线面垂直经典例题及练习题-.

合集下载

立体几何线面垂直-题型全归纳(解析版)

立体几何线面垂直-题型全归纳(解析版)

立体几何线面垂直-题型全归纳题型一利用等腰三角形“三线合一”例题1、如图,在正三棱锥P-ABC中,E,F,G分别为线段PA,PB,BC的中点,证明:BC⊥平面PAG。

证明:在正三棱锥P-ABC中,AB=AC,G是BC的中点,∴AG⊥BC,又 PB=PC,G是BC的中点,∴PG⊥BC,PG⋂AG=G,PG,AG⊂平面PAG,∴BC⊥平面PAG,解题步骤(1)根据线段的中点,找出相应的等腰三角形;(2)格式“因为D是BC的中点,且AB=AC,所以AD⊥BC”;(3)依据“三线合一”得到线线垂直。

变式训练1、已知四面体ABCD中,AB=AC,BD=CD,E为棱BC的中点,求证:AD⊥BC证明:连接DE,AB=AC,E是BC的中点,∴AE⊥BC,又 BD=CD,E是BC的中点,∴DE⊥BC,AE⋂DE=E,AE,DE⊂平面ADE,∴BC⊥平面ADE,AD⊂平面ADE,∴AD⊥BC变式训练2、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥.求证:PC AB ⊥证明:取AB的中点O,连接OP,OC, AP=BP,O是AB的中点,∴PE⊥AB,又 AC=BC,O是AB的中点,∴OC⊥AB,PO⋂CO=O,PO,CO⊂平面POC,∴AB⊥平面POC,PC⊂平面POC,∴AB⊥PC。

变式训练3、如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,E为CD的中点,060=∠ABC ,求证:AB⊥平面PAE。

证明: 底面ABCD是菱形,060=∠ABC ,∴AE⊥CD,又 AB//CD,∴AB⊥AE,又PA⊥平面ABCD,AB⊂平面ABCD,∴AB⊥PA,AP⋂AE=A,AP,AE⊂平面PAE,∴AB⊥平面PAE。

A CB P题型二利用勾股定理逆定理例题2、如图,在正方体1111D C B A ABCD -中,M 为棱1CC 的中点,AC 交BD 于点O ,求证:BDM1平面⊥O A 证明:连接OM,M A 1,11C A ,设正方体的棱长为2,则6222222121=+=+=AO A A O A 32122222=+=+=OC CM OM 91)22(222121121=+=+=M C C A M A 21221M A OM O A =+∴即:OM⊥OA 1又 在正方体1111D CB A ABCD -中,∴BD⊥OA 1 OM,BD⊂平面BDM,∴BDM1平面⊥O A 解题步骤(1)根据题干给出的线段长度(没有长度的可以假设),标示在图形上,找出相应的三角形;(2)把线段的长度分别求平方,判断能否构成“222c b a =+”;(3)根据平方关系得到线线垂直。

线面垂直题型20道

线面垂直题型20道

线面垂直题型20道
1. 两条直线的夹角为90度,则它们一定垂直。

2. 如果一条直线垂直于另一条直线,那么任意一条过这两条直线的线段,这条线段上的点就分别与这两条直线的交点连成的线段垂直。

3. 两条直线分别垂直于第三条直线,则这两条直线平行。

4. 一条线段的中垂线与线段垂直。

5. 任意一个点到平面上一直线的垂足所在的直线与这条直线垂直。

6. 如果一个三角形的两条边互相垂直,则这个三角形是直角三角形。

7. 如果一条直线与一个平面垂直,则这条直线称为这个平面的法线。

8. 一个正方体的某个面与它所在的平面垂直。

9. 一个矩形的对角线互相垂直。

10. 一个正方形的对角线互相垂直。

11. 如果两个面互相垂直,则它们的法线互相平行。

12. 如果平面P垂直于直线L1,且L1垂直于直线L2,则平面P和直线L2互相平行。

13. 如果两条直线互相垂直,则它们的斜率的乘积为-1。

14. 如果一条直线过一个圆的圆心,则这条直线与圆的切线垂直。

15. 如果一条直线垂直于直径所在的直线,则它和圆的切线互相平行。

16. 直角梯形的两条腰互相垂直。

17. 如果两个向量垂直,则它们的点积为0。

18. 如果直线L1垂直于平面P,那么L1上任意一点到P的距离均相等。

19. 一个正六面体的某个面与它所在的平面垂直。

20. 如果两个三维空间中的直线垂直,则它们的方向向量的点积为0。

线面垂直经典例题及练习题-完整可编辑版

线面垂直经典例题及练习题-完整可编辑版

页脚下载后可删除,如有侵权请告知删除!立体几何1.P 点在那么ABC ∆所在的平面外,O 点是P 点在平面ABC 内的射影 ,PA 、PB 、PC两两垂直,那么D 点是那么ABC ∆ 〔 B 〕(A)重心 (B) 垂心 (C)内心 (D)外心2.与两个相交平面的交线平行的直线和这两个平面的位置关系是 〔 A 〕(A)都平行 (B) 都相交 (C) 在两个平面内 (D)至少与其中一个平行3.假设两个平面内分别有一条直线,这两条直线互相平行,那么这两平面的位置关系是〔 A 〕(A)平行 (B) 相交 (C)平行或相交 (D)垂直 4.在空间,下述命题正确的选项是 〔 B 〕(A)假设直线//a 平面M ,直线b a ⊥,那么直线⊥b 平面M (B)假设平面M //平面N ,那么平面M 内任意直线a //平面N(C)假设平面M 与N 的交线为a ,平面M 内的直线a b ⊥,那么N b ⊥ (D)假设平面N 的两条直线都平行平面M ,那么平面N //平面M5.a 、b 表示两条直线,α、β、γ表示三个平面,以下命题中错误的选项是 〔A 〕 (A),,αα⊂⊂b a 且ββ//,//b a ,那么βα// (B)a 、b 是异面直线,那么存在唯一的平面与a 、b 等距 (C) ,,,b a b a ⊥⊂⊥βα那么βα// (D),,,//,βαβγγα⊥⊥⊥b a 那么b a ⊥6.直线l //平面α,αβ⊥,那么l 与平面β的位置关系是 〔 D 〕 (A) l β⊂ (B) //l β (C) l β与相交 (D ) 以上三种情况均有可能 7.直线l ⊥平面α,直线m ⊂平面β,有以下四个命题:①//l m αβ⇒⊥②//l m αβ⊥⇒③//l m αβ⇒⊥④//l m αβ⊥⇒,其中正确的选项是〔D 〕(A) ①② (B) ②④ (C) ③④ (D) ①③8.αβγδ,,,是四个不同的平面,且αγβγαδβδ⊥⊥⊥⊥,,,,那么〔 B 〕 (A)////αβγδ或 (B) ////αβγδ且(C) 四个平面中可能任意两个都不平行 (D) 四个平面中至多有一对平面平行 9.平面α和平面β相交,a 是α内的一条直线,那么〔 D 〕(A) 在β内一定存在与a 平行的直线 (B) 在β内一定存在与a 垂直的直线 (C) 在β内一定不存在与a 平行的直线 (D) 在β内一定不存在与a 垂直的直线页脚下载后可删除,如有侵权请告知删除!10.PA ⊥正方形ABCD 所在平面,垂足为A ,连PB PC PD AC BD ,,、,,那么互相垂直的平面有〔 C 〕(A) 5对 (B) 6对 (C) 7对 (D) 8对12. 如图9-29,P A ⊥平面ABCD ,ABCD 是矩形,M 、N 分别是AB 、PC 的中点. 求证:MN ⊥AB .13. :如图,AS ⊥平面SBC ,SO ⊥平面ABC 于O , 求证:AO ⊥BC .15. 如图,P ∉平面ABC ,PA=PB=PC ,∠APB=∠APC=60°,∠BPC=90 °求证:平面ABC ⊥平面PBC16. 如图:在斜边为AB 的R t △ABC 中,过点A 作PA ⊥平面ABC ,AE ⊥PB 于E ,AF ⊥PC 于F ,〔1〕求证:BC ⊥平面PAC ;〔2〕求证:PB ⊥平面AEF.17. 如图:PA ⊥平面PBC ,AB =AC ,M 是BC 的中点,求证:BC ⊥PM.CFEPBAC BAM P页脚下载后可删除,如有侵权请告知删除!如图,在正三棱柱111C B A ABC -.中,底面ABC 为正三角形,M 、N 、G 分别是棱CC 1、AB 、BC的中点.且AC CC 21=.〔Ⅰ〕求证:CN //平面 AMB 1; 〔Ⅱ〕求证:平面AMG .【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

