层次分析法的优劣势
模糊综合评价法和层次分析法比较
模糊综合评价法和层次分析法比较在决策问题中,评价方法的选择对于得出准确的结论至关重要。
模糊综合评价法和层次分析法是两种常用的评价方法,它们各自有着不同的特点和适用范围。
本文将对这两种方法进行比较,并分析它们的优缺点及适用场景。
一、模糊综合评价法模糊综合评价法是一种基于模糊数学理论的决策方法。
它能够处理一些无法精确描述的决策问题,具有一定的模糊性。
模糊综合评价法的主要步骤包括:建立评价指标体系、建立模糊评价矩阵、确定模糊数的隶属度函数、计算权重系数、模糊综合评价以及结果分析。
模糊综合评价法的优点在于可以处理非常模糊的信息,对于具有一定主观性的问题有着较好的适应性。
其模糊矩阵可以对决策变量之间的关系进行直观表示,提高了决策的可理解性。
此外,模糊综合评价法还能够灵活地处理多个评价指标之间的关系,适用于复杂问题的决策。
然而,模糊综合评价法也存在一些缺点。
首先,模糊综合评价法在建立模糊矩阵时需要依赖专家的主观评价,其可靠性存在一定的局限性。
其次,在计算权重系数时,需要对每个指标的重要性进行模糊隶属度函数的设定,这可能会引入一定的主观偏差。
另外,由于模糊综合评价法对决策问题的要求较高,需要专业的知识和经验支持,所以在应用中需要慎重选择。
二、层次分析法层次分析法是一种将复杂问题分解为多个层次结构,并通过定量分析和专家判断来确定各个层次的权重的方法。
层次分析法的主要步骤包括:构建层次结构模型、确定判断矩阵、计算权重向量、一致性检验以及结果分析。
层次分析法的优点在于可以将复杂的决策问题分解为多个相对简单的子问题进行处理,提高了问题的可解性和可行性。
其通过定量化的方式确定各个层次的权重,减少了主观性的干扰。
此外,层次分析法具有较好的一致性检验方法,可以对决策结果的可靠性进行判断。
然而,层次分析法也存在一些不足之处。
首先,层次分析法在评价指标比较多或问题比较复杂时,计算量较大,耗时较长。
其次,层次分析法在构建判断矩阵和确定权重向量时,需要征求专家的意见和判断,其可靠性和准确性也受到专家主观因素的影响。
层次分析报告法的优缺点
层次分析法的优缺点优点:1. 系统性的分析方法层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。
系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。
这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。
2. 简洁实用的决策方法这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关系后,最后进行简单的数学运算。
即使是具有中等文化程度的人也可了解层次分析的基本原理和掌握它的基本步骤,计算也经常简便,并且所得结果简单明确,容易为决策者了解和掌握。
3. 所需定量数据信息较少层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。
由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,层次分析法把判断各要素的相对重要性的步骤留给了大脑,只保留人脑对要素的印象,化为简单的权重进行计算。
这种思想能处理许多用传统的最优化技术无法着手的实际问题。
缺点:1.不能为决策提供新方案层次分析法的作用是从备选方案中选择较优者。
这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。
这样,我们在应用层次分析法的时候,可能就会有这样一个情况,就是我们自身的创造能力不够,造成了我们尽管在我们想出来的众多方案里选了一个最好的出来,但其效果仍然不够人家企业所做出来的效果好。
而对于大部分决策者来说,如果一种分析工具能替我分析出在我已知的方案里的最优者,然后指出已知方案的不足,又或者甚至再提出改进方案的话,这种分析工具才是比较完美的。
层次分析法的优缺点
层次分析法的优缺点1)优点(1)系统化的分析方法层次分析法通过把研究对象视作一个系统,依照目标分解、相互比较、加权综合的思维模式进行决策,成为了继统计分析、机理分析之后第三个发展起来的进行系统分析的重要工具。
系统化的思想在于各个因素对最终结果的影响是连续的,而在层次分析法中,最终的结果是由每一个层次的相对权重加权综合得到的,而且最终方案层对目标层的相对权重是经过量化的,非常的清晰和明确。
这种方法尤其适用对无明显结构特性的系统进行评价以及对多段时期、多个目标、多个准则等系统的评价。
(2)方便实用的决策方法层次分析法是将定性方法与定量方法有机地结合起来的评价方法,既不片面地追求高深的数学逻辑,又不单纯地注重主观行为、意识判断。
层次分析法通过建立较为复杂的多层次结构,从而使人们的思维过程系统化和数学化,以便于人们更容易接受。
而且通过同层次因素间的两两比较确定同层次元素相对于上一层次元素的相对权重后,能把多个目标、多个准则而且难以经过量化处理的决策问题转化为单目标多层次问题,然后进行较为简单的数学运算,得到各方案相对于总目标的相对权重,权重越高,越接近目标。
