几何最值问题参考答案
中考压轴题专题:与圆有关的最值问题(附答案)

与圆有关的最值(取值范围)问题引例1:在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________.引例2:如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,»ABBC=,AC=,求的最大值.a b a b引例3:如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为( ).A.3 B.6 CD.一、题目分析:此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C与两个定点O、A构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;2.引例2:通过圆的基本性质,寻找动点C与两个定点A、B构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D、E与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE、直径所在的直角三角形,从而转化为弦DE与半径AP之间的数量关系,其实质是高中“正弦定理”的直接运用;综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.二、解题策略1.直观感觉,画出图形;2.特殊位置,比较结果;3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.A 三、中考展望与题型训练例一、斜率运用1.如图,A 点的坐标为(﹣2,1),以A 为圆心的⊙A 切x 轴于点B ,P (m ,n)为⊙A 上的一个动点,请探索n+m 的最大值.例二、圆外一点与圆的最近点、最远点1.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .2.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧»AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)在点P 的运动过程中,线段CD 长度的取值范围为 ;(2)在点P 的运动过程中,线段AD 长度的最大值为 .例三、正弦定理 1.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=D 是线段BC 上的一个动点,以AD 为直径作⊙O 分别交AB ,AC 于E ,F 两点,连接EF ,则线段EF 长度的最小值为 .2. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,则PM 长度的最大值是 .A例四、柯西不等式、配方法1.如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x (2<x <4),则当x= 时,PD•CD 的值最大,且最大值是为 .2.如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 半径的最小值为( ).D. 23.在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与轴相交于点A ,与轴相交于点B ,线段AB 长度的x y 最小值是 .例四、相切的应用(有公共点、最大或最小夹角)1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 边上一点,过点D 作CD 的垂线交直线BC 于点E ,则线段CE 长度的最小值是 .2.如图,Rt△ABC 中,∠C=90°,∠A=30°,AB=4,以AC 上的一点O 为圆心OA 为半径作⊙O ,若⊙O 与边BC 始终有交点(包括B 、C 两点),则线段AO 的取值范围是 .3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O 于点Q,则PQ的最小值为( )A.B.C.3 D.2例五、其他知识的综合运用1.(2015•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E 重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2.(2013秋•相城区校级期末)如图,已知A、B是⊙O与x轴的两个交点,⊙O的半径为1,P是该圆上第一象限内的一个动点,直线PA、PB分别交直线x=2于C、D两点,E为线段CD的中点.(1)判断直线PE与⊙O的位置关系并说明理由;(2)求线段CD长的最小值;(3)若E点的纵坐标为m,则m的范围为 .B【题型训练】1.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C,若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,则⊙O的半径r的取值范围为 .2.已知:如图,RtΔABC中,∠B=90º,∠A=30º,BC=6cm,点O从A点出发,沿AB以每秒cm的速度向B点方向运动,当点O运动了t秒(t>0)时,以O点为圆心的圆与边AC相切于点D,与边AB相交于E、F两点,过E作EG⊥DE交射线BC于G.(1)若点G在线段BC上,则t的取值范围是;(2)若点G在线段BC的延长线上,则t的取值范围是 .3.如图,⊙M,⊙N的半径分别为2cm,4cm,圆心距MN=10cm.P为⊙M上的任意一点,Q为⊙N上的任意一点,直线PQ与连心线所夹的锐角度数为,当P、Q在两圆上任意运动时,lα的最大值为; (B);; (D) tanα∠43344.如图,在矩形ABCD中,AB=3,BC=4,O 为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为( ).(A)4 (B) (C) (D)215358174 5.