线面垂直判定经典证明题

线面垂直判定经典证明题

线面垂直判定经典证明题1.已知:在三角形ABC中,PA垂直于AB和AC。

证明PA垂直于平面ABC。

2.已知:在三角形ABC中,PA垂直于AB,BC垂直于平面PAC。

证明PA垂直于BC。

3.已知:在三棱锥V-ABC中,VA=VC,AB=BC。

证明VB垂直于AC。

4.已知:在正方体ABCD-EFGH中,O为底面ABCD的中心。

证明BD垂直于平面AEGC。

5.已知:在圆O中,AB是直径,PA垂直于AC和AB。

证明BC垂直于平面PAC。

6.已知:在三角形ABC中,AD垂直于BD和DC,AD=BD=CD,∠BAC=60°。

证明BD垂直于平面ADC。

7.已知:在矩形ABCD中,PA垂直于平面ABCD,M和N分别是AB和PC的中点。

1) 证明MN平行于平面PAD。

2) 证明XXX垂直于CD。

3) 若∠PDA=45°,证明MN垂直于平面PCD。

8.已知:在棱形ABCD所在平面外,P满足PA=PC。

证明AC垂直于平面PBD。

9.已知四面体ABCD中,AB=AC,BD=CD,平面ABC垂直于平面BCD,E是棱BC的中点。

1) 证明AE垂直于平面BCD。

2) 证明AD垂直于BC。

10.在三棱锥ABCD中,AB=1,BC=2,BD=AC=3,AD=2.证明AB垂直于平面BCD。

11.在四棱锥S-ABCD中,SD垂直于平面ABCD,底面ABCD是正方形。

证明AC垂直于平面SBD。

12.已知:正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE垂直于平面CDE。

证明AB垂直于平面ADE。

13.在三棱锥P-ABC中,PA、PB、PC两两垂直,H是△XXX的垂心。

证明PH垂直于底面ABC。

14.在正方体ABCD-A1B1C1D1中,证明A1C垂直于平面BC1D1.15.在△ABC所在平面外一点S,SA垂直于平面ABC,平面SAB垂直于平面SBC。

证明AB垂直于BC。

16.在直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,AA1=2,D是A1B1的中点。

线面垂直练习题及答案

线面垂直练习题及答案

线面垂直练习题及答案线面垂直是几何学中的一项基本概念,用于描述线段、射线、直线和平面之间的垂直关系。

理解线面垂直的概念对于解决几何问题至关重要。

本文将为读者提供一些线面垂直练习题及答案,帮助读者巩固对该概念的理解。

练习题一:1. AB为一条线段,m是一平面。

如果AB与m垂直,判断下列命题的真假:a) 线段AB垂直于平面mb) 平面m垂直于线段ABc) 线段AB平行于平面m2. P是平面XYZ的内点,AP的延长线与平面XYZ有几个交点?练习题二:1. 给出下列命题的定义:a) 垂线b) 垂直平分线c) 垂直平面2. 在平面上画一条线段AB和一条直线l,求证:若线段AB与直线l垂直,则直线l过点A和点B的垂直平分线。

