连续型随机变量及其概率密度

合集下载

连续型随机变量及其概率密度

连续型随机变量及其概率密度

(3) 计算落入各子区间内观测值频数 ni 频率 fi = ni / n, i = 1, 2, ···, m;
子区间 (127.5, 131.5) 频数 6 频率 0.06
(131.5, (135.5, (139.5, (143.5, (147.5, (151.5,
135.5) 139.5) 143.5) 147.5) 151.5) 155.5)
设连续型随机变量 X 的分布函数为
x a, 0, x F ( x ) A B arcsin , a x a , a x a. 1, 求 : (1) 系数 A, B 的值; a ( 2) P{ a X }; 2 ( 3) 随机变量 X 的概率密度.
例1 某工厂生产一种零件,由于生产过程中各 种随机因素的影响,零件长度不尽相同。现测 得该厂生产的100个零件长度(单位: mm)如下:
129, 132, 136, 145, 140, 145, 147, 142, 138, 144, 147, 142, 137, 144, 144, 134, 149, 142, 137, 137, 155, 128, 143, 144, 148, 139, 143, 142, 135, 142, 148, 137, 142, 144, 141, 149, 132, 134, 145, 132, 140, 142, 130, 145, 148, 143, 148, 135, 136, 152, 141, 146, 138, 131, 138, 136, 144, 142, 142, 137, 141, 134, 142, 133, 153, 143, 145, 140, 137, 142, 150, 141, 139, 139, 150, 139, 137, 139, 140, 143, 149, 136, 142, 134, 146, 145, 130, 136, 140, 134, 142, 142, 135, 131, 136, 139, 137, 144, 141, 136.

概率论-2-3连续型随机变量及其概率密度

概率论-2-3连续型随机变量及其概率密度

x)
1 100
e
x
100
,
x0
0,
其它
(1)求元件寿命至少为200小时的概率;
(2)将3只这种元件连接成为一个系统. 设系统 工作的方式是至少2只元件失效时系统失效,又设3 只元件工作相互独立. 求系统的寿命至少为200小时 的概率.
解(1)元件寿命至少为200小时的概率为PX 200 f Nhomakorabea(x)dx
Y ~ B(3,1 e2)
2只及2只以上元件的寿命小于200小时的概率为
PY 2 3(1 e2)2(e2) (1 e2)3
2
PY 2 3(1 e2)2(e2) (1 e2)3
2 (1 e2)2(2e2 1) 0.950. 故系统的寿命至少为200小时的概率为
p 1 PY 2 1 0.950 0.050
1 ba
ab
即是说 X落在区间(a,b)内任意等长小区间 上的概率相等,在(a,b)内两个等长小区间上, f(x)之下的小长方形的面积相等,就是称为均匀分 布的原因.
均匀分布常见于下列情形
如在数值计算中,由于四舍五 入,小数点后某 一位小数引入的误差.
公交线路上两辆公共汽车前后通过某汽车停车 站的时间,即乘客的候车时间等.
本节练习
习题二:8,9,10
§2.3 连续型随机变量及其概率密度
连续型随机变量及其概率密度的定义 概率密度的性质 三种重要的连续型随机变量 小结
连续型随机变量X所有可能取值充满一个区间,
对这种类型的随机变量,不能象离散型随机变量那 样, 以指定它取每个值概率的方式, 去给出其概率 分布,而是通过给出所谓“概率密度函数”的方式.
f
(
x)

连续型随机变量及其概率密度函数

连续型随机变量及其概率密度函数
是一个连续型随机变量的概率密度函数.
证明:(1). 显然, f ( x) 0 ( x )
(2).
f ( x)dx
1e x dx
2
1 0 e xdx 1 exdx
2
20
一般只需验 证f(x)性质中 的这两条即
可.
11 1 22
概率统计
例2. 某电子计算机在毁坏前运行的总时间(单位:小
f (x)
概率统计
0
x1 x2
x
性质4
若 f ( x) 在点 x 处连续,则有:F( x) f ( x)
物理 意义:
F ( x x) F ( x)
f ( x) lim
x 0
x
P( x X x x)
lim
x0
x
故 X 的密度 f (x) 在 x 这一点的值,恰好是
X落在区间 ( x, x x] 上的概率与区间长度 x
时)是一个连续型随机变量,其密度函数为:
f
(
x)
e
x 100
0
求: (1). 的值.
当x 0 当x 0
(2).这台计算机在毁坏前能运行 50 到 150 小
时的概率. (3).运行时间少于100小时的概率.
概率统计
解: (1)
1
f ( x)dx
x
e 100dx
0
x
100e 100
f
(
x)
2
1 x2 ,
1 x 1
求 : F(x)
0, 其它
x
解: F ( x) P( X x) f (t)dt
当 x 1 时, F( x) 0
当1 x 1,
F(x)

