专题:基本不等式常见题型归纳(学生版)
基本不等式常见题型(解析版)
基本不等式常见题型(解析版)题型一:由基本不等式比较大小1.(多选)若10a b -<<<,则( ) A .222a b ab +> B .11a b< C.a b +>D .11a b a b+>+2.(多选)设0a >,0b >,则下列不等式中成立..的是( ) A .()114a b a b ⎛⎫++≥ ⎪⎝⎭B .3322a b ab +≥C .22222a b a b ++≥+ D3.(多选)已知实数0a >,0b >,1a b +=.则下列不等式正确的是( )A .22a b +≥ BC .112216a b ⎛⎫⎛⎫++≤ ⎪⎪⎝⎭⎝⎭D .222a b a b b a +≤++题型二:有基本不等式证明不等式1.(多选)以下结论正确的是( )A .函数1y x x =+的最小值是2; B .若,R a b ∈且0ab >,则2b a a b+≥; C .y =2; D .函数12(0)y x x x =++<的最大值为0.2.已知a ,b ,c 均为正实数.(1)求证:a b c ++≥若1a b +=,求证:11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.1.当0x >时,234xx +的最大值为 __.2.实数,a b 满足2221a b +=,则ab 的最大值为___________.3.(1)已知1x >,求1411x x ++-的最小值;(2)已知01x <<,求()43x x -的最大值.1.已知,a b 为正实数且2a b +=,则2b a b +的最小值为( )A .32B 1C .52D .32.已知m ,R n ∈,且12nm +=,则93m n +的最小值为( ) A .4 B .6C .8D .93.已知42244924x x y y ++=,则2253x y +的最小值是( )A .2B .127 C .52D .41.当0x >时,函数231x x y x++=+的最小值为( )A .B .1C .1D .42.已知a b >,且8ab =,则222a b a b+--的最小值是( )A .6B .8C .14D .163.函数25(2)x x y x +-=> 的最小值为______.1.若实数,x y 满足:,0,310x y xy x y >---=,则xy 的最小值为( ) A .1B .2C .3D .4故xy 的最小值为1,故选:A.2.已知0x >,0y >,且44x y += . (1)求xy 的最大值;(2)求12x y+的最小值.1.已知0,0a b >>,若不等式313m a b a b +≥+恒成立,则m 的最大值为________.2.若“()0,x ∀∈+∞,不等式1a x <+恒成立”为真命题,则实数a 的取值范围是______.1.某金店用一杆不准确的天平(两边臂不等长)称黄金,某顾客要购买10g 黄金,售货员先将5g 的砝码放在左盘,将黄金放于右盘使之平衡后给顾客;然后又将5g 的砝码放入右盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金( ) A .大于10gB .小于10gC .等于10gD .以上都有可能【详解】由于天平两边臂不相等,故可设天平左臂长为a ,右臂长为b (不妨设a b >),第一次称出的黄金2.某大型广场计划进行升级改造.改造的重点工程之一是新建一个矩形音乐喷泉综合体1111D C B A ,该项目由矩形核心喷泉区ABCD (阴影部分)和四周的绿化带组成.规划核心喷泉区ABCD 的面积为10002m ,绿化带的宽分别为2m 和5m (如图所示).当整个项目1111D C B A 占地面积最小时,核心喷泉区的边BC 的长度为( )A .20mB .50mC .1010D .100m【详解】设m BC x =,则1000m CD x=, 所以()111110001000010000104104041040241440A B C D S x x x x x x ⎛⎫=++=++≥+⋅=⎪⎝⎭矩形, 当且仅当100004x x=,即50x =时,等号成立, 所以当BC 的长度为50m 时,整个项目1111D C B A 占地面积最小.故选:B .。
高中基本不等式经典题型
高中基本不等式经典题型
高中基本不等式的经典题型有很多,主要包括以下几种:
1. 直接应用基本不等式:这类题目比较简单,主要考察对基本不等式的理解和应用。
例如,利用均值不等式求最值等。
2. 分式函数利用基本不等式求最值:这类题目通常涉及分式函数,需要通过基本不等式找到函数的最值。
3. 分式与整式乘积构造基本不等式:这类题目需要构造合适的不等式,再利用基本不等式求解。
4. 利用1的妙用:在某些情况下,将1巧妙地代入不等式可以简化问题。
5. 利用整式中和与积的关系来求最值:这类题目需要利用整式的和与积的关系,结合基本不等式求最值。
6. 两次运用基本不等式的题型:这类题目需要连续运用两次基本不等式来解决问题。
7. 负数的基本不等式:当题目中出现负数时,需要特别注意不等式的方向和性质。
8. 化成单变量形式:有些题目需要将多变量问题转化为单变量问题,再利用基本不等式求解。
9. 与函数相结合:这类题目通常将基本不等式与函数结合,需要同时考虑函数的性质和不等式的约束。
10. 判别式法:通过判别式法来求解一些与基本不等式相关的问题。
11. 构造法:通过构造适当的代数式或函数,将问题转化为可以利用基本不
等式解决的问题。
以上只是高中基本不等式的经典题型的一部分,具体题型和解法可能因教材和地区而异。
在解题时,关键是要理解和掌握基本不等式的性质和运用场景,以及灵活运用各种解题技巧。
基本不等式题型总结
基本不等式题型总结在数学学习中,不等式是一个重要而又常见的概念。
而基本不等式,作为不等式的基础和基本类型,是我们解决更复杂的不等式问题的关键。
本文将对一些常见的基本不等式题型进行总结和探讨,希望能帮助读者更好地掌握和应用这些不等式。
一、根式不等式根式不等式是一种常见的基本不等式题型。
在解决根式不等式问题时,我们需要注重两个关键点:一是化简根式表达式,二是确定根式的范围。
以求解不等式$\sqrt{x+1} > 3$为例,可以通过平方两边来消除根式,得到$x+1 > 9$。
然后解得$x > 8$。
但我们需要注意的是,由于根式的非负性质,我们还需要考虑$x+1\geq 0$的条件。
综合考虑,解集为$x > 8$。
二、分式不等式分式不等式是另一类常见的基本不等式题型。
在解决分式不等式问题时,我们需要注重两个关键点:一是去分母,二是确定分式的范围。
以求解不等式$\frac{1}{x-2} \geq 2$为例,我们可以通过去分母的方法得到$x-2 \geq \frac{1}{2}$。
然后解得$x \geq\frac{5}{2}$。
但我们需要注意的是,由于分式的定义域,我们需要考虑$x-2\neq 0$的条件。
综合考虑,解集为$x > \frac{5}{2}$。
三、绝对值不等式绝对值不等式是基本不等式中的一种特殊类型。
在解决绝对值不等式问题时,我们需要注重两个关键点:一是分情况讨论,二是确定绝对值的范围。
以求解不等式$|2x-1| \leq 3$为例,我们可以分别讨论$2x-1$的正负情况。
当$2x-1\geq 0$时,不等式可以化简为$2x-1 \leq 3$,解得$x \leq 2$。
当$2x-1<0$时,不等式可以化简为$1-2x \leq 3$,解得$x \geq -1$. 综合考虑,解集为$x \in [-1,2]$。
四、幂函数不等式幂函数不等式是一种常见而又稍微复杂的不等式类型。
《基本不等式》17种题型高一
基本不等式是高中数学中非常重要且基础的一部分。
它在高一数学中占据着重要的地位,对于学生的数学基础和逻辑推理能力的培养起着至关重要的作用。
在高一数学教学中,基本不等式的学习也是一个重要的环节,不仅需要掌握它的概念和性质,还需要学会运用它解决实际问题。
本文将从基本不等式的概念入手,详细介绍其性质和运用方法,并列举17种题型,帮助学生全面理解和掌握基本不等式的相关知识。
一、基本不等式的概念基本不等式是指在任意三个实数a、b、c之间,必有以下基本不等式成立:1)正数的不等式:a >b ⟹ a +c > b + ca > 0,b > 0 ⟹ ac > bca > b, c > 0 ⟹ ac > bca > b, c < 0 ⟹ ac < bc2)负数的不等式:a <b ⟹ a +c < b + ca < 0,b < 0 ⟹ ac > bca < b, c > 0 ⟹ ac < bca < b, c < 0 ⟹ ac > bc以上基本不等式是学习基本不等式的基础,对于解决实际问题是非常重要的。
二、基本不等式的性质基本不等式还具有一些重要的性质,包括:1)传递性:若a > b,b > c,则a > c2)对称性:若a > b,则-b > -a3)倒置性:若a > b,则1/a < 1/b,且a/b > 0这些性质对于运用基本不等式解决实际问题时起着重要的作用,可以帮助学生更好地理解和运用基本不等式。
三、基本不等式的运用方法基本不等式在解决实际问题时有着广泛的应用,其运用方法主要包括:1)利用基本不等式的性质化简题目;2)利用基本不等式构造等式或方程组,进而求解问题;3)利用基本不等式证明不等式关系,讨论最值等问题。
学生在解决实际问题时,可以根据具体情况选择不同的运用方法,灵活运用基本不等式,解决各种复杂的问题。
专题:基本不等式常见题型归纳(学生版)
专题:基本不等式基本不等式求最值 利用基本不等式求最值:一正、二定、三等号.三个不等式关系:(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R +,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2,当且仅当a =b 时取等号.上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系.其中,基本不等式及其变形:a ,b ∈R +,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则112-+b a 的最小值为 .练习:1.若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为 .2.若实数,x y 满足133(0)2xy x x +=<<,则313x y +-的最小值为 .3.已知0,0,2a b c >>>,且2a b +=,则2ac c c b ab +-+的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +yx +y 的最大值为 .【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________.变式:1.若,a b R +∈,且满足22a b a b +=+,则a b +的最大值为_________.2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______3.设R y x ∈,,1422=++xy y x ,则y x +2的最大值为_________4.已知正数a ,b 满足195ab a b+=-,则ab 的最小值为 【题型二】含条件的最值求法【典例4】已知正数y x ,满足1=+y x ,则1124+++y x 的最小值为练习1.已知正数y x ,满足111=+yx ,则1914-+-y yx x 的最小值为 .2.已知正数,x y 满足22x y +=,则8x yxy+的最小值为 .3.已知函数(0)xy a b b =+>的图像经过点(1,3)P ,如下图所示,则411a b+-的最小值为 .4.己知a ,b 为正数,且直线 60ax by +-=与直线 2(3)50x b y +-+=互相平行,则2a+3b 的最小值为________.5.常数a ,b 和正变量x ,y 满足ab =16,a x +2b y =12.若x +2y 的最小值为64,则a b =________.6.已知正实数,a b 满足()()12122a b b b a a+=++,则ab 的最大值为 .【题型三】代入消元法【典例5】(苏州市2016届高三调研测试·14)已知14ab =,,(0,1)a b ∈,则1211ab+--的最小值为 .练习1.设实数x ,y 满足x 2+2xy -1=0,则x 2+y 2的最小值是 .2.已知正实数x ,y 满足,则x + y 的最小值为 .3.已知正实数,x y 满足(1)(1)16x y -+=,则x y +的最小值为 .4.若2,0>>b a ,且3=+b a ,则使得214-+b a 取得最小值的实数a = 。
基本不等式题型及常用方法总结
基本不等式题型及常用方法总结基本不等式题型包括一元一次不等式、一元二次不等式、绝对值不等式和有理不等式等。
1. 一元一次不等式:- 解法1:通过移项和化简来求解,确保不等号方向的正确性。
- 解法2:将不等式转化为等价的集合表示,再通过集合的交、并运算求解。
2. 一元二次不等式:- 解法1:将不等式化为一元二次函数的图像,通过观察图像求解或者利用函数的性质来求解。
- 解法2:通过移项和配方法将不等式转化为二次函数的标准形式,再判断二次函数图像的位置与不等号关系来求解。
3. 绝对值不等式:- 解法1:将绝对值不等式分段求解,分别讨论绝对值内部是正数还是负数的情况。
- 解法2:通过绝对值的定义和不等式的性质,将绝对值不等式转化为两个简单的不等式来求解。
4. 有理不等式:- 解法1:将有理不等式化为分式的形式,然后通过分式的性质来求解。
- 解法2:通过变量的替换来将有理不等式转化为一元二次不等式或者一元一次不等式,再利用对应的方法来求解。
常用方法总结:1. 对于一元一次不等式和一元二次不等式,常用的方法是移项和化简、画函数图像和利用函数的性质来求解。
2. 对于绝对值不等式,常用的方法是分段求解和利用绝对值的性质来求解。
3. 对于有理不等式,常用的方法是化为分式形式和利用分式的性质来求解。
4. 在求解不等式的过程中,经常需要进行合并同类项、开方、取倒数、乘除等基本运算,需要注意运算法则和符号的变化。
5. 在不等式的求解过程中,需要注意不等式两边的平方值是否相等,以及是否存在不等式的等价变换等。
同时,在进行运算过程中,需要根据不等式的符号关系来选择合适的方式。
2020届高三文理科数学一轮复习《基本不等式》专题汇编(学生版)