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB 分别相交于点P、Q,则线段PQ长度的最小值是( ).A. B. C.5 D.1942456.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E在AB边上运动(点E不与点A重合),过A、D、E三点作⊙O,⊙O交AC于另一点F,在此运动变化的过程中,线段EF长度的最小值为.7.如图,A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心的坐标为(-1,0),半径为1,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是( ).A.2 B.1 C. D.22-8.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1,D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( ).A.3 B. C.103D.41139.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,⊙C的半径为1,点P在斜边AB上,PQ 切⊙O于点Q,则切线长PQ长度的最小值为( ).B.10.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的范围为 .11.在直角坐标系中,点A的坐标为(3,0),点P()是第一象限内一点,且AB=2,m n,则的范围为 .m n-12.在坐标系中,点A的坐标为(3,0),点P是y轴右侧一点,且AP=2,点B上直线y=x+1上一动点,且PB⊥AP于点P,则,则的取值范围是 .tan ABP m∠=m13.在平面直角坐标系中,M(3,4),P是以M为圆心,2为半径的⊙M上一动点,A(-1,0)、B(1,0),连接PA、PB,则PA2+PB2最大值是 .蔡老师点评:与圆有关的最值问题,看着无从下手,但只要仔细观察,分析图形,寻找动点与定点之间不变的维系条件,构建关系,将研究的问题转化为变量与常量之间的关系,就能找到解决问题的突破口!几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考试题中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.参考答案:引例1.解:C在以A为圆心,以2为半径作圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°,∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC,tan∠BOC=tan∠OAC= =,随着C的移动,∠BOC越来越大,∵C在第一象限,∴C不到x轴点,即∠BOC<90°,∴tan∠BOC≥,故答案为:m≥.引例1图引例2图+≤引例2.a b原题:(2013•武汉模拟)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作圆O,C为半圆AB上不与A、B重合的一动点,射线AC交⊙O 于点E,BC=a,AC=b.(1)求证:AE=b+a;(2)求a+b的最大值;(3)若m是关于x的方程:x2+ax=b2+ab的一个根,求m的取值范围.【考点】圆的综合题.【分析】(1)首先连接BE,由△OAB为等边三角形,可得∠AOB=60°,又由圆周角定理,可求得∠E的度数,又由AB为⊙D的直径,可求得CE的长,继而求得AE=b+a;(2)首先过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,可得(a+b)2=a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,即可求得答案;(3)由x2+ax=b2+ab,可得(x﹣b)(x+b+a)=0,则可求得x的值,继而可求得m 的取值范围.【解答】解:(1)连接BE,∵△OAB为等边三角形,∴∠AOB=60°,∴∠AEB=30°,∵AB为直径,∴∠ACB=∠BCE=90°,∵BC=a,∴BE=2a,CE=a,∵AC=b,∴AE=b+a;(2)过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,∴a2+b2=1,∵S△ABC=AC•BC=AB•CH,∴AC•BC=AB•CH,∴(a+b)2=a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,∴a+b≤,故a+b的最大值为,(3)∵x2+ax=b2+ab,∴x2﹣b2+ax﹣ab=0,∴(x+b)(x﹣b)+a(x﹣b)=0,∴(x﹣b)(x+b+a)=0,∴x=b或x=﹣(b+a),当m=b时,m=b=AC<AB=1,∴0<m<1,当m=﹣(b+a)时,由(1)知AE=﹣m,又∵AB<AE≤2AO=2,∴1<﹣m≤2,∴﹣2≤m<﹣1,∴m的取值范围为0<m<1或﹣2≤m<﹣1.【点评】此题考查了圆周角定理、等边三角形的性质、完全平方公式的应用以及一元二次方程的解法.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.引例3.解:连接EP,DP,过P点作PM垂直DE于点M,过O做OF⊥AC与F,连接AO,如图,∵∠BAC=60°,∴∠DPE=120°.∵PE=PD,PM⊥DE,∴∠EPM=60°,∴ED=2EM=2EP•sin60°=EP=PA.当P与A、O共线时,且在O点右侧时,⊙P直径最大.∵⊙O与∠BAC两边均相切,且∠BAC=60°,∴∠OAF=30°,OF=1,∴AO==2,AP=2+1=3,∴DE=PA=3.故答案为:D。
几何最值问题 (讲义及答案)