连续型随机变量及其概率密度

连续型随机变量及其概率密度

问:怎样求一般正态分布的概率?
对一般的正态分布 :X ~ N ( , 2)
其分布函数 F( x)
1
e d t x
(t )2 2 2
2
作变量代换s
t
F(x)
1 2
x
s2
e 2ds
x
即 X ~ N ( , 2) 则 X ~ N ( 0 ,1)
P{a
X
b}
F (b)
222 0.3830
3) 0.6826 4) 0.4981
0.02
-10
-5
a
5
b
x
例1 有一批晶体管,已知每只的使用寿命 X 为 连续型随机变量,其概率密度函数为
f
(
x)
c x2
,
0,
x 1000 其它
( c 为常数)
(1) 求常数 c
(2) 已知一只收音机上装有3只这样的晶体管,
每只晶体管能否正常工作相互独立,求在
使用的最初1500小时只有一个损坏的概率.
(3) P(X>1.76)= 1 – P(X≤1.76)= 1 – Φ(1.76)
=1 – 0.9608 =0.0392 (4) P(X< – 0.78)= Φ(- 0.78) =1-Φ(0.78)
=1 – 0.7823 =0.2177 (5) P(|X|<1.55)= 2Φ(1.55) – 1 (6) P(|X|>1.55)= 1 – P(|X|<1.55)
即: P( X a) 0, a为任一指定值
事实上 { X a} {a x X a}
x 0
0 P{ X a} P{a x X a} aax f ( x)d x

连续型随机变量及其概率密度

连续型随机变量及其概率密度

1. 均匀分布
设连续型随机变量
X
具有概率密度f
(
x)
b
1
a
,
a x b,
0,
其它,
则称 X 在区间 (a, b) 区间上服从均匀分布,记为 X ~ U (a, b).
说明:
对c, l R, 如果(c, c l ) (a, b), 则
cl
l
P(c X c l ) c
f ( x)dx ba
1
( x )2
e , 2 2
2
x
, ( 0)为常数, 则称X服从正态分布,记作:X : N(, 2).
0, 1时, X : N (0,1)
概率密度: ( x)
1
x2
e2
2
说明:
f(x)满足概率条件: f(x) 0,
+ f(x)dx 1 -
证明(2): 令 x- t, 则x t, dx dt
解 : (1) 由概率密度的定义 :
f ( x)dx 1
-
f ( x)dx
3 C(9 x2 )dx 1
-
-3
C 1 36
(2)
P{ X 0}
0 -3
1 36
(9
x2 )dx
1 36
(9x
x3 3
)
|03
1 2
P{1 X 1} 1 1 (9 x2 )dx 13
-1 36
k 0
n大,p小,np=3,用=np=3的泊松近似
上式 1 N 3k e3 0.01
k0 k !
N 3k e3 0.99
k0 k !
查泊松分布表,最小N=8。至少配8名维修工。

第三节连续型随机变量及其概率密度

第三节连续型随机变量及其概率密度

则称X服从0 1分布.
这时X的分布函数为:
F(x)
1
0, x p,0
0, x
1,
1, x 1.
2. 二项分布:若随机变量 X所有可能取值为 0,1,,n,且分布律为:
P(X
k)
C
k n
pk qnk,k
0,1,,n,0
p
1,q
1
p,
则称X服从二项分布, 记为:X~B(n,p). 3. 泊松分布:若随机变量 X所有可能取值为 0,1,2,,且分布律为:
2
Acos
xdx
2 A sin
x
2
0
2 A,
2A 1,
(2) (3)
P(0 X
当x
2
时4,) F
( x042)故12coAsxxdf12x(.t)d12t
sin
x
4
0
x
0dt
2 4
.
0.