《基本不等式》专题一、相关知识点1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R); (2)a +b ≥2ab (a >0,b >0).(3)b a +ab ≥2(a ,b 同号且不为零); (4)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(5)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R).2(a 2+b 2)≥(a +b )2(a ,b ∈R).(6)a 2+b 22≥(a +b )24≥ab (a ,b ∈R).(7)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)5.重要不等式链 若a ≥b >0,则a ≥a 2+b 22≥a +b 2≥ab ≥2aba +b≥b . 题型一 基本不等式的判断1.若a ,b ∈R ,则下列恒成立的不等式是( )A.|a +b |2≥|ab | B .b a +ab ≥2 C.a 2+b 22≥⎝⎛⎭⎫a +b 22 D .(a +b )⎝⎛⎭⎫1a +1b ≥4 2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2abC .1a +1b >2abD .b a +ab ≥23.下列命题中正确的是( )A .函数y =x +1x 的最小值为2 B .函数y =x 2+3x 2+2的最小值为2C .函数y =2-3x -4x (x >0)的最小值为2-4 3D .函数y =2-3x -4x(x >0)的最大值为2-4 34.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg ⎝⎛⎭⎫a +b 2,则( )A .R <P <QB .Q <P <RC .P <Q <RD .P <R <Q题型二 利用基本不等式求最值类型一 直接法或配凑法利用基本不等式求最值1.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.2.已知a >0,b >0,且2a +b =4,则1ab 的最小值为3.已知0<x <1,则x (3-3x )取得最大值时x 的值为4.已知x <0,则函数y =4x +x 的最大值是5.函数f (x )=xx +1的最大值为6.若x >1,则x +4x -1的最小值为________.7.设0<x <2,则函数y =x (4-2x )的最大值为________.8.若x ,y 均为正数,则3x y +12yx +13的最小值是9.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.10.已知x <54,则f (x )=4x -2+14x -5的最大值为________.11.设x >0,则函数y =x +22x +1-32的最小值为12.已知x ,y 为正实数,则4x x +3y +3yx的最小值为13.函数y =x 2+2x -1(x >1)的最小值为________.14.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是15.已知x ,y 都为正实数,且x +y +1x +1y =5,则x +y 的最大值是16.已知a >b >0,则2a +4a +b +1a -b的最小值为17.已知正数a ,b 满足2a 2+b 2=3,则a b 2+1的最大值为________.类型二 常数代换法利用基本不等式求最值1.已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.2.已知a >0,b >0,a +2b =3,则2a +1b 的最小值为________.3.已知正实数x ,y 满足2x +y =2,则2x +1y 的最小值为________.4.已知正项等比数列{a n }的公比为2,若a m a n =4a 22,则2m +12n 的最小值为5.已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是6.已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为7.若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.8.已知a >0,b >0,函数f (x )=a log 2x +b 的图像经过点⎝⎛⎭⎫4,12,则1a +2b 的最小值为________.9.已知函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +1n 的最小值为10.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是11.已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________.12.已知x ,y 均为正实数,且1x +2+1y +2=16,则x +y 的最小值为13.若a ,b ,c 都是正数,且a +b +c =2,则4a +1+1b +c 的最小值是14.已知正数x ,y 满足x +2y =3,则y x +1y 的最小值为________.15.设a >0,b >1,若a +b =2,则3a +1b -1的最小值为________.16.已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值;(2)x +y 的最小值.类型三 通过消元法利用基本(均值)不等式求最值1.若正实数m ,n 满足2m +n +6=mn ,则mn 的最小值是________.2.已知正实数x ,y 满足xy +2x +y =4,则x +y 的最小值为________.3.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是________.4.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________.类型四:利用基本不等式求参数值或取值范围1.若对于任意的x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为2.已知函数y =x +mx -2(x >2)的最小值为6,则正数m 的值为________.3.若对x >0,y >0,x +2y =1,有2x +1y ≥m 恒成立,则m 的最大值是________.4.已知a >0,b >0,若不等式3a +1b ≥ma +3b恒成立,则m 的最大值为5.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是________.6.已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为7.已知函数f (x )=3x 2+ax +26x +1,若存在x ∈N +使得f (x )≤2成立,则实数a 的取值范围为___题型三 基本不等式的综合问题类型一 基本不等式的实际应用问题1.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =__________吨.3.某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2). (1)求S 关于x 的函数关系式;(2)求S 的最大值.类型二 基本不等式与函数的交汇问题1.已知A ,B 是函数y =2x 的图象上不同的两点,若点A ,B 到直线y =12的距离相等,则点A ,B 的横坐标之和的取值范围是( )A .(-∞,-1)B .(-∞,-2)C .(-∞,-3)D .(-∞,-4)类型三 基本不等式与数列的交汇问题1.已知a >0,b >0,并且1a ,12,1b 成等差数列,则a +9b 的最小值为2.已知正项等比数列{a n }的前n 项和为S n ,且S 8-2S 4=5,则a 9+a 10+a 11+a 12的最小值为3.设等差数列{a n }的公差是d ,其前n 项和是S n (n ∈N +),若a 1=d =1,则S n +8a n 的最小值是______.类型四 基本不等式与解析几何的交汇问题1. 已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是2.当双曲线M :x 2m -y 2m 2+4=1的离心率最小时,M 的渐近线方程为3.两圆x 2+y 2-2my +m 2-1=0和x 2+y 2-4nx +4n 2-9=0恰有一条公切线,若m ∈R ,n4m2+1n2的最小值为∈R,且mn≠0,则。
基本不等式的常见题型
12.已知x 0, y 0, x y 1, 则
13.已知2 x y 0,
1
1
的最小值是 _____.
1 x 1 2 y
1
1
1, 则x y的最小值是 _____.
2 x-y x +2 y
1 1
4x
9y
14.已知x 0, y 0, 1, 则
2.基本不等式
一、知识点梳理
(1)基本不等式成立的条件:a≥0,b≥0.
(2)等号成立的条件:当且仅当 a=b 时取等号.
a+b
称为正数 a,b 的算术平均数, ab称为正数 a,b 的几何平均数.
2
(3)其中
1 a 2+b2 2ab, a,b R
(当且仅当 a= b时取等号 )
2
a+b
的最小值为_______.
xy
a2 1
的最小值为_______.
ab
x2 3y
的最小值为_______.
xy
[题组训练]
(�+1)(2�+1)
1. (2019 天津,13,5 分)设 x>0,y>0,x+2y=5,则
��
的最小值为
.
1 a
2.设a 0, b >0, 且a b 1, 则 的最小值为_______.
1 1
2.若 2m+n=1 上,且 m,n 为正数,则 + 的最小值为________.
m n
1
4
3.已知正数 x,y 满足 x+y=1,则�+1+�的最小值为________.
完整版)基本不等式知识点和基本题型
完整版)基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1.基本不等式原始形式若a,b∈R,则a+b≥2ab若a,b∈R,则ab≤(a^2+b^2)/22.均值不等式若a,b∈R,则a+b/2≥√(ab)3.基本不等式的两个重要变形若a,b∈R,则(a+b)/2≥√(ab)若a,b∈R,则ab≤(a+b)^2/4特别说明:以上不等式中,当且仅当a=b时取“=”4.求最值的条件:“一正,二定,三相等”5.常用结论1.x+1/x≥2 (当且仅当x=1时取“=”)2.x+1/x≤-2 (当且仅当x=-1时取“=”)3.若ab>0,则(a/b+b/a)/2≥2 (当且仅当a=b时取“=”)4.若a,b∈R,则ab≤(a^2+b^2)/2≤(a+b)^2/2特别说明:以上不等式中,当且仅当a=b时取“=”6.柯西不等式若a,b∈R,则(a^2+b^2)(1+1)≥(a+b)^2二、题型分析题型一:利用基本不等式证明不等式1.设a,b均为正数,证明不等式:ab≥(a+b)^2/42.已知a,b,c为两两不相等的实数,求证:a^2/(b-c)^2+b^2/(c-a)^2+c^2/(a-b)^2≥23.已知a+b+c=1,求证:a^2+b^2+c^2+3(ab+bc+ca)≥4/34.已知a,b,c∈R,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc5.已知a,b,c∈R,且a+b+c=1,求证:|a-b|+|b-c|+|c-a|≥4√2/3题型二:利用不等式求最值1.已知a+b=1,求证:a^3+b^3≥1/42.已知a,b,c>0,且abc=1,求证:a/b+b/c+c/a≥a+b+c3.已知a,b,c>0,且a+b+c=1,求证:a/b+b/c+c/a≥34.已知a,b,c>0,求证:(a^2+b^2)/(a+b)+(b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)≥(3/2)(a+b+c)5.已知a,b,c>0,求证:(a+b+c)(1/a+1/b+1/c)≥9基本不等式专题辅导一、知识点总结1.基本不等式原始形式若a,b∈R,则a+b≥2ab若a,b∈R,则ab≤(a²+b²)/22.均值不等式若a,b∈R,则a+b/2≥√(ab)3.基本不等式的两个重要变形若a,b∈R,则(a+b)/2≥√(ab)若a,b∈R,则ab≤(a+b)²/4特别说明:以上不等式中,当且仅当a=b时取“=”4.求最值的条件:“一正,二定,三相等”5.常用结论1.x+1/x≥2 (当且仅当x=1时取“=”)2.x+1/x≤-2 (当且仅当x=-1时取“=”)3.若ab>0,则(a/b+b/a)/2≥2 (当且仅当a=b时取“=”)4.若a,b∈R,则ab≤(a²+b²)/2≤(a+b)²/2特别说明:以上不等式中,当且仅当a=b时取“=”6.柯西不等式若a,b∈R,则(a²+b²)(1+1)≥(a+b)²二、题型分析题型一:利用基本不等式证明不等式1.设a,b均为正数,证明不等式:ab≥(a+b)²/42.已知a,b,c为两两不相等的实数,求证:a²/(b-c)²+b²/(c-a)²+c²/(a-b)²≥23.已知a+b+c=1,求证:a²+b²+c²+3(ab+bc+ca)≥4/34.已知a,b,c∈R,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc5.已知a,b,c∈R,且a+b+c=1,求证:|a-b|+|b-c|+|c-a|≥4√2/3题型二:利用不等式求最值1.已知a+b=1,求证:a³+b³≥1/42.已知a,b,c>0,且abc=1,求证:a/b+b/c+c/a≥a+b+c3.已知a,b,c>0,且a+b+c=1,求证:a/b+b/c+c/a≥34.已知a,b,c>0,求证:(a²+b²)/(a+b)+(b²+c²)/(b+c)+(c²+a²)/(c+a)≥(3/2)(a+b+c)5.已知a,b,c>0,求证:(a+b+c)(1/a+1/b+1/c)≥9选修4-5:不等式选讲1.设a,b,c均为正数,且a+b+c=1,证明:Ⅰ) ab+bc+ca≤1/3;Ⅱ) a^2b+b^2c+c^2a≥1/9.2.已知a≥b>0,求证:2a-b≥2ab-b^2.3.求下列函数的值域:1) y=3x+2;2) y=x(4-x);3) y=x+(x>2);4) y=x+(x<2)。
专题:基本不等式常见题型归纳
变式 1.在平面直角坐标系 xOy 中,设点 A(1,0) , B(0,1) ,C(a,b) , D(c,d) ,若不等式
2
CD
≥ (m
2)OC
OD
m(OC
OB)
(OD
OA)
对任意实数
a ,b ,c ,d
都成立,则实数
m 的最大值是
.
【方法技巧】不等式恒成立常用的方法有判别式法、分离参数法、换主元法.判别式法:
练习 1.已知对满足 x y 4 2xy 的任意正实数 x, y ,都有
x2 2xy y2 ax ay 1 0 ,则实数 a 的取值范围为
.
2.若不等式 x2+2xy≤a(x2+y2)对于一切正数 x,y 恒成立,则实数 a 的最小值为
.
4
1a 1b
最小值为
.
练习 1.设实数 x,y 满足 x2+2xy-1=0,则 x2+y2 的最小值是
.
2.已知正实数 x,y 满足
,则 x + y 的最小值为 .
3.已知正实数 x, y 满足 (x 1)( y 1) 16 ,则 x y 的最小值为
.
4.若 a 0,b 2 ,且 a b 3,则使得 4 1 取得最小值的实数 a =
专题:基本不等式
基本不等式求最值 利用基本不等式求最值:一正、二定、三等号.
三个不等式关系:
(1)a,b∈R,a2+b2≥2ab,当且仅当 a=b 时取等号.
(2)a,b∈R+,a+b≥2 ab,当且仅当 a=b 时取等号. (3)a,b∈R,a2+2 b2≤(a+2 b)2,当且仅当 a=b 时取等号.
