标见NB/T 47013.2附录B。

3.2.2 胶片处理方法、设备和化学药剂可按照GB/T 19384.2的规定,用胶片制造商提供的预先曝光胶片测试片进行测试和控制。

3.2.3 不使用超过胶片制造商规定的使用期限的胶片。

胶片按制造商推荐的温度和湿度条件予以保存,并避免受任何电离辐射的照射。

3.3 观片灯观片灯的主要性能符合GB/T 19802的有关规定,最大亮度能满足评片的要求。

3.4 黑度计3.4.1 黑度计可测的最大黑度应不小于4.5,测量值的误差应不超过±0.05。

3.4.2 黑度计至少每6个月校验一次。

校准黑度计用的标准黑度片必须在有效期内,并通过计量部门的鉴定(2年)新购置的标准黑度片只要在有效期内也允许。

3.5 增感屏3.5.1 X射线照相能量在500KV以下时选用增感屏的材料应是铅屏。

3.5.2 前屏和后屏的厚度可以相同也可以不同。

射线检测工艺规程

射线检测工艺规程

射线检测工艺规程1.1 适用范围1.1.1 本规程适用锅炉压力容器和压力管道熔化焊对接接头的射线检测。

1.1.2 锅炉、压力容器和压力管道的制造与现场组焊。

1.1.3 焊接工艺评定及焊工考试的试件,产品焊接试板或工艺纪律检查试板的焊缝。

1.2 焊缝表面要求1.1.1 射线检测前,焊缝及热影响区(包括焊缝余高)的表面质量应经外观检查合格。

表面的不规则状态在底片上的图像应不掩盖焊缝中的缺陷或与之相混淆,否则表面应经修整合格后方可进行检测。

1.1.2 具有延迟裂纹倾向材质的焊缝,射线检测应在焊后24小时后方可进行。

1.3 探伤设备1.3.1 射线机、观片灯、黑度计等射线检测设备应经调试合格并符合有关标准规定。

1.3.2 使用射线检测设备,必须严格按其操作规程进行操作。

1.4 胶片与增感屏1.4.1 胶片:工业X胶片按工程(产品)设计或施工及验收规范、标准所要求的无损检测标准的规定选用。

胶片必须在有效期内使用。

胶片应存放在阴凉干燥的地方避免潮湿、高温和爆晒,并远离射线源。

1.4.2 增感屏:按工程(产品)设计或施工及验收规范、标准所要求的无损检测标准的规定选用,可优先选用金属增感屏,应保持增感屏的表面平整。

不准有油脂、污物、斑痕及机械损伤。

1.5 线型象质计选择、放置1.5.1 线型象质计:按工程(产品)设计或施工及验收规范、标准所要求的无损检测标准有关规定选用相应系列的象质计,线型象质计的型号和规格应符合GB5618-85的规定。

1.5.2 线型象质计应放在射线源一侧的工件表面上,被检焊缝区的一端(被检区长度的1/4部位),中间一根钢丝的影像应位于底片两端1/4部位,且细丝朝外。

当射线源一侧无法放置象质计时,也可以放在胶片一侧工件表面上,但象质计应提高一级或通过对比试验,使象质指数达到规定的要求。

当象质计放在胶片一侧表面上时,应附加“F”标记以示区别。

1.5.3 采用射线源置于园心位置的周向曝光时,象质计应在内壁每隔90°放置一个。

无损检测工艺规程

无损检测工艺规程

无损检测工艺规程无损检测工艺规程上海基实无损检测技术有限公司实施日期:2008.01.01目录I.射线检测工艺规程II.超声检测工艺规程III.磁粉检测工艺规程IV.渗透检测工艺规程I.射线检测工艺规程1.目的本规程是根据LR船舶建造及入级规范及技术规格书的要求制定的船舶焊缝射线检测质量控制程序及焊接质量合格与不合格的规定。

2.适用范围本规程适用于母材厚度小于等于100mm钢熔化焊对接焊缝的射线照相方法及焊接质量评定。

3.引用标准CB/T3558-94 船舶钢焊缝射线探伤工艺和质量分级GB/3323-2005 钢熔化焊对接接头射线探伤和质量分级JIS 3104-95 钢焊缝射线检验方法及探伤底片等级分类方法DN V--------------------------?ASME-2001 第五卷,第二章AWS D1.1 2000 钢结构焊接规范4.检测人员4.1 从事焊缝射线探伤人员,必须掌握射线检测的基础知识,具有一定的焊缝射线探伤经验,同时还必须掌握一定的金属材料和焊接基础知识。

4.2 射线探伤人员必须持有国家有关部门颁发的,并与其工作相适应的Ⅱ级及符合Ⅱ级要求的Ⅲ级资格证书。

4.3 评片人员校正视力不应低于1.0,并要求距离400mm能读出高为0.5mm,间隔为0.5mm的一组印刷字母。

5.焊缝表面质量5.1 需检验的焊缝,其焊缝及热影响区的表面质量(包括余高高度),应经外观检查合格,表面不规则状态在底片上的图象不掩盖焊缝中的缺陷或与之相混淆,否则应进行适当的修整。

5.2 焊缝表面经检查合格后,由质管员(或质检人员)填写探伤申请单,申请单上写明工程代号、工程名称、焊工或焊工号、探伤编号、焊接方法、材料牌号及材料规格、焊缝质量评定标准等。

6.设备及器材6.1 射线源6.1.1 X 射线机必须由有资质的法定计量单位进行鉴定合格6.1.2 在确切作好现场防护要求的情况下,也可使用Ir192和Se 75γ射线源进行摄片。