几何最值问题(讲义)➢知识点睛1.解决几何最值问题的理论依据:①两点之间,线段最短(已知两个定点)②垂线段最短(已知一个定点、一条定直线)③三角形三边关系(已知两边长固定或其和、差固定)④过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦2.几何最值问题的处理思路:①分析定点、动点,寻找不变特征;②若属于常见模型、结构,调用模型、结构解决问题;若不属于常见模型,要结合所求目标,根据不变特征转化为基本定理或表达为函数解决问题.转化原则:尽量减少变量,向定点、定线段、定图形靠拢,或使用同一变量表达所求目标.3.常用模型、结构示例:①轴对称最值模型lll求P A+PB的最小值,求|P A-PB|的最大值,定长线段MN在直线l上滑动,使点在线异侧使点在线同侧求AM+MN+BN 的最小值;1/ 72 / 7平移BN (或AM )②利用图形性质进行转化(三角形三边关系示例)DCABONM求OD 的最大值 求AB 的最值➢ 精讲精练1. 如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P的坐标为( ) A .(-3,0)B .(-6,0)C .(32-,0)D .(52-,0)y xPODCBA2. 已知:如图,∠ABC =30°,P 为∠ABC 内部一点,BP =4,如果点M ,N 分别为边AB ,BC 上的两个动点,则△PMN 周长的最小值是________.3 / 7 ED C B AAE PCBA3. 如图,在长方形ABCD 中,AB =4,BC =8,E 为CD 边的中点,若P ,Q 为BC 边上的两个动点,且PQ =2,则当BP =________时,四边形APQE 的周长最小.A B CD EP Q第3题图 第4题图4. 已知二次函数y =-x 2+2x +3与y 轴的交点为A ,顶点为B ,点P (t ,0)是x 轴上的动点.则|P A -PB |的最大值是________,此时点P 的坐标是__________.5. 如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,D 是AB 边上 的动点,E 是BC 边上的动点,则AE +DE 的最小值为( ) A .3213 B .10C .245D .4856. 如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 边上,则以AC 为对角线的所有□ADCE 中,DE 长度的最小值为_____________.4 / 7OEDCBA第6题图 第7题图7. 如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针转60°得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是________.8. 如图,△ABC 是等边三角形,AB =3,E 在AC 上且AE =23AC ,D 是直线BC 上一动点,线段ED 绕点E 逆时针旋转90°,得到线段EF ,当点D运动时,则线段AF 的最小值是___________.ABCDEF9. 如图,已知AB =2,C 是线段AB 上任一点,分别以AC ,BC 为斜边,在AB 的同侧作等腰直角三角形ACD 和等腰直角三角形BCE ,则DE 长度的最小值为_____________.ED B CA5 / 710. 动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC 边上的A′处,折痕为PQ ,当点A′在BC 边上移动时,折痕的端点P ,Q 也随之移动.若限定点P ,Q 分别在AB ,AD 边上移动,则点A′在BC 边上可移动的最大距离为________________.QPA'D C B AD CBA11. 如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C ,则A′C 长度的最小值是_______.A'D CBNMAF DE AHGB C第11题图 第12题图12. 如图,E ,F 是正方形ABCD 的边AD 上的两个动点,且满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H ,连接DH .若正方形的边长为2,则DH 长度的最小值是_______.13.已知抛物线3)(1)y x x =+-,与x 轴从左至右依次相交于A ,B 两点,与y 轴相交于点C ,经过点A的直线y b =+与抛物线的另一个交点为D .设点E 是线段AD 上的一点(不含端点),连接BE .一动点Q 从点B 出发,沿线段BE 以每秒1个单位的速度运动到点E ,再沿线段ED 以每秒233个单位的速度运动到点D后停止,则当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?6/ 77 / 7➢ 参考答案1. C2. 43. 44.2;(-3,0)5. D6. 37.23 8. 231+ 9. 1 10. 211. 17- 12. 15-13. ()341-,。
中考几何最值问题归类解析

3 , 点 E的纵坐标 为 一m +2 )则 m
+3,
0
‘
F
设点 E的横坐标 为 r( n 0<m
< ) 则 点 E 的纵 坐 标 为 一1 + 3 , 7 1 ,
2 +3, m
|D \ B
图 1 1
‘
.
D( 3 , 0, ) O F=m, 线 D 的表 达 式 直 E
出 的 新 题 、 题 脱 颖 而 出. 类 试 题 较 好 地 考 查 了 学 生 活 这
解
过 M 作 M 上A , 时 MN 最 小 , 直 角 三 角 N C此 在
几何探究 、 推理能力的要求. 现以 2 1 0 0年 中考试题为例 加以归类说明.
1 线段 最 值 问题 例 1 ( 00年 黄 冈 ) 图 21 如
十’截 ・ ( 1年 期・ 版 7 7 2 1 第2 初中 ) 0
・复习参考 ・
中 考 几 伺 最 值 问 题 归 类 麓 斩
2 10 江 苏丰县 中学初 中部 27 0
在近几年各地 中考中 , 几何最值 问题屡屡受 到命 题
者 青 睐 , 类 问 题 不 仅 涉 及 到平 面 几 何 的基 本 知 识 , 此 还 涉及 几 何 图形 、 面 直 角 坐标 系 、 数 等 知 识. 观 2 1 平 函 纵 00 年各 地 中考 数 学试 卷 , 一批 立 意新 颖 、 造 精 巧 、 点 突 构 考