将所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数
基本不等式专题(囊括全部常规题型)
基本不等式专题复习一、要点回顾1、基本不等式一般形式(均值不等式)若*,R b a ∈,则a+b 2ab ≤ 2、基本不等式的两个重要变形 (1)若*,R b a ∈,则a+b 2ab ≥ (2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab 总结:积定和最小,即当两个正数的积为定植时,它们的和有最小值;和定积最大,即当两个正数的和为定植时,它们的积有最小值;3、求最值的条件:“一正,二定,三相等”特别说明:以上不等式中,当且仅当b a =时取“=”二、典例分析题型一 直接求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x 2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x =-2 ∴值域为(-∞,-2]∪[2,+∞)题型二 配凑项例2.已知54x <,求函数14245y x x =-+-的最大值。
解:5,5404x x <∴->Q ,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x -=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
例3. 当时,求(82)y x x =-的最大值。
解:当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。
题型三 化简分离 例4. 求2710(1)1x x y x x ++=>-+的值域。
解:当,即时,421)591y x x ≥+⨯+=+((当且仅当x =1时取“=”号)。
题型四:“1”的代换例5.已知0,0x y >>,且191x y+=,求x y +的最小值。
解:190,0,1x y x y >>+=Q ,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭ 当且仅当9y x x y=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += 。
考点04基本不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型讲与练(新高考版)
考点04基本不等式(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.了解基本不等式的推导过程.2.会用基本不等式解决简单的最值问题.3.理解基本不等式在实际问题中的应用.【知识点】1≤a+b 2(1)基本不等式成立的条件:.(2)等号成立的条件:当且仅当时,等号成立.(3)其中叫做正数a,b的算术平均数,叫做正数a,b的几何平均数.2.几个重要的不等式(1)a2+b2≥(a,b∈R).(2)ba+ab≥(a,b同号).(3)ab≤(a,b∈R).(4)a2+b22≥(a,b∈R).以上不等式等号成立的条件均为a=b.3.利用基本不等式求最值(1)已知x,y都是正数,如果积xy等于定值P,那么当x=y时,和x+y有最小值.(2)已知x,y都是正数,如果和x+y等于定值S,那么当x=y时,积xy有最大值.注意:利用基本不等式求最值应满足三个条件“一正、二定、三相等”.【核心题型】题型一 利用基本不等式求最值(1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.命题点1 配凑法【例题1】(2024·辽宁·一模)已知20m n >>,则 2m mm n n+-的最小值为( )A .3+B .3-C .2+D .2【变式1】故选:D (2024·四川德阳·模拟预测)已知正实数x ,y ,z 满足26x xy yz xz x z +++++=,则32x y z ++的最小值是 .【变式2】(2024·内蒙古呼伦贝尔·一模)已知函()3102f x x x =++-的最小值为m .(1)求m 的值;(2)若a ,b 为正数,且a b m +=.【变式3】(2024·黑龙江·二模)已知实数a ,b 且0ab >,则222229aba b a b +++取得最大值时,a b +的值为( )A B .C .-D .-命题点2 常数代换法【例题2】(2024·江苏南通·二模)设0x >,0y >,122y x+=,则1x y+的最小值为( )A .32B .C .32+D .3【变式1】(2024·四川成都·模拟预测)若,a b 是正实数,且111324a b a b+=++,则a b +的最小值为( )A .45B .23C .1D .2【变式2】(23-24高三上·浙江宁波·期末)已知0,0a b >>,则下列选项中,能使4a b +取得最小值25的为( )A .36ab =B .9ab a b=+C .221a b +=D .2216625a b +=【变式3】(2024·全国·模拟预测)设正实数a ,b 满足2a b +=,则1112+++a b 的最小值为( )A .23B .34C .45D .56命题点3 消元法【例题3】(2024·全国·模拟预测)已知0x >,0y >且1x y +=,则222211x y x y +++的最小值为( )A .15B .25C .35D .45【变式1】(2023·重庆·模拟预测)已知0x >,0y >,且26xy x y ++=,则2x y +的最小值为( ).A .4B .6C .8D .12【变式2】(2023·烟台模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【变式3】(2024·浙江·模拟预测)已知,0,1a b ab >=,求11112S a b=+++的最小值.题型二 基本不等式的常见变形应用基本不等式的常见变形(1)ab ≤22a b +⎛⎫ ⎪⎝⎭≤a 2+b 22.(2)21a +1b≤≤a +b2≤a >0,b >0).【例题4】(2023·全国·三模)已知0a >,0b >,且1a b +=,则下列不等式不正确的是( )A .14ab £B .2212a b +³C .1121a b +>+D1£【变式1】(2023·辽宁·二模)数学命题的证明方式有很多种.利用图形证明就是一种方式.现有如图所示图形,在等腰直角三角形ABC V 中,点O 为斜边AB 的中点,点D 为斜边AB 上异于顶点的一个动点,设AD a =,BD b =,用该图形能证明的不等式为( ).A.)0,02a ba b +³>>B.)20,0aba b a b£>>+C.)0,02a b a b +£>>D.)220,0a b a b +³>>【变式2】(2023·陕西宝鸡·二模)设a ,R b Î,则“2a b +³”是“222a b +³”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【变式3】(2024·全国·模拟预测)已知正项数列{}n a 的前n 项和为n S ,()211n S n +=+,则下列说法正确的是( )A.11a =B .{}n a 是递减数列C .9911(1)8nn na =-=åD .1152n nn a a +++<题型三 基本不等式的实际应用 利用基本不等式求解实际问题时,要根据实际问题,设出变量,注意变量应满足实际意义,抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值.【例题5】(2023·湖南岳阳·模拟预测)如图,某人沿围墙CD 修建一个直角梯形花坛ABCD ,设直角边AD x =米,2BC x =米,若12AD AB BC ++=米,问当x = 米时,直角梯形花坛ABCD的面积最大.【变式1】(2024·黑龙江哈尔滨·一模)已知某商品近期价格起伏较大,假设第一周和第二周的该商品的单价分别为m 元和n 元()m n ¹,甲、乙两人购买该商品的方式不同,甲每周购买100元的该商品,乙每周购买20件该商品,若甲、乙两次购买平均单价分别为12,a a ,则( )A .12a a =B .12a a <C .12a a >D .12,a a 的大小无法确定【变式2】(2024·内蒙古呼和浩特·一模)小明在春节期间,预约了正月初五上午去美术馆欣赏油画,其中有一幅画吸引了众多游客驻足观赏,为保证观赏时可以有最大视角,警卫处的同志需要将警戒线控制在距墙多远处最合适呢?(单位:米,精确到小数点后两位)已知该画挂在墙上,其上沿在观赏者眼睛平视的上方3米处,其下沿在观赏者眼睛平视的上方1米处.( )A .1.73B .1.41C .2.24D .2.45【变式3】(2024·广东韶关·二模)在工程中估算平整一块矩形场地的工程量W (单位:平方米)的计算公式是()()44W =+´+长宽,在不测量长和宽的情况下,若只知道这块矩形场地的面积是10000平方米,每平方米收费1元,请估算平整完这块场地所需的最少费用(单位:元)是( )A .10000B .10480C .10816D .10818【课后强化】基础保分练一、单选题1.(2024·河南南阳·一模)已知正实数,x y 满足111x y+=,则43xy x -的最小值为( )A .8B .9C .10D .112.(2023·河南开封·三模)已知0a >,0b >,且1a b +=,a b ¹,则下列不等式成立的是( )A 1122a b<<+B 1122a b<+<C .1122a b +<<D .1122a b+<3.(22-23高三上·湖南长沙·阶段练习)甲、乙两名司机的加油习惯有所不同,甲每次加油都说“师傅,给我加300元的油”,而乙则说“师傅帮我把油箱加满”,如果甲、乙各加同一种汽油两次,两人第一次与第二次加油的油价分别相同,但第一次与第二次加油的油价不同,乙每次加满油箱,需加入的油量都相同,就加油两次来说,甲、乙谁更合算( )A .甲更合算B .乙更合算C .甲乙同样合算D .无法判断谁更合算4.(2024·陕西西安·一模)“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《胁子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何现有这样一个相关的问题:被3除余2且被5除余3的正整数按照从小到大的顺序排成一列,构成数列{}n a ,记数列{}n a 的前n 项和为n S ,则260n S n+的最小值为( )A .60B .61C .75D .765.(2023·河南信阳·模拟预测)若51x -<<-,则函数()22222x x f x x ++=+有( )A .最小值1B .最大值1C .最小值1-D .最大值1-6.(2024·四川凉山·二模)已知正数,a b 满足e112a b dx x +=ò,则2aba b+的最大值为( )A B .C D .1二、多选题7.(2024·江苏·一模)已知,x y ÎR ,且123x =,124y =,则( )A .y x >B .1x y +>C .14xy <D <8.(2024·贵州贵阳·一模)已知0,0a b >>,且2a b +=,则( )A .22a b +³B .112a b +³C .22log log 1a b +£D .222a b +³三、填空题9.(2024·云南红河·二模)如图,在棱长均相等的斜三棱柱111ABC A B C -中,111π,3A AB A AC BM BB ÐÐl ===uuuur uuur ,1CN CC m =uuu r uuuu r ,若存在()()0,1,0,1l m ÎÎ,使0AM BN ×=uuuu r uuu r 成立,则l m +的最小值为.10.(2024·江西九江·二模)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A ,B ,C 成等差数列,224a c +=,则ABC V 面积的最大值是 ,()24sin sin 3A C b +=.四、解答题11.(2024·四川广安·二模)已知a ,b ,c 均为正数,且3a b c ++=.(1)是否存在a ,b ,c ,使得()190,5a b c +Î+,说明理由;(2)6.12.(2024·四川成都·二模)已知函数()()23,32f x x g x x =-=--(1)求不等式()()f x g x £的解集N ;(2)设N 的最小数为n ,正数,a b 满足32n a b +=,求223b a a b++的最小值.综合提升练一、单选题1.(·0>,2221a ab b ++=,则222a b + )A B C .34D 2.(2024·辽宁鞍山·二模)已知a ,b 均为锐角,()sin 3sin cos a b a b =+,则tan a 取得最大值时,()tan a b +的值为( )A B C .1D .23.(23-24高三上·浙江金华·期末)若()tan 23tan a a b =-,则()tan a b +的最大值为( )A B .1C .2D 4.(2024·黑龙江齐齐哈尔·二模)早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.若221a b +=,则()()4141a b++的最小值为( )A .254B .916C .94D .25165.(2024·陕西西安·一模)已知二次函数()2y x b a x ab =-+-+的图象与x 轴交于A 、B 两点,图象在A 、B 两点处的切线相交于点P .若1ab =,则ABP V 的面积的最小值为( ).A .1B C .2D .46.(2023·山东泰安·模拟预测)在实验课上,小明和小芳利用一个不等臂的天平秤称取药品. 实验一:小明将5克的砝码放在天平左盘,取出一些药品放在右盘中使天平平衡;实验二:小芳将20克的砝码放在右盘,取出一些药品放在天平左盘中使天平平衡,则在这两个实验中小明和小芳共秤得的药品( )A .大于20克B .小于20克C .大于等于20克D .小于等于20克7.(2024·云南楚雄·模拟预测)足球是一项深受人们喜爱的体育运动.如图,现有一个11人制的标准足球场,其底线宽68m AB =,球门宽7.32m EF =,且球门位于底线AB 的中间,在某次比赛过程中,攻方球员带球在边界线AC 上的M 点处起脚射门,当EMF Ð最大时,点M 离底线AB 的距离约为( )A .26.32mB .28.15mC .33.80mD .37.66m8.(23-24高三上·浙江宁波·期末)设实数x ,y 满足32x >,3y >,不等式()()33222338123k x y x y x y --+--≤恒成立,则实数k 的最大值为( )A .12B .24C .D .二、多选题9.(23-24高三上·河北沧州·阶段练习)已知0a >,0b >,且111a b +=,则下列说法正确的有( )A .8ab ³B .4a b +³C .228a b +³D .49a b +³10.(23-24高三上·湖南常德·期末)已知0a b >>,则下列不等式一定成立的是( )A .11a ba b >++B .2ab a b <+C .()ln 2a b ab ++>D .111ln 1ln a b<++11.(2024·全国·模拟预测)已知正实数a ,b ,c 满足111a b c<<,则( )A .c a c b ->-B .b b ca a c->-C .a c -³D 12³三、填空题12.(2024·陕西咸阳·二模)已知总体的各个个体的值由小到大依次为2,4,4,6,a ,b ,12,14,18,20,且总体的平均值为10.则11a b+的最小值为 .13.(2024·辽宁大连·一模)对于任意的正数m ,n ,不等式 312m n m n l+³+成立,则λ的最大值为14.(2024·四川泸州·二模)ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知22233c a b =-,则()tan A B -的最大值为.四、解答题15.(2024·四川成都·二模)已知函数()f x x a b =++,不等式()4f x <的解集为{06}x x <<∣.