权重最高的方案即为最优方案。
运用层次分析法进行评价的整个过程简单明确,容易被使用者掌握。
(3)所需要的定量数据较少层次分析法相对于一般的定量方法而言,更加注重定性的判断和分析。
它所需要的数据主要来自于评价者对问题本质的理解和认识,来自于评价者的工作经验。
层次分析法模拟实际中人脑在决策过程中的思维模式,建立多层次结构,通过判断矩阵的构造,分析得出各方案对目标的相对权重。
利用这种分析模式,能够解决许多需要严格的数据支持的最优化方法所不能解决的实际问题。
2)缺点(1)定性成分多,主观因素占比例较大层次分析法在分析过程中,所利用的数据定性因素成分很大,例如判断矩阵的构造在很大程度上是依据专家的经验得到。
这就导致,在层次分析法的评价中,主观成分大,说服力小,不易令人信服。
模糊综合评价法和层次分析法比较
模糊综合评价法和层次分析法比较模糊综合评价法和层次分析法是两种常见的决策支持方法,它们在不同的领域和情境下被广泛应用。
本文将比较这两种方法,分析它们的优缺点以及适用范围。
一、模糊综合评价法模糊综合评价法是一种基于模糊数学理论的决策方法,通过对评价指标的模糊化处理,将不确定性因素引入决策过程中。
该方法的基本步骤包括问题建模、模糊化处理、建立模糊判断矩阵、确定权重和综合评价。
1. 优点- 能够处理决策过程中的不确定性和模糊性,适用于评价指标难以量化的情况;- 能够灵活地应对不同的问题,适用性广泛;- 算法相对简单,易于操作和理解;- 能够考虑到多个因素之间的相互影响,综合了多个评价指标,提高了决策的准确性。
2. 缺点- 对指标权重的确定比较主观,容易受到决策者的主观偏好影响;- 对评价指标的模糊化处理存在一定的主观性;- 结果的可解释性相对较差,不利于分析和决策结果的有效传达。
二、层次分析法层次分析法是一种基于分层结构的决策方法,通过构建层次结构模型,对决策问题进行分解和层次化处理,然后进行判断矩阵的构建和权重的确定,最后综合得出最优方案。
1. 优点- 相对客观可靠,能够减少主观因素对决策结果的影响;- 结果具有良好的可解释性和可比性;- 能够很好地反映各个评价指标之间的相对重要性;- 算法相对简单,易于操作。
2. 缺点- 只能处理定性指标的权重确定问题,对定量指标的处理能力有限;- 在处理复杂决策问题时,模型可能变得庞大和复杂,计算量增加;- 在处理有环结构的问题时,可能会导致矛盾结果。
三、比较与适用范围1. 比较- 评价指标处理:模糊综合评价法将评价指标进行模糊化处理,层次分析法将评价指标进行层次化处理;- 确定权重方法:模糊综合评价法基于决策者的主观偏好确定权重,层次分析法通过专家判断和数学方法确定权重。
2. 适用范围- 模糊综合评价法适用于评价指标难以量化、不确定性较高的问题;- 层次分析法适用于多个评价指标之间具有内在关系的问题。
模糊综合评价法和层次分析法比较
模糊综合评价法和层次分析法比较模糊综合评价法和层次分析法都是常用于决策问题的方法,它们在不同的领域和情境下具有广泛的应用。
在本文中,将对这两种方法进行比较,分析它们的优势和不足,并针对不同类型的问题给出适用的建议。
一、模糊综合评价法模糊综合评价法是一种基于模糊数学理论的决策方法,适用于处理评价指标模糊不确定的决策问题。
它将评价指标和评价等级用模糊数表示,然后通过模糊综合运算得出最终的评价结果。
模糊综合评价法的优势在于:1. 能够充分利用决策者的主观判断和经验知识。
在评价指标模糊、难以量化的情况下,决策者可以通过模糊综合评价法将自己的经验和判断引入决策过程,提高决策的有效性。
2. 能够处理多指标的综合评价问题。
模糊综合评价法可以同时考虑多个评价指标,通过模糊综合运算得出综合评价结果,避免了单一指标评价的片面性。
3. 灵活性高,适应性强。
模糊综合评价法的计算方法相对简便,而且对评价指标的变动和权重的改变具有较好的适应性,便于决策者根据实际情况进行调整和分析。
但是,模糊综合评价法也存在以下问题:1. 对于评价指标的选择和权重的确定较为主观。
由于评价指标和权重的确定一般依赖于决策者的主观判断,容易受到个人偏好、经验和认知差异的影响,导致评价结果的不确定性。
2. 计算过程相对复杂。
模糊综合评价法需要进行模糊数运算和模糊综合的过程,计算相对繁琐,容易出现计算错误或不一致的情况。
二、层次分析法层次分析法是一种用于多属性决策分析的方法,通过建立层次结构和评价矩阵,确定各个因素的权重,并对各个因素进行比较和排序,最终得到综合评价结果。
层次分析法的优势在于:1. 通过定量化、结构化的分析,减少主观性。
层次分析法通过构建层次结构和评价矩阵,从而减少了主观性对决策的影响,提高了决策的客观性。
2. 可以较好地处理指标之间的相对重要性。
层次分析法可以将不同指标之间的相对重要性量化为权重,通过比较和排序的方式确定各个因素的权重大小,从而更好地反映各个因素对决策结果的影响程度。
层次分析法在风险评估中的应用研究
层次分析法在风险评估中的应用研究风险是企业和个人在发展和生活中所必须面对的问题,对于任何一项活动,风险评估都是不可缺少的一个环节。