() 1 求证 : 邶 AE B; △A N
( ) 当 点 在 何 处 时 ,M +C 的 值 最 小 ; 2① A M ② 当 点 在 何 处 时 ,M +B + M 的值 最 小 , 说 A M C 并
(答案)奥赛经典-奥林匹克数学中的几何问题---参考答案(第1-2章)

参考答案第一章 梅涅劳斯定理及应有习题A1.延长CB ,FE 交于H ,ADB △与截线GEH ,有13122AG DH BE DH GD HB EA HB ⋅⋅=⋅⋅=,有43DH HB =,即74CH HD =.对ACD △及截线FGH ,72141AF CH DG AF FC HD GA FC ⋅⋅=⋅⋅=,求得27AF FC =. 2.设CB ,DE 的延长线交于P ,又BP BC =,32FP PB =,对AFB △与截线HEP ,CGE ,有31121AH FP BE AH GF PB EA HF ⋅⋅=⋅⋅=,即23AH HF =;11121AG FC BE AG GF CB EA GF ⋅⋅=⋅⋅=,即21AG GF =.由此求得645AH HG GF =∶∶∶∶.3.对BDP △于截线CEA ,有1231612BC DA PE BC CD AP EA CD ⋅⋅=⋅⋅=,知BD DC =.对CDP △与截线BFA ,有22111CB DA PF PF BD AP FC FC ⋅⋅=⋅⋅=,知14PF FC =.而20CF =,故15CP =. 在PBC △中,由中线长公式2PD =,得BC =,即BD =.又22222269BP PD BD +=+==,即90BPD ∠=︒,27PBD S =△,4108ABC PBD S S ==△△.4.直线OCB 分别与DMF △和AEM △的三边延长线都相交,有1DB MO FC MB FO DC ⋅⋅=,1AB EO MCEB MO AC⋅⋅=,即OF OE DB FC EB AC OM OM MB DC AB MC ⋅⋅⋅=⋅⋅⋅.由EF AD ∥,有DB AB MB EB =,FC MC DC AC =,从而21OF OE OM ⋅=,即22OF OE OM OP ⋅==,有OFP OPE △∽△,故OPF OEP ∠=∠.5.直线截ABC △,有22133CF AD BE BE FA DB EC EC ⋅⋅=⋅⋅=,即94BE EC =,故54BC CE =.直线截DBE △,有25154EF AD BC EF FD AB CE ED ⋅⋅=⋅⋅=,所以21EF FD =∶∶. 6.设AC BC x ==,则AB =,。
几何最值—转化求最值(一)(含答案)

学生做题前请先回答以下问题问题1:几何最值问题的理论依据是什么?答:(已知两个定点)两点之间,__________;(已知一个定点、一条定直线)________最短;(已知两边长固定或其和、差固定)三角形_________;过圆内一点,最长的弦为______,最短的弦为______________.问题2:几何最值问题的转化原则是什么?答:尽量减少______,向_______、_______、_______靠拢.问题3:想一想,几何最值问题的处理思路是什么?以下是问题及答案,请对比参考:问题1:几何最值问题的理论依据是什么?答:(已知两个定点)两点之间,;(已知一个定点、一条定直线)最短;(已知两边长固定或其和、差固定)三角形;过圆内一点,最长的弦为,最短的弦为.答:问题2:几何最值问题的转化原则是什么?答:尽量减少,向、、靠拢.答:问题3:想一想,几何最值问题的处理思路是什么?答:几何最值—转化求最值(一)一、单选题(共5道,每道20分)1.如图,在△ABC中,∠ACB=90°,AC=12,BC=8,点A,C分别在x轴、y轴上.当点A在x 轴上运动时,点C随之在y轴上运动,则在运动过程中,点B到原点的最大距离为( )A.12B.15C.16D.18答案:C解题思路:试题难度:三颗星知识点:几何最值问题2.如图,在矩形ABCD中,AB=5,BC=12,E是BC边上一动点,则以BD为对角线的所有平行四边形BEDF中,EF的最小值是( )A. B.5C.6D.12答案:B解题思路:试题难度:三颗星知识点:几何最值问题3.如图,在△ABC中,AB=5,AC=12,BC=13,P为边BC上一动点,PE⊥AB于点E,PF⊥AC 于点F,M为EF中点,PM的最小值为( )A. B.C.3D.答案:A解题思路:试题难度:三颗星知识点:几何最值问题4.如图,边长为2a的等边△ABC中,M是高AD所在直线上的一个动点,连接CM,将线段CM绕点C逆时针旋转60°得到CN,连接DN.则在点M运动过程中,线段DN的最小值为( )A. B.aC. D.答案:D解题思路:试题难度:三颗星知识点:几何最值问题5.如图,在△ABC中,AB=10,AC=8,BC=6,过点C且与AB边相切的动圆与AC,BC分别相交于点P,Q,则线段PQ长度的最小值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:几何最值问题。
几何最值问题参考答案与解析

几何最值问题一.选择题(共6小题)1.(2015•孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC的中点,点P为BD上一点,则PE+PC的最小值为()3==3,.2.(2014•鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为()+50∵LN=AS==40=50+503.(2014秋•贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为()4.(2014•无锡模拟)如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON上,当B 在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为()∴OE=AE=AB=∴AD=BC=DE=cos∠ADE===DF=∴OA=AD=5.