(1)求实数,a b 的值;(2)函数()f x 的最小值为t ,若正实数,,m n p 满足23m n p t ++=,求1122m p n p+++的最小值.16.(2023·陕西宝鸡·二模)已知函数()221f x x x =-++.(1)求()5f x ³的解集;(2)设()f x 的最小值为m ,若正数a ,b ,c 满足a b c m ++=,求ab ac bc ++的最大值.17.(2024·青海·一模)已知正数,,a b c 满足2a b c ++=.求证:(1)22243a b c ++³;6£.18.(2024·广东·一模)海参中含有丰富的蛋白质、氨基酸、维生素、矿物质等营养元素,随着生活水平的提高,海参逐渐被人们喜爱.某品牌的海参按大小等级划分为5、4、3、2、1五个层级,分别对应如下五组质量指标值:[300,350),[350,400),[400,450),[450,500),[500,550].从该品牌海参中随机抽取10000颗作为样本,统计得到如图所示的频率分布直方图.(1)质量指标值越高,海参越大、质量越好,若质量指标值低于400的为二级,质量指标值不低于400的为一级.现利用分层随机抽样的方法按比例从不低于400和低于400的样本中随机抽取10颗,再从抽取的10颗海参中随机抽取4颗,记其中一级的颗数为X ,求X 的分布列及数学期望;(2)甲、乙两人计划在某网络购物平台上参加该品牌海参的订单“秒杀”抢购活动,每人只能抢购一个订单,每个订单均由()*2,n n n ³ÎN 箱海参构成.假设甲、乙两人抢购成功的概率均为()215n +,记甲、乙两人抢购成功的订单总数量为Y ,抢到海参总箱数为Z .①求Y 的分布列及数学期望;②当Z 的数学期望取最大值时,求正整数n 的值.19.(2023·四川达州·二模)在ABC V 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos cos cos cos cos b c a aB C A B C+=+.(1)求tan tan B C ;(2)若3bc =,求ABC V 面积S 的最小值.拓展冲刺练一、单选题1.(2024·辽宁·一模)已知,R a b Î.则“0a >且0b >”是“2ab b a+³”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.(2024·山东济宁·一模)已知ABC V 的内角,,A B C 的对边分别为,,a b c ,且3a =,cos (2)cos a B c b A =-,则ABC V 面积的最大值为( )A B C .94D .923.(2024·湖北武汉·模拟预测)在三棱锥-P ABC 中,AB =1PC =,4PA PB +=,CA -,且PC AB ^,则二面角P AB C --A B .34C .12D 4.(23-24高三上·江苏镇江·开学考试)某校在校庆期间举办羽毛球比赛,某班派出甲、乙两名单打主力,为了提高两位主力的能力,体育老师安排了为期一周的对抗训练,比赛规则如下:甲、乙两人每轮分别与体育老师打2局,当两人获胜局数不少于3局时,则认为这轮训练过关;否则不过关.若甲、乙两人每局获胜的概率分别为1p ,2p ,且满足1243p p +=,每局之间相互独立.记甲、乙在n 轮训练中训练过关的轮数为X ,若()16E X =,则从期望的角度来看,甲、乙两人训练的轮数至少为( )A .27B .24C .32D .28二、多选题5.(2024·江苏·一模)已知函数()sin 2cos2xf x x=-,则( )A .()f x 的最小正周期为πB .()f x 的图象关于点()π,0对称C .不等式()f x x >无解D .()f x 6.(23-24高三上·江苏连云港·阶段练习)已知0a >,()e 1ln 1ab -=,则( )A .1e b <<B .ln a b >C .e ln 1a b -<D .1b a -<7.(2023·全国·模拟预测)实数a ,b 满足2242a b +=,则( )A .12£abB .a b +的最大值为C .a b é-ÎêëD .()()3328a b a b ++的最大值为92三、填空题8.(2024·四川成都·模拟预测)已知实数00,x y >>,若231x y +=,则21x y +的最小值为 .9.(2024·福建漳州·模拟预测)如图,某城市有一条公路从正西方向AO 通过路口O 后转向西北方向OB ,围绕道路,OA OB 打造了一个半径为2km 的扇形景区,现要修一条与扇形景区相切的观光道MN ,则MN 的最小值为km .四、解答题10.(2023·四川资阳·模拟预测)已知0a >,0b >,且2a b +=.(1)求22a b +的最小值;(2)£.11.(22-23高一下·四川·期末)蜀绣又名“川绣”,与苏绣,湘绣,粤绣齐名,为中国四大名绣之一,蜀绣以其明丽清秀的色彩和精湛细腻的针法形成了自身的独特的韵味,丰富程度居四大名绣之首.1915年,蜀绣在国际巴拿马赛中荣获巴拿马国际金奖,在绣品中有一类具有特殊比例的手巾呈如图所示的三角形状,点D 为边BC 上靠近B 点的三等分点,60ADC Ð=°,2AD =.(1)若45ACD Ð=°,求三角形手巾的面积;(2)当ACAB取最小值时,请帮设计师计算BD 的长.12.(2024·江苏盐城·模拟预测)根据多元微分求条件极值理论,要求二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点,首先构造出一个拉格朗日辅助函数(,,)(,)(,)L x y f x y g x y l l =+,其中l 为拉格朗日系数.分别对(,,)L x y l 中的,,x y λ部分求导,并使之为0,得到三个方程组,如下:(,,)(,)(,)0(,,)(,)(,)0(,,)(,)0x x x y y y L x y f x y g x y L x y f x y g x y L x y g x y l l l l l l =+=ìï=+=íï==î,解此方程组,得出解(,)x y ,就是二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点.,x y 的值代入到(,)f x y 中即为极值.补充说明:【例】求函数22(,)f x y x xy y =++关于变量x 的导数.即:将变量y 当做常数,即:(,)2x f x y x y =+,下标加上x ,代表对自变量x 进行求导.即拉格朗日乘数法方程组之中的,,x y L L L l 表示分别对,,x y λ进行求导.(1)求函数222(,)2f x y x y xy xy =++关于变量y 的导数并求当1x =处的导数值.(2)利用拉格朗日乘数法求:设实数,x y 满足22(,)410g x y x y xy =++-=,求(,)2f x y x y =+的最大值.(3)①若,,x y z 为实数,且1x y z ++=,证明:22213x y z ++³.②设0a b c >>>,求221121025()a ac c ab a a b ++-+-的最小值.。
高考数学一轮专题复习——基本不等式(学生版)
专题:基本不等式的应用 (ab ≤a +b 2)1.设x 、y 均为正实数,且2+x +2+y=1,则xy 的最小值为 ( ) 2.(2009·天津高考) 设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1b的最小值为 ( ) 3.已知不等式(x +y )(1x +a y)≥9 对任意正实数x ,y 恒成立,则正实数a 的最小值为 ( ) 4.(2010·太原模拟)若直线ax -by +2=0(a >0,b >0)和函数f (x )=a x +1+1(a >0且a ≠1)的图象恒过同一个定点,则当1a +1b取最小值时,函数f (x )的解析式是________.5.设a 、b ①ab >2ab a +b ;②a >|a -b |-b ;③a 2+b 2>4ab -3b 2;④ab +2ab >2恒成立的 序号为 ( )A .①③ B.①④ C.②③ D.②④6.已知a 、b 、c ∈(0,+∞)且a +b +c =1,求证:(1a -1)(1b -1)(1c-1)≥8.7. 某商场中秋前30f (t )=t 2+10t +16,则该商场前t 天平均售出的月饼最少为 ( )8.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站________千米处.9.某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2,水池所有墙的厚度忽略不计。
(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低,并求出最低总造价。
专题:基本不等式常见题型归纳
专题函数常见题型归纳三个不等式关系:(1) a , b € R, a 2 + b 2>2ab ,当且仅当a = b 时取等号.(2) a , b € R +, a + b > 2 ab ,当且仅当a = b 时取等号.2 . 2 .a +b a + b 2「? r(3) a , b € R, —w (—T )2,当且仅当2 2上述三个不等关系揭示了 a + b , ab , a + b 三者间的不等关系.其中,基本不等式及其变形: a , b € R , a + b >2 ab (或 ab w ( 2 )),当且仅当 a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值•禾U 用基 本不等式求最值:一正、二定、三等号 【题型一】利用拼凑法构造不等关系【典例1】(扬州市2015— 2016学年度第一学期期末• 11)已知a >b >1且则1 的最小值为2 log a b 3log b a 7 a 1a2b 1log a b 3 ,••• a > b >1log a b2,a 1a 111 3.小值为 解析:由 log 2x+log 2y=1 可得 log 2xy=1=log 22,则有 xy=2,那么==(x — y ) +>2=4,当且仅当(x — y )=,即x=+1, y= — 1时等号成立,故的最小值为 4. 2. (苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)若实数 x,y 满足1 3 1 xy 3x 3(0 x),贝U 的最小值为 _______________ 2 x y 3a =b 时取等号.【解析】••• a > b >1 且 2 log ab 3log ba 7 二 2log a b3 log a b 7,解得log a b 1 或21 b2 1练习:1.(南京市、盐城市 2015 届高三年级第一次模拟・10)若实数满足, 且,则的最3.(无锡市2017届高三上学期期末)已知 a 0,b 0,c 2 ,且a b 2 ,则ac c c 二的最小值为 .b ab 2c 2【典例2】(南京市2015届高三年级第三次模拟・12)已知x , y 为正实数,则+ - 4x + y x + y的最大值为 _______ •2 2解析:由于 电 + 丄=4x (x y ) y (4x y )=4x 28xy y ?4x + y x + y(4x y )(x y ) 4x 5xy y当且仅当4彳=丫,即y=2x 时等号成立.y x【典例3】若正数a 、b 满足aba b 3,则a b 的最小值为解析 :由a,b R ,得 ab ab a3 ( 2b 2 2 ),(a b) 4(ab) 12 0 ,解得a b 6(当且仅当 a b 且 ab ab 3,即a b 3时,取等号).变式: 1.若 a, b R ,且满足2a b 2 a b ,则a b 的最大值为解析: 因为a,b R,所以由2a b 2 a b a b a 2 b 2 (a?)2.(ab)222(a b ) 0,解得0 a b 2(当且仅当a b 且a 2 b 2 a b ,即a b 1时,取等号)•2. 设x 0, y 0 , x 2y 2xy 8,则x 2y 的最小值为 _____________________ 43. 设x, y R , 4x y xy 1,则2x y 的最大值为 __________________54. (苏北四市(淮安、宿迁、连云港、徐州) 2017届高三上学期期中)已知正数a ,b 满1 9—足ab 5,则ab 的最小值为 _________a b【题型二】含条件的最值求法【典例 4】(苏州市 2017届高三上期末调研测试)已知正数x, y 满足x y 1,则=1 +4x 2 3xy5xy_4=3,51 的最小值为x 2 y 1练习1.(江苏省镇江市高三数学期末・1 14)已知正数x, y 满足一 x14x 11,则9y y 1 y x 1 的最小值为 .解析:对于正数x , 1丄1彳y ,由于一 + 一=1, x y则知 x>1 , y>1,那么4xx 1 4y + y 1 4x =(4xx 1+ 4y ) y1 1 1(1+1— 1 —)=(4x + 4y)(x 1+ y 1 )》(4xx 1 + .4y y 1) x yx 1 y 1 xy:x 1 x y 1 y2=25,当且仅当 竺• 口=空•时等号成立.x 1 y y 1 x2. ( 2013~2014学年度苏锡常镇四市高三教学情况调查(一) • 11)已知正数满足,则的最小值为 _______ .解析:,当且仅当时,取等号•故答案为:9.3•(南通市2015届高三第一次调研测试・12)已知函数y a x b (b 0)的图像经过点4 1P (1,3),如下图所示,贝U 的最小值为a 1 b4 11 4 11解析:由题可得 a+b=3,且 a>1 ,那么------------- + — = — ( a — 1+b ) ( ----- + —)=-b 2 a 1 b 29 a 1 4b-,当且仅当二」=」^时等号成立.2 b a 112) 己知a , b 为正数,且直线与直线互相平行,则2a+3b 的最小值为 ____________ .那么 2a+3b= (2a+3b ) • = (2a+3b ) (+) =++13》2+13=25,当且仅当=,即卩 a=b 时等号成立.答案:64;(考查基本不等式的应用).(4+a 1+ 4b+1)b a 1> 1 ( 2 a 1 4b +5) 22b a 1+5)【解析】由于直线 ax+by — 6=0 与直线 2x+ (b — 3) y+5=0互相平行,则有 =,即 3a+2b=ab , 5.常数a,b 和正变量x,y 满足ab = 16,a + x2b 1 7=若x + 2y 的最小值为 64,则 a b =4.(江苏省苏北四市 2015届高三第一次模拟考试・1 2 161答案:【题型三】代入消元法最小值为2.(苏州市2014届高三调研测试・13)已知正实数x , y 满足,则x + y 的最小值为 _____________ 解析:•••正实数 x , y 满足 xy+2x+y=4 , ■'■( 0 v x v 2) . x+y=x+== ( x+1) + - 3,当且仅当时取等号.••• x+y 的最小值为•故答案为:.3. (南通市2014届高三第三次调研测试・9)已知正实数x,y 满足(x 1)(y 1) 16,则x y 的最小值为 _________正实数 x , y 满足(x - 1 ) ( y+1 ) =16 , • x6.已知正实数a,b 满足2a b b2b a a1,则ab 的最大值为【典例5】(苏州市2016届高三调研测试・14) 已知aba,b (0,1),则」解析:由 ab4b4b4b 1 2 T~ 4b 2 12b 2 4b 2 5b 1 令7b 17b 2~4b 25b 149t 24t 227t 184t49 18 27t7b 1 4b 2 5b 1 4.23 当且仅当t 3^223j 142等号成立.练习1.(江苏省扬州市2015届高三上学期期末x 2 + y 2的最小值是_________________ . 12)设实数x , y 满足x 2+ 2xy — 1= 0,则2x + 2xy — 1 = 0 可得 1 x 2y=2x,那么2 2(1 x 2 )25 212 = x+ 2 4x 4 4x 21 4x 211,当且仅当 2—x 2= 1-,即x 4=^时等号成立.4 4x 25 解析:由解法二 :由b c a 得-1a,令bax,-c c ccy ,则x 1 y /亠cabx+y= 16 y 1 2 y 1168,当且仅当 y=3, (x=5)时取等号.二 x+y 的最y 1V y 1小值为8.故答案为:8.414. (扬州市2017届高三上学期期中)若 a 0,b 2,且a b 3,则使得4取a b 2得最小值的实数a= ________ 。