2
x
2
时,
F
(
x)
2 0dt
x
2
1 2
cos
tdt
1 2
(sin
x
1).
当x
2
时,F
6
三、几种常见的连续型分布
1. 均匀分布:设X的概率密度为
f
(
x)
b
1
a
,
a x b,
0, 其它.
则称X在区间[a,b]上服从均匀分布,记为 X~U[a,b].
0, x a,
易求X的分布函数为
F
(
x
)
x b
a a
,a
1, x

连续型随机变量及其概率密度

连续型随机变量及其概率密度

密度函数的验证
⑴.对任意的 x,有 f x 0;
a
b
⑵. f xdx f xdx f xdx f xdx
a
b
b
1
dx
a ba
由此可知,
f
x
b
1
a
0
a xb 其它
确是密度函数.
均匀分布的分布函数
则 X的分布函数为
若随机变量 X 服从区间a, b上的均匀分布,
0
F
x
x b
1
所以 A是不可能事件 P( A) 0 反之则不成立
如何求分布函数
F(x) Pk
xk x
离散 阶梯函数
x
F(x) f(t)dt -
连续 连续函数
若概率密度f(x)为分段函数,则积分也要分段考虑.
例1 P71 18(2)
设随机变量X的密度函数为
x 0 x 1
f x 2 x 1 x 2
§4 连续型随机变量及其概率密度
概率密度及其性质 均匀分布 指数分布 正态分布
一、定义:对于随机变 量 X的分布函数 F (x),若存在非负可积函数
f(x) 使 x R , 有
F(x)
x
-
f(t)dt
则称 X为连续型随机变量 , f ( x)为X的概率密度函数或概率 密度.
二、性质 : 00 连续型随机变量的分布 函数F ( x)必为连续函数 (离散
0.1}
0.1 f(x)dx
0.1 3e 3xdx
e 3x
0.1
e 0.3
F
(
x)
0 x
0
3e3t dt
1
e3x
x0 x0
五、常见的连续型分布 (一)、均匀分布

连续型随机变量与概率密度函数

连续型随机变量与概率密度函数

连续型随机变量与概率密度函数随机变量是概率论中的重要概念之一,它描述了在一次试验中可能发生的不确定事件的数值结果。

随机变量分为离散型和连续型两种。

在本文中,我们将重点介绍连续型随机变量以及与之相关的概率密度函数。

连续型随机变量是指在一定区间内可能取任意实数值的随机变量,其结果可以是无限多的。

与离散型随机变量相比,连续型随机变量通常与测量、计量有关,例如时间、长度、重量等。

为了描述这种连续型随机变量的概率分布,我们引入了概率密度函数的概念。

概率密度函数是用来描述连续型随机变量的概率分布的函数。

它在某个取值点上的值并不代表概率,而是表示这个点附近的概率密度。

具体来说,对于概率密度函数f(x)而言,它满足以下两个条件:1. f(x) ≥ 0,即概率密度函数的取值非负;2. 在概率密度函数的取值范围内,其面积等于1,即∫f(x)dx = 1。

概率密度函数与概率的关系可以通过累积分布函数来进行描述。

累积分布函数F(x)定义为概率密度函数f(x)在某一取值点x及其左侧区间上的积分,即:F(x) = ∫[a,x]f(t)dt其中a表示概率密度函数f(x)的定义域起点。

连续型随机变量的期望值和方差也可以通过概率密度函数来计算。

对于一个随机变量X,其期望值E(X)定义为:E(X) = ∫xf(x)dx方差Var(X)定义为:Var(X) = ∫(x - E(X))^2f(x)dx通过概率密度函数的求积分运算,我们可以计算出连续型随机变量的期望值和方差,从而更好地理解和描述随机变量的特征。