然而,人们对风险的认知程度不同,由此产生了不同的风险评估方法。
层次分析法(Hierarchical Analysis Method, AHP)作为一种较为科学的评估工具,不仅逐渐被广泛应用于各个领域,也在风险评估中发挥重要作用。
一、层次分析法的概述层次分析法,又称层次分解法,是一种用于处理复杂决策问题的方法。
该方法首先将决策问题层次化,然后通过建立层次体系,量化各因素之间的权重比较。
从而得出最终的决策结果。
层次分析法通常需要经过以下步骤:1、确定目标及准则。
明确评价的目标和相关的评价准则。
2、建立层次结构。
建立一个层次结构图,将目标和准则细化为多层次子目标和子准则。
该图通常采用树状结构。
3、确定因素对目标的重要程度。
通过专家调查、问卷调查、比较分析等方式,建立一个判断矩阵,根据判断矩阵来确定各因素对于目标的重要程度。
4、计算权重。
根据各因素对目标的重要程度以及各因素之间的权重关系,计算出各因素的权重。
5、综合评价。
根据各因素的权重,确定最终的评价结果。
二、层次分析法与风险评估的应用层次分析法是一种定量分析方法,从而使风险评估更加科学化和精准化。
它可以对各种风险因素进行量化分析、对比和权衡。
同时,还可以提供一种灵活的工具,以适应对不同类型的风险评估。
下面将通过两个实例来说明其应用。
1、层次分析法用于环境风险评估在环境保护上,层次分析法被广泛应用。
例如,面对一个工业企业的投资计划,需要对其可能产生的环境影响进行评估。
首先,对于企业的投资计划进行层次分析,包括了目标、准则、策略等方面,并通过专家评估得到各个层次的权重。
然后,通过对比工业企业的不同投资计划所带来的环境风险,从而得出最终的投资计划。
在多个层次中,环境影响因素分别被量化为不同的级别。
通过一系列的比较和判断,就可以得出针对不同投资计划的综合评价,包括环境风险和经济效益等方面。
模糊综合评价法和层次分析法比较
模糊综合评价法和层次分析法比较在进行综合评价时,常用的方法有模糊综合评价法和层次分析法。
本文将对这两种方法进行比较,分析它们各自的优缺点和适用场景。
一、模糊综合评价法模糊综合评价法是基于模糊数学理论的一种评价方法,它主要用于处理评价对象模糊、不确定的情况。
模糊综合评价法具有以下特点:1. 灵活性:模糊综合评价法对于评价对象的要素和指标没有严格的限制,可以根据实际情况自由选择。
这使得模糊综合评价法适用于许多领域,如投资决策、环境评价等。
2. 可处理模糊性:模糊综合评价法通过引入隶属函数和模糊隶属度的概念,能够处理评价对象模糊、不确定的情况。
这使得该方法可以更好地反映实际情况,避免了传统评价方法的二值化问题。
3. 应用广泛:模糊综合评价法具有较强的实用性,在许多领域都有广泛应用。
例如,在环境评价中,可以用模糊综合评价法对环境影响进行综合评估,得出相对准确的评价结果。
然而,模糊综合评价法也存在一些不足之处:1. 依赖专家经验:模糊综合评价法需要专家对评价对象进行模糊隶属度的设置,这要求评价者具有丰富的经验和专业知识。
如果专家判断不准确或主观偏差大,可能会导致评价结果的不准确性。
2. 计算复杂度高:在模糊综合评价中,需要进行模糊数的运算和聚合,涉及到模糊矩阵的乘法、加法等操作,计算复杂度较高。
这使得该方法在大规模评估任务中可能效率不高。
二、层次分析法层次分析法是一种基于判断矩阵的定性和定量分析方法,它可以将复杂的评价问题分解成一系列层次结构,根据各层次指标的重要性进行逐层判断和计算,最终得出综合评价结果。
层次分析法具有如下特点:1. 结构化思维:层次分析法将评价问题分解为多个层次,有序地进行判断和权重计算,可以帮助评价者进行结构化思考,提高评价的准确性。
2. 明确权重计算:层次分析法通过对判断矩阵的计算,可以明确各个指标的权重,确保在评价过程中不会忽略主观性因素和重要性的偏差。
3. 计算简单:相对于模糊综合评价法,层次分析法的计算相对简单,只需要进行一系列的矩阵运算和加权计算,计算复杂度较低。
模糊综合评价法和层次分析法比较
模糊综合评价法和层次分析法比较在决策分析领域,模糊综合评价法和层次分析法是常用的两种数学方法。
它们都具有一定的优势和适用范围,但也存在一些差异。
本文将对这两种方法进行比较,以便读者能够更好地了解它们的特点和应用场景。
一、概念简介1. 模糊综合评价法:模糊综合评价法是一种基于模糊数学理论来进行定性和定量分析的方法。
它通过建立模糊综合评价模型,将模糊的评价指标转化为数值计算,得到最终的评价结果。
2. 层次分析法:层次分析法是一种多层次的决策分析方法,它通过建立层次结构模型,将复杂的决策问题分解为一系列层次和因素,利用专家的判断和对比,计算出每个因素的权重,并最终得出决策结果。
二、比较分析1. 方法特点比较:(1) 模糊综合评价法适用于评价指标多样性大、评价对象模糊不清的情况,能够处理具有模糊性和不确定性的决策问题。
而层次分析法则更适合于因素之间具有明确关系和层次结构的决策问题。
(2) 模糊综合评价法使用模糊数学理论进行计算,能够有效地处理定性和定量的评价指标,反映出不同指标之间的相互关系。
