动能定理与功能关系专题.
精品专题 专题六 动能定理与功能关系
高二智慧课堂专题六动能定理与功能关系动能定理理解:W=Ek2-Ek1合力做的功即总功=末动能-初动能说明:对任何过程的恒力、变力;匀变速、非匀变速;直线运动、曲线运动;时间长或短过程、瞬间过程都能运用。
1、合外力做正功,动能增加合外力做负功,动能减少2、动能定理中的功是合外力做的总功总功的求法:(1)先求合力,再求合力功(2)先求每个力做的功,再求代数和3、适用范围:既适用于恒力做功,也适用于变力做功;既适用于直线运动,也适用于曲线运动。
解题思路:(1)选取研究对象.一般选取某一个物体或相对静止的多个物体做研究对象.(2)确定研究过程.研究过程可以是物体运动中的某一阶段,也可以是由物体运动的多个阶段所组成的全过程.(3)在确定的研究过程内,对研究对象进行力的分析和功的分析.在进行功的分析时,不但要分析哪些力做功,还要分析其做功性质.(4)确定研究对象的初、末动能及动能的变化.这里的初和末是相对所选取的研究过程来讲的.(5)应用动能定理列出相应关系式.恒力---直线过程练习1:一质量为1kg的物体被人用手由静止向上提高1m,这时物体的速度是2m/s,下列说法正确的是: A、手对物体做功10J B、合外力对物体做功12JC、合外力对物体做功2JD、物体克服重力做功2J练习2:A、B两物体放在光滑的水平面上,分别在相同的水平恒力作用下,由静止开始通过相同的位移,若A的质量大于B的质量,则在这一过程A. A获得的动能大B. B获得的动能大C. A、B获得的动能一样大D. 无法比较谁获得的动能练习3:一辆质量为m,速度为v0的汽车在关闭发动机后于水平地面滑行了距离L后停下来,试求汽车受到的阻力.练习4:一架喷气式飞机,质量为m=5000kg,起飞过程中从静止开始滑跑的路程为l=530m 时,达到起飞速度v=60m/s。
在此过程中飞机受到的平均阻力f阻是飞机重量的0.02倍(k=0.02)。
求飞机受到的牵引力F。
功能关系动能定理经典例题.
【例1】如图5-1-1所示,小物体位于光滑的斜面上,斜面位于光滑的水平地面上,从地面上看,在小物体沿斜面下滑的过程中,斜面对小物体的作用力( )A.垂直于接触面,做功为零;B.垂直于接触面,做功不为零;C.不垂直于接触面,做功为零;D.不垂直于接触面,做功不为零.下面列举的哪几种情况下所做的功是零( )A .卫星做匀速圆周运动,地球引力对卫星做的功B .平抛运动中,重力对物体做的功C .举重运动员,扛着杠铃在头上的上方停留10s ,运动员对杠铃做的功D .木块在粗糙水平面上滑动,支持力对木块做的功例如:用铁锤把小铁钉钉入木板,设木板对钉子的阻力与钉进木板的深度成正比,已知铁锤第一次将钉子钉进d ,如果铁锤第二次敲钉子时对钉子做的功与第一次相同,那么,第二次进入木板的深度是多少?【例2】以一定的速度竖直向上抛出一小球,小球上升的最大速度为h ,空气的阻力大小恒为F ,则从抛出至落回出发点的过程中,空气阻力对小球做的功为( )A .0B .-FhC .-2FhD .-4Fh如图5-1-3在光滑的水平面上,物块在恒力F =100N的作用下从A 点运动到B 点,不计滑轮的大小,不计绳与滑轮的质量及绳、滑轮间的摩擦,H=2.4 m,α=37°,β=53°,求绳的拉力对物体所做的功.【例3】物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带以后落到地面上的Q 点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,如图5-1-4所示,再把物块放到P 点自由滑下则( )A.物块将仍落在Q 点B.物块将会落在Q 点的左边C.物块将会落在Q 点的右边D.物块有可能落不到地面上1.如图5-1-5所示,木块A 放在木块B 的左上端,用恒力F 将A 拉至B 的右端.第一次将B 固定在地面上,F 做的功为 W 1;第二次让B 可以在光滑的地面上自由滑动,F 做的功为W 2.比较两次做功,应有( )A .21W W <B .21W W =C .21W W >D .无法比较.10.半径R =0.50m 的光滑圆环固定在竖直平面内,如图所示,轻质弹簧的一端固定在环的最高点A 处,另一端系一个质量m = 0.20kg的小球,小球套在圆环上,已知弹簧的原长L o = 0.50m ,劲度系数K =4.8N/m ,将小球从图示位置的B 点由静止释放,小球将沿圆环滑动并通过最低点C ,在C 点时弹簧的弹性势能J E PC 6.0=,g 取10m/s 2。
动能定理及功能关系
动能定理专题【知识梳理】一.动能1.动能:物体由于运动而具有的能,叫动能。
其表达式为:221mv E k =。
单位: 。
2.对动能的理解(1)动能是一个状态量,它与物体的运动状态对应.动能是标量.它只有大小,没有方向,而且物体的动能总是大于等于零,不会出现负值.(2)动能具有相对性,它与参照物的选取密切相关.研究时一般取地面为参考系。
二.动能定理:1.内容:2.表达式:动能定理反映了合外力做功与动能的关系,合外力做功的过程,是物体的动能与其他形式的能量相互转化的过程,合外力做的功是物体动能变化的量度,即12k k E E W -=合。
合W 的求解:①合W =合F S ;②合W =1W +2W +……(代数和)研究对象:单个物体或相对静止的可看作一个整体的几个物体组成的物体系3.应用动能定理的基本思路如下:(1)明确研究对象及所研究的物理过程。
(2)对研究对象进行受力分析,并确定各力所做的功,求出这些功的代数和。
(3)确定过程始、末态的动能。
(4)根据动能定理列方程求解。
注:在应用动能定理时,一定要注意所求的功是合力做的功,而不能局限于某个力做功。
例1.如图所示,将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s 2)(注:用动能定理解题时,对于过程能用整体法的就用整体法。
整体法的优点在于可以省略中间过程量的求解) 例2.一质量M =0.5kg 的物体,以v m s 04=/的初速度沿水平桌面上滑过S =0.7m 的路程后落到地面,已知桌面高h =0.8m ,着地点距桌沿的水平距离S m 112=.,求物体与桌面间的摩擦系数是多少?(g 取102m s /)例3.质量M =1kg 的物体,在水平拉力F 的作用下,沿粗糙水平面运动,经过位移4m 时,拉力F 停止作用,运动到位移是8m 时物体停止,运动过程中E k -S 的图线如图所示。
专题 动能定理与功能关系
m4
解析:由于轨道的水平宽度 x 相等,物体沿着轨道从左端运
v4
动到右端,初速度 v0 相同,虽然滑动摩擦阻力不同,但滑动摩
图4
擦阻力做的功相同,均为 W= -μmgx,重力做功为零。
根据动能定理: mgx
1 2
mv 2
1 2
mv02
解得: v v02 2 gx
可见物体到达右端时速度大小相同,与物体质量无关,与斜面的倾角无关。
变式训练:
变式 1、已知物体与轨道之间的滑动摩擦因数相同,轨道两 m1 端的宽度相等,且轨道两端位于同一水平面上。问质量不同的物
v1
体,以相同的初速度沿着如图 4 所示的不同运行轨道运动时,末 m2
速度的大小关系( )
v2
A.v1 v2 B.v1 v4
m3
v3
C.v2 v3 D. v3 v4
v0
的滑块,距挡板 P 为 l0,以初速度 v0 沿斜面上滑,滑块与斜面
m
间的动摩擦因数为 μ,滑块所受摩擦力小于滑块沿斜面方向的重
力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面 P α
上经过的总路程为多少?