在实际应用中,连续型随机变量与概率密度函数经常用于模型建立、数据分析和统计推断等领域。

例如,在物理学中,速度、温度、能量等变量通常是连续型随机变量,通过概率密度函数的分析,可以研究其分布规律以及相应的统计特性。

在金融学中,股票价格的变化、利率的波动等也可以视为连续型随机变量,利用概率密度函数可以预测未来风险并制定相应的投资策略。

总结起来,连续型随机变量与概率密度函数的概念和应用在概率论和统计学中至关重要。

连续随机变量及其概率密度函数

连续随机变量及其概率密度函数

连续随机变量及其概率密度函数在概率论与数理统计中,随机变量是指在一个概率空间中取值的变量。

其中,连续随机变量是指在一定区间内可以取到无穷多个不同值的随机变量。

连续随机变量的概率密度函数(Probability Density Function,简称PDF)是描述连续随机变量概率分布的函数。

1. 连续随机变量的定义连续随机变量通常用大写字母表示,如X。

与离散随机变量不同的是,连续随机变量的取值范围通常是无穷多个实数值。

例如,一个连续随机变量可以表示一个人的身高,其取值可以是任意的实数。

2. 连续随机变量的概率密度函数对于连续随机变量X,其概率密度函数f(x)定义了在X取值等于x时的概率密度,即X落在x附近的概率。

概率密度函数需要满足以下两个条件:- f(x) ≥ 0,对于任意的x∈R;- ∫f(x)dx = 1,即概率密度函数的积分等于1。

3. 连续随机变量的性质连续随机变量的概率可以通过求取积分来计算。

具体而言,如果要求X在区间[a, b]的概率,即P(a ≤ X ≤ b),可以使用概率密度函数进行计算:- P(a ≤ X ≤ b) = ∫[a, b]f(x)dx。

4. 连续随机变量的期望和方差连续随机变量的期望和方差的计算方式与离散随机变量有所不同。

- 连续随机变量X的期望值E(X)可以通过积分的方式计算:E(X)= ∫xf(x)dx。

- 连续随机变量X的方差Var(X)可以通过以下公式计算:Var(X)= E((X-E(X))^2) = ∫(x-E(X))^2f(x)dx。

5. 常见的连续分布函数在概率论与数理统计中,有许多常见的连续分布函数可用来描述实际问题中的连续随机变量。

以下是一些常见的连续分布函数: - 正态分布(Normal Distribution)- 均匀分布(Uniform Distribution)- 指数分布(Exponential Distribution)- 伽马分布(Gamma Distribution)- β分布(Beta Distribution)- 正太分布(Chi-Square Distribution)总结起来,连续随机变量是指在一定区间内可以取到无穷多个不同值的随机变量。

连续型随机变量及其概率密度函数

连续型随机变量及其概率密度函数
§2.4 连续型随机变量及其概率密度函数
一、连续型随机变量的概念 定义2.8 设随机变量 的分布函数为 F (x ) ,若存在非负可 设随机变量X的分布函数为 定义 积函数 f (x ),使得对于任意实数 x ,都有 x (2—15) ) F ( x ) = ∫ f ( x )dx

则称X为连续型随机变量, 则称 为连续型随机变量, 称 f (x )为X的概率密度函数 的 (Probability Density Function),简称概率密度或密度 ),简称概率密度或密度. ),简称概率密度或密度 由定义可知,连续型随机变量X的分布函数 由定义可知,连续型随机变量 的分布函数 F (x)在x点的函 点的函 上的积分. 数值等于其概率密度函数 f (x )在区间( ∞, x] 上的积分. 类似于离散型随机变量, 类似于离散型随机变量,连续型随机变量 f (x )的概率密度 函数具有如下基本性质: 函数具有如下基本性质:
P { x1 < X ≤ x 2 } = Φ ( x2
σ
) Φ(
x1
σ
)
关于标准正态分布,一个重要的公式是: 关于标准正态分布,一个重要的公式是:对于任意实数 x . Φ ( x) + Φ ( x) = 1 (2-31) 的定义证明或由下图说明.这里就不做证明了. 这可用 Φ(x ) 的定义证明或由下图说明.这里就不做证明了

σ x+
1 2π σ
( x )2

2
e

x ∞
1 2π
e
t2 2
dt
(令 σ = t ) 令
x
所以 X * ~ N (0, 1).
这样我们便有如下定理: 这样我们便有如下定理: 2 定理2.2 若 X ~ N ( , σ ),其分布函数为F ( x ) ,则对任意 定理 实数 ,有 x (2—29) ) F (x) = Φ ( )