而层次分析法则通过对比和判断,计算出因素的权重,能够准确地反映各因素对决策结果的重要性。
2. 优缺点比较:(1) 模糊综合评价法的优点在于能够处理决策问题中的模糊性和不确定性,评价结果更符合实际情况。
但是,它在计算过程中对数据的要求较高,需要专家对评价指标进行准确的模糊量化。
(2) 层次分析法的优点在于能够将决策问题分解为层次结构,使得决策过程更加清晰和透明。
同时,它对专家的知识和经验要求较低,适用范围更广。
但是,层次分析法在处理模糊性和不确定性方面的能力相对较弱。
三、应用选择1. 模糊综合评价法适用于:(1) 评价指标多样性大、难以精确量化的决策问题;(2) 评价对象模糊、边界不明确的决策问题;(3) 对评估结果要求较为精细和准确的决策问题。
2. 层次分析法适用于:(1) 因素之间存在明确关系和层次结构的决策问题;(2) 需要对因素的重要性进行准确评估的决策问题;(3) 对专家知识和经验要求较低的决策问题。
层次分析报告法的优缺点
层次分析法的优缺点优点:1. 系统性的分析方法层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。
系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。
这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。
2. 简洁实用的决策方法这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关系后,最后进行简单的数学运算。
即使是具有中等文化程度的人也可了解层次分析的基本原理和掌握它的基本步骤,计算也经常简便,并且所得结果简单明确,容易为决策者了解和掌握。
3. 所需定量数据信息较少层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。
由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,层次分析法把判断各要素的相对重要性的步骤留给了大脑,只保留人脑对要素的印象,化为简单的权重进行计算。
这种思想能处理许多用传统的最优化技术无法着手的实际问题。
缺点:1.不能为决策提供新方案层次分析法的作用是从备选方案中选择较优者。
这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。
这样,我们在应用层次分析法的时候,可能就会有这样一个情况,就是我们自身的创造能力不够,造成了我们尽管在我们想出来的众多方案里选了一个最好的出来,但其效果仍然不够人家企业所做出来的效果好。
而对于大部分决策者来说,如果一种分析工具能替我分析出在我已知的方案里的最优者,然后指出已知方案的不足,又或者甚至再提出改进方案的话,这种分析工具才是比较完美的。
层次分析法的优缺点资料
层次分析法的优缺点资料层次分析法(Analytic Hierarchy Process, AHP)是一种多准则决策分析方法,可用于解决复杂的决策问题,其中包括评估各种选择的各种方面的重要性。
该方法的优缺点如下:优点:1. 综合性:层次分析法可以结合所有决策要素的数量特征,得出综合性分析结果。
这意味着AHP不仅可以评估质量和成本等数值数据,也可以评估其他不可量化的想法和观念。
2. 相对性:层次分析法提供了一种将各个准则中不同元素之间关系的相对性纳入考虑的方法。
这种相对性在实际的决策过程中很重要,因为很少有单个因素是完全独立的,各种因素之间往往是相互影响的。
3. 灵活性:层次分析法可以适应各种不同类型的决策问题。
它并不要求决策者具备专业知识,而是允许他们使用日常经验和判断来决定各种因素的重要性。
4. 透明度:层次分析法将决策过程中的所有步骤都进行了明确的说明,使决策者能够清楚地看到决策结果的来源。
这种透明度对于决策者来说很重要,因为他们需要知道决策结果的可靠性明确受哪些因素的影响。
1. 主观性:即使使用AHP方法,决策结果中的某些因素仍然是主观的,而不是完全客观的结果。
这是因为AHP方法基于决策者的评估和评估,而不是基于可量化的数据。
2. 复杂性:尽管AHP具有很高的灵活性,但其实现却需要深入的方法和技巧知识。
由于决策问题越来越复杂,AHP方法大规模应用时会变得非常繁琐,因此需要决策者具备实践方法的经验。
3. 经验限制性:决策者可能只能基于个人经验,而无法从完全可量化的数据统计中获得要素的权重,这可能会影响决策结果。
4. 敏感性:AHP方法对于输入数据的小变化非常敏感。
如果有偏差或误差存在输入的数据中,那么整个决策结果可能会发生很大的变化,这会影响决策者对于决策结果的尊重和信任。
模糊综合评价法和层次分析法比较
模糊综合评价法和层次分析法比较模糊综合评价法和层次分析法是常用的定量决策方法,它们在多个领域中都有广泛应用,比如企业管理、城市规划等。
这两种方法在解决问题的理论基础、流程实现以及适用范围等方面存在差异。
本文将从这些方面进行比较分析。
一、理论基础1.1 模糊综合评价模糊综合评价法来源于模糊数学,其理论基础为模糊集合与模糊逻辑。