1. 已知直线l与平面P垂直,直线m过l上一点,那么直线m与平面P的关系是什么?2. 在长方形ABCD中,线段AC和线段BD相交于点O。

求证:线段AC与平面ABCD垂直。

答案及解析:练习题一:1. a) 假,线段AB无法垂直于平面m,因为线段只有两个端点而不是无限延伸。

b) 真,平面m可以垂直于线段AB。

c) 假,线段和平面不可能平行。

2. AP的延长线与平面XYZ有且只有一个交点。

练习题二:1. a) 垂线是与给定线段或直线垂直的线段或直线。

b) 垂直平分线是将给定线段或直线垂直平分的线段或直线。

c) 垂直平面是与给定平面垂直的平面。

2. 假设直线l过点A和点B的垂直平分线交线段AB于点M,则根据垂直平分线的定义,我们可以得出线段AM和线段BM的长度相等,且直线l与线段AM和线段BM都垂直。

1. 直线m与平面P平行。

2. 连接线段AC的中点和线段BD的中点,设为点O'。

根据长方形的性质,线段OO'相等且垂直于两个平行线段AC和BD。

因此,线段OO'垂直于平面ABCD,而线段OO'与线段AC相等,所以线段AC与平面ABCD垂直。

通过以上练习题及答案,我们可以加深对线面垂直概念的理解。

线面垂直例题

线面垂直例题
点评:本例证明也是利用线面垂直的定义与判定定理
由一个垂直关系联想下一个垂直关系,这样一环紧扣一环,
一系列的垂直关系便相继产生,达到线线垂直与线面垂直的
相互转化,这些垂直关系转化便是证明的全过程.
例5:如图,在Rt⊿ABC中,∠C=90°, ∠ABC=30°,BC=24,BC在平面α内,且 AC边和平面α成45°角,求AB与平面α 所成的角.
的联想,即可使结论得证.
证明:∵SA⊥平面ABCD,BC平面ABCD, ∴SA⊥BC, 又BC⊥AB,∴BC⊥平面SAB, 又AE平面SAB,
∴BC⊥AE, 又SC⊥平面AEFG,AE平面AEFG, ∴SC⊥AE, ∴AE⊥平面SBC,∴AE⊥SB. 同理可证:AG⊥SD.
点评:本例首先通过线面垂直(SA⊥面ABCD),利用定义得到线线垂直 (SA⊥BC),再利用判定定理得到线面垂直(BC⊥面SAB),又利用定义得到线 线垂直(BC⊥AE),同时从另一角度可推得SC⊥AE,再利用定理得到线面垂直 (AE⊥面AEFG),再次利用定义得到线线垂直(AE⊥SB),体现了“线线”与“线
面”垂直的循环互动转化.
例3如图,在空间四面体S-ABC中,
已知∠ABC=90,SA⊥平面ABC,
AN⊥SB,AM⊥SC,
证明:SC⊥平面AMN.
S
M
N
A
C B
分析:由结论联想判定定理,要证明SC⊥平面AMN,
需证明SC垂直于平面AMN中的两条相交直线.
已知AM⊥SC,尚缺条件SC⊥AN.于是考虑
线面垂直典型例题
例1已知正方体ABCD-A1B1C1D1中,
E、F、G分别是棱AB、BC、BB1上
的点,且BE=BF=BG,
求证:BD1⊥平面EFG.

线面垂直练习题及答案

线面垂直练习题及答案

线面垂直练习题及答案线面垂直是几何学中一个重要的概念,它涉及到直线和平面之间的关系。

在几何学中,我们经常需要判断线和平面是否垂直,以及如何确定它们的垂直关系。

为了帮助大家更好地理解和掌握线面垂直的概念,本文将介绍一些线面垂直的练习题及答案。

1. 练习题:判断线段和平面是否垂直题目:已知线段AB的两个端点分别为A(1, 2, 3)和B(4, 5, 6),平面P的法向量为(2, -1, 3),判断线段AB是否垂直于平面P。

解答:要判断线段AB是否垂直于平面P,只需判断线段AB的方向向量是否与平面P的法向量垂直。

线段AB的方向向量为AB = B - A = (4, 5, 6) - (1, 2, 3) = (3, 3, 3)。

两个向量的点积为3*2 + 3*(-1) + 3*3 = 9,不等于0。

因此,线段AB不垂直于平面P。

2. 练习题:确定两平面之间的垂直关系题目:已知平面P1的法向量为(1, 2, -1),平面P2的法向量为(2, -1, 3),判断平面P1和平面P2之间的垂直关系。

解答:两个平面垂直的条件是它们的法向量垂直,即两个法向量的点积为0。

计算两个法向量的点积为1*2 + 2*(-1) + (-1)*3 = 0,等于0。

因此,平面P1和平面P2垂直。

3. 练习题:求垂直平面上的直线题目:已知平面P的方程为2x + 3y - z = 6,求过点A(1, 2, 3)且垂直于平面P的直线的方程。

解答:垂直于平面P的直线的方向向量应该与平面P的法向量垂直。

由平面P的方程可知,平面P的法向量为(2, 3, -1)。

因此,过点A(1, 2, 3)且垂直于平面P 的直线的方向向量为(2, 3, -1)。

直线的方程可以表示为x = 1 + 2t,y = 2 + 3t,z = 3 - t,其中t为参数。

4. 练习题:判断直线和平面是否垂直题目:已知直线L的方程为x = 1 + 2t,y = 2 + 3t,z = 3 - t,平面P的方程为2x + 3y - z = 6,判断直线L是否垂直于平面P。

必修二线面垂直经典例题

必修二线面垂直经典例题

思考:三棱锥中最多有几个直角三角形?
思考:三棱锥P-ABC中最多有几个直角三角形?
P
A
O
B
C
例3、已知直角△ABC所在平面外有一点P,且 PA=PB=PC,D是斜边AB的中点,
求证:PD⊥平面ABC.
证明: ∵PA=PB,D为AB中点
P
∴ PD⊥AB,连接CD,
∵D为Rt△ABC斜边的中点 ∴ CD=AD,
小结:线面垂直证明的难点突破
由于线面垂直的证明往往需要通过线线、线面垂直的 不断转化,所以我们一定要了解给出几何体中的已有 的垂直关系,进而寻找目标平面内与已知直线垂直的 直线。
特别是异面线线垂直的证明有一定难度,常常要转化 为先证一条直线和另一直线所在某个平面垂直。这个 平面的发现至关重要。
变题二: 判断:四边相等的四边形,对角线互相垂直
练习1:
(2011北京高考理科)如图,在四棱锥
P-ABCD中,PA⊥平面ABCD,
底面ABCD是菱形,AB=2,BAD=600,
(1)求证:BD⊥平面PAC;
(2)略;
(3)略。
P
D
A
C
B
例2.如图,圆O所在一平面为
P

AB是圆O 的直径,C 在圆周上,
知识背景:
1、线面垂直的定义; 2、线面垂直的最基本性质; 3、线面垂直的判定定理。
例1、三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点。
(1)求证:AC ⊥平面VKB (2)求证:VB ⊥AC
V
K A
C B
例1、三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点。
V
(1)求证:AC ⊥平面VKB (2)求证:VB ⊥AC

线面垂直与面面垂直垂直练习题

线面垂直与面面垂直垂直练习题

线面垂直与面面垂直垂直练习题第一篇:线面垂直与面面垂直垂直练习题2012级综合和高中练习题2.3线面垂直和面面垂直线面垂直专题练习一、定理填空:1.直线和平面垂直如果一条直线和,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理线面垂直判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理1:如果两条平行线中的一条垂直于一个平面,那么判定定理2:如果一条直线垂直于两个平行平面中的一个平面,那么.线面垂直性质定理:垂直于同一个平面的两条直线互相平行.性质定理1:垂直于同一条直线的两个平面互相平行。