图1
解析:滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受
摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端。
正确答案:C
变式 2、如图 5 所示,在竖直平面内的 AC 两点间有两点间有三条轨道。一个质量为
m 的质点从顶点 A 由静止开始先后沿三条不同的轨道下滑,三条轨道的摩擦因数都是 μ,
转折点能量损耗不计,由该物体分别沿着 AC、AEC、ADC 到达 C 点时的速度大小正确的
说法是( )
A. 物体沿 AC 轨道下滑到达 C 点速度最大 B. 物体沿 AEC 轨道下滑到达 C 点速度最大 C.物体沿 ADC 轨道下滑到达 C 点速度最大
高中物理功能关系总结
专题 功、动能和势能和动能定理功:(单位:J )力学: ①W = Fs cos θ(适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度动能: E K =m2p mv 2122=重力势能E p = mgh (凡是势能与零势能面的选择有关) ③动能定理:外力对物体所做的总功等于物体动能的变化(增量)公式: W 合= W 合=W 1+ W 2+…+W n = ∆E k = E k2一E k1 = 12122212mV mV - ⑴W 合为外力所做功的代数和.(W 可以不同的性质力做功)⑵外力既可以有几个外力同时作用,也可以是各外力先后作用或在不同过程中作用:⑶即为物体所受合外力的功。
④功是能量转化的量度(最易忽视)“功是能量转化的量度”这一基本概念含义理解。
⑴重力的功-———--量度——-—-—重力势能的变化物体重力势能的增量由重力做的功来量度:W G = —ΔE P ,这就是势能定理。
与势能相关的力做功特点:如重力,弹力,分子力,电场力它们做功与路径无关,只与始末位置有关.除重力和弹簧弹力做功外,其它力做功改变机械能,这就是机械能定理。
只有重力做功时系统的机械能守恒。
功能关系:功是能量转化的量度。
有两层含义:(1)做功的过程就是能量转化的过程, (2)做功的多少决定了能转化的数量,即:功是能量转化的量度强调:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与一个时刻相对应。
两者的单位是相同的(都是J ),但不能说功就是能,也不能说“功变成了能".练习:一、单项选择题1.关于功和能的下列说法正确的是 ( )A .功就是能B .做功的过程就是能量转化的过程C .功有正功、负功,所以功是矢量D .功是能量的量度2.一个运动物体它的速度是v 时,其动能为E.那么当这个物体的速度增加到3v 时,其动能应该是 ( )A .EB . 3EC . 6ED . 9E3.一个质量为m的物体,分别做下列运动,其动能在运动过程中一定发生变化的是:()A.匀速直线运动B.匀变速直线运动C.平抛运动D.匀速圆周运动4.对于动能定理表达式W=E K2—E K1的理解,正确的是:( ) A.物体具有动能是由于力对物体做了功B.力对物体做功是由于该物体具有动能C.力做功是由于物体的动能发生变化D.物体的动能发生变化是由于力对物体做了功5.某物体做变速直线运动,在t1时刻速率为v,在t2时刻速率为n v,则在t2时刻的动能是t1时刻的A、n倍B、n/2倍C、n2倍D、n2/4倍6.打桩机的重锤质量是250kg,把它提升到离地面15m高处,然后让它自由下落,当重锤刚要接触地面时其动能为(取g=10m/s2):()A.1。
动能定理功能关系练习题142题含答案
动能定理练习稳固根底一、不定项选择题〔每题至少有一个选项〕1.以下关于运动物体所受合外力做功和动能变化的关系,以下说法中正确的选项是〔〕A.如果物体所受合外力为零,那么合外力对物体所的功一定为零;B.如果合外力对物体所做的功为零,那么合外力一定为零;C.物体在合外力作用下做变速运动,动能一定发生变化;D.物体的动能不变,所受合力一定为零。
2.以下说法正确的选项是〔〕A.某过程中外力的总功等于各力做功的代数之和;B.外力对物体做的总功等于物体动能的变化;C.在物体动能不变的过程中,动能定理不适用;D.动能定理只适用于物体受恒力作用而做加速运动的过程。
3.在光滑的地板上,用水平拉力分别使两个物体由静止获得一样的动能,那么可以肯定〔〕A.水平拉力相等 B.两物块质量相等C.两物块速度变化相等 D.水平拉力对两物块做功相等4.质点在恒力作用下从静止开场做直线运动,那么此质点任一时刻的动能〔〕A.与它通过的位移s成正比B.与它通过的位移s的平方成正比C.与它运动的时间t成正比D.与它运动的时间的平方成正比5.一子弹以水平速度v射入一树干中,射入深度为s,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v/2的速度射入此树干中,射入深度为〔〕A.s B.s/2 C.2/s D.s/4 6.两个物体A、B的质量之比m A∶m B=2∶1,二者动能一样,它们和水平桌面的动摩擦因数一样,那么二者在桌面上滑行到停顿所经过的距离之比为〔〕A.s A∶s B=2∶1 B.s A∶s B=1∶2 C.s A∶s B=4∶1 D.s A∶s B=1∶47.质量为m的金属块,当初速度为v0时,在水平桌面上滑行的最大距离为L,如果将金属块的质量增加到2m,初速度增大到2v0,在同一水平面上该金属块最多能滑行的距离为〔〕A.L B.2L C.4L D.8.一个人站在阳台上,从阳台边缘以一样的速率v0,分别把三个质量一样的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,那么比拟三球落地时的动能〔〕A.上抛球最大 B.下抛球最大 C.平抛球最大 D.三球一样大9.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到地面时速度为v,用g表示重力加速度,那么此过程中物块克制空气阻力所做的功等于〔 〕A .2022121mv mv mgh --B .mgh mv mv --2022121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,那么物体刚被抛出时,其重力势能与动能之比为〔 〕A .sin 2θB .cos 2θC .tan 2θD .cot 2θ11.将质量为1kg 的物体以20m/s 的速度竖直向上抛出。
功能关系专题复习
功能关系专题复习一.功和能的关系做功的过程就是 的过程,功是能量转化的 。
二.几种常见的功能关系1.合力做功等于物体动能的改变,即W 合=E k2-E k1=ΔE k .(动能定理)2.重力做功等于物体重力势能的改变,即W G =E p1-E p2=-ΔE p .3.弹簧弹力做功等于弹性势能的改变,即W 弹=E p1-E p2=-ΔE p .4.除了重力和弹簧弹力之外的其他力所做的总功,等于物体机械能的改变.即W 其他力=E 2-E 1=ΔE .(功能原理)5.一对滑动摩擦力对系统所做的负功等于系统内能的增加即 Q =∆E 减=fs 相例1 下列关于功和机械能的说法,正确的是( )A .在有阻力作用的情况下,物体重力势能的减少不等于重力对物体所做的功B .合力对物体所做的功等于物体动能的改变量C .物体的重力势能是物体与地球之间的相互作用能,其大小与势能零点的选取有关D .运动物体动能的减少量一定等于其重力势能的增加量例2 如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体( ) A .重力势能增加了34mgh B .重力势能增加了mghC .动能损失了mghD .机械能损失了12mgh 例3 如图所示,在光滑的水平面上,有一足够长的质量M=1.5kg 的木板,今在木板的左端有一质量m=0.5kg 的木块,以v 0=2m/s 初速度滑上木板。
已知二者间的动摩擦因素为μ=0.2,求:(1)二者达到共速所需要的时间t 及共同速度v 共(2)木块相对于木板的滑行距离S 。
例4 电机带动水平传送带以速度v 匀速转动,一质量为m 的小木块由静止轻放在传送带上(传送带足够长),若小木块与传送带之间的动摩擦因数为μ,如图所示,当小木块与传送带相对静止时,求:(1)小木块的位移;(2)传送带转过的路程;(3)小木块获得的动能;(4)摩擦过程产生的摩擦热.课后练习:1.对于功和能的关系,下列说法中正确的是( )A .功就是能,能就是功B .功可以变为能,能可以变为功C .做功的过程就是能量转化的过程D .功是物体能量的量度2.自然现象中蕴藏着许多物理知识,如图所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能( )A .增大B .变小C .不变D .不能确定3.从地面竖直上抛一个质量为m 的小球,小球上升的最大高度为h.设上升和下降过程中空气阻力大小恒定为f.下列说法正确的是( )A .小球上升的过程中动能减少了mghB .小球上升和下降的整个过程中机械能减少了fhC .小球上升的过程中重力势能增加了mghD .小球上升和下降的整个过程中动能减少了fh4.水平传送带由电动机带动,并始终保持以速度v 匀速运动,现将质量为m 的某物块由静止释放在传送带的左端,过一会儿物块能保持与传送带相对静止,设物块与传送带间动摩擦因素为u ,对这一过程分析( )A.电动机多做的功为21mv 2B.摩擦力对物体做的功为mv 2C.传送带克服摩擦力做的功为21mv 2D.电动机增加的功率为umgv5.如图所示,一根轻弹簧下端固定,竖立在水平面上.其正上方A 位置有一只小球.小球从静止开始下落,在B 位置接触弹簧的上端,在C 位置小球所受弹力大小等于重力,在D 位置小球速度减小到零.小球下降阶段下列说法中正确的是( )A.在B位置小球动能最大B.在C位置小球动能最大C.从A→C位置小球重力势能的减少大于小球动能的增加D.从A→D位置小球重力势能的减少等于弹簧弹性势能的增加6.一子弹以某一水平速度击中了静止在光滑水平面上的木块,并从中穿出,对于这一过程,下列说法正确的是( ) A.子弹减少的机械能等于木块增加的机械能B.子弹减少的机械能等于系统内能的增加量C.子弹减少的机械能等于木块增加的动能和内能之和D.子弹减少的动能等于木块增加的动能与子弹和木块系统增加的内能之和7.如图,一轻绳的一端系在固定粗糙斜面上的O点,另一端系一小球.给小球一足够大的初速度,使小球在斜面上做圆周运动,在此过程中( )A.小球的机械能守恒B.重力对小球不做功C.绳的张力对小球不做功D.在任何一段时间内,小球克服摩擦力所做的功总是等于小球动能的减少8.一块质量为m的木块放在地面上,用一根弹簧连着木块,如图所示,用恒力F拉弹簧,使木块离开地面,如果力F的作用点向上移动的距离为h,则( )A.木块的重力势能增加了mghB.木块的机械能增加了FhC.拉力所做的功为FhD.木块的动能增加了Fh9.如图所示,将倾角为30°的斜面体置于水平地面上,一根不可伸长的轻绳两端分别系着小球A和物块B,跨过固定于斜面体顶端的光滑支点O.已知A的质量为m,B的质量为4m.现用手托住A,使OA段绳恰处于水平伸直状态(绳中无拉力),OB绳平行于斜面,此时物块B恰好静止不动.将A由静止释放,在其下摆过程中,斜面体与物块B始终保持静止,下列判断中正确的是( )A.物块B受到的摩擦力先减小后增大B.物块B受到的摩擦力方向不变C.小球A与地球组成的系统机械能守恒D.小球A与地球组成的系统机械能不守恒10.如图所示,粗细均匀的U形管内装有总长为4L的水。