该方法将各指标之间的相互影响看成模糊集合,采用信息量的概念对各个指标之间的隶属度进行定量化,并将隶属度转化为权重,进而得到总体评价结果。
模糊综合评价法可以有效克服传统评价方法无法处理模糊和不确定性信息的缺点,在不确定情况下有较好的适用性。
1.2 层次分析法层次分析法是一种多因素决策分析方法,其理论基础为结构层次分析。
该方法通过构建一个层次结构体系,将问题划分为多个层次,确定因素所处的层次,并制定判断矩阵。
利用特征向量法和权重逆法计算出每个因素相对于决策的权重,进而得出最终结果。
层次分析法可以在各种情况下有效地解决多因素决策问题。
二、流程实现2.1 模糊综合评价模糊综合评价方法包括以下步骤:(1) 确定评价对象和评价指标;(2) 建立评估矩阵,由因素之间的摩擦和协调程度决定隶属度;(3) 计算各因素的权重,通过组合隶属函数,把所有因素的影响加权汇总为一个代表性指标;(4) 根据代表性指标进行排序,从而得到最后的评价结果。
2.2 层次分析法层次分析法的具体实现步骤如下:(1) 选择評價對象與建立評價標準及指標體系;(2) 确定評價標準及指標體系之間的層次關係,构建判斷矩陣;(3) 通过特征向量法或者权重逆法确定各级因素的权重;(4) 计算出总得分和一致性综合指标。
三、适用范围3.1 模糊综合评价模糊综合评价法较为适用于以下场景:(1) 评价对象复杂,涉及多种因素,相互之间存在交叉影响且难以量化;(2) 问题涉及不确定性和模糊性因素时;(3) 权重系数程度难以预测时。
3.2 层次分析法层次分析法较为适用于以下场景:(1) 多因素决策问题中,因素的数量少而稳定,且对方案的影响程度相对明确;(2) 可量化问题中,尤其是在两个最终选择之间进行比较和选择时。
层次分析法
所谓层次分析法,是指将一个复杂的多目标决策问题 作为一个系统,将目标分解为多个目标或准则,进而 分解为多指标(或准则、约束)的若干层次,通过定 性指标模糊量化方法算出层次单排序(权数)和总排 序,以作为目标(多指标)、多方案优化决策的系统 方法。 层次分析法是将决策问题按总目标、各层子目标、评 价准则直至具体的备投方案的顺序分解为不同的层次 结构,然后得用求解判断矩阵特征向量的办法,求得 每一层次的各元素对上一层次某元素的优先权重,最 后再加权和的方法递归并各备择方案对总目标的最终 权重,此最终权重最大者即为最优方案。 这里所谓“优先权重”是一种相对的量度,它表明各 备择方案在某一特点的评价准则或子目标,标下优越 程度的相对量度,以及各子目标对上一层目标而言重 要程度的相对量度。
关键词:层次分析法,一致性指标,判断矩阵,一致性检验
1、问 题 重 述
例1:旅游
例2:利润使用
十一假期刚刚结束,对于旅 游,大家是选择去美丽的首 都观光,还是去距离较近的 西安散心,亦或是去感受桂 林山水甲天下的苏州文化, 那么,我们就可能会根据景 色、费用、居住、饮食等因 素进行选择。
某工厂有一笔企业留成利 润,要由厂领导和职代会 决定如何利用,可供选择 的方案有:发奖金、扩建 福利设施、引用新设备、 为进一步促进企业发展, 如何合理使用这笔利润?
5.4层次总排列
计算最下层对最上层总排序的权向量。
利用总排序一致性比率:
a1CI1 a2CI 2 amCI m CR a1 RI1 a2 RI2 am RIm
CR 0.1
进行检验,若通过,则可按照总排序 权向量表示的结果进行决策,否则需要 重新考虑模型或重新构造那些一致性比 率CR较大的成对比较矩阵
模糊综合评价法和层次分析法比较
模糊综合评价法和层次分析法比较模糊综合评价法(Fuzzy Comprehensive Evaluation Method)和层次分析法(Analytic Hierarchy Process)是两种常用的决策支持工具,用于解决复杂的决策问题。
本文将比较这两种方法的优势和劣势,并给出适用场景的建议。
一、模糊综合评价法模糊综合评价法是一种基于模糊数学的决策方法,它考虑到了现实问题中存在的不确定性和模糊性。
该方法将问题中各因素的评价进行模糊化处理,得出模糊评价矩阵,然后通过模糊综合评判矩阵进行加权求和,得出最终评价结果。
优势:1. 能够处理不确定性和模糊性:模糊综合评价法能够有效地处理决策问题中的模糊性和不确定性,给出相对较为客观的结果。
2. 灵活性高:该方法可以很好地适应不同类型的决策问题,不仅可以评价定性指标,还可以评价定量指标。
3. 结果具有可解释性:通过对权重和评价指标的设定,可以清晰地理解到底哪些因素对决策结果的影响最大。
劣势:1. 需要专家经验:在使用模糊综合评价法时,需要依赖专家的知识和经验来设定因素的权重及其评价。
2. 要求数据丰富:该方法对数据的要求比较高,需要有足够多的数据样本来进行评价,否则容易导致评价结果不准确。
二、层次分析法层次分析法是一种将决策问题分解成多个层次,然后通过判断和估算各层指标的重要性,最终得出决策结果的方法。
该方法通过构建判断矩阵,计算权重向量,进行层次排序,从而实现多层次决策。
优势:1. 结构清晰:层次分析法能够将复杂的决策问题分解成多个层次,使得问题结构更加清晰可见,方便进行决策分析。