对接焊缝射线检测工艺规程NDT

对接焊缝射线检测工艺规程NDT

CONTROLLED □Array UNCONTROLLED □COPY NO.:RT EXAMINATION PROCEDURE1 General1.1 This procedure is applied to the x-ray radiographic examination of butt welds for pressure vessels constructed in accordance with ASME Code Section ⅧDiv1, 2010 ED. and 2011 AD.1.2 This procedure shall be supplemented, when necessary, with the examination instructions defining more specific variables, which will be prepared by NDE Level Ⅲpersonnel.2 Qualification of Examination Personnel2.1 Any person engaged in radiographic examination shall be qualified and certified as a radiographic examiner in accordance with BAOSE’s “Written Practice for NDE Personnel Training, Qualification and Certification”(QC ND-011).2.2 The NDE LevelⅠshall receive the necessary instruction or supervision from a certified NDE LevelⅡor LevelⅢExaminer. The NDE LevelⅡshall receive the instruction or supervision from a NDE Level ⅢExaminer.2.3 According to the respective responsibility range, all examiners shall complete the examination conforming to the referencing ASME Code Sections, standards and written instructions. They shall assure the working quality.3 Equipment, Tools and MaterialsThe LevelⅡExaminer shall select the equipment, tools and materials to assure that they are in compliance with the following conditions and the requirement of the examination instruction.3.1 One of the x-ray equipment shall be selected from Table 1.3.2 FilmAGFA TESTIX C7 film shall be used in our Company. Depending on the x-ray penetration thickness, other suitable industrial radiographic film shall be selected. When using two films method, two different types of film shall be selected.3.3 Intensifying ScreenA suitable lead screen shall be selected from Table 2.3.4 Densitometer and Step Wedge FilmThe digital densitometer listed in Table 3 shall be used for judging radiograph density. The densitometer shall be checked against a calibrated step wedge film at least every 90 days by theNDE Level Ⅱor Ⅲ Examiner, in accordance with T-262 of Section Ⅴ. The step wedge calibration film shall have been verified within the last year by the National Calibrating Measuring Center, with a national standard unless, prior to first use, it was maintained in a light-tight and waterproof sealed package as supplied by the manufacturer. Step wedge calibration film may be used without verification for one year upon opening, provided it is within the manufacturer ’s stated shelf life.3.5 Image Quality Indication(IQI) 3.5.1 Type and material of IQIs3.5.1.1 The wire type IQI presented as Fig. 1 and T ab.4 shall be used. The wire type IQI shall be manufactured and identified in accordance with the requirements in SE-747.3.5.1.2 The wires shall be fabricated from material or alloy with same or less radiation absorption than the material being radiographed.Fig 1MATERIAL GROUP NUMBER LARGEST WIRE NUMBER3.5.2 IQI Selection3.5.2.1 The designated essential minimum wire diameter shall be as specified in Table53.5.2.2 For welds with reinforcements, the thickness on which the IQI is based is the nominal single wall thickness plus the estimated weld reinforcement not to exceed the maximum permitted by the Section ⅧDivision 1. For welds without reinforcements, the thickness on which the IQI is based is the nominal single wall thickness. In both cases backing rings or strips shall not be considered as part of the weld thickness in IQI selection.3.5.3 Placement of IQIs3.5.3.1 The IQI(s) shall be placed on the source side of the part being examined. When configuration or size prevents placing the IQI(s) on the part or weld, the IQI(s) may be placed on a separate block in compliance with para. T-277.1 of Section V. The separate block shall be placed as close as possible to the part being radiographed.3.5.3.2 Where inaccessibility prevents hand placing the IQI(s) on the source side, the IQI(s) shall be placed on the film side in contact with the part being examined. A lead letter “F” shall be placedadjacent to or on the IQI(s).3.5.3.3 The IQI(s) shall be placed on the weld so that the length of the wires is perpendicular to the length of the weld. The identification number(s) and, when used, the lead letter “F” shall not be in the area of interest, except when geometric configuration makes it impractical.3.5.4 Number of IQIs3.5.4.1 When one or more film holders are used for an exposure, at least one IQI image shall appear on each radiograph.3.5.4.2 If the density of the radiograph anywhere through the area of interest varies by more than minus 15% or plus 30% from the density adjacent to the designated wire of a wire IQI, within the minimum/maximum allowable density ranges specified, then an additional IQI shall be used for each exceptional area or areas and the radiograph retaken.3.5.4.3 For cylindrical components or spherical components where the source is placed at the center of the component for a single exposure, at least three IQIs, spaced approximately 120deg. apart, are required.3.5.5 IQI SensitivityRadiography shall be performed with a technique of sufficient sensitivity to display the essential wire of a wire IQI, which is essential indication of the image quality of the radiograph. The radiographs shall also display the identifying numbers and letters. If the essential wire do not show on any film in a multiple film technique, but do show in composite film viewing, interpretation shall be permitted only by composite film viewing.3.6 “B” MarkA lead symbol “B”, with minimum dimensions of 13mm in height and 1.6mm in thickness, shall be attached to the back of each film holder during each exposure to determine if backscatter radiation is exposing the film.3.7 Location MarkersThe image of the location markers for the coordination of the part with the film shall appear on the film without interfering with the interpretation, with such an arrangement that is evidence that complete coverage was obtained. Location markers shall be placed on the part, not on the exposure holder/cassette.3.7.1 Single-Wall Viewing(a) Source Side MarkersLocation markers shall be placed on the source side when radiographing the following:(1) Flat components or longitudinal joints in cylindrical or conical components will be accordingto Fig. 2.(2) Curved or spherical components whose concave side is toward the source and when the “source -to-material” distance is less than the i nside radius of the component;(3) Curved or spherical components whose convex side is toward the source. (b) Film Side Markers(1) Location markers shall be placed on the film side when radiographing either curved orspherical components whose concave side is toward the source and when the “source -to-material” distance is greater than the inside radius.D: Source to material distance t :thickness of workpieceFig 2(2) As an alternative to source side placement in 3.7.1(a), location markers may be placed on the film side when the radiograhp shows coverage beyond the location markers to the extent demonstrated by Fig.3, i.e. : L eff =(X+M f +X ).(c) Either Side MarkersLocation markers may beplaced on either the source side or film side when radiographing either curved or spherical components whose concave side is toward the source and the “source -to-material” distance equals the inside radius of the component.adjacent to the weld (or on the material in the area of interest) for each radiograph.3.8 A system shall be used to produce permanent identification on the radiograph traceable to the contract, component, weld seam, or part numbers,as appropriate. On the radiograph, the following shall be plainly and permanently included and in any case this information shall not obscure the area of interest. (See Fig.4)(1) BAOSE (2)Job No. (3)Weld No. (4)Center mark. (5) Position No.(6)Repair mark, if used. (7)Location Marks. (8)Date of making radiographFig 43.9 Facilities for Viewing Radiographs3.9.1 Illuminator used to view radiographs shall be verified that it has sufficient intensity to be visible for the essential wire diameter of IQI and can diffuse the light uniformly. When the radiograph is smaller than the viewing portion of illuminator or will include low density areas, the masks shall be provided to exclude any extraneous light.3.9.2 In order to obtain the necessary brightness through the radiograph at least 30cd/m2, the viewing equipment shall have the following illumination:3.10 Viewing RoomSubdued background lighting shall be provided such that the intensity shall not cause troublesome reflection, shadows or glares on the radiograph.4Check of Surface to be RadiographedPrior to starting of radiographic examination, the Examiner shall check or verify that the surface to be radiographed satisfies the following conditions.4.1 The reinforcement of butt welded joints is within the value specified in Section ⅧDivision 1 as shown in Table 7.4.2 Any surface irregularities, such as weld ripples, splashing, undercut and surface roughness, cannot mask or be confused with the image of any discontinuity.GENERAL NOTES:(a) For double welded butt joints, this limitation on reinforcement given above shall apply separately to bothinside and outside surfaces of the joint.