高中物理必修二 专题四 动能定理 功能关系
动能定理与功能关系一、动能定理1.变力做功过程中的能量分析;2.多过程运动中动能定理的应用;3.复合场中带电粒子的运动的能量分析。
二、功能关系:做功的过程是能量转化的过程,功是能的转化的量度。
不能说功就是能,也不能说“功变成了能”。
1.物体动能的增量等于合外力做的总功:W 合=ΔE k ,这就是动能定理。
2.物体重力势能的增量等于重力做的功:W G = -ΔE P3.弹力做的功等于弹性势能的变化量:W=ΔE P4.物体机械能的增量等于除重力以外的其他力做的功:W 非重=ΔE 机,(W 非重表示除重力以外的其它力做的功)5.一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的 机械能,也就是系统增加的内能。
f ΔS=Q (ΔS 为这两个物体间相对移动的路程)。
专项练习1.一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,下列说法不正确的是( )A 、手对物体做功10JB 、合外力对物体做功12JC 、合外力对物体做功2JD 、物体克服重力做功2J2.a 、b 、c 三个物体质量分别为m 、2m 、3m ,它们在水平路面上某时刻运动的动能相等。
当每个物体受到大小相同的制动力时,它们的制动距离之比是( )A .1∶2∶3B .12∶22∶32C .1∶1∶1D .3∶2∶13.质量为m的物体在距地面高h处以g/3的加速度由静止竖直下落到地面,下列说法不正确的( )A.物体重力势能减少mgh/3 B.物体的机械能减少2mgh/3 C.物体的动能增加mgh/3 D .重力做功mgh4.如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置,用水平拉力F 缓慢将小球拉到细线与竖直方向成θ角的位置。
在此过程中,拉力F 做的功是( )A.θcos FLB.θsin FLC.()θcos 1-FLD.()θcos 1-mgL 5. 如图所示,小球以大小为v 0的初速度由A 端向右运动,到B 端时的速度减小为v B ;若以同样大小的初速度由B 端向左运动,到A 端时的速度减小为v A 。
曲线运动第12讲 功能关系(动能定理及其应用篇)
功能关系(动能定理及其应用)知识点梳理1.动能:物体由于运动而具有的能量。
影响因素:<1>质量 <2>速度 表达式:E k =221mv 单位:J 2、动能定理<1>定义:物体动能的变化量等于合外力做功。
<2>表达式:△E k =W F 合3、W 的求法动能定理中的W 表示的是合外力的功,可以应用W =F 合·lc os α(仅适用于恒定的合外力)计算,还可以先求各个力的功再求其代数和,W =W 1+W 2+…(多适用于分段运动过程)。
4.适用范围动能定理应用广泛,直线运动、曲线运动、恒力做功、变力做功、同时做功、分段做功等各种情况均适用。
5.动能定理的应用(1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况:受哪些力→各力是否做功→做正功还是负功→做多少功→各力做功的代数和(3)明确研究对象在过程的始末状态的动能E k 1和E k 2;母本身含有负号。
方法突破之典型例题题型一对动能定理的理解1.一个人用手把一个质量为m=1kg的物体由静止向上提起2m,这时物体的速度为2m/s,则下列说法中正确的是()A.合外力对物体所做的功为12JB.合外力对物体所做的功为2JC.手对物体所做的功为22JD.物体克服重力所做的功为20J2.关于对动能的理解,下列说法不正确的是()A.凡是运动的物体都具有动能B.动能总是正值C.一定质量的物体,动能变化时,速度一定变化D.一定质量的物体,速度变化时,动能一定变化光说不练,等于白干1、若物体在运动过程中所受的合外力不为零,则()A.物体的动能不可能总是不变的B.物体的动量不可能总是不变的C.物体的加速度一定变化D.物体的速度方向一定变化2、物体在合外力作用下,做直线运动的v﹣t图象如图所示,下列表述正确的是()A.在0~1s内,合外力做正功B.在0~2s内,合外力总是做正功C.在1~2s内,合外力不做功D.在0~3s内,合外力总是做正功3、物体沿直线运动的v-t关系如图所示,已知在第1秒内合外力对物体做的功为W,则()A.从第1秒末到第3秒末合外力做功为4WB.从第3秒末到第5秒末合外力做功为-2WC.从第5秒末到第7秒末合外力做功为WD.从第3秒末到第4秒末合外力做功为-0.75W4、美国的NBA篮球赛非常精彩,吸引了众多观众.经常有这样的场面:在临终场0.1s的时候,运动员把球投出且准确命中,获得比赛的胜利.如果运动员投篮过程中对篮球做功为W,出手高度为h1,篮筐距地面高度为h2,球的质量为m,空气阻力不计,则篮球进筐时的动能表达正确的是()A.mgh1+mgh2-WB.mgh2-mgh1-WC.W+mgh1-mgh2D.W+mgh2-mgh15、轻质弹簧竖直放在地面上,物块P 的质量为m ,与弹簧连在一起保持静止。
动能定理功能关系
动能定理和功能关系教学目标 知识点: 动能、动能定理、功能关系考点: 动能定理的应用,功与能能力: 能够理解动能定理并能运用动能定理解决问题方法: 知识的理解与运用重点难点动能定理的运用、功能关系 课前检查 作业完成情况:优□ 良□ 中□ 差□ 建议__________________________________________课前练习:【1】质点在恒力作用下,由静止开始做直线运动,关于质点动能的大小有以下说法正确的是 ( )A .动能与它通过的位移成正比;B .动能与它通过的位移的平方成正比;C .动能与它运动的时间成正比;D .动能与它运动的时间的平方成正比.【2】如图4-2-2所示,两人打夯,同时用与竖直方向成θ角的恒力F ,将质量为M 的夯锤举高H ,然后松手;夯锤落地后,打入地面下h 深处时停下.不计空气阻力,求地面对夯锤的平均阻力是多大?【3】一质量为1.0kg 的物体,以4m/s 的速度在光滑的水平面上向左滑行,从某一时刻起对物体施一水平向右的恒力,经过一段时间,物体的速度方向变为向右,大小仍为4m/s ,则在这段时间内水平力对物体所做的功为( )A .0B .-8JC .-16JD .-32J知识要点回顾:1.重力做功的特点: 与 无关.只取决于 . 2 重力势能;表达式(l )具有相对性.与的选取有关.但重力势能的改变与此 (2)重力势能的改变与重力做功的关系.表达式 .重力做正功时.重力势能 .重力做负功时.重力势能 .图4-2-23.弹性势能;发生形变的物体,在恢复原状时能对 ,因而具有 . 这种能量叫弹性势能。
弹性势能的大小跟 有关 4.机械能.包括 、 、 . 5.机械能守恒的条件;系统只 或 做功 6 机械能守恒定律应用的一般步骤;(1)根据题意.选取 确定研究过程(2)明确运动过程中的 或 情况.判定是否满足守恒条件 (3)选取 根据机械能守恒定律列方程求解二、典型例题:1.质量为m 的小球.从桌面上竖直抛出,桌面离地高为h .小球能到达的离地面高度为H , 若以桌面为零势能参考平面,不计空气气阻力 则小球落地时的机械能为( ) A 、mgH B .mgh C mg (H +h ) D mg (H-h )2.如图,一小球自A 点由静止自由下落 到B 点时与弹簧接触.到C 点时弹簧被压缩到最短.若不计弹簧质量和空气阻力 在小球由A -B —C 的运动过程中( )A 、小球和弹簧总机械能守恒B 、小球的重力势能随时间均匀减少C 、小球在B 点时动能最大D 、到C 点时小球重力势能的减少量等于弹簧弹性势能的增加量3、 如图 一根铁链长为L , 放在光滑的水平桌面上,一端下垂,下垂长度为a , 若将链条由静止释放,则链条刚好离开桌子边缘时的速度是多少?4、如图所示,有一根轻杆AB ,可绕O 点在竖直平面内自由转动,在AB 端各固定一质量为m 的小球,OA 和OB 的长度分别为2a 和a ,开始时,AB 静止在水平位置,释放后,AB 杆转到竖直位置,A 、B 两端小球的速度各是多少?A B CA BO5.某同学在做“验证机械能守恒定律”的实验时,不慎将一条选择好的纸带的前面部分损坏了,剩下的一段纸带上各点间的距离,他测出并标在纸带上,如图1-66所示.已知打点计时器的周期为0.02s,重力加速度为g=9.8m/s2.图1-66(1)利用纸带说明重锤(质量为mkg)通过对应于2、5两点过程中机械能守恒. ________________________________________________________________________.(2)说明为什么得到的结果是重锤重力势能的减小量ΔEP,稍大于重锤动能的增加量ΔEK? 针对练习1.如图4-2-3所示,DO 是水平面,AB 是斜面,初速为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零.如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度( ).(已知物体与路面之间的动摩擦因数处处相同且不为零.) A .大于0v B .等于0vC .小于0vD .取决于斜面的倾角2.