2. 便于数据处理:相比于模糊综合评价方法,层次分析法对数据的要求较低,无需大量数据样本,更易于数据处理和计算。
劣势:1. 对数据一致性要求高:层次分析法对于判断矩阵的构建需要专家能够提供准确一致的比较信息,一旦判断矩阵存在不一致性,将会导致结果不准确。
2. 忽略了因素之间的相互影响:层次分析法在计算权重时,假设各层因素之间相互独立,忽略了它们之间可能存在的相互影响。
模糊综合评价法和层次分析法比较
模糊综合评价法和层次分析法比较模糊综合评价法和层次分析法是两种常用的决策分析方法,它们都能够有效地处理复杂的问题,帮助决策者做出准确的决策。
本文将对这两种方法进行比较,探讨它们的特点、应用场景以及优缺点。
一、模糊综合评价法模糊综合评价法是一种基于模糊数学的评价方法,适用于多指标决策问题。
该方法通过引入隶属函数来对评价指标进行模糊化处理,将模糊的判断转化为数值化的评价结果。
模糊综合评价法的主要步骤如下:1. 确定评价指标和评价等级,将指标进行数值化。
2. 构建隶属函数,将评价等级与指标值进行映射。
3. 计算隶属函数的权重,根据指标的重要程度进行赋权。
4. 模糊综合评价,根据权重和隶属函数计算出评价结果。
5. 结果的模糊综合,将各个评价结果进行综合,得到最终的模糊评价结果。
模糊综合评价法的优点在于能够较好地处理不确定性和模糊性,适用于评价指标难以量化的问题。
然而,该方法需要确定隶属函数和评价等级,这需要专业知识和经验。
此外,当指标较多时,计算复杂度也会增加。
二、层次分析法层次分析法是一种常用的多属性决策方法,通过构建判断矩阵来确定各个评价指标的权重,进而进行决策。
该方法基于逐层递进的思想,将复杂的决策问题分解为多个层次,依次确定每个层次的权重和评价值。
层次分析法的主要步骤如下:1. 建立层次结构,确定评价目标、评价准则和评价指标的层次关系。
2. 构建判断矩阵,将每个评价准则和指标两两比较,确定它们之间的重要程度。
3. 计算特征向量,通过对判断矩阵进行特征值分解,得到每个准则和指标的权重。
4. 一致性检验,判断判断矩阵的一致性,确保评价结果的可靠性。
5. 综合评价,根据权重和指标的评价值进行计算,得到最终的评价结果。
层次分析法的优点在于结构清晰、计算简单、易于理解和应用。
它能够准确地反映各个准则和指标之间的相对重要性。
但是,该方法对判断矩阵的一致性要求较高,如果判断矩阵存在一致性问题,则会影响评价的准确性。
层次分析法优缺点
层次分析法的优缺点:优点:1.系统性的分析方法层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。
系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。
这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。
2.简洁实用的决策方法这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关系后,最后进行简单的数学运算。
即使是具有中等文化程度的人也可了解层次分析的基本原理和掌握它的基本步骤,计算也经常简便,并且所得结果简单明确,容易为决策者了解和掌握。
3.所需定量数据信息较少层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。
由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,层次分析法把判断各要素的相对重要性的步骤留给了大脑,只保留人脑对要素的印象,化为简单的权重进行计算。
这种思想能处理许多用传统的最优化技术无法着手的实际问题。
缺点:1.不能为决策提供新方案层次分析法的作用是从备选方案中选择较优者。
这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。
层次分析法优势及局限性
AHP即Analytic Hierarchy Process,又称为层次分析法,是由美国著名运筹学家、匹兹堡大学教授T.L.Saaty于二十世纪80年代创立的,它是一种强有力的系统分析+运筹学方法,对多因素、多标准、多方案的综合评价及趋势预测相当有效.面对由“方案层+因素层+目标层”构成的递阶层次结构决策分析问题,给出了一整套处理方法与过程.AHP最大的优点是可以处理定性和定量相结合的问题,可以将决策者的主观判断与政策经验导入模型,并加以量化处理.AHP从本质上讲是一种科学的思维方式.其主要的特点是:
1)面对具有层次结构的整体问题综合评价,采取逐层分解,变为多哥单准则评价问题,在多个单准则评价的基础上进行综合;
2)为解决定性因素的处理及可比性问题,Saaty建议:以“重要性”(数学表现为权值)比较作为统一的处理格式.并将比较结果按重要程度以1至9级进行量化标度.
3)检验与调整比较链上的传递性,即检验一致性的可接受程度;
4)对汇集全部比较信息的矩阵集,使用线性代数理论与方法加以处理.挖掘出深层次的、实质性的综合信息作为决策支持.