二、精选习题:1.设M表示平面,a、b表示直线,给出下列四个命题:①a//b⎫a⊥M⎫a⊥M⎫a//M⎫②③b∥M④⇒⇒b⊥M⇒a//b⎬⎬⎬⎬⇒b ⊥M.a⊥b⎭a⊥M⎭b⊥M⎭a⊥b⎭其中正确的命题是()A.①②B.①②③C.②③④D.①②④2.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体P—DEF中,必有() 第3题图A.DP⊥平面PEFB.DM⊥平面PEFC.PM⊥平面DEFD.PF⊥平面DEF3.设a、b是异面直线,下列命题正确的是()A.过不在a、b上的一点P一定可以作一条直线和a、b都相交B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b平行4.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,m α和m⊥γ,那么必有()A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ5.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l有且仅有一个平面与α垂直;③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直其中正确命题的个数为()A.0B.1C.2D.3 6.设l、m为直线,α为平面,且l⊥α,给出下列命题① 若m⊥α,则m∥l;②若m⊥l,则m∥α;③若m∥α,则m⊥l;④若m∥l,则m⊥α,其中真命题的序号是()...A.①②③B.①②④C.②③④D.①③④7.如图所示,三棱锥V-ABC中,AH⊥侧面VBC,且H是△VBC的垂心,BE是VC边上的高.求证:VC⊥AB;8.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC 的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.9.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.10.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.11.如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知a∥b,a⊥α.求证:b⊥α.12.已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.13.在正方体ABCD—A1B1C1D1中,求直线A1B和平面A1B1CD所成的角.14.如图,四面体A—BCD的棱长都相等,Q是AD的中点,求CQ与平面DBC所成的角的正弦值.15.如图11(1),在直四棱柱ABCD—A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)求证:D1C⊥AC1;(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.16.如图12,在正方体ABCD—A1B1C1D1,G为CC1的中点,O为底面ABCD的中心.求证:A1O⊥平面GBD.17.如图,已知a、b是两条相互垂直的异面直线,线段AB与两异面直线a、b垂直且相交,线段AB的长为定值m,定长为n(n>m)的线段PQ的两个端点分别在a、b上移动,M、N分别是AB、PQ的中点.求证:(1)AB⊥MN;(2)MN的长是定值.18.如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.面面垂直专题练习一、定理填空面面垂直的判定定理:面面垂直的性质定理:二、精选习题1、正方形ABCD沿对角线AC折成直二面角后,AB与CD所成的角等于2、三棱锥P-ABC的三条侧棱相等,则点P在平面ABC上的射影是△ABC的____心.3、一条直线与两个平面所成角相等,那么这两个平面的位置关系为______________4、在正三棱锥中,相邻两面所成二面角的取值范围为___________________5、已知α-l-β是直二面角,A∈α,B∈β,A、B∉l,设直线AB与α成30角,AB=2,Bο到A在l上的射影N,则AB与β所成角为______________.6、在直二面角α-AB-β棱AB上取一点P,过P分别在α,β平面内作与棱成45°角的斜线PC、PD,则∠CPD的大小是_____________7、正四面体中相邻两侧面所成的二面角的余弦值为___________________.8.如图,在正方体ABCD-A1B1C1D1 中.求证:平面ACD1 ⊥平面BB1D1DDA1DC1CAB10、如图,三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,求证:平面PAC⊥平面PBC.BAC11、如图,三棱锥P-ABC中,PA⊥平面ABC,平面PAC⊥平面PBC.问△ABC是否为直角三角形,若是,请给出证明;若不是,请举出反例.ACB第二篇:线面,面面垂直线面,面面垂直⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。

线面垂直练习题及答案

线面垂直练习题及答案

线面垂直练习题及答案一、选择题(每题2分,共10分)1. 在空间几何中,如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线与这个平面的关系是什么?A. 平行B. 垂直C. 相交D. 无法确定2. 若直线l与平面α垂直,直线m在平面α内,且直线l与直线m相交于点P,那么直线l与直线m的关系是什么?A. 平行B. 垂直C. 异面D. 相交但非垂直3. 在一个正方体中,如果一条直线垂直于正方体的一个面,那么这条直线与正方体的对角线的关系是什么?A. 垂直B. 平行C. 相交D. 异面4. 已知直线AB与直线CD相交于点P,且直线AB垂直于平面α,直线CD在平面α内,那么点P到平面α的距离是多少?A. 0B. 长度APC. 长度CPD. 无法确定5. 如果直线a与平面β垂直,直线b在平面β内,且直线a与直线b不共面,那么直线a与直线b的关系是什么?A. 平行B. 垂直C. 相交D. 异面二、填空题(每空1分,共5分)6. 已知直线l垂直于平面α,若直线m在平面α内,且直线l与直线m的距离为d,则直线l与直线m的夹角为________。

7. 在三棱锥P-ABC中,若PA垂直于平面ABC,且AB垂直于AC,则PA 与AB的夹角为________。

8. 已知直线a垂直于直线b,直线c垂直于直线b,且直线a与直线c 相交,那么直线a与直线c的夹角为________。

三、计算题(每题5分,共10分)9. 在空间直角坐标系中,设直线l的方程为 \( x - 2y + z = 0 \),平面α的方程为 \( 3x + y - 2z + 5 = 0 \)。

求证直线l与平面α垂直。

10. 已知直线AB通过点A(1,2,3)和点B(4,5,6),求证直线AB垂直于平面xOy。

线线垂直、线面垂直、面面垂直的习题及答案

线线垂直、线面垂直、面面垂直的习题及答案
13. 如 图 1-10-5 所 示 , 在 四 面 体 ABCD 中 , BD= 2 a, AB=AD=BC=CD=AC=a. 求 证 : 平 面 ABD ⊥ 平 面 BCD.
14.如图所示,△ABC 为正三角形,CE⊥平面 ABC,BD∥CE,且 CE=AC=2BD , M 是 AE 的 中 点 , 求 证 : (1)DE=DA;(2)平面 BDM⊥平面 ECA;(3)平面 DEA⊥平面 ECA.
直 角 △ BPC 中 ,


由 AB=AC,AE⊥BC,
直角△ABE 中,



在△PEA 中,




平面 ABC⊥平面 BPC
.
10. 证明:(1)在长方体 ABCD-A1B1C1D1 中,AB=2,BB1=BC=1, E 为 D1C1 的中点.∴△DD1E 为等腰直角三角形,∠D1ED=45°.同 理∠C1EC=45°.∴ DEC 90 ,即 DE⊥EC.
15.如图所示,已知 PA⊥矩形 ABCD 所在平面,M、N 分别是 AB、 PC 的中点.
(1)求证:MN∥平面 PAD;(2)求证:MN⊥CD;(3)若∠PDA=45°, 求证:MCD A1B1C1D1 中,M 为 CC1 的中点,AC 交 BD 于点 O,求证: A1O 平面 MBD
O 的直径
∴BC⊥AC; 又 PA⊥平面 ABC,BC 平面 ABC, ∴BC⊥PA,从而 BC⊥平面 PAC. ∵BC 平面 PBC, ∴平面 PAC⊥平面 PBC.
.
12. 证明:如图 1-10-4 所示,取 BC 的中点 D,连接 AD,SD.
由题意知△ASB 与△ASC 是等边三角形,则 AB=AC,