(b) For single welded butt joints, the reinforcement limits given above shall apply to the outside surface of thejoint only.(c) Thickness of weld reinforcement shall be based on the thickness of the thinner of the materials being joined.(d) The weld reinforcement thickness shall be determined from the higher of the abutting surfaces involved.(e) Weld reinforcement may be removed if so desired.5 Setup for ExposureLevel Ⅰor levelⅡindividual shall set up the equipment, tools and materials for exposure in accordance with the examination instruction so all requirements for radiograph will be met. The setup information shall be truly and clearly recorded as described in paragraph9.5.1 Arrangement of Film,IQI and Markers.5.1.1 Film cassette, IQI and markers shall be placed in accordance with Fig. 4. The Examiner who performs the exposure shall carefully insert the specified film into cassette and attach the “B” mark on its back.5.1.2 If the density of the radiograph anywhere through the area of interest varies by more than –15% or +30% from the density adjacent to the designated wire of a wire IQI within the minimum and maximum allowable density ranges specified in Table 8, then two IQIs shall be used. One shall be placed on the lightest area of interest and the other shall be placed on the darkest area of interest.5.2 Geometric Condition for Exposure.5.2.1 Source-to-object distance and distance from source side of object to the film shall meet the requirements of geometric unsharpness(Ug). The geometric unsharpness of radiograph shall not exceed what described in Table 9.△Each radiograph of a composite set shall have a minimum density of 1.3.The geometric unsharpness Ug of the radiograph shall be determined in accordance with: Ug = F*d/DWhere:F = source size: the max. projected dimension of the radiating source (or effective focal spot ) in the planeperpendicular to the distance D from the weld or object being radiographed.d= distance from source side surface of the weld or object being radiographed to the film.D= Distance from source of radiation to weld or object being radiographed.D and d shall be determined at the approximate center of the area of interest.5.2.2 The density and sensitivity within the effective viewing area for one film shall conform to the requirement specified. The effective examination length can be determined by means of method of actual examinations.5.2.3 In general, the direction of the central beam of radiation shall be perpendicularly centered on the area of interest. When special defects need be detected, it shall be based on the examination instruction prepared by the Level ⅢExaminer.6 Film ProcessingThe Examiner shall develop the exposed films in accordance with the film processing procedure. The processing data shall be recorded. The chemical composition of developer and fixer, temperature and time shall be according to the recommended practice of the film manufacturer.6.1 Manual Processing SequenceThe manual processing sequence see Tab10.6.2 Processing Quality Requirements.The processed radiographs shall be free of mechanical, chemical or other blemishes. Such blemishes include, but are not limited to:a) fogging.b) processing defects such as streaks, water marks, or chemical stains.c) scratches, finger marks, crimps, static marks, smudges, or tears.d) loss of detail due to poor screen-to-film contact.e) false indications due to defective screens.7 Evaluation of Radiographs7.1 Prior to evaluating the radiographs, the NDE level ⅡorⅢshall check if the information in radiographing record and the exposure location drawing of the component or product are completeand correct.7.2 Prior to being interpreted, the radiographs shall be checked whether their own quality is conformed to the specified requirements. Otherwise, the radiograph has to be retaken.7.3 In addition to the requirement described in Paragraph 6.2, the requirement of radiograph quality also includes:7.3.1 Density LimitationThe transmitted film density near the discernible minimum wire of an IQI on radiograph and the area to be interpreted shall be within the limitations specified in Table 8.7.3.2 “B” Mark.The bright image of “B” mark shall not appear on a darker background of the radiograph. If dark im age of “B” appears on the lighter background, it should not be taken as a reason that radiograph quality is unaccepted.7.3.3 IQIThe IQI images and designated wire of wire IQI specified shall appear on the radiograph so as to ensure the quality level of inspection meeting the requirement of Table T-276 of Section Ⅴ.8 Acceptance Standards8.1 Acceptance standards for the radiographic examination of welds shall refer the ASME Code Section ⅧDiv.1,UW-51(full RT) and UW-52(spot RT)for pressure Vessels.8.2 Indications shown on the radiographs of welds and characterized as imperfections are unacceptable for pressure vessel welds that are full radiographed under the following conditions .a) Any indication characterized as a crack or zone of incomplete fusion or penetration.b) Any other elongated indication on the radiograph which has a length greater than:6mm for t up to 19mm1/3 t for t from 19mm to 57mm19mm for t over 57mmwhere t is the thickness of the weld excluding any allowable reinforcement.c) Any group of aligned indications that have an aggregate length greater than t in a length of12t, except when the distance between the successive imperfections exceeds 6L.L is the length of the longest imperfection in the group.d) Rounded indications in excess of those specified by the acceptance standards given in Appendix 4 of Section ⅧDiv. 1 for pressure vessels.8.3 For pressure vessels, the acceptability of welds examined by spot radiography shall be judged by the following standards.a) Welds in which indications are characterized as cracks or zones of incomplete fusion orpenetration shall be unacceptable.b) Welds in which indications are characterized as slag inclusions or cavities shall beunacceptable if the length of any such indication is greater than 2/3t (t: weld thickness) excluding any allowable reinforcement.c) If several indications within the above limitations exist in line, the welds shall be judgedacceptable if the sum of the longest dimensions of all such indications is not more than t in a length of 6t and if the longest indications considered are separated by at least 3L of acceptable weld metal (L: length of the longest indication).d) The maximum length of acceptable indications shall be 19mm. Any such indicationsshorter than 6mm shall be acceptable for any plate thickness.e) Rounded indications are not a factor in the acceptability of welds not required to be fullyradiographed.9 Records9.1 The records shall include the Radiographic Examination Report, RT Interpretation Sheet and Radiographic Sketch of Location. These records shall be properly kept in file at least for 3 years. 9.2 The record and report mentioned above shall be prepared by the operator and interpreter respectively and reviewed by the RT Level ⅡorⅢand approved by the RT Level ⅢExaminerprior to submission to the AI for his review and acceptance.9.3 The forms of RT report, interpretation, location record and specific Instruction Card see page the Appendix.MT EXAMINATION PROCEDURESTATEMENT OF DEMONSTRATION CERTIFICATIONWe hereby certify that the Magnetic Particle Examination Procedure (QCD-014, Rev.5) has been demonstrated on a test specimen with known defect to the satisfaction of the AI according to ASME Code Section V,T-150 as required by Section VIII, Div.1 Appendix 6.1 General1.1 This procedure is applied to the magnetic particle examination of ferromagnetic materials and welds for ASME Code items.1.2 The magnetic particle examination method is suitable for detecting cracks and other discontinuities on or near the surface in ferromagnetic materials.1.3 This procedure is applied to wet continuous magnetization by yoke, which shall only be applied to detect discontinuities that are open to the surface of the part.1.4 This procedure shall be certified by demonstration to the satisfaction of the AI prior to implementation.2 PersonnelThe NDE personnel who is engaged in magnetic particle examination shall be qualified and certified according to BAOSE’s Written Practice (QC ND-011).3 Written Procedure Requirements3.1 RequirementsMagnetic Particle examination shall be performed in accordance with this written procedure (and the instruction cards as supplementary means), which shall, as a minimum, contain the applicable requirements listed in Table 1. The written procedure shall establish a single value, or range of values, for each requirement.3.2 Procedure QualificationThis procedure shall be demonstrated to the