局限性:
1)AHP方法也有致命的缺点,它只能在给定的策略中去选择最优的,而不能给出新的策略;
2)AHP方法中所用的指标体系需要有专家系统的支持,如果给出的指标不合理则得到的结果也就不准确;
3)AHP方法中进行多层比较的时候需要给出一致性比较,如果不满足一致性指标要求,则AHP方法方法就失去了作用;
4)AHP方法需要求矩阵的特征值,但是在AHP方法中一般用的是求平均值(可以算术、几何、协调平均)的方法来求特征值,这对于一些病态矩阵是有系统误差的。
第二讲 成分分析法与层次分析法
现代汉语语法研究
第二讲 句子成分分析法与层次分析法
一、传统的句子成分分析法的优点
例句1:
这些工人立刻修好了一座桥。 这些工人立刻修好了一座桥。
如:大红花 大红绸子 Nhomakorabea(二)、层次分析法的优点与局限
1、层次分析法的优点 ⑴、适用范围广 传统的句子分析法只适用于单句的句子成 分分析,这些就把自己限定在很狭窄的适用范 围之内。 层次分析法不仅可以用于句法结构的层次 构造分析,而且可以用于音节、合成词、单复 句、句群乃至篇章的构造层次。 另外,对于一些句子成分分析法对付不了 的句法结构,运用层次分析法 则游刃有余。
﹙这些﹚工人〔立刻〕修〈好〉了﹙一座﹚桥。
传统的句子成分分析法与汉语 的层次分析法
一、传统的句子成分分析法的优点
⒈采用图解和线条符号分析句子,简 明清晰、形象直观。 ⒉有利于确定句型。 ⒊有利于识别病句。
例句2
词汇是语言的建筑材料,是语言的 要素,是研究词语的构成、意义、用法 的学问。
词汇是材料,是要素,是学问。
王冕‖七岁上死了父亲。≠王冕死
无原则的团结‖对革命事业有害。
≠团结有害
老妈妈‖哭瞎了眼睛。
4.同一句法结构析句时作不同 处理,缺乏一贯性。
如: 研究语法是很有价值的。 他想研究语法。 ﹙研究语法﹚的学者很清贫。
我们‖〔必须〕研究语法。
三、层次分析法:
(一)、什么是层次分析法:
所谓的层次分析法,实际上就是顺次逐层 地找出一个语言结构体的直接组成成分的方法。
层次分析法
层次分析法及其应用专业:数学与应用数学班级:金融数学姓名:赵俊虎学号:1140614082层次分析法及其应用摘要:本文主要阐述层次分析法的定义、特点、基本步骤以及它的优缺点。
层次分析法是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围内得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
关键词:层次分析法多准则成对比较一致性检验1 层次分析法背景及其发展层次分析法(Analytical Hierarchy Process ,简记AHP)是在20 世纪70 年代由美国运筹学家Saaty 教授提出的。
层次分析法本质是一种思维方式的体现,也是一种定性分析和定量分析相结合的新方法。
该方法强调人的思维判断在决策过程中的客观性,并通过特定模型将人们的思维判断规范化。
AHP 不仅是一种有效地将定量与定性相结合的多目标规划方法,也是一种优化技术,特别是将决策者的经验判断给予量化,对目标(因素) 结构复杂且缺乏必要数据的情况更为实用。
层次分析法主要思想就是:把问题条理化、层次化,对每一层次的相关因素两两比较,将相对重要性反应成判断矩阵,求解权向量,并将总元素进行权重的总排序,并且判断矩阵都伴随着一致性检验,以确保判断矩阵具有客观性。
目前层次分析法已被广泛应用于安全科学研究,诸如煤矿安全研究、城市灾害能力等诸多方面,也已在大气环境研究、水环境研究等领域得到了应用。
2 层次分析法的特点层次分析法是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
层次分析法的优劣势分析:
优势:
1.系统性的分析方法
层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。
系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。
这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。
2.简洁实用的决策方法
这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关系后,最后进行简单的数学运算。
即使是具有中等文化程度的人也可了解层次分析的基本原理和掌握它的基本步骤,计算也经常简便,并且所得结果简单明确,容易为决策者了解和掌握。
3.所需定量数据信息较少
层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。
由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,层次分析法把判断各要素的相对重要性的步骤留给了大脑,只保留人脑对要素的印象,化为简单的权重进行计算。
这种思想能处理许多用传统的最优化技术无法着手的实际问题。
劣势:
1.不能为决策提供新方案
层次分析法的作用是从备选方案中选择较优者。
这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。
这样,我们在应用层次分析法的时候,可能就会有这样一个情况,就是我们自身的创造能力不够,造成了我们尽管在我们想出来的众多方案里选了一个最好的出来,但其效果仍然不够人家企业所做出来的效果好。
而对于大部分决策者来说,如果一种分析工具能替我分析出在我已知的方案里的最优者,然后指出已知方案的不足,又或者甚至再提出改进方案的话,这种分析工具才是比较完美的。
但显然,层次分析法还没能做到这点。
2.定量数据较少,定性成分多,不易令人信服
在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。
但现实世界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。
层次分析法是一种带有模拟人脑的决策方式的方法,因此必然带有较多的定性色彩。
这样,当一个人应用层次分析法来做决策时,其他人就会说:为什么会是这样?能不能用数学方法来解释?如果不可以的话,你凭什么认为你的这个结果是对的?你说你在这个问题上认识比较深,但我也认为我的认识也比较深,可我和你的意见是不一致的,以我的观点做出
来的结果也和你的不一致,这个时候该如何解决?