(2015•鞍山一模)如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是()EF=,此时四,连结MN===PQ=,tan∠MBC=tan∠PDC==6.(2015•江干区一模)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE 为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为()BG∴AD=BD=CD=2BG最大值为.二.填空题(共3小题)7.(2014•江阴市校级模拟)如图,线段AB的长为4,C为AB上一动点,分别以AC、BC 为斜边在AB的同侧作等腰直角△ACD和等腰直角△BCE,那么DE长的最小值是 2 .CD=,CD′=(x,CD′==(8.(2012•河南校级模拟)如图,矩形ABCD中,AB=4,BC=8,E为CD边的中点,点P、Q 为BC边上两个动点,且PQ=2,当BP= 4 时,四边形APQE的周长最小.9.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1 .AB=1OH=AO=OD=,﹣直径的半圆故答案为:三.解答题(共1小题)10.(2015•黄冈中学自主招生)阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是 6 .参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是(或不化简为).(结果可以不化简),∴CD=4+2A'C==+2;+2(或不化简为+2(或不化简为完美WORD格式编辑学习指导参考资料。
立体几何最值问题-高考数学一题多解

立体几何最值问题-高考数学一题多解一、攻关方略事物的空间形成,总是表现为不同维数且遵循由低维到高维的发展规律,所谓升维策略,就是把维数、抽象水平较低的或局部的问题转化为维数、抽象水平较高或整体性较强的整体间的关系问题,通过对整体性质或关系的考虑,使原问题获得解决的策略,如平面图形通过翻折或旋转成为空间图形就是二维向三维的转化与变换.在解题时,考虑把高维空间的问题转化为低维空间的问题,这种处理问题的方法叫降维法,也可称之为降维策略,如将立体几何问题转化为平面几何问题.实际上,许多立体几何问题如求空间角、空间距离等,通常总是转化为平面内的问题,通过计算来解决的,当然将空间角、空间距离转变为平面角、平面上点线距离这一步是需要证明的.在立体几何学习中经常碰到几何体中有变角或变动的线段,此时必须根据题意列出沟通已知量与变量之间的关系,运用函数与方程的思想来处理,立体几何中由于动点的变化引起的最值,通常建立关于与动点相关的角度的目标函数,转化为函数最值问题求解.若在空间图形中建立空间直角坐标系,利用向量坐标法,结合条件得到方程(组),则可用解方程(组)求出结果,利用函数与方程的思想方法还可以解空间图形中涉及线面关系、面面关系的探究性问题.真可谓:翻折旋转二维升三,空间问题降维处理.点动角变牵动图形,立几最值函数搞定.1.如图所示,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC △、ECA △、FAB 分别是以BC 、CA 、AB 为底边的等腰三角形,沿虚线剪开后,分别以BC 、CA 、AB 为折痕折起DBC △、ECA △、FAB ,使得D 、E 、F 重合,得到三棱锥.当ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【针对训练】2.点P 在ABC 所在平面α外,PA α⊥,PB PC ==,3tan 2PBC ∠=,则点A 到平面PBC 的距离的最大值是______.3.如图所示,在ABC 中,2AB BC ==,120ABC ∠=︒.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体P BCD -的体积的最大值是______.4.已知底面边长为2的正三棱锥-P ABC ,其表面展开图是123PP P ,如图所示,求123PP P 的各边长及此三棱锥的体积V .5.已知球的直径4SC =,A 、B 是该球面上的两点,30ASC BSC ∠=∠=︒,则三棱锥S ABC -的体积的最大值为______.(2021全国新高考Ⅰ卷19)6.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?(2022新高考1卷)7.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27](2022年全国乙卷(文数)第12题)8.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C D .2(2022年全国乙卷(文数)第18题)9.如图,四面体ABCD 中,AD CD ⊥,AD CD =,ADB BDC ∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2AB BD ==,60ACB ∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.10.如图,已知平面四边形ABCD ,AB=BC=3,CD=1,ADC=90°.沿直线AC 将ACD 翻折成ACD '△,直线AC 与BD '所成角的余弦的最大值是________.11.已知四边形ABCD ,2AB BD DA ===,BC CD ==ABD △沿BD 折起,使二面角A BD C --的大小在5,66ππ⎡⎤⎢⎥⎣⎦内,则直线AB 与CD 所成角的余弦值取值范围是()A .08⎡⎢⎣⎦,B .08⎡⎢⎣⎦,C .01⎡⎫⎪⎢⎪⎣⎦⎣⎭ D .88⎢⎣⎦,参考答案:1.3【分析】先求得所求三棱锥体积的表达式,然后利用导数或基本不等式求得体积的最大值.【详解】解法一:由题意可知,折起后所得三棱锥为正三棱锥,当ABC 的边长变化时,设ABC 的边长为()0a a >cm ,则ABC 的面积为24a .DBC △的高为56a -,则正三棱锥的高为=∴2503->,∴0a <<.