satisfaction of the AI prior to initial use. When procedure qualification is specified, a change of a requirement in Table 1 identified as an essential variable shall be require requalification of the written procedure by demonstration. A change of a requirement identified as a nonessential variable does not require requalification of the written procedure. All changes of essential or nonessential variables from those specified by the written procedure shall require revision of, or an addendum to, the written procedure.4 Magnetization Equipment and Calibration4.1 The magnetizing equipment to be used is Yoke, with Type CDX-4L (made by Jiangsu Sheyang Shengong Flaw Detection Factory).4.2 Frequency of calibrationMagnetizing Equipment with an ammeter shall be calibrated at least once a year, or whenever the equipment has been subjected to a major electric repair, periodic overhaul or damage. If equipment has not been in use for a year or more, calibration shall be done prior to first use.4.3 Calibration for lifting power of Yokes4.3.1 Prior to use, the magnetizing power of electromagnetic yokes shall have been checked within the past years. The yoke shall be checked whenever it has been damaged or repaired.4.3.2 Each alternating-current electromagnetic yoke shall have a lifting power of at least 44N(4.5kg)at the maximum pole spacing that will be used.4.4 Calibration for Light MeterThe digital light meter of type QZ-CZ ( made by Shanghai Sanhuan Instrument Co.,Ltd.), used for measuring light intensity in the examination area during the specified time interval, shall bechecked every 12 months by the designated Measuring & Testing Centre.Table 1 Requirements of A Magnetic Particle Examination Procedure5 Examination Medium5.1 The examination medium shall be the finely divided ferromagnetic particles which have high permeability and low retentivity. The size and shape of the magnetic particles shall be suitable for forming magnetic particle indications.5.2 The black magnetic particles in conditioned oil as suspension vehicle (Type MT-BO, wet color contrast), made by Shanghai Xin Meida Flaw Detection Material CO., Ltd., shall be used. The particle size shall be not less than 320 meshes.5.3 The fluid medium for the magnetic suspension fluid shall be conditioned oil in a sprayer. The temperature of the wet particle suspension and the surface of the part shall not exceed 57℃.5.4 Concentration of wet magnetic particle suspensions5.4.1 The initial bath concentration of suspended magnetic particles shall be assured by Shanghai Xin Meida Flaw Detection Material CO., Ltd.5.4.2 The bath concentration shall be maintained within 1.2 to 2.4 ml per 100ml of vehicle for nonfluorescent particles unless otherwise specified by the particle manufacturer. In order to enhance the contrast of examined area, the contrast enhancer solvent (FA-5) may be sprayed over the examined surface before applying the black magnetic suspension vehicle.6 Steps of magnetic particle examination are as following:7 Magnetization Procedure7.1 Yoke Technique7.1.1 The alternating current electromagnetic yokes shall be used for localized magnetization to form a longitudinal magnetic field.7.1.2 Pole spacing shall not exceed 200mm and be less than 75mm.7.1.3 The field strength of yokes can be empirically determined by measuring its lifting power.7.1.4 Wet particle applied from aerosol spray cans may be applied before and/or after magnetic current is applied. It shall be applied in a method that they will not be permitted to pool in any area.7.1.5 Accumulations of excess dry particles in examinations shall be removed with a light air stream from a bulb or syringe or other source of low pressure dry air.7.1.6 Direction of magnetizationAt least two separate examinations shall be carried out on each area. The second examination shall be with the lines of magnetic flux approximately perpendicular to those used for the first examination in that area.7.1.7 The area to be examined shall be restricted to the area which is equal to 1/4 maximum pole spacing on both sides of the line through two poles. The pole spacing shall at least have 25mm overlap for adjacent areas.7.1.8 Post-examination treatment8 Magnetic Field AdequacyThe applied magnetic field shall have sufficient strength to produce satisfactory indications, but shall not be so strong that it causes masking of relevant indications by nonrelevant accumulations of magnetic particles. Factors that influence the required field strength include the size, shape and material permeability of the part; the technique of magnetization; coatings; the method of particles application; the type and location of discontinuities to be detected.9 Examination Requirements9.1 Surface conditioning and Preparation9.1.1 Satisfactory results are usually obtained when the surface are in the as-welded, as-rolled, as-cast, or as-forged conditions. However, surface preparation by grinding or machining may be necessary where surface irregularities could mask indications due to discontinuities.9.1.2 Prior to magnetic particle examination, the surface to be examined and all adjacent areas within at least 25mm) shall be dry and free of all dirt, grease, lint, scale, welding flux and spatter, oil, or other extraneous matter that could interfere with the examination.9.1.3 Cleaning may be accomplished using detergents, organic solvents, descaling solution, paint removers, vapor degreasing, sand or grit blasting, or ultrasonic cleaning methods.9.1.4 If nonmagnetic coatings are left on the part in the area being examined, it shall be demonstrated that indications can be detected through the existing maximum coating thickness applied. When AC yoke technique is used, the demonstration must be in accordance with Mandatory AppendixⅠof Article 7 of ASME Code SectionⅤ.9.2 Unless specified on the drawings or other technical documentation, the magnetic particle examination shall be carried out on the parts with finished surface condition, or finished-machined condition and final heat treatment condition.9.3 The small opening, slots or holes in the parts can be blocked to prevent the magnetic particle from getting into.9.4 Examination shall be conducted with sufficient overlap (at least 10%) to assure 100% coverage at the established sensitivity.9.5 The repaired area shall be reexamined according to the original examination procedure.9.6 A minimum light intensity of 1000Lx is required to ensure adequate sensitivity during the examination and evaluation of indications. To achieve this minimum light intensity, the C201C flashlight shall be used as light source and the distance from the light source to the surface to be examined shall not exceed 800mm.10 Evaluation of indications and acceptance standards10.1 Evaluation of indicationsIndications will be revealed by retention of magnetic particles. All such indications are not necessarily imperfections, however, since excessive surface roughness, magnetic permeability variations (such as at the edge of heat affected zones), etc., may produce similar indications .An indication is the evidence of a mechanical imperfection. Only indications which have any dimension greater than 1.5mm shall be considered relevant.a) A linear indication is one having a length greater than three times the width.b) A rounded indication is one of circular or elliptical shape with a length equal to or less than three times the width.c) Any questionable or doubtful indications shall be reexamined to determine whether or not they are relevant.d) Broad areas of particle accumulation which might mask indications from discontinuities are prohibited, and such areas shall be cleaned and reexamined.10.2 Acceptance standards (According to Section Ⅷ, Div.1 Appendix 6 ) These acceptance standards shall apply unless other more restrictive standards are specified for specific materials or applications.All surfaces to be examined shall be free of :a) relevant linear indications;b) relevant rounded indications greater than 5mm;c) four or more relevant rounded indications in a line separated by 1.5mm or less, edge to edge;d) an indication of an imperfection may be larger than the imperfection that causes it; however, the size of the indication is the basis for acceptance evaluation.10 DemagnetizationWhen residual magnetism in the part could interfere with subsequent processing or usage, the part shall be demagnetized in time after completion of the examination.11 CleaningPost-test cleaning is necessary where magnetic particle material could interfere with subsequent processing or usage.12 Records and report13.1 The examination details and results shall be recorded by the operator. When necessary, the permanent records may be made by adhesive tape, photograph or other means.13.2 NDE report shall be prepared by the NDE Level II and approved by the NDE Level Ⅲprior to submission to the AI for acceptance.13.3 Report form is shown in Appendix.。