2-4_连续型随机变量及其概率密度

2-4_连续型随机变量及其概率密度
第2.4节 连续型随机变量及密度函数
1
连续型随机变量及其概率密度
1.定义 定义
设 X 为随机变量 , F ( x )为 X 的分布函数, 若存在 非负函数f ( x ), 使对于任意实数 x 有 F ( x) = ∫
x −∞
f (t ) d t ,
则称 X 为连续型随机变量, 其中 f ( x ) 称为 X 的概 率密度函数, 简称概率密度.
为离散型随机变量, 若 X 为离散型随机变量
{ X = a } 是不可能事件 ⇔ P{ X = a} = 0.
离 散 型
4
例1
设随机变量 X 具有概率密度
0 ≤ x < 3, kx, x f ( x) = 2 − , 3 ≤ x ≤ 4, 2 0, 其它. (1) 确定常数 k ; (2) 求 X 的分布函数; 7 (3) 求 P{1 < X ≤ }. 2
的正态分布或高斯分布, 记为
X ~ N ( µ , σ 2 ).
22
正态概率密度函数的几何特征
1 ( 2) 当x = µ时, p( x )取得最大值 ; 2 πσ
(1) 曲线关于 x = µ 对称;
(4) 曲线在 x = µ ± σ 处有拐点;
23
(3) 当 x → ±∞ 时, f ( x) → 0;
x 1 −θ k e , f ( x) = θ 0,
x ≥ 0, x < 0.
1 且已知 P{ X > 1} = , 试求常数 θ 2
10

设随机变量 X : 0, 2 F ( x) = Ax + B, 1, x ≤ 0, 0 p x ≤ 1, x > 1.
试求常数A,B以及密度函数f(x)。

高等数学第三节连续型随机变量及其概率密度函数

高等数学第三节连续型随机变量及其概率密度函数

▲ P() 0 (不可能的事件的概率为0),但概率
为零的事不一定是不可能事件.
概率统计
2. 概率密度函数的性质
性质1 f ( x) 0
性质2
f ( x)dx 1
f (x)
这两条性质是判定 一个函数 f(x) 是否 为某随机变量 X 的 概率密度函数的充 要条件.
面积为1
o
x
概率统计
性质3
F ( x0 x) F ( x0 )
x0x f (t)dt x0
当 x 0时, 两边取极限:
0
P(X
x0 )
lim
x0
x0x f (t)dt
x0
0
P( X x0 ) 0
概率统计
注 ▲ 这个结论的意义:
(1). P( X x0 ) 0 从积分的几何意义上说,当 底边缩为一点时,曲边梯形面积退化为零。
(2).由此可知连续型随机量X 在某区间上取值的 概率只与区间长度有关,而与区间是闭、开、 半开半闭无关,即有:
P( x1 X x2 ) P( x1 X x2 ) P( x1 X x2 )
P( x1 X x2 )
x2 x1
f ( x)dx
F ( x2 ) F ( x1 )
概率统计
注 P( x X x x) F( x x) F(x)
不计高阶 无穷小
x x
x f (t) dt
f ( x)x
b
(相当于积分中值定理 f ( x)dx f ( x)(b a) ) a
这表示落在区间 ( x, x x] 上的概率近似等 于 f ( x)x ,称 f ( x)x 为概率微分。
P( x1 X x2 ) F ( x2 ) F ( x1 )

连续型随机变量及其概率密度

连续型随机变量及其概率密度
则 X 在 任 意 区 间G(G可 以 是 开 区 间,也 可 以 是 闭 区 间 , 或 半 开 半 闭 区间 ; 可 以 是 有 限 区 间 , 也 可 以 是 无 穷 区 间 ) 上取 值 的 概 率 为 ,
PX G f xdx (此公式非常重要)
G
f (x)
o
x
要注意的是,密度函数 f (x)在某点处a 的高度,并不反映X取值的概率. 但是,这 个高度越大,则X取a附近的值的概率就越 大. 也可以说,在某点密度曲线的高度反 映了概率集中在该点附近的程度.
1
( x )2
e , 2 2 x
2
6 f (x) 以 x 轴为渐近线
当x→ ∞时,f(x) → 0.
根据对密度函数的分析,也可初步画出正态分布 的概率密度曲线图.
正态分布N (, 2 ) 的图形特点
称为位置参数
正态分布的密度曲线是一条关于 对
称的钟形曲线. 特点是“两头小,中间大,左右对称”.
由定义知道:连续型随机变量的分布函数是连续函数
2 概率密度的性质
1 非负性 f (x) 0
2 规范性

f (x)dx 1

利用概率密度可确 面积为1
定随机点落在某个
范围内的概率
这两个性质是判 断一个函数是否 为一个连续型 r.v.X的概率密度 的充要条件
f (x)
分布曲 线
o
x
3