∴所得三棱锥的体积213412V a =⨯=.令45253t a a =-,则34100t a =',由0t '=,得a =此时所得三棱锥的体积最大,为3.解法二:如图所示,连接OD 交BC 于点G ,由题意知,OD BC ⊥,OG 是等边三角形ABC 内切圆半径,21π1sin 3232BC BC OG ⨯⨯=⨯⨯,解得OG =,∴OG 的长度与BC 的长度成正比.设OG x =,则BC =,5DG x =-,2132ABC S x =⨯=△,则所得三棱锥的体积2213V =⨯=令()452510f x x x =-,50,2x ⎛⎫∈ ⎪⎝⎭.则()3410050f x x x '=-,令()0f x '≥,即4320x x -≤,得02x <≤.则当50,2x ⎛⎫∈ ⎪⎝⎭时,()()280f x f =≤,∴V ≤.∴所求三棱锥的体积的最大值为3.解法三:如图所示,连接OE 交AC 于点H ,连接AO 、OC ,设OH x =.则AC =,5EH x =-,三棱锥D ABC -2ABC S = ,D ABC V -=2≤=,当且仅当104x x =-,即2x =时取等号.∴所求三棱锥的体积的最大值为3.【点睛】本题为平面图形折叠成空间图形,当折叠终止时,几何体是一个正三棱锥,这个正三棱锥底面边长是一个变元,从而导致三棱锥体积的变化,特别要提醒的是,在折叠问题中,必须注意到折叠过程中哪些要素在变化,哪些要素始终保持不变,其中不变要素见核心要素.根据平面图形的性质,寻找不变的数量关系以及直线与直线平行和垂直的位置关系,是解决折叠问题的突破口,因此折叠问题要通过变图、想图、构图、用图的过程,积极思考,体会解题程序方向性,直击问题的本质,折叠问题既要看清平面转化为空间的过程,又要了解三维空间图形问题的平面化处理,两者是互通的.在建立体积表达式的函数模型之后,结合函数思想求最值,通常用导数法,也可考虑运用基本不等式的方法.策略一:以动正三角形AEC 的边长为变元建立函数关系式,运用导数法求其最大值.策略二:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用导数法求其最大值.策略三:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用基本不等式求最大值,注意等号成立的条件.2【分析】法一,取BC 的中点D ,连接AD 、PD ,设ADP θ∠=,用θ的正余弦表示AD ,PD ,再利用等体积法求解作答.法二,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F ,证明AF ⊥平面PBC ,再利用均值不等式求解作答.【详解】解法一,取BC 的中点D ,连接AD 、PD ,如图,因PB PC =,则PD BC ⊥,而3tan2PBC ∠=,有sin PBC ∠=则有sin PD PB PBC =⋅∠=PA ⊥平面ABC ,,AD BC ⊂平面ABC ,则PA AD ⊥,PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,AD ⊂平面PAD ,则AD BC ⊥,在Rt PAD △中,令(0,)2ADP πθ∠=∈,sin ,cos PA PD AD PD θθ==,设点A 到平面PBC 的距离为h ,11,22PBC ABC S BC PD S BC AD =⋅=⋅ ,由A PBC P ABC V V --=得:1133PBC ABC S h S PA ⋅=⋅ ,即1122BC PD h BC AD PA ⋅⋅=⋅⋅,于是得cos sin 2AD PA PD PD h PD PD θθθ⋅⋅==,当且仅当22=πθ,即4πθ=时取等号,所以点A 到平面PBC解法二,在PBC 中,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F,如图,PA ⊥平面ABC ,BC ⊂平面ABC ,则PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,而BC ⊂平面PBC ,则有平面PAD ⊥平面PBC ,又平面PAD ⋂平面PBC PD =,AF ⊂平面PAD ,因此AF ⊥平面PBC ,即AF 就是点A 到平面PBC 的距离,而3tan 2PBC ∠=,有sin PBD ∠=sin PD PB PBD =⋅∠=,在Rt PAD △中,22211()1222PA AD PD PA AD AF PD PD PD PD +⋅=≤==当且仅当3PA AD ==时取等号,所以点A 到平面PBC3.12##0.5【分析】先求得四面体P BCD -体积的表达式,利用基本不等式或函数的单调性求得体积的最大值.【详解】解法一:由2AB BC ==,120ABC ∠=︒,可得AC =要求四面体P BCD -的体积,关键是寻找底面三角形BCD 的面积BCD S △和点P 到平面BCD 的距离h ,易知2h ≤.设AD x =,则DP x =,DC x =,()12sin 3022DBC xS x =⨯⨯⨯︒=△,其中(0,x ∈,且h x ≤.∴2111366622P BCDBCD x x x x V S h h x -⎛⎫-+=⨯=≤≤= ⎪ ⎪⎝⎭△.当且仅当x x =,即x =P BCD -的体积的最大值是12.解法二:设PD AD x ==,∵PB PA =,PBD ABD ≌△△,1133P BCD BCD V S h -=⨯=△(h 为三棱锥P BCD -的高).当平面PBD ⊥平面BDC 时,使四面体PBCD 的体积较大.作PH BD ⊥,垂足为H ,则PH ⊥平面BCD ,sin sin h PH PD PDB x ADB ==⋅∠=⋅∠.此时,()211sin sin sin 662P BCDx x V ADB ADB ADB -=⋅∠≤∠=∠⎝⎭,当且仅当x =1sin 2P BCD V ADB -=∠,当90ADB ∠=︒,即AD BD ⊥时,P BCD V -最大值为12.