基本不等式20种题型
基本不等式20种题型一、基本不等式简介基本不等式是高中数学中的一个重要内容,它是指两个正数的平均数不小于它们的几何平均数,两个数的算术平均数不大于它们的几何平均数。
基本不等式在解决一些最值问题时非常有用,包括求和、积、方差的最值,求三角形的边长问题等。
二、20种题型1. 证明型题型:通过基本不等式证明一些不等式,例如,用基本不等式证明一个数的平方大于另一个数的平方。
2. 求最值题型:用基本不等式求和、积、方差的最值,求三角形的边长问题等。
3. 构造型题型:通过构造一个等式,利用基本不等式构造另一个等式,进而解决问题。
4. 拆分型题型:将一个数拆分成两个数的和或差,利用基本不等式进行求解。
5. 参数型题型:在基本不等式中引入参数,利用基本不等式求解参数的取值范围或最值问题。
6. 反证型题型:通过反证法,利用基本不等式证明一些不等式的正确性。
7. 优化型题型:利用基本不等式优化一些算法或求解过程。
8. 覆盖型题型:用基本不等式覆盖一些其他类型的题目,如解三角形问题等。
9. 扩展型题型:将基本不等式进行扩展,利用扩展后的不等式解决问题。
10. 分段型题型:对于一些分段函数,利用基本不等式分段求解。
三、解题步骤1. 确定使用基本不等式的条件:在应用基本不等式之前,需要保证所使用的不等式是成立的。
如果不能保证,需要先证明不等式的正确性。
2. 确定正数的个数:在应用基本不等式时,需要保证所使用的正数不超过两个。
如果不能保证,需要重新考虑问题的解法。
3. 确定平均数和几何平均数:根据题目中的数据,确定使用哪个平均数和几何平均数。
4. 计算并比较大小:根据题目中的数据,利用基本不等式计算出结果的大小,并与题目中的要求进行比较。
5. 验证结果的正确性:在得到结果后,需要验证结果的正确性,确保结果的合理性。
四、例题解析【例1】求函数f(x) = x(10-x)的最小值。
解:根据题意,可以知道f(x)是一个积的形式,可以使用基本不等式求解最小值。
基本不等式培优专题(学生版)
目录基本不等式培优专题培优点一常规配凑法02培优点二“1”的代换02 培优点三换元法03 培优点四和、积、平方和三量减元04 培优点五轮换对称与万能K 法05 培优点六消元法(必要构造函数求导)05 培优点七不等式算两次06 培优点八齐次化06 培优点九待定与技巧性强的配凑07 培优点十多元变量的不等式最值问题08 培优点十一不等式综合应用091 a +1ab 培优点一 常规配凑法基本不等式培优专题1.(2018 届温州 9 月模拟) 已知 2a+ 4b= 2 ( a , b Î R ),则a + 2b 的最大值为y 22. 已知实数x , y 满足x 2+= 1 ,则x 16的最大值是3.(2018 春湖州期末)已知不等式(x + my)( 1 + 1 ) ³ 9 对任意正实数x , y 恒成立,则正实数m x y的最小值是 ()A. 2B. 4C. 6D. 84.(2017 浙江模拟)已知a , b Î R ,且a ¹1 ,则 a + b +- b 的最小值是5.(2018 江苏一模)已知a > 0 , b > 0 ,且 2 + 3 = ,则ab 的最小值是a b6.(诸暨市 2016 届高三 5 月教学质量检测)已知a > b > 0 , a + b = 1,则 4 + 1的最小值等于a –b 2b7.(2018 届浙江省部分市学校高三上学期 9+1 联考)已知实数 a > 0 ,b > 0 , 1+ a +1 1 b +1= 1,则a + 2b 的最小值是 ( )A. 3B. 2C. 3D. 28.(2019 届温州 5 月模拟 13)已知正数 a ,b 满足a + b = 1,则 b + 1的最小值等于 ,a b此时a =9.(2018 浙江期中)若正数a , b 满足 2a +1= 1,则 2+ b 的最小值为 ()b aA. 4B. 8C. 8D. 9培优点二 “1”的代换2 + y 22 22 2232 2210.(2017 西湖区校级期末)已知实数 x , y 满足x > y > 0 ,且 x + y = 2 ,则4+1的最小值是.x + 3y x – y11.(18 届金华十校高一下期末)记max{x , y , z } 表示x , y , z 中的最大数,若a > 0 , b > 0 ,则max{a, b , 1 + 3} 的最小值为()a bA .B . C. 2D. 312. 已知a, b 为正实数,且a + b = 2 ,则 a 2 + 2 + b 2– 2 的最小值为a b + 113. 已知正实数a, b 满足1+2 = 1 ,则ab 的最大值为(2a + b) b (2b + a)a(补充题)已知x, y > 0 ,则 6xy x 2+ 9y 2 + 2xyx 2 + y 2的最大值是14.(2019 届超级全能生 2 月)已知正数 x , y 满足x + y = 1,则 1 + 1 的最小值是()1 + x 1 +2 yA. 33B. 7C. 3 +D. 62865515.(2019 届余高、缙中、长中 5 月模拟 7)已知log 2 (a – 2) + log 2 (b –1) Š1 ,则 2a + b 取到最小值时ab = ()A .3B .4C .6D .916.(2018 温州期中)已知实数x, y 满足 2x > y > 0 ,且1+ 1=1, 2x – y x + 2 y则x + y 的最小值为 ()A .3 + 2 3 5 B .4 + 2 3 5C .2 + 43 5D .3 +4 3 517.(2018 杭州期末)若正数a,b 满足a + b = 1,则 a +a + 1bb + 1的最大值是 18.(2017 湖州期末)若正实数x, y 满足 2x + y = 2 ,则 4x 2 +y 的最小值是y + 1 2x + 219.(2018 河北区二模) 若正数a, b 满足 1 + 1 = 1, 1 + 9的最小值为a ba – 1b – 1()A.1B. 6C. 9D.16培优点三换元法20.(温岭市 2016 届高三 5 月高考模拟) 已知实数 x, y 满足 xy – 3 = x + y ,且 x > 1 则 y(x + 8)的最小值是 ()A.33B.26C.25D.2121. 若正数x, y 满足 1 + 1 = 1,则 4x + 9 y的最小值为x y x – 1 y – 122. (2018 届嘉兴期末)已知实数 x , 满足 4x+ 9y= 1 ,则 2x+1+ 3y+1 的取值范围是23.(2018 上海二模)若实数 x , 满足 4x + 4y = 2x +1 + 2y +1 ,则S = 2x+ 2y的取值范围是24. (2019 届台州 4 月模拟)设实数a ,b 满足a + b = 4 ,则ab 的最大值为 ;(a 2 + 1)(b 2 + 1) 的最小值为25.(2019 届镇海中学考前练习 14)已知 x > 0, y > 0, xy ( x + y ) = 4 ,则xy 的最大值为 ,2x + y 的最小值为26.(2018 春• 台州期末)已知a , b c R , a + b = 2 ,则1 + a 2+ 11b 2 + 1的最大值为( )A. 1B.6 5C.2 + 1 2D. 227.(2016 宁波期末 14)若正数x , y 满足 x 2+ 4 y 2+ x + 2 y = 1 ,则xy 的最大值为28.(2018 届诸暨市期中)已知实数x , y 满足 x + 4 y= 1 – 2 ,则2xy的最大值为()y x xy x + 2 y –1A. 2 33B.3 2C.2 3 3 + 1 D. 3 + 1 229. (2018 台州一模) 非负实数 x 、 y 满足 x 2+ 4y 2+ 4xy + 4x 2 y 2= 32, 则 x + 2y 的最小值 , 7(x + 2 y ) + 2xy 的最大值yxy + 130.(2018 春南京)若x 、y c (0,+œ), x ++ xy = 4. 则的取值范围2x y + 2xy + 1731.(2017 武进区模拟)已知正实数x 、 y 满足xy + 2x + 3y = 42, 则xy + 5x + 4y 的最小值为2 2 培优点四和、积、平方和三量减元2 2 3332.(2017 宁波期末)若正实数a, b 满足(2a + b)2= 1+ 6ab ,则ab 2a + b + 1的最大值为33.(2019 嘉兴 9 月基础测试 17)已知实数x, y 满足 x2+ xy + 4y 2 = 1,则x + 2 y 的最大值为34.(2016 暨阳联谊)已知正实数x, y 满足 2x + y = 2 ,则x + 的最小值为35.已知正实数a, b 满足9a 2+ b 2= 1 ,则ab3a + b的最大值为 36. 已知实数a,b, c 满足a + b + c = 0,a 2 + b 2 + c 2 = 1 ,则a 的最大值为37.(2018 届杭二高三下开学)若9x 2+ 4 y 2+ 6xy = 1, x , y c R ,则9x + 6y 的最大值为38.(2016 十二校联考 13) 若存在正实数 y ,使得xy y – x = 15x + 4 y,则实数x 的最大值 为且a + 2b = 3 ,则 1a+ 2的最小值是,b1 + 2a 2b 2的最小值是2ab 40.(2019 届金华一中 5 月模拟 9) 已知正实数a ,b 满足. a + b = 1,则a 2+ b +的a + b2最大值是()A.2B.1+C.1+D.1+41.(2017 西湖区校级模拟)已知正实数a, b 满足a2– b + 4 Š 0 ,则u =2a + 3b ( )a + b14 A. 有最大值为5B. 有最小值为14 5C. 没有最小值D.有最大值为 3培优点五 轮换对称与万能K 法培优点六 消元法(必要构造函数求导)x 2 + y 2 3 222 2 2 2 y 2x 42.(2018 湖州期末)已知a, b 都为正实数,且1 + 1= 3 ,则ab 的最小值是 ,a b1+ bab的最大值是43.设 a > b > 0 ,那么a 2+1b(a – b)的最小值为 ()A. 2B. 3C. 4D. 52944.设a > 2b > 0 ,则(a – b ) +b (a – 2b )的最小值为45.(2017 天津)若a , b c R , a b > 0 ,则a 4 + 4b 4 + 1ab的最小值为{1 ⎞2 {1 ⎞246. 若x, y 是正数,则| x + | ⎞ ⎞ + |y + | ⎞ ⎞的最小值是47. 已知a ,b, c c (0,+œ) ,则(a2+ b 2+ c 2 )2+ 5 2bc + ac的最小值为48.(2018 天津一模)已知a > b > 0 ,则 2a + 3 + a + b 2 a – b的最小值为 49.(2016 台州期末)已知正实数a , b ,满足a 2 – b + 4 Š 0 ,则u =2a + 3b()a + b14 A. 有最大值为5 14B. 有最小值为5 C. ,没有最小值 D.有最大值为 350.已知a > 0,b > 0, c > 0 且a + b = 2 ,则 a c+ b c – c + ab 25 c – 2的最小值是51.(2019 届杭高高三下开学考 T17) 若不等式x2– 2 y 2 Š cx( y – x) 对满足 x > y > 0 的任意实数x, y 恒成立,则实数c 的最大值为52.(2019 届绍兴一中 4 月模拟)已知 x > 0, y > 0, x + 2 y = 3,则x 2+ 3y xy的最小值为( )A.3 – 2B.2 + 1C. –1D. +1培优点八 齐次化培优点七 不等式算两次2x53.(2018·浙江模拟)已知a > 0, b > 0 ,则 6ab9b 2 + a 2+ 2ab b 2 + a 2的最大值为,若 4x 2 – xy + y 2 = 25 则3x 2 + y 2 的取值范围是54.(2016 新高考研究联盟二模)实数x , y 满足x 2 – 2xy + 2 y 2 = 2 ,则x 2 + 2 y 2 的最小值是55.(2016 大联考)若正数x , y , z 满足3x + 4 y + 5z = 6 ,则1+ 4 y + 2z的最小值为2 y + z x + z56.(2016 杭二最后一卷)若正数x , y 满足 1 + 1= 1,则x 2 – 10xy + y 2 的最小值为x y57.(2016 宁波二模)已知正数x , y 满足xy Š 1 ,则M = 1 1 + x + 1 1 + 2 y的最小值为 58.(2016 浙江模拟)已知实数a , b , c 满足 1 a 2 + 1b 2 +c 2 = 1 ,则a b + 2bc + 2c a 的取值范4 4围是 ()A. (–œ, 4]B.[–4, 4]C.[–2, 4]D.[–1, 4]59. 已知x , y , z c(0,+œ) 且x 2 + y 2 + z 2 = 1 ,则3xy + yz 的最大值为60.(2016 大联考)设 x, y, z, wc R ,且满足 x 2 + y 2 + z 2 + w 2 = 1,则 P = xy + 2yz + zw 的最大值是61.(2017 学年杭二高三第 3 次月考)已知T = min{(+ y )2, (+ y )2, (+ )2},且x + y + z = 2 ,则T 的最大值是()A. 8362. 已知a,b, cc R +,则B. 8C. 43a 2 +b 2 +c 2 的最小值是ab + 2bcD. 2363. 已知a,b, c c R ,且a 2+ b 2+ c 2= 4 ,则 5ab +2bc 的最大值是64. 已知a,b, c c R ,且a 2+ b 2+ c 2= 4 ,则ac + bc 的最大值是;又若a + b + c = 0 ,则c 的最大值是培优点九 待定与技巧性强的配凑7x z za 2+ c 25 5 ⎞ |5 ⎞ 35⎞ + =65.(2019 届浙江名校新高考研究联盟 9 题)已知正实数a, b, c, d 满足a + b = 1, c + d = 1 ,则1 + 1的最小值是 ( )abc dA.10B. 9C. 4{ xy + 2z = 1D. 3 66.(2019 届杭四仿真考)已知实数 x ,y ,z为;此时 z =满足 {x 2 + y 2 + z 2= 5,则xyz 的最小值67.(2019 届慈溪中学 5 月模拟)若正实数a ,b, c 满足a (a + b + c ) = bc 则为a b + c的最大值 68.(17 浙江期末)已知 a ,b, c c R 且a + b + c = 0 , a > b > c ,则b的取值范围是( ){{ 1 1 ⎞ {A. |– ,B. |– , |C. (– 2, 2)D. |– 2, 5 |⎞ 5 5 ⎞⎞ 5 5 ⎞⎞ ⎞69.(2018浦江县模拟)已知实数a , b, c 满足a 2+ b 2+ c 2= 1 ,则a b + c 的最小值为 ()A.-2B. – 3 2C.-1D. – 1270.(2016秋湖州期末)已知实数a , b, c 满足a 2 + 2b 2 + 3c 2= 1 ,则a + 2b 的最大值是( ) A. B.2C. D.371.(2019江苏一模)若正实数a ,b, c 满足a b = a + 2b, a bc = a + 2b + c ,则c 的最大值为72.(2018 秋辽宁期末)设a 、b 、c 是正实数满足a + b Š c ,则 b+a的最小值为a b + c1 1 1 173.(2017 秋苏州期末)已知正实数a ,b,c 满足 1, + =1,则c 的取值范围是a b a+ b c74:(2019 届浙江名校协作体高三下开学考 17)若正数a ,b ,c 满足a 2 + b 2 + c 2 – a b – bc = 1 ,则 c 的最大值是75.(2018 届衢州二中 5 月模拟 12)已知非负实数a, b, c 满足a + b + c = 1,则(c – a)(c – b) 的取值范围为76.(2018 届上虞 5 月模拟 16)若实数x, y, z 满足 x + 2 y + 3z = 1, x 2+ 4 y 2 + 9z 2 = 1,则z的最小值是培优点十 多元变量的不等式最值问题234 11 4 1 177.(2018 春衢州期末)已知 x, y > 0 ,若 x + 4y + 6 = + ,则 x y 4 + 1 的最小值是()x yA. 6B. 7C. 8D. 978.(2018 嘉兴模拟)已知 x + y =+ + 8(x, y > 0) ,则x + y 的最小值为()x yA. 5B.9C.4 + 2D.1079.(2018 越城区校级)已知x, y > 0, 且x + y + + 1 =19 ,则 3 – 7的最小值是x 2y4x 16 y80.(2016 台州期末)已知实数a,b, cc(0,1) ,设 2 + a 1 1 – b , 2 + b 1 1 – c , 2 + c 1 1 – a 这三个数的最大值为M ,则M 的最小值为()A.5B. 3 + 2C. 3 – 2D.不存在81.(2019 乐山模拟)已知实数 x , y 满足x > 1, y > 0 ,且 x + 4 y +1+ 1= 11 ,则 1 + 的 x – 1 y x –1 y最大值为82.(2019 乐山模拟)已知 x,y 为正实数,且满足(xy – 1)2 = (3y + 2)( y – 2) ,则x + 1的最大值y 为83.(2019 届镇海中学最后一卷)已知x , y > 0 ,且 8x 2+ 1 = 1,则x + y 的最小值y9培优点十一 不等式综合应用32622。