如图4-2-4中ABCD 是一条长轨道,其中AB 段是倾角为θ的斜面,CD 段是水平的,BC AB CD 是与和都相切的一段小圆弧,其长度可以略去不计,一质量为A m 的小滑块在点从静止状态释放,沿轨道滑下,最后停在D A D 点,点和点的位置如图所示,现用一沿着轨道方向的力推滑块,使它缓慢地由D A 点推到点停下,设滑块与轨道间滑动摩擦系数为μ,则推力对滑块做的功等于( )图4-2-4A .mghB .2mghC .μθmg s h +⎛⎝⎫⎭⎪sin D .θμμmghctg mgs +图4-2-33.如图4-2-5所示,m A =4kg ,m B =1 kg ,A 与桌面间的动摩擦因数μ=0.2,B 与地面间的距离h=0.8m ,A 、B 原来静止,则B 落到地面时的速度为________m /s ;B 落地后,A 在桌面上能继续滑行_________m 远才能静止下来.(g 取10rn /s 2;).图4-2-54. 一质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平力F 的作用下,从平衡位置P 点很缓慢的移动到Q 点,如图4-2-6所示,则F 所做的功为( ) θcos ..mgl A θsin .Fl B )cos 1(.θ-mgl C θFl D .5.总质量为M 的列车在平直的铁路上匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,设运动的阻力与质量成正比,机车的牵引力是恒定的,当列车的两部分都停止时,它们的距离是多少?课堂训练:1.一质量为lkg 的物体被人用手由静止向上提升1m 时物体的速度是s m /2,下列说法中错误的是(g 取l0rn/s 2); ( )A .提升过程中手对物体做功12JB .提升过程中合外力对物体做功12JC .提升过程中手对物体做功2JD .提升过程中物体克服重力做功l 0J2.某消防队员从一平台上跳下,下落2 m 后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5 m ,在着地过程中地面对双脚的平均作用力估计为( )A .自身重力的2倍B .自身重力的5倍C .自身重力的8倍D .自身重力的10倍3.某人从12.5m 高的楼顶抛出一小球,不计空气阻力,小球落地时的动能是抛出时的11倍,小球的质量为0.6kg ,取g =l0m /s 2,则人对小球做功是( )A .7.5JB .8.0JC .6.5JD 以上答案都不正确4.质量为m 的汽车,以恒定功率P从静止开始沿平直公路行驶,经时间t 行驶距离为s 时速度达到最大值v m ,已知所受阻力恒为f ,则此过程中发动机所做的功为 ( )A .PtB .21mv m 2+fs C .fv m t D .s v Pm 221 FQPLOθ图4-2-65.如图4-2-7所示,一水平方向足够长的传送带以恒定的速率1v 沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面.一物块以初速度2v 沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,此时其速率为2v ',则下列说法正确的是( )A .只有1v =2v 时,才有2v '=1v B .若1v <2v ,则2v =2v ' C .若1v <2v ,则2v '=1v D .不管多大,总有 2v '=2v 6.速度为v 0的子弹,恰可穿透一固定着的木板,如果子弹速度为2v 0,子弹穿透木板的阻力视为不变,则可穿透同样的木块 ( )A .2块B .3块C .4块D .1块7.汽车在平直的公路上行驶,在它的速度从零增加到v 的过程中,汽车发动机做的功为w 1,在它的速度从v 增加到2v 的过程中,汽车发动机做的功为w 2,设汽车在行驶过程中发动机的牵引力和所受的阻力都不变,则有( )A .W 2=2W 1B .W 2=3W lC .W 2=4W lD .仅能判定W 2>W 18.质量kg m 2=的物体以50J 的初动能在粗糙的水平地面上滑行,其动能与位移关系如图4-2-8所示,则物体在水平面上的滑行时间t 为( )A .s 5B .s 4C .s 22D .2s9.一艘由三个推力相等的发动机驱动的气垫船,在湖面上由静止开始加速前进s 距离后关掉一个发动机,气垫船匀速运动;将到码头时,又关掉两个发动机,最后恰好停在码头上,则三个发动机关闭后船通过的距离为多少?图4-2-7图4-2-811.质量为m 的物体以速度v 0竖直向上抛出,物体落回地面时度大小为043v ,设物体在运动中所受空气阻力大小不变,求:(1)物体运动过程中所受空气阻力的大小;(2)若物体与地面碰撞过程中无能量损失,求物体运动的总路程12.质量M=2×103kg 的汽车,额定功率P=80kW ,在平直公路上能达到的最大行驶速度为v m =20m/s .若汽车从静止开始以加速度a=0.2m/s 2做匀加速直线运动,且经t=30 s 达到最大速度,则汽车做匀加速直线运动的最长时间及30s 内通过的总路程各是多少?。
动能定理及功能关系
专题八:功能关系知识点归类1.功是能的转化的量度:做功的过程就是能量转化的过程,做功的数值就是能量转化的数值.不同形式的能的转化又与不同形式的功相联系.2.力学领域中功能关系的几种主要表现形式:(1)合外力对物体做功等于物体动能的改变:W 合=E k2-E k1,即动能定理. (2)重力做功对应重力势能的改变:W G =-ΔE p =E p 1-E p 2(重力做多少正功,重力势能减少多少;重力做多少负功,重力势能增加多少) (3)弹簧弹力做功与弹性势能的改变相对应:W F =-ΔE p =E p 1-E p 2弹力做多少正功,弹性势能减少多少;弹力做多少负功,弹性势能增加多少. (4)除重力弹力以外的力的功与物体机械能的增量相对应:即W =ΔE . (5)克服滑动摩擦力在相对路程上做的功等于摩擦产生的热量:Q =W f =f ·S 相3.理解"摩擦生热"设质量为m 1的板在光滑水平面上以速度υ2运动,质量为m 1的物块以速度υ1在板上同向运动,且υ1>υ2,它们之间相互作用的滑动摩擦力大小为f ,经过一段时间,物块的位移为s 1,板的位移s 2,此时两物体的速度变为υ′1和υ′2 ,由动能定理得: -fs 1=1/2m 1υ′12-1/2m 1υ12 (1) fs 2=1/2m 2υ′22-1/2m 2υ22(2)在这个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断"生热",由能量守恒定律及(1)(2)式可得Q=(1/2m 1υ12+1/2m 2υ22)-(1/2m 1υ′12-1/2m 2υ′22)=f(s 1-s 2) (3)由此可见,在两物体相互摩擦的过程中,损失的机械能("生热")等于摩擦力与相对路程的乘积。
类型题一:几种典型的功能关系例1.一质量为m 的物体以a=2g 的加速度竖直向下运动,则在此物体下降h 高度的过程中物体的( )A .重力势能减少了2mghB .动能增加了2mghC .机械能保持不变D .机械能增加了 2mgh 例2.如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其减速的加速度为3/4g ,此物体在斜面上能够上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了mghB .机械能损失了mgh/2C .动能损失了mghD .克服摩擦力做功mgh/4例3.在场强大小为E 的竖直向上的匀强电场中,一质量为m 、带电量为+q的物体以某一初速度沿电场反方向做匀减速直线运动,其加速度大小为0.6qE/m ,物体运动距离为S 时速度变为零。
功能关系、动能定理与动量计算题
功能关系、动能定理与动量题集一、计算题1. 如图所示,一辆质量为M=6kg的平板小车停靠在墙角处,地面水平且光滑,墙与地面垂直.一质量为m=2kg的小铁块(可视为质点)放在平板小车最右端,平板小车上表面水平且与小铁块之间的动摩擦因数μ=0.45,平板小车的长度L=1m.现给铁块一个v0=5m/s的初速度使之向左运动,与竖直墙壁发生弹性碰撞后向右运动,碰撞过程中无能量损失,求:(1)最终的车速大小;(2)小铁块在平板小车上运动的过程中系统损失的机械能(g取10m/s2).2. 如图所示,传送带水平部分AB的长度L=1.5m,与一圆心在O点、半径R=1m的竖直光滑圆轨道的末端相切于A点.AB高出水平地面H=1.25m.一质量m=0.1kg的小滑块(可视为质点),由因轨道上的P点从静止释放,OP与竖直线的夹角θ=37°.已知sin37°=0.6,cos37°=0.8,g取10m/s2,滑块与传送带的动摩擦因数μ=0.2,转轮与传送带间不打滑.不计空气阻力.(1)求滑块对圆轨道末端的压力的大小.(2)若传送带以速度为v1=1.0m/s顺时针匀速转动.滑块运动至B点水平抛出.求此种情况下,滑块的落地点与B点的水平距离.(3)若传送带以速度为V2=0.8m/s顺时针匀速转动,求滑块在传送带上滑行过程中产生的热量.3. 如图甲所示,倾角为θ=37°的传送带以恒定速率逆时针运行,现将一质量m=2kg的小物体轻轻放在传送带的A端,物体相对地面的速度随时间变化的关系如图乙所示,2s末物体到达B端,取沿传送带向下为正方向,g=10m/s2,sin37°=0.6,求:(1)小物体在传送带A、B两端间运动的平均速度v;(2)物体与传送带间的动摩擦因数μ;(3)2s内物体机械能的减少量ΔE及因与传送带摩擦产生的内能Q。
4. (加试题)如图17所示,在光滑的水平面上有木块A和B,m A=0.5kg,m B=0.4kg,它们的上表面是粗糙的.今有一小铁块C,m C=0.1kg,以初速度v0=10m/s沿两木块表面滑过,最后停留在B上,此时B、C以共同速度v=1.5m/s运动,求:(1)A最终运动的速度v A;(2)C刚离开A时的速度v C;(3)整个过程中因摩擦而产生的内能.5. 如图所示,质量为M.内间距为L的箱子静止在光滑水平面上,箱子中间有一质量为m的小物块(可视为质点),初始时小物块停在箱子正中间。
【高中物理】动能定理
湛江市二中物理
组
、3
一、动能EK 1.定义:物体由于运动而具有的能叫动能, 2.公式:Ek=1/2mv2,单位:J. 3.动能是标量,是状态量,V 4.动能的变化△Ek=1/2mVt2-1/2mV02. △Ek>0, 表示物体的动能增加; △Ek<0,表示物体的 动能减少.