管道对接焊缝的无损检测

管道对接焊缝的无损检测

管道对接焊缝的无损检测管道为我们每天的生活或工作不间断地输送所需的能源(石油、水等),是用管子、管子连接件和阀门等连接成的装置。

在管道的转折处或两段管道的连接处,常可以见到一条环形的东西,那是焊缝。

焊缝的质量对于焊接件的使用寿命有着重要的影响。

因此,应及时发现焊缝所存在的缺陷,并采取有效的措施去除。

焊接缺陷是指焊接接头部位在焊接过程中形成的缺陷。

焊缝的内部缺陷有:1、气孔是指焊接时,熔池中的气体未在金属凝固前逸出,残存于焊缝之中所形成的空穴。

其气体可能是熔池从外界吸收的,也可能是焊接冶金过程中反应生成的。

2、夹渣是指焊后溶渣残存在焊缝中的现象。

3、焊缝中原子结合遭到破坏,形成新的界面而产生的缝隙称为裂纹。

4、未焊透指母材金属未熔化,焊缝金属没有进入接头根部的现象。

5、未熔合是指焊缝金属与母材金属,或焊缝金属之间未熔化结合在一起的缺陷。

按其所在部位,未熔合可分为坡口未熔合、层间未熔合、根部未熔合三种。

无损检测(NDT或无损探伤)是在不损害或不影响被检测对象使用性能的前提下,采用射线、超声、红外、电磁等原理技术并结合仪器对材料、零件、设备进行缺陷、化学、物理参数检测的技术。

关于管道对接焊缝的无损检测,规定可以概括为以下几点:(1)管道焊接应先进行外观检查,外观检查合格后方可进行无损检测。

(2)对穿越河流、水库、公路、铁路、地下管道、电缆、光缆的管道焊口、直管与弯头连接的焊口、试压后连头的碰口都应按一定的百分比进行抽检射线、超声波、磁粉等探伤。

(3) 除以上焊口外,对每个焊工或流水作业焊工组每天完成的焊口无论是否进行超声波探伤都必须按一定的百分比进行射线复验或抽检。

如有不合格,则按该焊工或流水作业焊工组在该日完成的焊口数进行加倍复验或抽检。

再有不合格,则对其余焊口逐个进行射线探伤(全检)。

广东精美检测,拥有CMA认可资质实验室,坚持“科学、严谨、快捷、公平”的理念,严格按照相关标准,为客户提供专业的无损探伤检测,认真完成每一次检测委托,出具认可的第三方检测报告!文章部分内容来源网络,如有侵权,请告知我们删除!还有,内容仅供参考,如有错误,请联系我们修改!。