基本不等式知识点及题型归纳总结
基本不等式知识点及题型归纳总结知识点精讲1. 几个重要的不等式(1)(2)基本不等式:如果,则(当且仅当“”时取“”).特例:同号.(3)其他变形:①(沟通两和与两平方和的不等关系式)②(沟通两积与两平方和的不等关系式)③(沟通两积与两和的不等关系式)④重要不等式串:即调和平均值几何平均值算数平均值平方平均值(注意等号成立的条件).2. 均值定理已知.(1)如果(定值),则(当且仅当“”时取“=”).即“和为定值,积有最大值”.(2)如果(定值),则(当且仅当“”时取“=”).即积为定值,和有最小值”.题型归纳及思路提示题型1 基本不等式及其应用思路提示熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.例7.5“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件解析:由能推出;但反之不然,因为的条件是,故选A.变式1 已知且,则()A. B. C. D.变式2下列不等式中一定成立的是()A. B.C. D.例7.6 若,则下列不等式对一切满足条件的恒成立的是(写出所有正确命题的序号).①;②;③;④;⑤.解析:对于①,由及得,即(当且仅当时取等号),故①正确;对于②,由及得,即(当且仅当时取等号),故②正确;对于③,由得,故③正确.对于④,,因此(当且仅当时取等号),故④不恒成立;对于⑤,,又,则,故⑤正确,故填①③⑤.变式1如果正数满足,那么()A. ,且等号成立时的取值唯一B. ,且等号成立时的取值唯一C. ,且等号成立时的取值不唯一D. ,且等号成立时的取值不唯一题型2 利用基本不等式求函数最值思路提示(1)在利用基本不等式求最值时,要把握四个方面,即“一正各项都是正数;二定和或积为定值;三相等等号能否取到(对于不满足‘相等’的函数求最值,可考虑利用函数单调性解题);四同时多次使用基本不等式时等号要同时取得”,求最值时,这是个方面缺一不可,若忽视了某个条件的验证,可能会出现错误.(2)利用基本不等式求函数最值常用的技巧有:1通过加减项的方法配凑成使用基本不等式的形式;2注意“1”的变换;3灵活选择和应用基本不等式的变形形式;4合理配组,反复使用基本不等式等.一、利用基本不等式求最值要注意条件的验证例7.7 (1)若,求函数的最小值;(2)若,求函数的值域.分析:(1)因为满足不等式条件,可以直接利用基本不等式求最值.(2)因为,故需先转化为,才能利用基本不等式求最值.解析:因为,由基本不等式得,当且仅当,即时,取最小值.(2)因为,所以,则,且,即. 当且仅当,即时,取最大值.故函数的值域为.评注:解(1)时,应注意积为定值这个前提条件;解(2)时,应注意使用基本不等式求最值时,各项必须为正数.变式1 (1)求函数的值域(2)求函数的最小值;(3)求函数的最小值.二、通过代数变换凑配成使用基本不等式的形式例7.8已知,求函数的最大值.分析:因为,所以首先要调整符号,又不是常数,所以要对进行拆凑项,通过将函数解析式拆凑成可以使用基本不等式的形式,从而求得函数的最值.解析:因为,所以,由(当且仅当时,即时取等号)得. 所以函数的最大值为1.当且仅当时,即时取等号,故当时,.评注:利用基本不等式求最值时要重视各种条件,即“一正二定上相等四同时”必须全部满足,方可利用其求得最值. 如果本题中的条件“”改为“”,则如下求解:因为,所以,为错误求解,错误原因:在于只注重基本不等式的形式构造而未对成立条件“三相等”加以验证,事实上,.一般地,对勾函数在上单调递减,在上单调递增,若不满足“三相等”的条件可以利用函数的单调性求最值.另外,还要注意与对勾函数同形质异的函数在上和均为单调增函数.如可直接利用单调性求最值.变式1 求函数的最大值.变式2 设正实数满足,则当取得最大值时,最大值为( )A. 0B. 1C.D. 3 三、“1”的变换 例7.9 已知,且,求的最小值.分析:利用条件中“1”的变换.解析:解法一:因为,且,所以.当且仅当即,的最小值为16.解法二:由,且,得,所以10.因为0y >,所以90y ->,所以99(9)102(9)101699y y y y -++≥-+=--. 当且仅当999y y -=-,即12y =时取等号,此时4x =,所以当4,12x y ==时,x y +取得最小值16 评注 本题的解法一是利用条件中的“1”,代换成“19x y+”,将其所求的形配凑成利用基本不等式的形式,使得题目顺利求解,但下面的解法是错误的:因为1919612x y x y xy+=≥=,即36xy ≥,所以223612x y xy +≥=,错误的原因在于连续使用了两次基本不等式,但未对两个“=”成立的条件是否吻合进行验证,其实,这两次“=”不能同时取得,这就提醒我们,在多次使用基本不等式时,一定要验证多次“=”满足的条件能否同时成立.变式1 已知0a >,0b >,2a b +=,则11y a b=+的最小值是 变式2 求函数2214(0)sin cos 2y x x x π=+<<的最小值 变式3已知a b c >>,证明:1113a b b c c a a c++≥---- 变式4 设2a b +=,0b >则当a = 时,12a a b+最得最小值. 四、转化思想和方程消元思想在求二元函数最值中的应用例7.10若正数,a b 满足3ab a b =++,则:(1)ab 的取值范围是 (2)a b +的取值范围是分析 由等量关系的结构特征可知,只需将所求部分之外的部分利用不等式转化为所求的形式,然后解不等式即可.解析(1)解法一:基本不等式.33ab a b =++≥,当且仅当a b =时取等号,所以230≥,3≥1-(舍),3≥,故有9ab ≥.当且仅当3a b ==时取等号,即ab 的取值范围是[9,)+∞解法二:判别式法.令ab t =(3t >),则t b a =,代入原式得,3t t a a=++,整理得2(3)0a t a t +-+=. 2(3)40t t ∆=--≥,得9t ≥或1t ≤(舍),ab 的取值范围是[9,)+∞(2)解法一:23()2a b ab a b +=++≤,当且仅当a b =时取等号,令0S a b =+>,则234S S +≤,整理得即24120S S --≥得6S ≥或2S ≤-(舍),即a b +的取值范围是[6,)+∞解法二:判别式法,令a b t +=(0t >),则b t a =-,代入原式得,()3a t a t -=+,整理得230a at t -++=24(3)0t t ∆=-+≥,得6t ≥或2t ≤-(舍).即a b +的取值范围是[6,)+∞评注:注意体会使用方程消元法求范围与利用基本不等式求范围的优劣,试用方程消元法求解本题的第(2)问.变式1 若,0x y >满足26x y xy ++=,则xy 的最小值是变式2 若,0x y >满足2x y xy ++=,则x y +的最小值是 变式3 若,0x y >满足228x y xy ++=,则2x y +的最小值是( ).A 3 .B 4 .C 92 .D 112五、灵活选择和运用基本不等式的变形形式例7.11 设0,0x y ≥≥,2212y x +=,则的最大值为 分析 观察所求式子与题中所给条件的联系,运用基本不等式灵活建立两者之间的关系是解题的核心.解析 0x ≥,0y ≥,2212y x +=所以== 221222y x ++≤2212222y x ++==(当且仅当2212y x +=时取“=”,即x =,2y =时取“=”). 评注 本题除了利用基本不等式求解外,还可以利用已知条件中的2212y x +=,采用三角换元来求解,望同学们自己尝试.变式1 已知0a >,0b >,4a b +=,求2211()()a b a b+++的最小值. 六、合理配组,反复应用基本不等式 例7.12 设0a b >>,则211()a ab a a b ++-的最小值是( ) .A 1 .B 2 .C 3 .D 4解析 解法一:因为2112a b a b +≤+,所以411a b a b+≥+.故2114()ab a a b a ab ab +≥-+- 则211()a ab a a b ++-224a a ab ab≥++-2222444a a a =+≥=(当且仅当2ab a ab =-与44a =,0a b >>同时成立时,取得“=”),即当a =2b =211()a ab a a b ++-的最小值为4,故选D解法二:22111111()()a a ab a a b ab b a b a++=++---,因为0b >,0a b ->,所以22()()24a a b a b -≤=(当且仅当2a b =时取“=”),则222221444()a a b a b a a+≥+≥=-(当且仅当a ==”),所以当a =2b =时,211()a ab a a b ++-的最小值为4,故选D变式1 若0a >,0b >,满足11a b++ ).A 2 .B .C 4 .D 5变式2 若,x y 是正数,则2211()()22x y y x+++的最小值是( ) .A 3 .B 72 .C 4 .D 92题型3 利用基本不等式证明不等式思路提示类似于基本不等式的结构的不等式的证明可以利用基本不等式去组合、分解、运算获得证明. 例7.13 (1),,a b c R +∈,求证:11()()4a b c a b c+++≥+ (2),,a b c R +∈,求证:222a b c a b c b c a++≥++(3),,x y z R +∈,且1x y z ++=解析 (1)因为,,0a b c >,所以1111()()[()]()a b c a b c a b c a b c+++=+++++ 11a b c b c a +=++++2a b cb c a+=+++224≥+=当且仅当a b c =+时等号成立. (2)因为,,0a b c >,所以22a b a b +≥,22b c b c +≥,22c a c a +≥三式相加得:222()()()a b c b c a b c a +++++222a b c ≥++,即222a b c a b c b c a++≥++(3)分析法.要证明≤,只需证3x y z +++≤,只需证:1≤因为,,x y z R +∈,x y +≥,x z +≥,y z +≥,所以2()x y z ++≥1≤成立.评注 本题(2)的证明是综合法,(3)的证明是分析法.综合是从已知出发推导结果,分析法是从结果出发,去分析命题成立的条件,一般情况下两种方法是可以通用的,对于比较复习的问题,也可以结合这两种方法使用变式1若,,a b c R +∈,且1a b c ++=,求证:111(1)(1)(1)8a b c---≥变式2 证明:若,,,,,x y z a b c R +∈,则222()b c c a a b y z xy yz xz a b c+++++≥++最有效训练题1.函数1()2f x x x =+-(2x >)在x a =处取得最小值,则a =( ).A 1 .B 1 .C 3 .D 42.已知0a >,0b >,2a b +=,则19y a b=+的最小值是( ).A 72 .B 8 .C 92.D 5 3.若0x >,0y >,2282y xm m x y+>+恒成立,则实数m 的取值范围是( ) .A (,2][4,)-∞-⋃+∞ .B (,4][2,)-∞-⋃+∞ .C (2,4)- .D (4,2)-4.已知,a b R +∈,且21a b +=,则224S a b =-的最大值为( ).A .B 1 .C 1 .D 5.若0x >,0y >,且()1xy x y -+=则( ).A 2x y +≤ .B 2x y +≥ .C 21)x y +≤ .D 21)x y +≥6.若224mn+<,则点(,)m n 必在( ).A 直线20x y +-=的左下方 .B 直线20x y +-=的右上方 .C 直线220x y +-=的右上方 .D 直线220x y +-=的左下方7.在“4+91=”中的“ ”处分别填上一个自然数,使他们的和最小,其和的最小值为8.已知函数()1pf x x x =+-(p 为常数,且0p >),若()f x 在(1,)+∞上的最小值是4,则实数p 的值为9.已知关于x 的不等式227x x a+≥-在(,)x a ∈+∞上恒成立,则实数a 的最小值为10.(1)设02x <<,求函数(42)y x x =-最大值. (2)设(0,)x π∈,求函数4()sin sin f x x x=+的最小值. (3)已知0x >,0y >,且1x y +=,求34x y+的最小值 (4)若正数,x y 满足35x y xy +=,则34x y +的最小值是11.已知,a b≥12.提高过江大桥车辆的通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车辆速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0,当车流速度不超过20辆/千米时,车流速度为60千米/小时,研究表明,当20200x ≤≤时,车流速度v 是车流密度x 的一次函数. (1)当20200x ≤≤时,求函数()v x 的表达式;(2)当车密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)()()f x x v x =可以达到最大,并求出最大值(精确到1辆/小时).。
第03讲 基本不等式 (精讲+精练)(学生版)