二、动能定理
我们在处理问题时可以从能量变化来求功,也可以从物体做功的多少来求能量的变化.
P初
P末,
力做功等于重力势能的增加量W =ΔE =E -E 动能是标量,是状态量,V是瞬时速度。
(2)动能定理适用于单个物体,也适用于系统; 外力对物体做的总功为正功,则物体的动能增加;
克
P增 P末 P
初应用:利用动能定理求变力的功
(3)应用动能定理解题,一般比牛顿第二定律解题要简便. 一般牵扯到力与位移关系的题目中,优先考虑使用动能 定理
3.应用动能定理解题的基本步骤: (1) (2)分析研究对象的受力情况和各个力的做功情 况:受哪些力?每个力是否做功,做正功还ห้องสมุดไป่ตู้做 负功?做多少功?然后求各个力做功的代数和. (3)明确物体在过程的始未状态的动能EK0和EKt (4)列出动能的方程W合=EKt-EK0,及其他必要辅 助方程,进行求解.
P91 题型二
4、使用动能定理应注意的问题:
①物体动能的变化是由于外力对物体做功 引起的.外力对物体做的总功为正功,则 物体的动能增加;反之将减小.外力对物 体所做的总功,应为所有外力做功的代数 和,包含重力.
②有些力在物体运动全过程中不是始终存在的, 若物体运动过程中包含几个物理过程,物体运动 状态、受力等情况均发生变化,因而在考虑外力 做功时,必须根据不同情况分别对待.
动能定理及功能关系
动能定理专题【知识梳理】一.动能1.动能:物体由于运动而具有的能,叫动能。
其表达式为:221mv E k =。
单位: 。
2.对动能的理解(1)动能是一个状态量,它与物体的运动状态对应.动能是标量.它只有大小,没有方向,而且物体的动能总是大于等于零,不会出现负值.(2)动能具有相对性,它与参照物的选取密切相关.研究时一般取地面为参考系。
二.动能定理:1.内容:2.表达式:动能定理反映了合外力做功与动能的关系,合外力做功的过程,是物体的动能与其他形式的能量相互转化的过程,合外力做的功是物体动能变化的量度,即12k k E E W -=合。
合W 的求解:①合W =合F S ;②合W =1W +2W +……(代数和)研究对象:单个物体或相对静止的可看作一个整体的几个物体组成的物体系3.应用动能定理的基本思路如下:(1)明确研究对象及所研究的物理过程。
(2)对研究对象进行受力分析,并确定各力所做的功,求出这些功的代数和。
(3)确定过程始、末态的动能。
(4)根据动能定理列方程求解。
注:在应用动能定理时,一定要注意所求的功是合力做的功,而不能局限于某个力做功。
例1.如图所示,将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s 2)(注:用动能定理解题时,对于过程能用整体法的就用整体法。
整体法的优点在于可以省略中间过程量的求解) 例2.一质量M =0.5kg 的物体,以v m s 04=/的初速度沿水平桌面上滑过S =0.7m 的路程后落到地面,已知桌面高h =0.8m ,着地点距桌沿的水平距离S m 112=.,求物体与桌面间的摩擦系数是多少?(g 取102m s /)例3.质量M =1kg 的物体,在水平拉力F 的作用下,沿粗糙水平面运动,经过位移4m 时,拉力F 停止作用,运动到位移是8m 时物体停止,运动过程中E k -S 的图线如图所示。
专题14 动能定理和功能关系(解析版)
2015—2020年六年高考物理分类解析专题14、动能定理和功能关系一.2020年高考题1. (2020高考江苏物理)如图所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上.。
斜面和E与水平位地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数.。
该过程中,物块的动能k移x关系的图象是()A. B. C. D.【参考答案】A【名师解析】设斜面倾角为θ,底边长为x0,在小物块沿斜面向下滑动阶段,由动能定理,E与水平位移x关系的图象是倾斜直线;设小物块滑到水平mgx/tanθ-μmgcosθ·x/cosθ=E k,显然物块的动能k地面时动能为E k0,小物块在水平地面滑动,由动能定理,-μmg·(x- x0)=E k- E k0,所以图像A正确。
2.(2020高考全国理综I)一物块在高3.0 m、长5.0 m的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离s的变化如图中直线Ⅰ、Ⅱ所示,重力加速度取10 m/s2。
则A.物块下滑过程中机械能不守恒B.物块与斜面间的动摩擦因数为0.5C.物块下滑时加速度的大小为6.0 m/s2D.当物块下滑2.0 m时机械能损失了12 J【参考答案】AB【命题意图】本题考查对重力势能和动能随下滑距离s变化图像的理解、功能关系、动能、匀变速直线运动规律及其相关知识点,考查的核心素养是运动和力的物理观念、能量的物理观念、科学思维。
【解题思路】【正确项分析】由重力势能和动能随下滑距离s变化图像可知,重力势能和动能之和随下滑距离s减小,可知物块下滑过程中机械能不守恒,A项正确;在斜面顶端,重力势能mgh=30J,解得物块质量m=1kg。
由重力势能随下滑距离s变化图像可知,重力势能可以表示为Ep=30-6s,由动能随下滑距离s 变化图像可知,动能可以表示为Ek=2s,设斜面倾角为θ,则有sinθ=h/L=3/5,cosθ=4/5。
由功能关系,-μmg cosθ·s= Ep+ Ek-30=30-6s+2s-30=-4s,可得μ=0.5,B项正确;【错误项分析】由Ek=2s,Ek=mv2/2可得,v2=4s,对比匀变速直线运动公式v2=2as,可得a=2m/s2,即物块下滑加速度的大小为2.0m/s2, C项错误;由重力势能和动能随下滑距离s变化图像可知,当物块下滑2.0m 时机械能为E=18J+4J=22J,机械能损失了△E=30J-22J=8J, D项错误。
功能关系和动能定理的区别
功能关系和动能定理的区别
功能关系和动能定理的区别
功能关系和动能定理是物理学中的两个重要概念,它们之间有很多相似之处,但也有一些不同之处。
首先,功能关系是一组数学表达式,它们描述了两个变量之间的关系,即当一个变量发生改变时,另一个变量也会发生改变。
而动能定理是一种物理定律,它描述了动能和物体的质量和速度之间的关系,即动能等于物体的质量乘以它的速度的平方。
其次,功能关系可用于分析两个变量之间的变化,但它不能用于描述物体的动能。
而动能定理可用于描述物体的动能,而不仅仅是它们之间的关系。
最后,功能关系是一种抽象的概念,它们不会改变实际的运动,而动能定理是一种具体的物理定律,它可以说明物体的动能是如何由它们的质量和速度所决定的。
总之,功能关系和动能定理是物理学中两个重要的概念,它们在某种程度上是相同的,但它们之间也有一些明显的区别。
动能定理和功能关系
1、子弹以某速度击中静止在光滑水平面上的木块,当子弹进入木块深度为x 时,木块相对水平面移动距离2x,求木块获得的动能1k E ∆和子弹损失的动能2k E ∆之比。
2、物体质量为10kg ,在平行于斜面的拉力F 作用下沿斜面向上运动,斜面与物体间的动摩擦因数为1.0=μ,当物体运动到斜面中点时,去掉拉力F ,物体刚好能运动到斜面顶端,斜面倾角为30°,求拉力F 多大?(2/10s m g =)3、质量为 5×105kg 的机车,以恒定的功率沿平直轨道行驶,在3min 内行驶了1450m ,其速度从10m/s 增加到最大速度15m/s .若阻力保持不变,求机车的功率和所受阻力的数值.【单个物体做功..与能量变化....之间的关系判定】 1.节日燃放礼花弹时,要先将礼花弹放入一个竖直的炮筒中,然后点燃礼花弹的发射部分,通过火药剧烈燃烧产生的高压燃气,将礼花弹由炮筒底部射向空中.若礼花弹在由炮筒底部出发至炮筒口的过程中,克服重力做功w 1,克服炮筒阻力及空气阻力做功w 2,高压燃气对礼花弹做功w 3,则礼花弹在炮筒内运动的过程中(设礼花弹发射过程中质量不变) ( )A .礼花弹的动能变化量为w 3+w 2+w 1B .礼花弹的动能变化量为w 3-w 2-w 1C .礼花弹的机械能变化量为w 3-w 2D .礼花弹的机械能变化量为w 3-w 12.飞船返回时高速进入大气层后,受到空气阻力的作用,接近地面时,减速伞打开,在距地面几米处,制动发动机点火制动,飞船迅速减速,安全着陆.