比如说,对于一件衣服,我认为评价的指标是舒适度、耐用度,这样的指标对于女士们来说,估计是比较难接受的,因为女士们对衣服的评价一般是美观度是最主要的,对耐用度的要求比较低,甚至可以忽略不计,因为一件便宜又好看的衣服,我就穿一次也值了,根本不考虑它是否耐穿我就买了。
这样,对于一个我原本分析的‘购买衣服时的选择方法’的题目,充其量也就只是‘男士购买衣服的选择方法’了。
也就是说,定性成分较多的时候,可能这个研究最后能解决的问题就比较少了。
对于上述这样一个问题,其实也是有办法解决的。
如果说我的评价指标太少了,把美观度加进去,就能解决比较多问题了。
指标还不够?我再加嘛!还不够?再加!还不够?!不会吧?你分析一个问题的时候考虑那么多指标,不觉得辛苦吗?大家都知道,对于一个问题,指标太多了,大家反而会更难确定方案了。
这就引出了层次分析法的第二个不足之处。
3. 指标过多时数据统计量大,且权重难以确定
当我们希望能解决较普遍的问题时,指标的选取数量很可能也就随之增加。
这就像系统结构理论里,我们要分析一般系统的结构,要搞清楚关系环,就要分析到基层次,而要分析到基层次上的相互关系时,我们要确定的关系就非常多了。
指标的增加就意味着我们要构造层次更深、数量更多、规模更庞大的判断矩阵。
那么我们就需要对许多的指标进行两两比较的工作。
由于一般情况下我们对层次分析法的两两比较是用1至9来说明其相对重要性,如果有越来越多的指标,我们对每两个指标之间的重要程度的判断可能就出现困难了,甚至会对层次单排序和总排序的一致性产生影响,使一致性检验不能通过,也就是说,由于客观事物的复杂性或对事物认识的片面性,通过所构造的判断矩阵求出的特征向量(权值)不一定是合理的。
不能通过,就需要调整,在指标数量多的时候这是个很痛苦的过程,因为根据人的思维定势,你觉得这个指标应该是比那个重要,那么就比较难调整过来,同时,也不容易发现指标的相对重要性的取值里到底是哪个有问题,哪个没问题。
这就可能花了很多时间,仍然是不能通过一致性检验,而更糟糕的是根本不知道哪里出现了问题。
也就是说,层次分析法里面没有办法指出我们的判断矩阵里哪个元素出了问题。
4. 特征值和特征向量的精确求法比较复杂
在求判断矩阵的特征值和特征向量时,所用的方法和我们上学期多元统计所用的方法是一样的。
在二阶、三阶的时候,我们还比较容易处理,但随着指标的增加,阶数也随之增加,在计算上也变得越来越困难。
不过幸运的是这个缺点比较好解决,我们有三种比较常用的近似计算方法。
第一种就是和法,第二种是幂法,还有一种常用方法是根法。
判断矩阵中特征值与特征向量的近似算法:
下面三种近似算法以下面这个矩阵的计算为例:
(1) 和法
① 将判断矩阵B=(b ij )n ×n 的元素按列作归一化处理,得()n n ij
b B ⨯=,其中
∑==n k kj ij ij b b b 1
/,( i =1,2,…,n )
② 将矩阵B 的元素按行相加,得向量W =(n ϖϖω,,,⋯21)T ,其中
∑==n
j ij i b 1ϖ,
( i =1,2,…,n ) ③ 向量W 作归一化处理,得所求特征向量W = (n ωωω,,,⋯21)T ,其中
∑==n
k k i i 1/ϖϖω
④ 求出判断矩阵的最大特征值
∑==n i i
i BW n 1max 1ωλ)(
(2) 根法
① 计算判断矩阵B=(b ij )n ×n 的每行元素之积
ij n
j i b M 1=∏=,( i =1,2,…,n ) ② 计算M i 的n 次方根
n i i M =ϖ,
( i =1,2,…,n ) ③ 对向量W =(n ϖϖω,,,⋯21)T 做归一化处理,令
∑==n
i i i i 1/ϖϖω,
( i =1,2,…,n ) ④ 求出判断矩阵的最大特征值
∑==n i i
i BW n 1max
1ωλ)( (3) 幂法
① 任取一个与判断矩阵同阶正规化的初值向量,例如取
T
o n n n W ⎪⎭⎫ ⎝⎛⋯=111,, ② 计算W k+1=BW k ,( k = 1,2,…,n )
③ 令∑=+=n i k i W 11β,计算W W k i k i 11
1++=β,( k = 1,2,…,n )
④ 对于预先给定的精确度ε,如果
ε<-+W W
k i k i 1,( k = 1,2,…,n ) 则1+=k W W 为所求特征向量,转入(5);否则,返回(2)。
⑤计算最大特征值
∑=+
=
n
i
k
i
k
i W W
n11
max 1
λ。