第03讲基本不等式 (精讲+精练)目录第一部分:思维导图(总览全局)第二部分:知识点精准记忆第三部分:课前自我评估测试第四部分:典型例题剖析高频考点一:利用基本不等式求最值①凑配法②“1”的代入法③二次与二次(一次)商式(换元法)④条件等式求最值高频考点二:利用基本不等式求参数值或取值范围高频考点三:利用基本不等式解决实际问题高频考点四:基本不等式等号不成立,优先对钩函数第五部分:高考真题感悟第六部分:第03讲基本不等式(精练)1、基本不等式(一正,二定,三相等,特别注意“一正”,“三相等”这两类陷阱)①如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立. ②叫做正数a ,b 的几何平均数;2a b+叫做正数a ,b 的算数平均数. 2、两个重要的不等式①222a b ab +≥(,a b R ∈)当且仅当a b =时,等号成立. ②2()2a b ab +≤(,a b R ∈)当且仅当a b =时,等号成立. 3、利用基本不等式求最值①已知x ,y 是正数,如果积xy 等于定值P ,那么当且仅当x y =时,和x y +有最小值;②已知x ,y 是正数,如果和x y +等于定值S ,那么当且仅当x y =时,积xy 有最大值24S;4、常用技巧利用基本不等式求最值的变形技巧——凑、拆(分子次数高于分母次数)、除(分子次数低于分母次数))、代(1的代入)、解(整体解). ①凑:凑项,例:()1123x x a a a x a x a x a+=-++≥+=>--; 凑系数,例:()()2112121112212022282x x x x x x x +-⎛⎫⎛⎫-=⋅-≤⋅=<< ⎪ ⎪⎝⎭⎝⎭;②拆:例:()2244442244822223x x x x x x x x x -+==++=-++≥=>----;③除:例:()2221011x x x x x=≤>++; ④1的代入:例:已知0,0,1a b a b >>+=,求11a b+的最小值. 解析:1111()()24b aa b a b a b a b+=++=++≥. ⑤整体解:例:已知a ,b 是正数,且3ab a b =++,求a b +的最小值.解析:22,322a b a b ab a b ++⎛⎫⎛⎫≤∴≥++ ⎪ ⎪⎝⎭⎝⎭,即()()21304a b a b +-+-≥,解得()62a b a b +≥+≤-舍去.一、判断题1.(2022·江西·贵溪市实验中学高二期末)当0,2x π⎛⎤∈⎥⎝⎦时,4sin sin x x +的最小值为4 ( )2.(2021·江西·贵溪市实验中学高二阶段练习)已知102x <<,则()12x x -的最大值为18( ) 二、单选题1.(2022·江西·高一阶段练习)当0x >时,92x x+的最小值为( ) A .3B .32C .D .2.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为( ) A .3B .2C .1D .03.(2022·湖南·高一阶段练习)已知0a >,0b >且2510a b +=,则ab 的最大值为( ) A .2B .5C .32D .524.(2022·新疆·乌苏市第一中学高一开学考试)下列函数,最小值为2的函数是( ) A .1y x x=+B .222y x x -=+C .3y x =+D .2y =高频考点一:利用基本不等式求最值①凑配法1.(2022·北京大兴·高一期末)当02x <<时,(2)x x -的最大值为( ) A .0B .1C .2D .42.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( ) A .8B .7C .6D .53.(2022·安徽省蚌埠第三中学高一开学考试)已知x >3,则对于43y x x =+-,下列说法正确的是( ) A .y 有最大值7B .y 有最小值7C .y 有最小值4D .y 有最大值44.(2022·江苏省天一中学高一期末)设实数x 满足1x >-,则函数41y x x =++的最小值为( ) A .3B .4C .5D .65.(2022·上海虹口·高一期末)已知04x <<,则()4x x -的最大值为______.②“1”的代入法1.(2022·河南·夏邑第一高级中学高二期末(文))已知x ,y 均为正数,若261x y+=,则当3x y +取得最小值时,x y +的值为( ) A .16B .4C .24D .122.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是( )A .1B .2C .4D .63.(2022·四川·泸县五中高二开学考试(文))已知,x y 为正实数,且2x y +=,则212x y+的最小值为__________.4.(2022·广西桂林·高一期末)已知0,0a b >>,若31a b +=,则31a b+的最小值是___________.5.(2022·天津·南开中学高一期末)已知110, 0, 4a b a b>>+=,则4a b +的最小值为_______________.③二次与二次(一次)商式1.(2022·全国·高三专题练习(理))若11x -<< ,则22222x x y x -+=-有( )A .最大值1-B .最小值1-C .最大值1D .最小值12.(2022·全国·高三专题练习)函数233(1)1x x y x x ++=<-+的最大值为( ) A .3 B .2 C .1 D .-13.(2022·江西南昌·高一期末)当2x >-时,函数2462++=+x x y x 的最小值为___________.4.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.5.(2021·江西·宁冈中学高一阶段练习(理))()21147x x x x ->-+的最大值为______.6.(2022·全国·高三专题练习)求下列函数的最小值 (1)21(0)x x y x x ++=>;(2)226(1)1x x y x x ++=>-.④条件等式求最值1.(2022·陕西咸阳·高二期末(文))已知0x >,0y >,若28x y xy +=,则xy 的最小值是( )A B C .18D .142.(2022·全国·高三专题练习)已知0,0a b >>,且3ab a b =++,则a b +的最小值为( ) A .4B .8C .7D .63.(2022·江苏·高三专题练习)已知0a >,0b >且满足2a b ab +=,则2+a b 的最小值为( ) A .4B .6C .8D .104.(2022·安徽芜湖·高一期末)已知正数x ,y 满足8xy x y =++,则x y +的最小值为_________ 5.(2022·全国·高三专题练习)已知2,1a b >>,且满足21ab a b =++,则2a b +的最小值为_______. 6.(2022·重庆·高一期末)已知0x >,0y >,24xy x y =++,则x y +的最小值为______. 7.(2022·广东广州·高一期末)已知0a >,0b >,且3a b ab +=-,则a b +的最小值为______.高频考点二:利用基本不等式求参数值或取值范围1.(2022·全国·高三专题练习)当2x >时,不等式12+≥-x a x 恒成立,则实数a 的取值范围是( ) A .(],2-∞B .[)2,+∞C .[)4,+∞D .(],4-∞2.(2022·浙江·高三专题练习)若关于 x 的不等式220x ax -+>在区间[]1,5上恒成立,则a 的取值范围为( )A .()+∞B .(-∞C .(),3-∞D .27,5⎛⎫-∞ ⎪⎝⎭3.(2022·全国·高三专题练习)已知0a >,0b >,若不等式41ma b a b+≥+恒成立,则m 的最大值为( ) A .10B .12C .16D .94.(2022·全国·高三专题练习)已知x ,()0,y ∈+∞,且1x y +=,若不等式2221124x y xy m m ++>+恒成立,则实数m 的取值范围是( ) A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .()2,1-D .()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭5.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是( )A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞6.(2022·甘肃·无高二期末(文))已知正实数a ,b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是( ) A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞7.(2022·全国·高三专题练习)若对任意0x >,231xa x x ≤++恒成立,则实数a 的取值范围是( ) A .1,5⎡⎫+∞⎪⎢⎣⎭B .1,5⎛⎫+∞ ⎪⎝⎭C .1,5⎛⎫-∞ ⎪⎝⎭D .1,5⎛⎤-∞ ⎥⎝⎦高频考点三:利用基本不等式解决实际问题1.(2022·北京市十一学校高二期末)某公司要建造一个长方体状的无盖箱子,其容积为48m 3,高为3m ,如果箱底每1m 2的造价为15元,箱壁每1m 2造价为12元,则箱子的最低总造价为( ) A .72元B .300元C .512元D .816元2.(2022·河南开封·高一期末)中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a ,b ,c ,三角形的面积S 可由公式S =p 为三角形周长的一半,这个公式也被称为海伦秦九韶公式,现有一个三角形的边长满足14a b +=,6c =,则此三角形面积的最大值为( )A .6B .C .12D .3.(2022·江苏常州·高一期末)2021年初,某地区甲、乙、丙三位经销商出售钢材的原价相同.受钢材进价普遍上涨的影响,甲、乙计划分两次提价,丙计划一次提价.设0p q <<,甲第一次提价%p ,第二次提价%q ;乙两次均提价%2p q+;丙一次性提价()%p q +.各经销商提价计划实施后,钢材售价由高到低的经销商依次为( ) A .乙、甲、丙 B .甲、乙、丙 C .乙、丙、甲D .丙、甲、乙4.(2022·全国·高三专题练习(文))已知k ∈R ,则“对任意,a b ∈R ,22a b kab +≥”是“k 2≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件5.(2022·河南·模拟预测(理))一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为g m ,则( ) A .10m >B .10m =C .10m <D .以上都有可能6.(2022·全国·高一)如图所示,将一矩形花坛ABCD 扩建为一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =米,3AD =米,当BM =_______时,矩形花坛AMPN 的面积最小.高频考点四:基本不等式等号不成立,优先对钩函数1.(2022·重庆南开中学模拟预测)已知命题p :“21,4,402x x ax ⎡⎤∃∈-+>⎢⎥⎣⎦”为真命题,则实数a 的取值范围是( ) A .4a < B .172a <C .133a <D .5a >2.(2022·浙江·高三专题练习)若不等式210x ax ++≥对一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的取值范围是( )A .0a ≥B .2a ≤-C .52a ≥-D .3a ≤-3.(2022·全国·高三专题练习)函数2y =)A .2B .52C .1D .不存在4.(2022·新疆·石河子第二中学高二阶段练习)已知函数4()f x x x =+,()2x g x a =+,若11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[2,3]x ∃∈,使得()()12f x g x ,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[3,)-+∞D .[1,)+∞5.(2022·全国·高二课时练习)函数()3421x xf x x x -=++在区间[]1,3上( )A0 B .有最大值为2491,最小值为0 CD .有最大值为2491,无最小值1.(2021·江苏·高考真题)已知奇函数()f x 是定义在R 上的单调函数,若正实数a ,b 满足()()240f a f b +-=则121a b++的最小值是( ) A .23B .43C .2D .42.(2021·全国·高考真题(文))下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+D .4ln ln y x x=+3.(2021·天津·高考真题)若0 , 0a b >>,则21ab ab ++的最小值为____________. 4.(2021·江苏·高考真题)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与年产量x 吨之间的函数关系可以近似地表示为22420005x y x =-+,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.一、单选题1.(2022·江西·赣州市赣县第三中学高一开学考试)下列说法正确的为( )A .12x x+≥ B .函数224x y += 4C .若0,x >则(2)x x -最大值为1D .已知3a >时,43+≥-a a 43=-a a 即4a =时,43+-a a 取得最小值8 2.(2022·福建·莆田一中高一期末)函数2455()()22x x f x x x -+=≥-有( ) A .最大值52 B .最小值52 C .最大值2 D .最小值23.(2022·河南·郏县第一高级中学高二开学考试(理))正实数ab 满足121a b+=,则()()24a b ++的最小值为( )A .16B .24C .32D .404.(2022·江西抚州·高二期末(文))若命题“对任意(),0x ∈-∞,使得2240x ax -+≥成立”是真命题,则实数a 的取值范围是( )A .[)2,-+∞B .[)2,+∞C .(],2-∞-D .(],2-∞5.(2022·河南·驻马店市基础教学研究室高二期末(理))中国大运河项目成功人选世界文化遗产名录,成为中国第46个世界遗产项目,随着对大运河的保护与开发,大运河已成为北京城市副中心的一张亮丽的名片,也成为众多旅游者的游览目的地.今有一旅游团乘游船从奥体公园码头出发顺流而下至漕运码头,又立即逆水返回奥体公园码头,已知游船在顺水中的速度为1V ,在逆水中的速度为()212V V V ≠,则游船此次行程的平均速度V 与122V V +的大小关系是( ) A .122V V V +<B .122V V V +≤C .122V V V +>D .122V V V += 6.(2022·浙江温州·二模)已知正数a ,b 和实数t 满足221a tab b ++=,若a b +存在最大值,则t 的取值范围是( )A .(],2-∞B .()2,-+∞C .(]2,2-D .[)2,+∞7.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为( )(精确到1米)A .8米B .9米C .10米D .11米8.(2022·江苏无锡·模拟预测)已知实数a ,b 满足如下两个条件:(1)关于x 的方程2320x x ab --=有两个异号的实根;(2)211a b+=,若对于上述的一切实数a ,b ,不等式222a b m m +>+恒成立,则实数m 的取值范围是( )A .()4,2-B .()2,4-C .][(),42,-∞-⋃+∞D .][(),24,-∞-⋃+∞二、填空题9.(2022·陕西西安·高三阶段练习(文))已知0x >,0y >,334x y x y +--=.则x y +的取值范围为__________. 10.(2022·上海·二模)已知对()0,x ∀∈+∞,不等式1x m x>-恒成立,则实数m 的最大值是_________. 11.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________.12.(2022·安徽合肥·高一期末)如图所示,某农科院有一块直角梯形试验田ABCD ,其中//,AB CD AD AB ⊥.某研究小组计则在该试验田中截取一块矩形区域AGEH 试种新品种的西红柿,点E 在边BC 上,则该矩形区域的面积最大值为___________.三、解答题13.(2022·湖南·高一课时练习)(1)把36写成两个正数的积,当这两个正数取什么值时,它们的和最小? (2)把18写成两个正数的和,当这两个正数取什么值时,它们的积最大?14.(2022·辽宁朝阳·高一开学考试)如图,设矩形()ABCD AB AD >的周长为8cm ,将△ABC 沿AC 向△ADC 折叠,AB 折过去后交DC 于点P ,设AB xcm =,求ADP △面积的最大值及相应x 的值.15.(2022·贵州·赫章县教育研究室高一期末)已知关于x 的不等式220ax ax ++>的解集为R ,记实数a 的所有取值构成的集合为M .(1)求M ;(2)若0t >,对a M ∀∈,有245321a t t a --≤+-+,求t 的最小值.16.(2022·山西·怀仁市第一中学校高一期末)党中央国务院对节能减排高度重视,各地区认真贯彻党中央国务院关于“十三五”节能减排的决策部署,把节能减排作为转换发展方式,新能源汽车环保节能以电代油,减少排放,既符合我国国情,也代表了汽车产业发展的方向.为了响应国家节能减排的号召,2022年某企业计划引进新能源汽车生产设备.通过市场分析:全年需投入固定成本2500万元.每生产x (百辆)新能源汽车,需另投入成本()C x 万元,且()210500,040,64009016300,40.x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩由市场调研知,每辆车售价9万元,且生产的车辆当年能全部销售完.(1)请写出2022年的利润()L x (万元)关于年产量x (百辆)的函数关系式;(利润=售价-成本)(2)当2022年的总产量为多少百辆时,企业所获利润最大?并求出最大利润.。