无损检测通用工艺规程

无损检测通用工艺规程

无损检测通用工艺规程
第一部分:通用要求
1.主题内容与适用范围
1.1本工艺规定了射线检测、超声检测、磁粉检测、渗透检
测四种常规的无损
检测方法及质量分级评定要求。

1.2 本工艺适用于在制金属材料制承压设备的无损检测。

1.3 与承压设备有关的支承件和结构件及钢管杆的对接焊
接接头,也可参照本
工艺中相关的无损检测方法使用。

2.引用标准
GB150 压力管道元件
GB151 管壳式换热器
国务院2009年第549号令特种设备安全监察条例
国家质量监督检验检疫总局颁布2009年固定式压力管道元件安全技术监察规程
JB/T4730.1 承压设备无损检测第1部分:通用要求
JB/T4730.2 承压设备无损检测第2部分:射线。

NB47013无损检测通用工艺规程

NB47013无损检测通用工艺规程

无损检测通用工艺规程目录第一篇总则第二篇射线检测通用工艺规程第三篇超声波检测通用工艺规程第四篇磁粉检测通用工艺规程第五篇渗透检测通用工艺规程无损检测通用工艺总则1.1 主题内容与适用范围本工艺规程规定了射线检测(RT)、超声波检测(UT)、磁粉检测(MT)、渗透探伤(PT)四种无损检测的工艺方法。

本工艺规程适用于本公司特种设备制造、安装、改造、维修原材料、零部件和焊缝的无损检测。

1.2 引用标准1)《固定式压力容器安全技术监察规程》2)《特种设备无损检测人员考核规则》3)《压力管道安全技术监察规程-工业管道》4)NB/T47013-2015《承压设备无损检测》1.3一般要求1.3.1 选择原则1.3.1.1 特种设备RT、UT、MT、PT的选择及抽检率应按《容规》、《压力管道安全技术监察规程-工业管道》、GB150、GB151及图样的要求执行。

1.3.1.2 有裂纹倾向的材料应在焊后24小时后,才能进行焊缝无损检测。

1.3.1.3 对要求无损检测的角接接头、T型接头,不能进行RT或UT检测时,应进行表面无损检测。

1.3.1.4 凡铁磁性材料制成的特种设备及零部件,优先使用MT检测表面缺陷确因结构形状等原因不能使用MT检测时,方可采用PT检测。

1.3.2 检测人员1.3.2.1 从事特种设备无损检测人员必须应按照《特种设备无损检测人员考核规则》的要求取得相应的无损检测资格。

1.3.2.2 取得不同无损检测方法的各技术等级人员,只能从事与该等级相应的无损检测工作,并负相应的技术责任。

1.3.2.3 各种检测方法的报告,均由II级以上资格人员签发,并加盖公章。

1.3.2.4 从事射线检测人员上岗前应进行辐射安全知识的培训,并取得放射工作人员证。

1.3.2.5 从事磁粉、渗透检测工作人员,不得有色盲。

1.3.2.6 射线检测人员未经矫正或经矫正的近(距)视力和远(距)视力应不低于5.0(小数记录值为1.0),测试方法应符合GB11533的规定。

管道对接焊缝射线探伤通用作业指导书

管道对接焊缝射线探伤通用作业指导书

管道对接焊缝射线探伤通用作业指导书云南省火电建设公司作业文件小ZS05 -2006 国电小龙潭电厂三期2⨯300MW机组扩建工程管道对接焊缝射线探伤通用作业指导书1 适用范围射线探伤作为一种比较成熟的无损检测手段,常常成为当今电力建设工程焊接质量检验的首选方法。

但透照质量的优劣,又决定着检测结果的准确性和公正性。

为使国电小龙潭电厂三期2⨯300MW扩建工程#8机组大、中直径钢管射线探伤规范化、标准化,以稳定和提高检验质量,保证施工安全,本作业指导书规定了大、中直径钢管(公称直径大于89mm)对接焊接接头(以下简称焊缝)的射线探伤方法及探伤结果评定要求。

适用于国电小龙潭电厂三期2⨯300MW扩建工程#8机组安装范围内以及为完成本工程而进行的焊工考试、焊工仿样、焊接工艺评定中直径大于89mm,壁厚≤20mm的钢管焊缝的射线探伤以及壁厚≥70mm管道焊缝的中间检验。

设备的入场检验以及公司中心试验室承担的其它工程中条件相同或相似的管道焊缝射线探伤工作也可参照本作业指导书执行。

2 引用标准下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。

本标准出版时,所示版本均为有效,所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

DL647-2004 《电站锅炉压力容器检验规程》DL869-2004 《火力发电厂焊接技术规程》DL/T821-2002 《钢制承压管道对接焊接接头射线检验技术规程》GB3323-87《钢熔化焊对接接头射线照相和质量分级》JB4730-94《压力容器无损检测》DL5009.1-2002《电力建设安全工作规程》(火力发电厂部份)国电电源[2002]49号《电力建设安全健康与环境管理工作规定》GB4792-84《放射卫生防护基本标准》3 编制依据《云南省火电建设公司企业标准.质量、环境和职业健康安全管理手册及程序文件》云南省火电建设公司小龙潭三期扩建工程项目部2006年01月07日批准 2006年01月07日实施宣ZX.03-2002《国电小龙潭电厂三期2 300MW扩建工程#8机组金属检验/试验施工组织专业设计》及《云南省火电建设公司中心试验室质量管理手册》4 定义4.1 单壁单影外透法:射线源置于管道外,胶片放置在射源另一侧管道内壁相应焊缝区域上并与其贴紧,利用射线对管道焊缝进行探伤的方法。