线面垂直及应用(习题及答案)

线面垂直及应用(习题及答案)

线面垂直及应用(习题)➢例题示范例1:如图,在正三棱柱ABC-A1B1C1 中,AB=AA1=1,则点C 到平面ABC1 的距离为()A.42 6B.3C.217D.2 37思路分析:思路一:观察特征,考虑采用构造垂面法,取AB 的中点E ,易证平面C1CE⊥平面ABC1,过点C 作CF⊥C1E,则CF 的长即为所求距离,接着在直角三角形中研究边角关系,求解.思路二:采用等体积法,VC -ABC =VC -ABC,建立等式,求解.1 1解题过程:方法一:如图,取AB 的中点E,连接CE,C1E,过点C 作CF⊥C1E 于点F.在正三棱柱ABC-A1B1C1 中,CC1⊥平面ABC,则AB⊥CC1,∵△ABC 是等边三角形,∴AB⊥CE,又CE CC1=C,∴AB⊥平面CC1E,∴平面C1CE⊥平面ABC1,∴CF⊥平面ABC1,则CF 的长即为所求距离.在Rt△CEC1 中,CC1=1,CE = 3AB =3,∴C1E =2 2 =7.2由等面积得,CF =CC1 ⨯CE=C1E21,7即点C 到平面ABC1 的距离为21.71CC12 +CE 22 1 37方法二:在正三棱柱ABC-A1B1C1 中,CC1⊥平面ABC,AB=BC=AC=CC1=1,易得AC1=BC1=,S△ ABC =4,在△ABC1 中,AC1=BC1= ,AB=1,∴ S△ ABC =4,∵VC -A BC=V C -ABC ,设点 C 到平面ABC1 的距离为d,1 1则1⨯7⨯d =1⨯3⨯1 ,解得d =21.3 4 3 4 7例2:如图,∠BAC 在平面α内,点P 在α外,PE⊥AB,PF⊥AC,PO⊥α,垂足分别为E,F,O,且PE=PF,求证:∠BAO=∠CAO.思路分析:根据特征,有线面垂直、平面的斜线与平面内直线垂直,根据三垂线定理的逆定理处理.解题过程:∵PO⊥α,PE⊥AB,PF⊥AC,∴OE⊥AB,OF⊥AC,∵PE⊥AB,PF⊥AC,PE=PF,∴Rt△PAE≌Rt△PAF,∴AE=AF,∴Rt△AOE≌Rt△AOF,∴∠BAO=∠CAO.2232 3323➢巩固练习1.如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,PA⊥底面ABCD,PA=AB=2,则点C 到平面PBD 的距离为()A.B.C.D.1第1 题图第2 题图2.如图,在四棱锥P-ABCD 中,底面ABCD 是直角梯形,PA⊥底面ABCD,AD∥BC,∠BAD=90°,PA=AB=BC=2,AD=4,则点A 到平面PCD 的距离为()A.63B.2C.26D.233.如图,在四棱锥P-ABCD 中,底面ABCD 是直角梯形,PA⊥底面ABCD,AD∥BC,∠BAD=90°,BC=2,PA=AB=1,则点D 到平面PBC 的距离为()A.22B.1C.12 3D.33第3 题图第4 题图4.如图,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°,E 是BC 的中点,则点B1 到平面AEC1 的距离为()A.B.4 3C.3D.623665.下列命题:①若a 是平面α的斜线,直线b 垂直于a 在平面α内的射影,则a⊥b;②若a 是平面α的斜线,平面β内的直线b 垂直于a 在平面α内的射影,则a⊥b;③若a 是平面α的斜线,直线b⊂α且b 垂直于a 在另一平面β内的射影,则a⊥b;④若a 是平面α的斜线,直线b∥α且b 垂直于a 在平面α内的射影,则a⊥b.其中正确的有()A.0 个B.1 个C.2 个D.3 个6.如图,PA⊥矩形ABCD,则下列结论中不正确的是()A.PD⊥BD B.PD⊥CDC.PB⊥BC D.PA⊥BD7.如图,下列四个正方体中,l 是正方体的一条对角线,M,N,P 分别为其所在棱的中点,能得出直线l⊥平面MNP 的图形是()①②③④A.①④B.①②C.②④D.①③48.直接利用三垂线定理证明下列各题:(1)已知:PA⊥正方形ABCD 所在平面,O 是BD 的中点,求证:PO⊥BD,PC⊥BD.(2)已知:PA⊥平面PBC,PB=PC,M 是BC 的中点,求证:BC⊥AM.59.如图,在直三棱柱ABC-A1B1C1 中,∠ACB=90°,AC=BC=a,AA1 2a ,D,E,M 分别为棱AB,BC,AA1的中点.(1)求证:A1B1⊥C1D;(2)求点C 到平面MDE 的距离.10.如图,在直三棱柱ABC-A1B1C1 中,AB=4,AC=AA1=2,∠ACB=90°.(1)求证:A1C⊥B1C1;(2)求点B1 到平面A1BC 的距离.62 【参考答案】 1.B 2.C 3.A 4.B 5.B 6.A 7.A 8. 证明略.9. (1)证明略; (2)点 C 到平面 MDE 的距离为 6a .610. (1)证明略;(2)点 B 1 到平面 A 1BC 的距离为 .7。

线、面间的垂直关系(习题及答案)

线、面间的垂直关系(习题及答案)