下列说法正确的是( )A .制动发动机点火制动后,飞船的重力势能减小,动能减小B .制动发动机工作时,由于化学能转化为机械能,飞船的机械能增加C .重力始终对飞船做正功,使飞船的机械能增加D .重力对飞船做正功,阻力对飞船做负功,飞船的机械能不变3.如图,质量为m 的小车在水平恒力F 推动下,从山坡底部A 处由静止起运动至高为h 的坡顶B ,获得的速度为v ,AB 的水平距离为x .下列说法正确的是( ) A .小车克服重力所做的功是mghB .合力对小车做的功是12mv 2C .推力对小车做的功是Fx -mghD .小车机械能增加了12mv 2+mgh4.如图所示,某段滑雪道倾角为30°,总质量为m (包括雪具在内)的滑雪运动员从雪道上距底端高为h 处由静止开始匀加速下滑,加速度大小为13g ,他沿雪道滑到底端的过程中,下列说法正确的是( )A .运动员减少的重力势能全部转化为动能B .运动员获得的动能为23mghC .运动员克服摩擦力做功为23mghD .下滑过程中系统减少的机械能为13mgh5.如图跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状态的跳板(A 位置)上,随跳板一同向下做变速运动到达最低点(B 位置).对于运动员开始与跳板接触到运动至最低点B的过程中,下列说法中正确的是()A.运动员的动能一直在减小B.运动员的机械能一直在减小C.运动的加速度先变小后变大D.跳板的弹性势能先增加后减小6.如图,斜劈静止在水平地面上,有一物体沿斜劈表面向下运动,重力做的功与克服力F做的功相等.则下列判断中正确的是()A.物体可能加速下滑B.物体可能受三个力作用,且合力为零C.斜劈受到地面的摩擦力方向一定水平向左D.撤去F后斜劈可能不受地面的摩擦力【含弹簧类功能关系判定】1.如图所示,物体A的质量为m,置于水平地面上,A的上端连一轻弹簧,原长为L,劲度系数为k,现将弹簧上端B缓慢地竖直向上提起,使B点上移距离为L,此时物体A 也已经离开地面,则下列论述中正确的是( )A.提弹簧的力对系统做功为mgLB.物体A的重力势能增加mgLC.系统增加的机械能小于mgLD.以上说法都不正确2.轻质弹簧吊着小球静止在如图所示的A位置,现用水平外力F将小球缓慢拉到B位置,此时弹簧与竖直方向的夹角为θ,在这一过程中,对于整个系统,下列说法正确的是( )A.系统的弹性势能不变B.系统的弹性势能增加C.系统的机械能不变D.系统的机械能增加3.如图所示,一小球从光滑圆弧轨道顶端由静止开始下滑,进人光滑水平面又压缩弹簧.在此过程中,小球重力势能和动能的最大值分别为E p和E k,弹簧弹性势能的最大值为E p’,则它们之间的关系为( )A.E p=E k=E p’ B.E p>E k>E p’C.E p=E k+E p’ D.E p+E k=E p’4.如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,开始弹簧处于原长h.今让圆环沿杆自由滑下,滑到杆的底端时速度恰为零.则此过程中()A.圆环的机械能守恒B.弹簧对圆环先做正功后做负功C.弹簧的弹性势能变化了mghD.重力的功率一直减小5.如图所示,光滑水平面OB与足够长的粗糙斜面BC交于B点.轻弹簧左端固定于竖直墙面,现用质量为m1的滑块压缩弹簧至D 点,然后由静止释放,滑块脱离弹簧后经B点滑上斜面,上升到最大高度,并静止在斜面上.不计滑块在B点的机械能损失;换用相同材料质量为m2的滑块(m2>m1)压缩弹簧至同一点D后,重复上述过程,下列说法正确的是()A.两滑块到达B点的速度相同B.两滑块沿斜面上升的最大高度相同C.两滑块上升到最高点过程克服重力做的功相同D.两滑块上升到最高点过程机械能损失相同【连接体(系统)功能关系判定】1.如图a 、b 两物块质量分别为m 、2m ,用不计质量的细绳相连接,悬挂在定滑轮的两侧,不计滑轮质量和一切摩擦.开始时,a 、b 两物块距离地面高度相同,用手托住物块b ,然后突然由静止释放,直至a 、b 物块间高度差为h .在此过程中,下列说法正确的是( )A .物块a 的机械能逐渐增加B .物块b 机械能减少了23mghC .物块b 重力势能的减少量等于细绳拉力对它所做的功D .物块a 重力势能的增加量小于其动能增加2.如图所示,一直角斜面固定在地面上,A 、B 两质量相同的物块系于一根跨过定滑轮的轻绳两端,分别置于动摩擦因数相同的两斜面上,两物块可以看成质点,且位于同一高度并处于静止状态.绳子均与斜面平行.若剪断绳,让两物块从静止开始沿斜面下滑,下列叙述正确的是( )A .两物块沿斜面下滑的时间可能相同B .落地时A 物块的动能大于B 物块的动能C .落地时A 物块的机械能等于B 物块的机械能D .落地时两物块重力的功率可能相同3.如图,置于足够长斜面上的盒子A 内放有光滑球B ,B 恰与盒子前、后壁接触,斜面光滑且固定于水平地面上.一轻质弹簧的一端与固定在斜面上的木板P 拴接,另一端与A 相连.今用外力推A 使弹簧处于压缩状态,然后由静止释放,则从释放盒子直至其获得最大速度的过程中( )A .弹簧的弹性势能一直减小直至为零B .A 对B 做的功等于B 机械能的增加量C .弹簧弹性势能的减小量等于A 和B 机械能的增加量D .A 所受重力和弹簧弹力做功的代数和小于A 动能的增加量4.如图,在粗糙的水平面上,质量相等的两个物体A 、B 间用一轻质弹簧相连组成系统.且该系统在外力F 作用下一起做匀加速直线运动,当它们的总动能为2E k 时撤去水平力F ,最后系统停止运动.不计空气阻力,认为最大静摩擦力等于滑动摩擦力,从撤去拉力F 到系统停止运动的过程中( ) A .合外力对物体A 所做总功的绝对值等于E kB .物体A 克服摩擦阻力做的功等于E kC .系统克服摩擦阻力做的功可能等于系统的总动能2E kD .系统克服摩擦阻力做的功一定等于系统机械能的减小量5.如图,轻质弹簧的一端与固定的竖直板P 栓接,另一端与物体A 相连,物体A 静止于光滑水平桌面上,A 右端连接一细线,细线绕过光滑的定滑轮与物体B 相连.开始时用手托住B ,让细线恰好伸直,然后由静止释放B ,直至B 获得最大速度.下列有关该过程的分析正确的是( ) A .B 物体受到绳的拉力保持不变B .B 物体机械能的减少量小于弹簧弹性势能的增加量C .A 物体动能的增加量等于B 物体重力做功与弹簧对A 的弹力做功之和D .A 物体与弹簧所组成的系统机械能的增加量等于细线拉力对A 做的功6.如图,顶端装有定滑轮的斜面体放在粗糙水平地面上,M 、N 两物体通过轻弹簧和细绳连接,并处于静止状态(不计绳的质量和绳与滑轮间的摩擦).现用水平向右的恒力F 作用于物体N 上,物体N 升高到一定的距离h 的过程中,斜面体与物体M 仍然保持静止.设M 、N 两物体的质量都是m ,在此过程中( ) A .恒力F 所做的功等于物体N 增加的机械能 B .物体N 的重力势能增加量一定等于mghC .当弹簧的势能最大时,N 物体的动能最大D .M 物体受斜面的摩擦力一定变大7.如图所示,一轻弹簧左端固定在长木板m 2的左端,右端与小木块m 1连接,且m 1与m 2及m 2与地面之间接触面光滑.开始时m 1和m 2均静止,现同时对m 1、m 2施加等大、反向的水平恒力F 1和F 2,从两物体开始运动至以后的整个过程中,关于m 1、m 2和弹簧组成的系统(整个过程中弹簧形变不超过其弹性限度),下列说法正确的是()A.由于F1、F2等大反向,故系统机械能守恒B.由于F1、F2分别对m1、m2做正功,故系统动能不断增加C.由于F1、F2分别对m1、m2做正功,故系统机械能不断增加D.当弹簧弹力大小与F1、F2大小相等时,m1、m2的动能最大。
动能定理与功能关系专题
专题七 动能定理与功能关系专题复习目标:1.多过程运动中动能定理的应用; 2.变力做功过程中的能量分析;3.复合场中带电粒子的运动的能量分析。
专题训练:1.滑块以速率1v 靠惯性沿固定斜面由底端向上运动,当它回到出发点时速度变为2v ,且12v v ,若滑块向上运动的位移中点为A ,取斜面底端重力势能为零,则 ( ) (A ) 上升时机械能减小,下降时机械能增大。
(B ) 上升时机械能减小,下降时机械能减小。