x
x0
x
注意 1)无记忆性;
对于任意s,t 0有:PX s t X s PX t
PX

s
t
X

s

概率第一章第4节连续型随机变量及其概率密度讲解

概率第一章第4节连续型随机变量及其概率密度讲解
7:15 之间, 或在 7:25 到 7:30 之间到达车站, 故所
求概率为
P{10 X 15} P{25 X 30}
15 1 dx 30 1 dx 1
10 30
25 30
3
即乘客候车时间少于5分钟的概率是 1/3.
指数分布
定义 若随机变量 X 的概率密度为
例1 设随机变量 X 的分布函数为
0, x 0
F
(
x
)


x
2
,
0 x 1,
1, 1 x
求 (1) 概率 P{0.3 X 0.7};
(2) X 的密度函数.
解 由连续型随机变量分布函数的性质, 有
(1) P{0.3 X 0.7} F (0.7) F (0.3) 0.72 0.32 0.4;
P{X

st
|
X

s}
P{( X
st)(X P{X s}

s)}

P{X s P{X
t} s}

1 F(s t) 1 F(s)

e(st ) e s

e t

P{ X

t }.
若 X 表示某一元件的寿命,则 (*)式表明:已知元件
使用了s 小时,它总共能使用至少 s t 小时的条件
数,简称为概率密度或密度函数.
易见概率密度具有下列性质:
(1) f ( x) 0;
y f (x)
(2)

f ( x)dx 1.

A1
Ox
x
注:上述性质有明显的几何意义.

概率论与统计第二章第三节连续型随机变量

概率论与统计第二章第三节连续型随机变量

x
于是当△x( > 0)充分小时, P{x<X≤x+ △x}≈f(x)△ x。这表明f(x)
本身并非概率,但它的大小却决定了X 落入区间[x ,x+△x]内的概
率的大小.即f(x) 反映了点x 附近所分布的概率的“疏密”程度 ――
连续型随机变量的一个重要特征是:连续型随机变量取任意
一个指定值的概率均为零,即P{X =x0}=0.
例7 若X ~N(0,1) ,当α = 0.10、α = 0.05、α = 0.01 时,分别确定u0,使得P{|X|>u0} = α.
解 P{|X|>u0} = P{X<-u0}+ P{X>u0} = φ(-u0)+1-P{X≤-u0} =1-φ(u0) +1- φ(u0) = 2-2 φ(u0) .
均匀分布的密度函数与分布函数的图形如图.
均匀分布是常见的连续分布之一.例如数值计算中的舍入 误差、在每隔一定时间有一辆班车到来的汽车站上乘客的候车 时间等常被假设服从均匀分布.此外,均匀分布在随机模拟中 亦有广泛应用.
例3 某市每天有两班开往某旅游景点的列车, 发车时间分
别为早上7点30分和8点.设一游客在7 点至8点间任何时刻到达
P{|X|<2}=2Φ(2) -1=2×0.9772-1 = 0.9544
P{|X|<3}=2Φ(3) -1 = 2×0.9987-1 = 0.9974
对于X ~ N (, 2 )
P{| X | 1} P{ X }
=Φ(1)-Φ(-1) = 0.6826
P{| X | 2} P{ 2 X 2 }
(2)
F(x)
x
f (t)dt
当x<0 ,
F
(
x)
x

2-3连续型随机变量及其概率密度

2-3连续型随机变量及其概率密度

f
(x)
b
1
a
,
a x b,
0,
其它,
就称 X 服从[a,b] 上的均匀分布,记为 X ~ U[a,b].
【注】 X 的分布函数为
0, x a,
F ( x)
x
b
a a
,
a
x
b,
1, b x.
均匀分布与第一章中介绍的几何概型原理相通,适用于一维
的几何概型试验.此时, X 落入某区间 I 内(上)的概率为 P{X I} P{X I I [a,b]} I I [a,b]的长度 . ba
(b ) (a ) .
特别地, P{X b} (b ), P{X a} 1 ( a ) 。
其中 (a ) 和 (b ) 可查表得.
•22
例 3.5 设随机变量 X ~ N(1, 4) ,分别计算
P{X 3}, P{1 X 5} .
解 由题意知, 1, 2 .
y (x)
y
y (x) 1
1 2
O
x
O
x
•20
由于(x) 为偶函数,利用本节例 3.2 的结论,有
F(x()x)
F((x)x)
1;1;F(0()0)
1
1;;P{PX{ X
x}x}
2F(Fx)(x)1.1.
22
当 x 0 时, (x) 可以通过直接查标准正态分布表求得.
当 x 0 时, (x) 1 (x) ,再查标准正态分布表可得.
【注 7】如果 X ~ N(0,1) ,则对于任意的实数 a,b (a b) , P{a X b} (b) (a) ,
其中 (a), (b) 可查标准正态分布表计算.
•21