线、面间的垂直关系(习题)例题示范例1:如图,在四棱锥S-ABCD中,底面ABCD是矩形,且SA⊥底面ABCD,过点A作AE⊥SB于点E,再过点E作EF⊥SC于点F.(1)求证:AF⊥SC;(2)若平面AEF交SD于点G,求证:AG⊥SD.思路分析:(1)考虑证明线线垂直的思考角度,转化为线面垂直,首先确定线面目标,以SC为线,转化为证明SC⊥平面AEF.然后,结合题目条件EF⊥SC,只需证明AE⊥SC,同样转化为线面垂直,易得AE⊥平面SBC,整合条件进行证明.(2)证明线线垂直,考虑证明线面垂直,确定线面目标,转化为证明AG⊥平面SDC,由(1)得AG⊥SC,只需证明AG⊥CD,同样转化为线面垂直,证明CD⊥平面SAD,整合条件进行证明.解题过程:(1)证明:∵SA⊥平面ABCD,∴SA⊥BC,∵AB⊥BC,且SA AB=A,∴BC⊥平面SAB,∴BC⊥AE,又∵AE⊥SB,且SB BC=B,∴AE⊥平面SBC,∴AE⊥SC,又∵EF⊥SC,且AE EF=E,∴SC⊥平面AEF,∴AF⊥SC.(2)∵SA⊥平面ABCD,∴SA⊥CD,∵CD⊥AD,且SA AD=A,∴CD⊥平面SAD,∴CD⊥AG,由(1)得SC⊥平面AEF,∴SC⊥AG,又∵CD SC=C,∴AG⊥平面SDC,∴AG⊥SD.例2:如图,在四棱锥E -ABCD 中,底面ABCD 是正方形,AC ,BD 相交于点O ,EC ⊥底面ABCD .(1)求证:BD ⊥AE .(2)若2AB CE =,则在线段OE 上是否存在点G ,使CG ⊥平面BDE ?若存在,求出EG OE 的值;若不存在,请说明理由.思路分析:(1)考虑证明线线垂直的思考角度,转化为线面垂直,确定线面目标,以BD 为线,转化为证明BD ⊥平面ACE ,已知BD ⊥AC ,只需证明BD ⊥EC ,结合题目条件EC ⊥底面ABCD ,整合条件进行证明.(2)结合(1)中结论,利用线面垂直的性质定理得,平面ACE ⊥平面BDE ,再利用面面垂直的性质定理,只需满足CG ⊥交线OE 即可.解题过程:(1)∵EC ⊥底面ABCD ,∴EC ⊥BD ,由底面ABCD 是正方形得,AC ⊥BD ,又AC EC =C ,∴BD ⊥平面ACE ,∴BD ⊥AE .(2)存在,理由如下:如图,取OE 的中点G ,连接CG ,在四棱锥E -ABCD 中,AB =2CE ,22OC =AB =CE ,∴CG ⊥OE ,由(1)得,BD ⊥平面ACE ,又BD ⊂平面BDE ,∴平面ACE ⊥平面BDE ,∵平面ACE 平面BDE =OE ,CG ⊥OE ,CG ⊂平面ACE ,∴CG ⊥平面BDE .故在线段OE 上存在点G ,使CG ⊥平面BDE ,由G 为OE 的中点得,12EG OE =.巩固练习1.设b,c,m是空间的三条不同直线,α,β,γ是空间的三个不同平面,给出下列命题:①若b⊥m,c⊥m,则b∥c;②若b⊥α,c⊥α,则b⊥c;③若m∥α,α⊥β,则m⊥β;④若β∥α,γ⊥β,则γ⊥α.其中正确的是_______________.(填写序号)2.如图,在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,垂足为H,则B1H与平面AD1C的位置关系是()A.垂直B.平行C.斜交D.以上都不对第2题图第3题图3.如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,MD=NB=1,则下列结论不正确的是()A.MC⊥AN B.CD⊥CNC.平面CMN⊥平面AMN D.平面ACN⊥平面BMN 4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,若正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,则m+n=()A.8B.9C.10D.115.如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC ,等边三角形ABD以AB为轴转动,当平面ABD⊥2平面ABC时,CD的长为__________.第5题图第6题图6.如图,在直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,F 是线段AA1上一点,当CF⊥平面B1DF时,AF的长为_______.7.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC,BD相交于点O,PO⊥平面ABCD,PA=AB,E,F,G分别是PO,AD,AB的中点.求证:(1)PC⊥BD;(2)PC⊥平面EFG.8.如图,已知P是△ABC所在平面外一点,PA⊥平面ABC,∠ABC=90°,AE⊥PB于点E,AF⊥PC于点F.求证:(1)平面PBC⊥平面PAB;(2)PC⊥平面AEF.9.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点.(1)求证:A1C⊥平面BDC1;(2)过点E构造一条线段,使之与平面BDC1垂直,并证明你的结论.【参考答案】1.④2.A3.C4.A5.26.a或2a7.证明略.8.证明略.9.(1)证明略;(2)取BD的中点O,连接EO,则EO即为满足条件的线段,证明略.。

线面垂直习题精选完整版

线面垂直习题精选完整版

线面垂直的证明中的找线技巧◆通过计算,运用勾股定理寻求线线垂直1 如图1,在正方体1111ABCD A BC D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD . 证明:连结MO ,1A M ,∵DB ⊥1A A ,DB ⊥AC ,1A A AC A =,∴DB ⊥平面11A ACC ,而1AO ⊂平面11A ACC ∴DB ⊥1AO .设正方体棱长为a ,那么22132A O a =,2234MO a =.在Rt △11AC M 中,22194A M a =.∵22211AO MO AM +=,∴1AO OM ⊥. ∵OM ∩DB =O ,∴ 1AO ⊥平面MBD .评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明.◆利用面面垂直寻求线面垂直2 如图2,P 是△ABC 所在平面外的一点,且PA ⊥平面ABC ,平面PAC ⊥平面PBC .求证:BC ⊥平面PAC .证明:在平面PAC 内作AD ⊥PC 交PC 于D .因为平面PAC ⊥平面PBC ,且两平面交于PC ,AD ⊂平面PAC ,且AD ⊥PC , 由面面垂直的性质,得AD ⊥平面PBC . 又∵BC ⊂平面PBC ,∴AD ⊥BC .∵PA ⊥平面ABC ,BC ⊂平面ABC ,∴PA ⊥BC . ∵AD ∩PA =A ,∴BC ⊥平面PAC .〔另外还可证BC 分别与相交直线AD ,AC 垂直,从而得到BC ⊥平面PAC 〕.评注:条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过此题可以看到,面面垂直⇒线面垂直⇒线线垂直.一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.下面举例说明.3 如图1所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于EFG ,,.求证:AE SB ⊥,AG SD ⊥.证明:∵SA ⊥平面ABCD ,∴SA BC ⊥.∵AB BC ⊥,∴BC ⊥平面SAB .又∵AE ⊂平面SAB ,∴BC AE ⊥.∵SC ⊥平面AEFG ,∴SC AE ⊥.∴AE ⊥平面SBC .∴AE SB ⊥.同理可证AG SD ⊥.评注:此题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化.4 如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD . 证明:取AB 的中点F,连结CF ,DF . ∵ACBC =,∴CF AB ⊥.∵AD BD =,∴DF AB ⊥.又CF DF F =,∴AB ⊥平面CDF .∵CD⊂平面CDF ,∴CD AB ⊥.又CD BE ⊥,BE AB B =, ∴CD ⊥平面ABE ,CD AH ⊥.∵AH CD ⊥,AH BE ⊥,CD BE E =,∴AH ⊥平面BCD .评注:此题在运用判定定理证明线面垂直时,将问题转化为证明线线垂直;而证明线线垂直时,又转化为证明线面垂直.如此反复,直到证得结论.5 如图3,AB 是圆O的直径,C是圆周上一点,PA ⊥平面ABC .假设AE ⊥PC ,E为垂足,F是PB 上任意一点,求证:平面AEF ⊥平面PBC . 证明:∵AB 是圆O的直径,∴AC BC ⊥.∵PA⊥平面ABC ,BC ⊂平面ABC ,∴PA BC ⊥.∴BC ⊥平面APC .∵BC ⊂平面PBC , ∴平面APC ⊥平面PBC .∵AE ⊥PC ,平面APC ∩平面PBC =PC , ∴AE ⊥平面PBC .∵AE ⊂平面AEF ,∴平面AEF ⊥平面PBC .评注:证明两个平面垂直时,一般可先从现有的直线中寻找平面的垂线,即证线面垂直,而证线面垂直那么需从条件出发寻找线线垂直的关系.6. 空间四边形ABCD 中,假设AB ⊥CD ,BC ⊥AD ,求证:AC ⊥BDAD B O C证明:过A 作AO ⊥平面BCD 于OAB CD CD BO⊥∴⊥, 同理BC ⊥DO ∴O 为△ABC 的垂心 于是BD CO BD AC ⊥⇒⊥7. 证明:在正方体ABCD -A 1B 1C 1D 1中,A 1C ⊥平面BC 1DD 1 C 1A 1B 1D CA B证明:连结ACBD AC ⊥AC 为A 1C 在平面AC 上的射影∴⊥⊥⎫⎬⎭⇒⊥BD A CA C BC A C BC D11111同理可证平面8. 如图,PA ⊥平面ABCD ,ABCD 是矩形,M 、N 分别是AB 、PC 的中点,求证:MN AB ⊥PND CA BM. 证:取PD 中点E ,那么EN DC//12PE ND CA BM⇒ENAM// ∴AE MN//又平面平面平面 CD AD PA AC CD PAD AE PAD ⊥⊥⎫⎬⎭⇒⊥⊂⎫⎬⎭ ⇒⊥⎫⎬⎪⎭⎪⇒⊥CD AE CD AB AE MN MN AB////9如图在ΔABC 中, AD ⊥BC , ED=2AE , 过E 作FG ∥BC , 且将ΔAFG 沿FG 折起,使∠A 'ED=60°,求证:A 'E ⊥平面A 'BC分析:弄清折叠前后,图形中各元素之间的数量关系和位置关系。