射线检测工艺规程

射线检测工艺规程

射线检测通用工艺规程1.主题内容与适用范围本规程规定了焊缝射线人员具备的资格、所用器材、检测工艺和验收标准等内容。

本规程依据JB/T4730-2005的要求编写。

适用于本公司板厚在2~30 mm钢制压力容器及壁厚T≥2mm钢管对接焊接接头的X射线AB级检测技术。

满足《压力容器安全技术监察规程》 GB150、GB151 的要求。

检测工艺卡内容是本规程的补充,由Ⅱ级人员按本规程等要求编写,其参数规定的更具体。

2.引用标准、法规JB/T4730-2005《承压设备无损检测》GB150-1998《钢制压力容器》GB151-1999《管壳式换热器》GB18871-2002《电离辐射防护及辐射源安全基本标准》GB16357-1996《工业X射线探伤放射卫生放护标准》JB/T7902《线型象质计》《特种设备无损检测人员考核与监督管理规则》《压力容器安全技术监察规程》.3.一般要求3.1射线检测人员必须经过技术培训,按《特种设备无损检测人员考核与监督管理规则》考核并取得与其工作相适应的资格证书。

3.1.1检测人员应每年检查一次视力,校正视力≮1.0。

评片人员还应辨别出400mm距离处高0.5mm、间距0.5mm的一组印刷字母。

3.2辐射防护射线防护应符合GB18871、GB16357的有关规定。

3.3胶片和增感屏3.3.1胶片:在满足灵敏度要求的情况下,一般X射线选用T3或T2型胶片。

3.3.2 增感屏:采用前屏为0.03mm、后屏为0.03~0.10mm的铅箔增感屏。

.3.3.3 胶片和增感屏在透照过程中应始终紧密接触。

3.4象质计3.4.1 底片影像质量采用Fe线型像质计测定。

其型号和规格应符合JB/T7902的规定。

象质计型号一般按下表4选定。

但对透照外径≤100mm钢管环缝时采用JB/T4730附录F的专用象质计。

3.4.2 底片的象质计灵敏度选用按透照厚度及不同的透照方法选择表1至表3中要求达到的象质丝号。

无损检测工艺流程

无损检测工艺流程

无损检测工艺流程
球罐经表面打磨和外观检查合格后,进行100%MT检测,JB4730—94Ⅰ级合格,发现缺陷后,经表面打磨,再进行MT检测;合格后,再进行100%UT检测,JB4730—94Ⅰ级合格,发现不合格缺陷后,由第二个有UT—Ⅱ或UT—Ⅲ级资格的人员进行确认。

有不合格缺陷后,采用χ射线检测进行确认缺陷。

返修,严格执行返修工艺,经表面打磨和外观检查合格后,进行MT和 UT检测,再进行射线检测确认合格。

球壳板对接焊缝里面气刨清根后进行100%PT检验,热处理前球壳板对接焊缝进行100%MT、100%UT、100%RT检验,附件垫板(角接)、支柱上段与支柱下段(对接)、组装方帽、吊耳痕迹(表面)、球壳板外表面电弧痕迹(表面)进行100%MT检验。

支柱上段与球壳板连接(角接)进行100%PT检验。

热处理后球壳板对接焊缝、附件垫板(角接)、支柱上段与支柱下段(对接)、组装方帽、吊耳痕迹(表面)、球壳板外表面电弧痕迹(表面)进行100%MT检验。

水压试验后,球壳板对接焊缝、附件垫板(角接)、支柱上段与支柱下段(对接)、组装方帽、吊耳痕迹(表面)、球壳板外表面电弧痕迹(表面)进行100%MT检验。

01焊缝射线检测通用工艺规程

01焊缝射线检测通用工艺规程

压力容器射线检测通用工艺规程1、总则1.1、本规程规定了钢制压力容器主要受压元件的熔化焊对接接头的X射线检测技术和质量分级要求。

1.2、本规程适用于本企业的钢制压力容器制造过程中所有A、.B类焊缝的射线照相检测。

本规程规定的射线检测技术分为三级:A级一低灵敏度技术;AB级一中灵敏度术;B级一高灵敏度技术。

1.3、本规程不适用于钢制压力容器制造、安装过程中C、D类焊缝的射线照相。

2、引用标准GB11533 标准对数视力表GBZ117 工业X射线探伤放射卫生防护标准GB18871 电离辐射防护与辐射源安全基本标准GB/T19348.1无损检测工业射线照相胶片第1部分:工业射线胶片系统的分类GB/T19348.2 无损检测工业射线照相胶片第2部分:用参考值方法控制胶片处理GB/T19802 无损检测工业射线照相底片观片灯最低要求JB/T7902 射线照相用线型象质计NB/T47013.1 承压设备无损检测第1部分:通用要求NB/T47013.2 承压设备无损检测第2部分:射线检测3、一般要求3.1、射线检测人员3.1.1、从事射线检测的人员必须符合NB/T47013.1-2015的有关要求3.1.2、从事射线检测的人员上岗前应进行辐射安全知识的培训,并取得放射工作人员证。

3.1.3、从事评片的人员未经矫正或经矫正的近距视力和远距视力应不低于5.0(小数记录值为1.0),测试方法应符合GB11533的规定,应每年检查一次。

3.2、射线胶片3.2.1、A级和AB级射线检测技术应采用C5类或更高类的胶片,B级射线检测技术应采用C4类或更高类的胶片3.3、观片灯3.3.1、观片灯的主要性能应符合JB/T19802的有关规定,最大亮度应能满足评片的要求。

3.4、黑度计3.4.1、黑度计可测的最大黑度应不小于4.5,测量值的误差应不超过±0.05。

3.4.2、黑度计首次使用前应进行核查,以后至少每6个月进行一次核查。

射线检测工艺规程

射线检测工艺规程

射线检测工艺规程1适用范围本射线检测工艺适用于:碳素钢、低合金钢、不锈钢等材料制作的锅炉、压力容器及长输管道、钢质储罐熔化焊对接接头的射线透照检测工作。

遇有特殊要求,应按相应的标准、规范执行。

2引用标准GB 11533—1989 标准对数视力表GB 16357—1996工业X射线探伤放射卫生防护标准JB/T 7902—1999 线型像质计JB/T4730 — 2005《承压设备无损检测》SY/T4109-2005《石油天然气钢质管道无损检测》GB50128-2005《立式圆筒形钢制焊接储罐施工及验收规范》3射线防护3.1X射线对人体有不良影响,应执行《检测作业安全防护指导书》和其它安全防护规定。