(C ) 上升过程中动能和势能相等的位置在A 点上方 (D ) 上升过程中动能和势能相等的位置在A 点下方2.半圆形光滑轨道固定在水平地面上,并使其轨道平面与地面垂直,物体m 1,m 2同时由轨道左右两端最高点释放,二者碰后粘在一起运动,最高能上升至轨道的M 点,如图所示,已知OM 与竖直方向夹角为060,则物体的质量21m m =( )A . (2+ 1 ) ∶(2— 1) C .2 ∶1B .(2— 1) ∶ (2+ 1 ) D .1 ∶23.如图所示,DO 是水平面,初速为v 0的物体从D 点出发沿DBA滑动到顶点A 时速度刚好为零。
如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度 ( )(已知物体与路面之间的动摩擦因数处处相同且为零。
)A .大于 v 0B .等于v 0C .小于v 0D .取决于斜面的倾角4.光滑水平面上有一边长为l 的正方形区域处在场强为E 的匀强电场中,电场方向与正方形一边平行。
一质量为m 、带电量为q 的小球由某一边的中点,以垂直于该边的水平初速0v 进入该正方形区域。
当小球再次运动到该正方形区域的边缘时,具有的动能可能为:( )AB C D(A )0 (B )qEl mv 212120+ (C )2021mv (D )qEl mv 322120+5.在光滑绝缘平面上有A .B 两带同种电荷、大小可忽略的小球。
动能定理与功能关系专题
标准文档动能定理、机械能守恒与功能关系专题几种常有的功和能量转变的关系(1)动能定理:合外力对物体所做的功等于物体动能的变化W 合=E K2-E K1(2)只有重力〔或弹簧弹力〕做功时,物体的机械能守恒: E1=E2(3)重力〔弹簧弹力〕做多少正功,重力势能〔弹性势能〕减少多少;重力〔弹簧弹力〕做多少负功,重力势能〔弹性势能〕增添多少W G=- △E P=E P1-E P2(4)重力和弹簧弹力以外的其余外力对物体所做的功W F,等于物体机械能的变化,即W F=△E=E2-E1W F>0,机械能增添 .W F<0,机械能减少 .专题训练:1.滑块以速率 v1靠惯性沿固定斜面由底端向上运动,当它回到出发点时速度变为 v2,且 v2v1,假定滑块向上运动的位移中点为A ,取斜面底端重力势能为零,那么〔〕A上涨机遇械能减小,降落机遇械能增大。
B上涨机遇械能减小,降落机遇械能减小。
C上涨过程中动能和势能相等的地点在 A 点上方D上涨过程中动能和势能相等的地点在 A 点下方2.以下列图,拥有必定初速度的物块,沿倾角为 30°的粗拙斜面向上运动的过程中,受一个恒定的沿斜面向上的拉力 F 作用,这时物2块的加快度大小为 4 m/s ,方向运动的过程中,以下说法正确的选项是()A.物块的机械能必定增添B.物块的机械能必定减小C.物块的机械能可能不变D.物块的机械能可能增添也可能减小3.以下列图, DO 是水平面,初速为 v0的物A体从 D 点出发沿 DBA 滑动到极点 A 时速度刚好为零。
假如斜面改为 AC,让该物体从 D 点出发沿 DCA 滑动到 A 点且速度恰巧为零,那么0 B C D 物体拥有的初速度〔〕〔物体与路面之间的动摩擦因数到处同样且为零。
〕A .大于 v0B.等于 v0C.小于v0D.取决于斜面的倾角标准文档4、半径为 r 和 R〔r <R〕的圆滑半圆形槽,其圆心均在同一水平面上,以下列图,质量相等的两物体分别自半圆形槽左侧沿的最高点无初速地开释,在下滑过程中两物体()A、机械能均渐渐减小B、经最低点时动能相等C、在最低点对轨道的压力相等D、在最低点的机械能相等5.如图甲所示,在倾角为θ的圆滑斜面上,有一个质量为m 的物体在沿斜面方向的力 F 的作用下由静止开始运动,物体的机械能 E 随位移 x 的变化关系如图乙所示.其中 0~ x1过程的图线是曲线, x1~x2过程的图线为平行于x 轴的直线,那么以下说法中正确的选项是〔〕A.物体在沿斜面向上运动B.在 0~x1过程中,物体的加快度向来减小C.在 0~x2过程中,物体先减速再匀速D.在 x1~x2过程中,物体的加快度为gsinθ7.以下列图,质量相等的甲、乙两小球从一圆滑直角斜面的顶端同时由静止开释,甲小球沿斜面下滑经过 a 点,乙小球竖直着落经过 b 点,a、b 两点在同一水平面上,不计空气阻力,以下说法中正确的选项是 ()A .甲小球在 a 点的速率等于乙小球在 b 点的速率B.甲小球抵达 a 点的时间等于乙小球抵达 b 点的时间C.甲小球在 a 点的机械能等于乙小球在 b 点的机械能 (相对同一个零势能参照面 )D.甲小球在 a 点时重力的功率等于乙小球在 b 点时重力的功率8.在奥运竞赛工程中,高台跳水是我国运发动的强处.质量为 m 的跳水运发动进入水中后遇到水的阻力而做减速运动,设水对他的阻力大小恒为 F,那么在他减速降落高度为 h 的过程中,以下说法正确的选项是 (g 为当地的重力加快度 )()A .他的动能减少了FhB.他的重力势能增添了mghC.他的机械能减少了 (F-mg)hD.他的机械能减少了Fh9.以下列图,一个质量为m 的小铁块沿半径为R的固定半圆轨道上面沿由静止滑下,到半圆底部时,轨道所受压力为铁块重力的 1.5 倍,那么此过程中铁块损失的机械能为 ()1113 A. 8mgR B. 4mgR C. 2mgR D. 4mgR 标准文档11.(2021 福·州一模 ) 以下列图 ,在圆滑斜面上的 A 点先后水平抛出和静止开释两个质量相等的小球 1 和 2,不计空气阻力 ,最后两小球在斜面上的 B 点相遇 ,在这个过程中 ()A. 小球 1 重力做的功大于小球 2 重力做的功B.小球 1 机械能的变化大于小球 2 机械能的变化C.小球 1 抵达 B 点的动能大于小球 2 抵达 B 点的动能D.两小球抵达 B 点时 ,在竖直方向的分速度相等10.(多项选择 )(2021 周·口一模 ) 如图 ,一物体从圆滑斜面 AB 底端 A 点以初速度v0上滑,沿斜面上涨的最12.(2021 汕·头一模 )蹦床运发动与床垫接触的大高度为 h。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能定理与功能关系专题复习目标:1.多过程运动中动能定理的应用; 2.变力做功过程中的能量分析;3.复合场中带电粒子的运动的能量分析。
专题训练:1.滑块以速率1v 靠惯性沿固定斜面由底端向上运动,当它回到出发点时速度变为2v ,且12v v <,若滑块向上运动的位移中点为A ,取斜面底端重力势能为零,则 ( ) (A ) 上升时机械能减小,下降时机械能增大。
(B ) 上升时机械能减小,下降时机械能减小。
(C ) 上升过程中动能和势能相等的位置在A 点上方 (D ) 上升过程中动能和势能相等的位置在A 点下方2.半圆形光滑轨道固定在水平地面上,并使其轨道平面与地面垂直,物体m 1,m 2同时由轨道左右两端最高点释放,二者碰后粘在一起运动,最高能上升至轨道的M 点,如图所示,已知OM 与竖直方向夹角为060,则物体的质量21m m =( ) A . (2+ 1 ) ∶(2— 1) C .2 ∶1 B .(2— 1) ∶ (2+ 1 ) D .1 ∶23.如图所示,DO 是水平面,初速为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零。
如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度( )(已知物体与路面之间的动摩擦因数处处相同且为零。
) A .大于 v 0 B .等于v 0 C .小于v 0 D .取决于斜面的倾角4.光滑水平面上有一边长为l 的正方形区域处在场强为E 的匀强电场中,电场方向与正方形一边平行。
一质量为m 、带电量为q 的小球由某一边的中点,以垂直于该边的水平初速0v 进入该正方形区域。
当小球再次运动到该正方形区域的边缘时,具有的动能可能为:( )(A )0 (B )qEl mv 212120+ (C )2021mv (D )qEl mv 322120+5.在光滑绝缘平面上有A .B 两带同种电荷、大小可忽略的小球。
开始时它们相距很远,A 的质量为4m ,处于静止状态,B 的质量为m ,以速度v 正对着A 运动,若开始时系统具有的电势能为零,则:当B 的速度减小为零时,系统的电势能为 ,系统可能具有的最大电势能为 。