基本不等式的题型
基本不等式的题型
基本不等式是高中数学的重点内容,题型丰富多样,以下是一些常见题型:
1.基础型:直接利用基本不等式进行求解。
2.“1”的代换型:通过将“1”进行转换,再利用基本不等式求解。
3.“和”与“积”互消型:在求解过程中,通过对“和”与“积”进行转换,使其相互抵消,进而求解。
4.以分母为主元构造型:通过构建分母,再利用基本不等式求解。
5.分子含参型:通过分离分子的方式,使其转化为基本不等式的形式进行求解。
6.反解代入型:通过反解基本不等式,将其转化为代数式的形式,再代入求解。
7.因式分解型:通过对式子进行因式分解,再利用基本不等式求解。
8.均值不等式用两次:通过对基本不等式进行多次使用,进而求解。
9.换元法型:通过换元的方式,将式子转化为基本不等式的形式进行求解。
这些题型只是基本不等式中的一部分,在实际的数学问题中,还有许多其他的题型和应用方式。
专题2.2---基本不等式及其应用--学生版
专题2.2基本不等式及其应用练基础1.(2021·曲靖市第二中学高三二模(文))已知(),,0,a b c ∈+∞,320a b c -+=,则b的()A B .最大值是3C .最小值是D .最小值是32.(2021·山东高三其他模拟)已知a b ,均为正实数,则“2aba b≤+”是“16ab ≤”的()A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件3.(2021·吉林长春市·东北师大附中高三其他模拟(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知ABC 的面积是()2214S b c =+,则ABC 的三个内角大小为()A .60ABC === B .90,45A B C ===C .120,30A B C ===D .90,30,60A B C ===4.(2021·浙江高三月考)已知实数x ,y 满足2244x y +=,则xy 的最小值是()A .2-B .C .D .1-5.(2021·北京高三二模)某公司购买一批机器投入生产,若每台机器生产的产品可获得的总利润s (万元)与机器运转时间t (年数,*t ∈N )的关系为22364s t t =-+-,要使年平均利润最大,则每台机器运转的年数t 为()A .5B .6C .7D .86.(2021·四川成都市·高三三模(文))已知函数()log (1)1a f x x =-+,(0,1)a a >≠恒过定点A ,过定点A 的直线:1l mx ny +=与坐标轴的正半轴相交,则mn 的最大值为()A .12B .14C .18D .17.【多选题】(2021·福建南平市·高三二模)已知0a >,0b >,222a b ab +-=,则下列不等式恒成立的是()A.11a b+≤B .2ab ≤C.a b +≤D .224a b +≥8.【多选题】(2021·河北高三三模)已知正数,a b 满足()11a b -=,则()A .3a b +≥B .22124a b ->C .222log log 2a b +≥D .222a b a+>9.【多选题】(2021·辽宁高三一模)已知00a b >>,,且4a b ab +=,则下列不等式正确的()A .16ab ≥B.26a b +≥+C .0a b -<D .2211612a b +≥10.(2021·天津高三二模)已知正实数a ,b 满足1a b +=,则2241a b a b+++的最小值为______.练提升1.(2021·江苏高三三模)在正方形ABCD 中,O 为两条对角线的交点,E 为边BC 上的动点.若AE AC DO λμ→→→=+(,0)λμ>,则21λμ+的最小值为()A .2B .5C .92D .1432.(2021·河北保定市·高三二模)已知圆弧22:4(0,0)C x y x y += 与函数 ()x f x a =和函数()log a g x x =的图象分别相交于()11,A x y ,()22,B x y ,其中0a >且1a ≠,则221214x x +的最小值为()A .74B .94C .72D .43.(2021·四川达州市·高三二模(理))已知(,)P a b 是圆221x y +=上的点,下列结论正确的是()A .12ab ≥B .2222a b +最大值是C .2123ba -≤D .2lg lg(1)a b ≥+4.(2021·江西上饶市·高三三模(理))己知A 、B 、C 三点共线(该直线不过原点O ),且2(0,0)OA mOB nOC m n =+>> ,则21m n+的最小值为()A .10B .9C .8D .45.(2021·浙江高三三模)已知正实数,a b 满足22a b +=,则22121a ba b +++的最小值是()A .94B .73C .174D .1336.【多选题】(2021·福建厦门市·高三三模)已知正数a ,b 满足3a b +=,则()A .149a b+B .132b a b ⎫⎛+ ⎪⎝⎭C .1ln ln 4a b ⋅<D .2221a b e e +>7.【多选题】(2021·长沙市·湖南师大附中高三二模)关于函数()1cos cos f x x x=+有如下四个命题,其中正确的命题有()A .()f x 的图象关于y 轴对称B .()f x 的图象关于原点对称C .()f x 的图象关于直线2x π=对称D .()f x 的值域为(][),22,-∞-+∞ 8.【多选题】(2021·江苏高三其他模拟)若非负实数a ,b ,c 满足1a b c ++=,则下列说法中一定正确的有()A .222a b c ++的最小值为13B .()a b c +的最大值为29C .ab bc ca ++的最大值为13D .+499.(2021·山东高三二模)最大视角问题是1471年德国数学家米勒提出的几何极值问题,故最大视角问题一般称为“米勒问题”.如图,树顶A 离地面a 米,树上另一点B 离地面b 米,在离地面()c c b <米的C 处看此树,离此树的水平距离为___________米时看A ,B 的视角最大.10.(2021·山东高三其他模拟)从①sin cos()06b A a B π++=;②1cos 2a b C c =-;③222cos sin cos sin sin A C B A C -=+这三个条件中任选一个,补充到下面的问题中,并加以解答.问题:在ABC 中,,,a b c 分别为内角,,A B C 的对边,若b =,_________,求ABC 的周长的最大值.注:若选择多个条件分别解答,按第一个解答计分.练真题1.(2019年高考浙江卷)若0,0a b >>,则“4a b +≤”是“4ab ≤”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.【多选题】(2020·海南高考真题)已知a >0,b >0,且a +b =1,则()A .2212a b +≥B .122a b->C .22log log 2a b +≥-D +≤3.(山东省高考真题)定义运算“⊗”:22x y x y xy-⊗=(,0x y R xy ∈≠,).当00x y ,>>时,(2)x y y x ⊗+⊗的最小值是.4.(2020·天津高考真题)已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________.5.(2020·江苏高考真题)已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.6.(2020·全国高考真题(文))设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:基本不等式
基本不等式求最值 利用基本不等式求最值:一正、二定、三等号.
三个不等式关系:
(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R +
,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2
,当且仅当a =b 时取等号.
上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系.
其中,基本不等式及其变形:a ,b ∈R +
,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系
【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则
1
12
-+b a 的最小值为 .
练习:1.若实数满足,且,则的最小值为 .
2.若实数,x y 满足1
33(0)2xy x x +=<<
,则313
x y +-的最小值为 . 3.已知0,0,2a b c >>>,且2a b +=
,则
2ac c c b ab +-+
的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y
x +y 的最大值为 .
【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________.
变式:1.若,a b R +∈,且满足22
a b a b +=+,则a b +的最大值为_________.
2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______
3.设R y x ∈,,142
2
=++xy y x ,则y x +2的最大值为_________
4.已知正数a ,b
满足
19
5a b
+=,则ab 的最小值为 ,x y 0x y >>22log log 1x y +=22
x y x y
+-
【题型二】含条件的最值求法
【典例4】已知正数y x ,满足1=+y x ,则1
1
24++
+y x 的最小值为
练习1.已知正数y x ,满足111=+y
x ,则1914-+
-y y
x x 的最小值为 .
2.已知正数满足,则的最小值为 .
3.已知函数(0)x y a b b =+>的图像经过点(1,3)P ,如下图所示,则41
1a b
+-的最小值为 .
4.己知a ,b 为正数,且直线 与直线 互相平行,则2a+3b 的最小值为________.
5.常数a ,b 和正变量x ,y 满足ab =16,a
x +2b y =1
2.若x +2y 的最小值为64,则a b =________.
6.已知正实数,a b 满足()()12
122a b b b a a
+=++,则ab 的最大值为 .
,x y 22x y +=8x y
xy
+60ax by +-=2(3)50x b y +-+=
【题型三】代入消元法
【典例5】(苏州市2016届高三调研测试·14)已知14
ab =,,(0,1)a b ∈,则
1211a
b
+
--的
最小值为 .
练习1.设实数x ,y 满足x 2+2xy -1=0,则x 2+y 2的最小值是 .
2.已知正实数x ,y 满足,则x + y 的最小值为 .
3.已知正实数,x y 满足(1)(1)16x y -+=,则x y +的最小值为 .
4.若2,0>>b a ,且3=+b a ,则使得2
1
4-+b a 取得最小值的实数a = 。
5.设实数x 、y 满足x 2
+2xy -1=0,则x +y 的取值范围是_________
6.已知R z y x ∈,,,且1=++z y x ,32
2
2
=++z y x ,求xyz 的最大值为______
【题型四】换元法
【典例6】已知函数f (x )=ax 2+x -b (a ,b 均为正数),不等式f (x )>0的解集记为P ,集合Q ={x |-2-t <x <-2+t }.若对于任意正数t ,P ∩Q ≠∅,则1a -1
b 的最大值是 .
2.已知正数a ,b ,c 满足b+c ≥a ,则+的最小值为 .
练习1.若实数x ,y 满足2x 2+xy -y 2=1,则的最大值为 .
2.设是正实数,且,则的最小值是____.
3..若实数x ,y 满足2x 2+xy -y 2=1,则x -2y 5x 2
-2xy +2y
2的最大值为 .2
4
4.若实数满足,当取得最大值时,的值为 .
22
2522x y
x xy y --+,x y 1x y +=22
21
x y x y +++
【题型五】判别式法
【典例7】已知正实数x ,y 满足24
310x y x y
+++=,则xy 的取值范围为 .
练习1.若正实数满足,则的最大值为 .
2.设R y x ∈,,1322=++xy y x ,则y x +2的最大值为________
变式1.在平面直角坐标系xOy 中,设点(1 0)A ,
,(0 1)B ,,( )C a b ,,( )D c d ,,若不等式2(2)()()CD m OC OD m OC OB OD OA -⋅+⋅⋅⋅uu u r uuu r uuu r uuu r uu u r uuu r uu r
≥对任意实数a b c d ,,,都成立,则实数
m 的最大值是 .
【方法技巧】不等式恒成立常用的方法有判别式法、分离参数法、换主元法.判别式法:将所求问题可转化为二次不等式,则可考虑应用判别式法解题。
一般地,对于二次函数
),0()(2R x a c bx ax x f ∈≠++=,有
1)0)(>x f 对R x ∈恒成立⎩⎨⎧<∆>⇔00a 2)0)(<x f 对R x ∈恒成立.00
⎩
⎨⎧<∆<⇔a
分离变量法:若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。
这种方法本质也还是求最值。
一般地有:
1)为参数)a a g x f )(()(<恒成立max )()(x f a g >⇔ 2)为参数)a a g x f )(()(>恒成立max )()(x f a g <⇔
确定主元法:如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则可简化解题过程。
2.设二次函数()c bx ax x f ++=2
(c b a ,,为常数)的导函数为()x f
'
.对任意R x ∈,
不等式()()x f x f '
≥恒成立,则2
22
c
a b +的最大值为 .
【题型六】分离参数法
【典例8】已知x >0,y >0,若不等式x 3+y 3≥kxy (x+y )恒成立,则实数k 的最大值为_______ .
练习1.已知对满足42x y xy ++=的任意正实数,x y ,都有
22210x xy y ax ay ++--+≥,则实数a 的取值范围为 .
2.若不等式x 2+2xy ≤a (x 2+y 2)对于一切正数x ,y 恒成立,则实数a 的最小值为 .。