线面垂直经典例题及练习题-

线面垂直经典例题及练习题-

立体几何1.P 点在则ABC ∆所在的平面外,O 点是P 点在平面ABC 内的射影 ,PA 、PB 、PC 两两垂直,则D 点是则ABC ∆ ( B )(A )重心 (B) 垂心 (C )内心 (D)外心2.与两个相交平面的交线平行的直线和这两个平面的位置关系是 ( A )(A)都平行 (B ) 都相交(C) 在两个平面内 (D )至少与其中一个平行3.若两个平面内分别有一条直线,这两条直线互相平行,那么这两平面的位置关系是( A )(A)平行 (B) 相交 (C)平行或相交 (D )垂直4.在空间,下述命题正确的是 ( B )(A )若直线//a 平面M ,直线b a ⊥,则直线⊥b 平面M(B)若平面M //平面N ,则平面M 内任意直线a //平面N(C)若平面M 与N 的交线为a ,平面M 内的直线a b ⊥,则N b ⊥(D )若平面N 的两条直线都平行平面M ,则平面N //平面M5.a 、b 表示两条直线,α、β、γ表示三个平面,下列命题中错误的是 (A )(A),,αα⊂⊂b a 且ββ//,//b a ,则βα// (B)a 、b 是异面直线,则存在唯一的平面与a 、b 等距 (C) ,,,b a b a ⊥⊂⊥βα则βα// (D ),,,//,βαβγγα⊥⊥⊥b a 则b a ⊥6.直线l //平面α,αβ⊥,则l 与平面β的位置关系是 ( D )(A ) l β⊂ (B) //l β (C) l β与相交 (D ) 以上三种情况均有可能7.已知直线l ⊥平面α,直线m ⊂平面β,有以下四个命题:①//l m αβ⇒⊥②//l m αβ⊥⇒③//l m αβ⇒⊥④//l m αβ⊥⇒,其中正确的是(D )(A) ①② (B ) ②④ (C ) ③④ (D) ①③8.αβγδ,,,是四个不同的平面,且αγβγαδβδ⊥⊥⊥⊥,,,,则( B )(A ) ////αβγδ或 (B ) ////αβγδ且(C) 四个平面中可能任意两个都不平行 (D ) 四个平面中至多有一对平面平行9.已知平面α和平面β相交,a 是α内的一条直线,则( D )(A) 在β内一定存在与a 平行的直线 (B ) 在β内一定存在与a 垂直的直线(C ) 在β内一定不存在与a 平行的直线 (D ) 在β内一定不存在与a 垂直的直线10.已知PA ⊥正方形ABCD 所在平面,垂足为A ,连PB PC PD AC BD ,,、,,则互相垂直的平面有( C )(A ) 5对 (B) 6对 (C) 7对 (D) 8对12。

线面垂直经典例题及练习题-

线面垂直经典例题及练习题-

坐体几许之阳早格格创做1二笔曲,是内的射影,PA( B )(A)沉心 (B) 垂心 (C)内心 (D)中心2.取二个相接仄里的接线仄止的曲线战那二个仄里的位子闭系是( A )(A)皆仄止 (B) 皆相接(C) 正在二个仄里内 (D)起码取其中一个仄止3.若二个仄里内分别有一条曲线,那二条曲线互相仄止,那么那二仄里的位子闭系是( A )(A)仄止 (B) 相接 (C)仄止或者相接 (D)笔曲4.正在空间,下述命题精确的是( B )(A)(B)(C)(D)5中过失的是(A)存留唯一的仄里距仄里,,则取仄里的位子闭系是(D )D ) 以上三种情况均有大概7精确的是(D )(A)①②(B)②④ (C)③④(D)①③8.是四个分歧的仄里,且B )(C) 四个仄里中大概任性二个皆没有服止 (D) 四个仄里中至多有一对于仄里仄止9( D )(A) (B)(C) (D)10.已知正圆形地圆仄里,垂脚为,连C )(A)5对于 (B)6对于 (C)7对于(D) 8对于12.如图9-29,PA ⊥仄里ABCD ,ABCD 是矩形,M 、N 分别是AB 、PC 的中面.供证:MN ⊥AB .13. 已知:如图,AS ⊥仄里SBC ,SO⊥仄里ABC 于O ,供证:AO ⊥BC .15.已知如图,P ∉仄里ABC ,PA=PB=PC ,∠APB=∠APC=60°,∠BPC=90°供证:仄里ABC ⊥仄里PBC16. 如图:正在斜边为AB 的R t △ABC 中,过面A 做PA ⊥仄里ABC ,AE ⊥PB 于E ,AF⊥PC 于F ,(1)供证:BC ⊥仄里PAC ;(2)供证:PB ⊥仄里AEF. 17. 如图:PA ⊥仄里PBC ,AB =AC ,M 是BC 的中面,供证:BC ⊥PM.如图,正在正三棱柱111C B A ABC -.中,底里ABC 为正三角形,M 、N 、G 分别是棱CC 1、C F E PBAC B A M PAB、BC的中面.且ACCC2.1(Ⅰ)供证:CN//仄里AMB1;(Ⅱ)供证:仄里AMG.。