2.4连续型随机变量及其概率密度函数

2.4连续型随机变量及其概率密度函数

概率论与数理统计Probability and Statistics —概率论与数理统计教学组—2.4 连续型随机变量及其概率密度函数第2章随机变量及其分布学习要点常见的连续型随机变量的分布连续型随机变量及概率密度函数:;:例3 在区间(0,5)上随机取一数X ,(1)写出X 的概率密度函数和分布函数;(2)该数X 的取值不小于2的概率为多少?解(1)随机变量X 在区间(0,5)上服从均匀分布,故其概率密度函数和分布函数为1,05()50,x f x ,其他 000,()(),05551,5x x x dt x F x f x dx x x(2)随机变量X 的取值不小于2,即25521()03{2}55P X d f x dx dx x 或 23{2}1{2}1{2}1(2)155P X P X P X F . 连续型随机变量及概率密度函数例4 设顾客在银行窗口接受服务的时间(单位:分)服从参数为0.1的指数分布. 如果某人刚好在你前面到窗口接受服务,试求你将等待(1)不超过10分钟,(2)10分钟到20分钟之间的概率.解 令X 表示顾客在银行窗口接受服务的时间,则X 的概率密度为101,0()100,0xe xf x x 101001011010001(1){10}()0()110x x P X f x dx dx e dx e e ; 202012101010101(2){1020}10x x P X e dx e e e .连续型随机变量及概率密度函数人们编制了()x的函数表,可供查用. 例如,可查(1.12)0.86864.连续型随机变量及概率密度函数例5 设随机变量X ~(3,9)N ,求:(1) {25},{36};P X P X (2)确定常数a ,使得{}{}P X a P X a .解 (1)令3~(0,1)3X Y N2335312{25}{}{}33333X P X P P Y2121()()()[1()]0.3779,3333393333{36}{9}{3}{}{}3333X X P X P X P X P P{2}{2}1(2)(2)2[1(2)]0.0456.P Y P Y(2) 由 {}{}P X a P X a ,得 1{}{}P X a P X a33131{}{},()33232X a a P X a P ,3=03a 所以,即有3a .连续型随机变量及概率密度函数例6随机变量~(0,1)X N ,求0.005z 和0.0052z .解 0.0050.005{}1{}0.005P X z P X z , 0.005{}0.995P X z ,即 0.005()0.995z , 查表可得, 0.005 2.575z . 另外 0.0050.00252z z ,即 0.0025()10.00250.9975z ,查表可得, 0.0025 2.81z ,也就是 0.00522.81z .x()x 0y 0.0025z 0.005=0.002520.0025z 2连续型随机变量及概率密度函数小结连续型随机变量及其概率密度函数连续型随机变量及其概率密度常见的连续型随机变量的分布Harbin Engineering University。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (x)
p l ba
l
l
1

a
ba
o

bx
分布函数
0,
x a,
F(x)
ቤተ መጻሕፍቲ ባይዱ
F
(
x)


x b

a a
,
a x b,
1
1,
x b.


ao
b
x
均匀分布分布函数图形演示
(二) 指数分布
若连续型随机变量X 的概率密度为

1 ex


,
F
(
x
)


1

e

x

,
x 0,
0,
其他.
(4.8)
1 , 1, 2时F ( x)的图形如下
3
性质(4.9)称为无记忆性. 如果X是某一元件的 的寿命, 那么(4.9)式表明: 已知元件已使用s小时, 它总共能使用至少s t小时的条件概率, 与从开 始 使 用 时 算 起 它 至 少 能使 用t 小 时 的 概 率 相 等.这 就是说, 元件对它已使用过s小时没有记忆.
6当固定 μ, 改变 σ 的大小时, f ( x) 图形的对 称轴不变, 而形状在改变, σ 越小, 图形越高越瘦, σ越大, 图形越矮越胖.
S1
x2 f ( x)d x
x1
1
S1
o
x1 x2
x
同时得以下计算公式
a
P{X a} F(a) f ( x)d x,
P{X a} 1 P{X a} 1 F(a)

a
f ( x) d x f ( x) d x





f ( x)d x f ( x)d x f ( x)d x.
连续型随机变量的分布函数是连续函数.
2.概率密度函数的性质
1 f ( x) 0;
2

f ( x)dx 1;