3.2在现场工作人员应随身佩带个人剂量仪、射线个人报警器及防护服。

3.3带一台射线剂量巡测仪,测定利用现场墙壁房屋及设备选择理想的屏蔽位置。

3.4拍片现场划定“射线放射区”并放好警戒标记。

3.5确认工作人员均已完成各自工作并离开辐射区,方可开启射线发生器进行透照。

3.6每次透照完成后,均应用报警器确认射线是否停止辐射后,方可进入辐射现场。

3.7现场作业完成后对仪器进行清点、核对无误后清理现场,撤除警戒标志方可撤离现场。

3.8从事放射性工作人员应定期进行体检,每年允许接受的剂量量为50 m SV。

4人员要求4.1从事射线检测人员必须经过培训,持证上岗。

只有取得质量技术监督部门颁发的射线检测技术等级证书的人员,方可独立从事与该等级相应的射线检测工作。

4.2射线检测人员应具有良好的身体素质,其校正视力不得低于5.0,并每年检查一次。

从事评片人员应能辨别距离400mm远的一组高为0.5mm、间距为0.5mm 的印刷字母。

4.3底片评定、复评和检测报告的签发由具有射线n或ni级人员进行。

5检测程序5.1根据工程特点和本工艺编制具体的《无损检测技术方案》。

5.2受检设备经外观检查合格后,由现场监理或检验员开据《无损检测委托单》到检测中心。

NBT47013.2-2015射线检测工艺规程(钢质对接焊缝)

NBT47013.2-2015射线检测工艺规程(钢质对接焊缝)

NB/T 47013.2-2015射线检测工艺规程1 目的本规程规定了射线检测工作的一般要求和操作方法,更好地促进检测人员X射线检测操作的规范化和适用性。

2 适用范围2.1 本部分规定了承压设备金属熔化焊焊接接头X射线检测技术和质量分级要求。

适用于熔化焊焊接接头的金属为钢、镍及镍基合金、铜及铜合金。

焊接接头的型式为对接接头对接焊缝(以下简称“对接焊缝”)。

2.2 承压设备其他金属材料、支承件和结构件的焊接接头的射线检测也可参照使用。

注:a. 钢和镍及镍合金的透照厚度范围2~110mm;b. 铜及铜合金的透照厚度范围2~80mm;c. 上述材料承压设备管子和压力管道的透照厚度≥2mm。

3 编制依据本规程的编制依据包括但不限于以下相关规范及技术标准3.1 NB/T 47013.1-2015 承压设备无损检测第1部分:通用要求3.2 NB/T 47013.2-2015 承压设备无损检测第2部分:射线检测3.3 NB/T 47013.2-2015 承压设备无损检测第2部分:射线检测第1号修改单3.4 GB 11533 标准对数视力表3.5 GB/T 12604.2 无损检测术语射线照相检测3.6 GB 18871 电离辐射防护及辐射源安全基本标准3.7 GB/T 19348.1 无损检测工业射线照相胶片第1部分:工业射线照相胶片系统的分类3.8 GB/T 19348.2 无损检测工业射线照相胶片第2部分:用参考值方法控制胶片处理3.9 GB/T 19802 无损检测工业射线照相观片灯最低要求3.10 GBZ 117 工业X射线探伤放射防护标准3.11 GB/T 23910 无损检测射线照相检测用金属增感屏3.12 JB/T 7902 射线照相用线型像质计3.13 TSG Z8001-2013 特种设备无损检测人员考核规则4 职责4.1 质量技术部负责操作指导书编制和安全管理,项目部拍片人员按操作指导书进行拍片并记录;4.2 评片人员负责底片质量控制和底片评定(初评、复评),记录审核,报告编发;4.3 射线责任师负责操作指导书、底片、报告审核,并对检测过程进行质量控制。

无损检测工艺规程

无损检测工艺规程

编制说明本规程依据JB/T4730.1-4730.6-2005《承压设备无损检测》进行编写,并符合GB150《钢制压力容器》及《压力容器安全技术监察规程》《热水锅炉安全技术监察规程》《蒸汽锅炉安全技术监察规程》的要求。

本规程由质保部提出,探伤室负责起草,由公司技术负责人批准执行,它是本公司无损检测工作的执行法规,本公司所有的无损检测任务必须以本规程为依据,对于非本公司设备不具备法定意义。

其检测专用工艺及产品检测工艺卡是对本规程的具体补充,作为本公司检测工作的具体指导。

第一章总则1.主题内容及引用标准1.1 本规程规定了无损检测人员应具备的资格,本公司所采用的四种无损检测方法射线检测、超声检测、磁粉检测和渗透检测,检测设备,检测工艺,检测时机,验收标准及档案的管理等。

本规程适用于本公司Ⅰ、Ⅱ、压力容器及压力管道的无损检测。

1.2 本规程依据:JB/T4730.1-4730.6-2005《承压设备无损检测》和本公司实际生产情况进行编写。

引用标准:(1)GB150《钢制压力容器》(2)《热水锅炉安全技术监察规程》(3)《压力容器安全技术监察规程》(4)《蒸汽锅炉安全技术监察规程》(5)GB5616《无损探伤应用导则》(6)GB/T12604(1-6)《无损检测术语》(7)GB4792《射线防护基本标准》(8)《特种设备无损检测人员考核与监督管理规则》2.检测人员2.1 检测人员必须按《特种设备无损检测人员考核与监督管理规则》取得资格证书,从事与其资格证书相适应的工作。

2.22.3 检测人员的身体素质,视力须满足JB/T4730.1-2005的要求并定期进行身体检查,并建立个人健康档案。

2.4 从事无损检测工作的人员,必须坚持职业道德,抵制降低产品质量的行为,严把质量关。

检测责任师有责任保证标准、法规,工艺的正确实施,并有权拒绝不符合标准,法规要求的任何检测工作。

3.检测方法:3.1各种检测方法都各有特点,在选用检测方法时应根据图纸及技术文件的要求进行,并应符合GB150及《压力容器安全技术监察规程》《热水锅炉安全技术监察规程》《蒸汽锅炉安全技术监察规程》的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档