6.如图所示,质量为m ,带电量为q 的离子以v 0速度,沿与电场垂直的方向从A 点飞进匀强电场,并且从另一端B 点沿与场强方向成1500角飞出,A 、B 两点间的电势差为 ,且ΦA ΦB (填大于或小于)。
7.如图所示,竖直向下的匀强电场场强为E ,垂直纸面向里的匀强磁场磁感强度为B ,电量为q ,质量为m 的带正电粒子,以初速率为v 0沿水平方向进入两场,离开时侧向移动了d ,这时粒子的速率v 为 (不计重力)。
AB C DE8.1914年,弗兰克和赫兹在实验中用电子碰撞静止的原子的方法,使原子从基态跃迁到激发态,证明了玻意尔提出的原子能级存在的假设,设电子的质量为m ,原子的质量为M ,基态和激发态的能量差为ΔE ,试求入射电子的最小初动能。
9.如图所示,斜面倾角为θ,质量为m 的滑块距挡板P 为s 0,以初速度v 0。
沿斜面上滑。
滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面的下滑力。
若滑块每次与挡板相碰均无机械能损失。
问滑块经过的路程有多大?10.图中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平直导轨上,弹簧处在原长状态。
另一质量与B 相同的滑块A ,从导轨上的P 点以某一初速度向B 滑行。
当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。
已知最后A 恰好返回到出发点P 并停止。
滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为2l ,重力加速度为g 。
求A 从P 点出发时的初速度0v 。
11.图示装置中,质量为m 的小球的直径与玻璃管内径接近,封闭玻璃管内装满了液体,液体的密度是小球的2倍,玻璃管两端在同一水平线上,顶端弯成一小段圆弧。
玻璃管的高度为H ,球与玻璃管的动摩擦因素为μ(μ<t g 370=43,小球由左管底端由静止释放,试求:(1)小球第一次到达右管多高处速度为零? (2)小球经历多长路程才能处于平衡状态?12.在水平向右的匀强电场中,有一质量为m .带正电的小球,用长为l 的绝缘细线悬挂于O 点,当小球静止时细线与竖直方向夹角为θ,现给小球一个垂直悬线的初速度,使小球恰 能在竖直平面内做圆周运动。
试问(1)小球在做圆周运动的过程中,在那一个位置的速度最小?速度最小值是多少?(2)小球在B 点的初速度是多大?13.如图,长木板ab 的b 端固定一挡板,木板连同挡板的质量为M =4.0kg ,a 、b 间距离s =2.0m 。
木板位于光滑水平面上。
在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数 =0.10,它们都处于静止状态。
现令小物块以初速0v =4.0m/s2 沿木板向前滑动,直到和挡板相碰。
碰撞后,小物块恰好回到a 端而不脱离木板。
求碰撞过程中损失的机械能。
14.如图所示,一块质量为M 长为L 的均质板放在很长的光滑水平桌面上,板的左端有一质量为m 的物块,物块上连接一根很长的细绳,细绳跨过位于桌面的定滑轮,某人以恒定的速率v 向下拉绳,物块最多只能到达板的中央,而此时的右端尚未到桌边定滑轮,试求(1)物块与板的动摩擦因数及物体刚到达板的中点时板的位移(2)若板与桌面之间有摩擦,为使物体能达到板的右端,板与桌面间的动摩擦因数范围 (3)若板与桌面之间的动摩擦因数取( 2 )问中的最小值,在物体从板的左端运动到 板的右端的过程中,人拉绳的力所做的功(其它阻力不计)15.滑雪者从A 点由静止沿斜面滑下,经一平台后水平飞离B 点,地面上紧靠平台有一个水平台阶,空间几何尺度如图所示。
斜面、平台与滑雪板之间的动摩擦因数为 。
假设滑雪者由斜面底端进入平台后立即沿水平方向运动,且速度大小不变。
求: (1)滑雪者离开B(2)滑雪者从B16.如图所示,一质量为M ,长为l 的长方形木板B 放在光滑的水平面上,其右端放一质量为m 的小物体A (m <M )。
现以地面为参照系,给A 和B 以大小相等,方向相反的初速度使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
(1)若已知A 和B 的初速度大小为v 0,求它们最后的速度大小和方向;(2)若初速度的大小未知,求小木块A 向左运动到达最远处(从地面上看)离出发点的距离。
17.如图所示,摆球质量为m ,摆线长为l ,若将小球拉至摆线与水平方向夹300角的P 点处,然后自由释放,试计算摆球到达最低点时的速度和摆线中的张力大小。
专项预测:18.如图所示,AB 是一段位于竖直平面内的光滑轨道,高度为h ,末端B 处的切线方向水平。
一个质量为m 的小物体P 从轨道顶端A 处由静止释放,滑到B 端后飞出,落到地面上的C 点,轨迹如图中虚线BC 所示,已知它落地时相对于B 点的水平位移OC = l 。
现在轨道下方紧贴B 点安装一水平传送带,传送带的右端与B 的距离为l /2。
当传送带静止时,让 P 再次从A 点由静止释放,它离开轨道并在传送带上滑行后从右端水平飞出,仍然落在地面的C 点,当驱动轮转动带动传送带以速度v 匀速向右运动时(其他条件不变),P 的落地点为 D 。
不计空气阻力。
a )求P 滑到B 点时的速度大小b )求P 与传送带之间的摩擦因数c )求出O .D 间的距离s 随速度v 变化的函数关系式。
19. 如图所示,A 、B 是静止在水平地面上完全相同的两块长木板。
A 的左端和B 的右端相接触。
两板的质量皆为M =2.0kg ,长度l =1.0m 。
C 是一质量为m =1.0kg 的小物块。
现给它一初速度0v =2.0m/s ,使它从B 板的左端开始向右滑动。
已知地面是光滑的,而C 与A 、B 之间的动摩擦因数皆为μ=0.10。
求最后A 、B 、C 各以多大的速度做匀速运动(重力加速度g 取102/s m )参考答案:1.BC 2.B 3.B4.ABC 5.2252,83mv mv 6.,2320qmv 小于 7.m qEd v 220-8.E M mM ∆+ 9.θμθμtg s g v +cos 220 10.)1610(21L L g +μ11.(1)H 348+μμ,(2)μ45H 12.(1)A 点是速度最小θcos min glv =13.2.4J 14.(1)2l ,m gl Mv 2 (2)glm M Mv )(22+≥μ (3)22Mv15.(1))(2L h H g μ-- (2))(2,21L h H h S h L H μμ--=<-;)(2,22L h H h S h L H μμ--=>-16.(1)gh 2,(2)l h 23(3)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥+〈〈+≤=)27)(71(2)2722)(221(2)22()(ghv l gh v gh gh v lghl l v S17.A 球从P 点做自由落体运动至B 点,速度为gl v B 2=,方向竖直向下在B 点,由于绳绷紧,小球速度为'B v ,方向垂直于OB ,则B B B v v v 2330cos 0'== 小球从B 点沿圆弧运动至最低点C ,则2'202121)60cos 1(B C mv mv mgl -=- gl gl gl gl v v BC 25212243)60cos 1(202'2=⨯+⨯=-+= 则gl v C 5.2= 在C 点mg lglmmg T lmv mg T 5.35.22=+==-18.(1)0v mM mM +- 方向向右(2)在(1)中:A 与B 相对静止,A .B 的对地位移大小分别为S A ,S B ,则S A +S B =l则20220221212121Mv Mv mgS mv mv mgS B A -=--=-μμ 得220)(21)(21v m M v m M mgl +-+=μ设A 向左运动最大位移为S A ‘,则20'210mv mgS A -=-μ M mM mM m M mM mv v v m M m l S A 4)(11222020'+=+--⋅+=-⋅+=∴ 所以l MmM S A 4'+=19. s m v A /563.0= , s m v B /155.0= , s m v c /563.0=。