3 对于任意实数x1,x2 ( x1 x2 ),
P{ x1

X

x2}
F ( x2 )
F ( x1 )
x2 x1
f
( x)dx;
4 若f ( x)在点x处连续, 则有F ( x) f ( x).

二、常见连续型随机变量及其概率分布
(一)均匀分布 若连续型随机变量X具有概率密度
f
(
x)


b
1
a
,
a x b,
(4.5)
0,
其他,
则称X在(a,b)上服从均匀分布. 记为X ~ U (a,b).
概率密度函数图形
f (x)
均匀分布概率密度函数演示

a
o

bx
均匀分布的意义
在区间(a,b)上服从均匀分布的随机变量 X , 落在区间(a , b)中任意等长度的子区间内的可能 性是相同的.
x 0,
f (x)
(4.7)
0,
其他,
其中θ 0为常数, 则称 X 服从参数为 的指数分布.
易知f ( x) 0, 且 f ( x)dx 1. 图2-11画出了
1 , 1, 2时f ( x)的图形.
3
图2-11
由(4.7)式容易得到随机变量X的分布函数为
连续型随机变量及其概率密度
一、概率密度的概念与性质 二、常见连续型随机变量的分布
一、概率密度的概念与性质
1.概率密度函数的定义
如果对于随机变量X的分布函数F ( x), 存在 非负函数f ( x), 使对于任意实数x有
x
F( x) f (t)dt
则称X为连续型随机变量, 其中函数f ( x)称为X的 概率密度函数, 简称概率密度.
令 ( x ) t, 得到

1
e

(
x )2 2 2
dx

1
e t2 2dt
2
2
记 I e t2 2dt, 则有 I 2 e(t2u2 ) 2dt du


利用极坐标将它化成累次积分, 得到
I 2 2 rer2 2drd 2 00
(三) 正态分布 正态分布的概率密度函数
若连续型随机变量X 的概率密度为
f (x)
1
e ,
(
x μ 2σ2
)2
x ,
2 πσ
其中 μ, σ(σ 0) 为常数, 则称 X 服从参数为μ, σ 的
正态分布或高斯分布. 记为 X ~ N( μ,σ2 ).
高斯资料
显然f ( x) 0, 下面来证明 f ( x)dx 1.
证明 (2)

1 F() f (x)d x.

(3) P{ x1 X x2} F ( x2 ) F ( x1 )
x2 f ( x) d x x1 f ( x) d x


x2 f ( x)d x.
x1
f (x)

S f ( x)d x 1
2 当x 时取到最大值 f () 1 . 2
3在x 处曲线有拐点;
4曲线以 x 轴为渐近线;
5如果固定 , 改变 的值, 则图形沿着Ox
轴平移, 而不改变其形状, 可见正态分布的概率密
度曲线 y f ( x)的位置完全由参数 所确定. 称
为位置参数.
P{a X b}.
连续型随机变量取值落在某区间的概率与端点无关
注意
若X是连续型随机变量,{ X=a }是不可
能事件,则有P{X a} 0.

若 P{ X a} 0,
续 型
则不能确定{X a} 是不可能事件
若 X 为离散型随机变量,
离 散
{ X a} 是不可能事件 P{X a} 0.
而 I 0, 故有 I 2 , 即有
于是
e t2 2dt 2 ,
1

e

(
x )2 2 2
dx

1
e t2 2dt 1.
2
2
f ( x)的图形如图所示.
性质:
1 曲线关于x 对称. 这表明对于任意h 0, 有 P{ h X } P{ X h}.

a
a
(4) 若 f ( x) 在点 x 处连续,则有 F ( x) f ( x).
注意 对于任意指定值 a, 连续型随机变量取 a的概 率等于零. 即 P{X a} 0.
证明 P{X a} lim
a x
f ( x)d x 0.
x0 a
P{a X b} P{a X b} P{a X b}
相关文档
最新文档