解法三:∵13P BCD BCD V S h -=⨯△(h 为三棱锥P BCD -的高),在ABC 中,2AB BC ==,120ABC ∠=︒,则AC =30BAC BCA ∠=∠=︒,设(0PD DA x x ==<<,则DC x =-,1sin 22BCD xS BC CD BCA =⨯⋅∠=△.在ABD △中,由余弦定理,有2222cos BD AD AB AD AB BAC =+-⋅∠.代入整理得BD =PBD △中,由余弦定理,有222cos 2PB BD PD PBD PB BD+-∠=⋅,代值整理得cos PBD ∠∴sin PBD ∠=.过P 作PM BD ⊥,垂足为M ,则PM 为四面体P BCD -的高.∴sin h PM PB PBM ==∠故111336P BCDBCD V S h -===△,t =,∵0x <<12t ≤<,∴224x t -=-.2141466P BCDt V t t t--⎛⎫=⨯=- ⎪⎝⎭在[)1,2t ∈上单调递减.∴当1t =,即x =P BCD -的体积最大为1411612P BCD V --=⨯=.4.1213234PP PP P P ===,3【分析】由12APB CBP ≌△△,分析可得123PP P 是边长为4的正三角形,再由13P ABC ABC S PO V -=⋅ 结合题干数据求解即可.【详解】由题图可知1P 、B 、2P 三点共线,∴12APBCBP ≌△△.∵60ABC ∠=︒,∴1260ABP CBP ∠=∠=︒,1APB △和2CBP △都是正三角形.∴124PP =.同理可知其他两边长也是4,∴123PP P 是边长为4的正三角形.折叠后是棱长为2的正四面体-P ABC ,如图所示.设顶点P 在底面内的投影为O ,连结BO 并延长,交AC 于点D ,则D 为AC 的中点,O 为ABC 的重心,PO ⊥底面ABC .AO AB ==,PO ==.故133P ABC ABC V S PO -=⋅=△.5.2【分析】过AB 作与SC 垂直的截面ABM .通过13S ABC ABM V SC S -=⋅△,分析即得解.【详解】过AB 作平面ABM SC ⊥且SC 平面ABM M =,如图所示,由题意知SAC 、SBC △均为直角三角形.∵4SC =,30ASC BSC ∠=∠=︒,故SAC SBC ≅ ,∴SA =,2CA =,∴SA ACAM BM SC⋅==.∴2141sin 2sin 2332S ABCABM V SC S AMB AMB -=⋅=⨯⨯∠=∠≤△.∴三棱锥S ABC -体积的最大值为2.故答案为:26.(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,AM BN ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅ ,则1CBF BBN ∠=∠.又因为1190BBN BNB ∠+∠=︒,所以1190CBF BNB BF BN ∠+∠=︒⊥,.又因为111111,BF AB BN AB B ⊥= ,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥.[方法二]【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1B B AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅= ,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++ ()11=BF B D BF EB BB ⋅+⋅+ 1BF EB BF BB =⋅+⋅ 11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅ 112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=2202-⨯⨯,所以BF ED ⊥.(2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩ ,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅=⋅==当12a =时,2224a a -+取最小值为272,此时cos θ=所以()minsin θ=112B D =.[方法二]:几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE 平面11B BCC FT =.作1BH FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1D H B ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//CG AB 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D BT C G C T=,即12(2)3t s s t =--,所以31t s t =+.又111B H BT C F FT =,即11B H =,所以1B H =所以DH ==则11sin B D DHB DH∠===所以,当12t =时,()1min 3sin 3DHB ∠=.[方法三]:投影法如图,联结1,FB FN,DEF 在平面11BB C C 的投影为1BN F ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS S θ=.设1(02)BD t t =≤≤,在1Rt DB F中,DF ==在Rt ECF中,EF =D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE ==在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅=,sin DFE ∠1sin 2DFE S DF EF DFE =⋅∠ =13,2B NF S = 1cos B NF DFES S θ==,sin θ,当12t =,即112B D =,面11BB C C与面DFE 所成的二面角的正弦值最小,最小值为3.