线面垂直及应用(习题及答案)

线面垂直及应用(习题及答案)
10. 如图,在直三棱柱 ABC-A1B1C1 中,AB=4,AC=AA1=2, ∠ACB=90°. (1)求证:A1C⊥B1C1; (2)求点 B1 到平面 A1BC 的距离.
6
【参考答案】
1. B 2. C 3. A 4. B 5. B 6. A 7. A 8. 证明略. 9. (1)证明略;
易得 AC1=BC1=
2 , S△ABC
3, 4
在△ABC1 中,AC1=BC1= 2 ,AB=1,
∴ S△ABC1
7, 4
∵VCABC1 VC1ABC ,设点 C 到平面 ABC1 的距离为 d,
则 1 7 d 1 3 1 ,解得 d 21 .
34
34
7
例 2:如图,∠BAC 在平面α内,点 P 在α外,PE⊥AB,PF⊥AC, PO⊥α,垂足分别为 E,F,O,且 PE=PF,求证:∠BAO=∠CAO.
A.0 个
B.1 个
C.2 个
D.3 个
6. 如图,PA⊥矩形 ABCD,则下列结论中不正确的是( )
A.PD⊥BD
B.PD⊥CD
C.PB⊥BC
D.PA⊥BD
7. 如图,下列四个正方体中,l 是正方体的一条对角线,M,N, P 分别为其所在棱的中点,能得出直线 l⊥平面 MNP 的图形 是( )
① A.①④
线面垂直及应用(习题)
例题示范
例 1:如图,在正三棱柱 ABC-A1B1C1 中,AB=AA1=1,则点 C 到 平面 ABC1 的距离为( )
A. 42 6
B. 3 3
C. 21 7
D. 2 3 7
思路分析: 思路一:观察特征,考虑采用构造垂面法,取 AB 的中点 E ,易 证平面 C1CE⊥平面 ABC1,过点 C 作 CF⊥C1E,则 CF 的长即为 所求距离,接着在直角三角形中研究边角关系,求解. 思路二:采用等体积法,VCABC1 VC1ABC ,建立等式,求解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何
1.P 点在则ABC ∆所在的平面外,O 点是P 点在平面ABC 内的射影 ,PA 、PB 、PC 两
两垂直,则D 点是则ABC ∆ ( B )
(A)重心 (B) 垂心 (C)内心 (D)外心
2.与两个相交平面的交线平行的直线和这两个平面的位置关系是 ( A )
(A)都平行 (B) 都相交
(C) 在两个平面内 (D)至少与其中一个平行
3.若两个平面内分别有一条直线,这两条直线互相平行,那么这两平面的位置关系是( A )
(A)平行 (B) 相交 (C)平行或相交 (D)垂直
4.在空间,下述命题正确的是 ( B )
(A)若直线//a 平面M ,直线b a ⊥,则直线⊥b 平面M
(B)若平面M //平面N ,则平面M 内任意直线a //平面N
(C)若平面M 与N 的交线为a ,平面M 内的直线a b ⊥,则N b ⊥
(D)若平面N 的两条直线都平行平面M ,则平面N //平面M
5.a 、b 表示两条直线,α、β、γ表示三个平面,下列命题中错误的是 (A )
(A),,αα⊂⊂b a 且ββ//,//b a ,则βα// (B)a 、b 是异面直线,则存在唯一的平面与a 、
b 等距 (C) ,,,b a b a ⊥⊂⊥βα则βα// (D),,,//,βαβγγα⊥⊥⊥b a 则b a ⊥
6.直线l //平面α,αβ⊥,则l 与平面β的位置关系是 ( D )
(A) l β⊂ (B) //l β (C) l β与相交 (D ) 以上三种情况均有可能
7.已知直线l ⊥平面α,直线m ⊂平面β,有以下四个命题:①//l m αβ⇒⊥②
//l m αβ⊥⇒③//l m αβ⇒⊥④//l m αβ⊥⇒,其中正确的是(D )
(A) ①② (B) ②④ (C) ③④ (D) ①③
8.αβγδ,,,是四个不同的平面,且αγβγαδβδ⊥⊥⊥⊥,,,,则( B )
(A) ////αβγδ或 (B) ////αβγδ且
(C) 四个平面中可能任意两个都不平行 (D) 四个平面中至多有一对平面平行
9.已知平面α和平面β相交,a 是α内的一条直线,则( D )
(A) 在β内一定存在与a 平行的直线 (B) 在β内一定存在与a 垂直的直线
(C) 在β内一定不存在与a 平行的直线 (D) 在β内一定不存在与a 垂直的直线
10.已知PA ⊥正方形ABCD 所在平面,垂足为A ,连PB PC PD AC BD ,,、,,则互
相垂直的平面有( C )
(A) 5对 (B) 6对 (C) 7对 (D) 8对
12. 如图9-29,P A ⊥平面ABCD ,ABCD 是矩形,M 、N 分别是AB 、PC 的中点. 求证:MN ⊥AB .
13. 已知:如图,AS ⊥平面SBC ,SO ⊥平面ABC 于O ,
求证:AO ⊥BC .
15. 已知如图,P 平面ABC ,PA=PB=PC ,∠APB=∠APC=60°,∠BPC=90 °求证:平面ABC ⊥平面PBC
16. 如图:在斜边为AB 的R t △ABC 中,过点A 作PA ⊥平面ABC ,AE ⊥PB 于E ,AF ⊥PC 于F ,(1)求证:BC ⊥平面PAC ;(2)求证:PB ⊥平面AEF.
17. 如图:PA ⊥平面PBC ,AB =AC ,M 是BC 的中点,求证:BC ⊥PM.
C
F E P
B A
C B A M
P
如图,在正三棱柱111C B A ABC -.中,底面ABC 为正三角形,M 、N 、G 分别是棱CC 1、AB 、BC 的中点.且AC CC 21=.
(Ⅰ)求证:CN //平面 AMB 1; (Ⅱ)求证:
平面AMG .。

相关文档
最新文档