【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.7.C【分析】设正四棱锥的高为h ,根据题意求出正四棱锥的底面边长与高的关系,再利用导数求解即可.【详解】设球体的半径为R ,由题知:34363R ππ=,所以球的半径3R =.设正四棱锥的底面边长为2a ,高为h ,则222222l h a h =+=+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,设()641=936x f x x ⎛⎫- ⎪⎝⎭,3x ≤≤,所以()5233112449696x x f x x x ⎛⎫⎛⎫-'=-= ⎪⎝⎭⎝⎭,当3x ≤≤()0f x ¢>,()f x 为增函数,当x <≤()0f x '<,()f x 为减函数,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C 8.C【分析】令四棱锥底面四边形外接圆半径为r ,用r 表示四棱锥的高及底面四边形面积最大值,再借助导数求解作答.【详解】设该四棱锥底面四边形为ABCD ,平面ABCD 截球O 所得小圆半径为r ,则球心O到平面ABCD 的距离h =设四边形ABCD 对角线,AC BD 的夹角为α,则1sin 2ABCD S AC BD α=⋅,于是得该四棱锥的体积:12sin 22sin 36623ABCD V S h BD r r rπα=⋅=⋅≤⋅⋅=当且仅当对角线,AC BD 是截面小圆互相垂直的两条直径,即四边形ABCD 为正方形时取等号,令2(0,1)r x =∈,有23r =23(),(0,1)f x x x x =-∈,求导得:22()233()3f x x x x x '=-=-,当203x <<时,()0f x '>,当213x <<时,()0f x '<,因此函数()f x 在2(0,)3上单调递增,在2(,1)3上单调递减,当23x =时,23max 224()(()3327f x =-=,从而当223r =时,max 222(333r =⨯⨯max V =,此时3h ==,故选:C9.(1)证明见解析;【分析】(1)利用线面垂直的判定定理可得AC ⊥平面BED ,然后根据面面垂直的判定定理可得平面BED ⊥平面ACD ;(2)首先判断出三角形AFC 的面积最小时F 点的位置,然后求得F 到平面ABC 的距离,从而求得三棱锥F ABC -的体积或利用等积法及锥体的体积公式即得.【详解】(1)AD CD = ,ADB BDC ∠=∠,BD BD =,ADB CDB ∴≅ ,AB BC ∴=,又E 为AC 的中点.AC BE ∴⊥,AD CD = ,E 为AC 的中点.AC DE ∴⊥,又BE DE E = ,BE ⊂平面BED ,DE ⊂平面BED ,AC ∴⊥平面BED ,又AC ⊂ 平面ACD ,∴平面BED ⊥平面ACD ;(2)方法一:依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =,所以222DE BE BD +=,即DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,所以13,222DF BF DF ===-=,所以34BF BD =,过F 作FH BE ⊥,垂足为H ,则//FH DE ,又DE ⊥平面ABC ,所以FH ⊥平面ABC ,且34FH BF DE BD ==,所以34FH =,所以111323324F ABC ABC V S FH -=⋅⋅=⨯⨯=方法二:AB BC = ,60ACB ∠=︒,2AB =ABC ∴ 是边长为2的等边三角形,BE ∴=连接EF ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,即EF BD ⊥时,AFC △的面积最小,,,2AD CD AD CD AC ⊥== ,E 为AC 的中点,∴1DE =,222DE BE BD +=,BE ED ∴⊥,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,∴32BF ,113222BEF S BF EF ∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC ---∴=+=⋅=⋅= .10.6【分析】取AC 中点O ,连接OB ,过点O 作Oz ⊥平面ABC ,以点O 为原点建立空间直角坐标系,设二面角D AC B '--的大小为α,把直线A C 与BD '所成角的余弦表示为α的函数,求出函数最大值作答.【详解】在ACD 中,90ADC ∠= ,1,CD AD ==则AC =,过D 作DH AC ⊥于H ,连接D H ',如图,显然D H AC '⊥,ACD 绕直线AC 旋转过程中,线段DH 绕点H 在垂直于直线AC 的平面γ内旋转到D H ',取AC 中点O ,连接OB ,因3AB BC ==,有OB AC ⊥,OB =,,663CD ADD H DH CH OH AC⋅'=====,过点O 作Oz ⊥平面ABC ,以点O 为原点,射线,,OB OA Oz 分别为,,x y z 轴非负半轴,建立空间直角坐标系,则A ,B ,(0,2C -,显然有//Oz 平面γ,设二面角D AC B '--的大小为[0,]απ∈,有(,,sin )636D αα'-,则有(,sin )6236BD αα=--' ,CA的方向向量为(0,1,0)n = ,设直线AC 与BD '所成的角为θ,于是得||cos |cos ,|||||n BD n BD n BD θ'⋅'=〈〉=='因[0,]απ∈,则1cos 1α-≤≤,于是得cos 6θ=,当且仅当cos 1α=取等号,所以直线AC 与BD '11.A【分析】取BD 中点O ,连接AO ,CO ,以O 为原点建立空间直角坐标系,利用二面角A BD C --的大小θ的正余弦表示,AB CD的坐标,利用空间向量建立函数关系求解作答.【详解】取BD 中点O ,连接AO ,CO ,而AB =BD =DA =2,BC =CD,则CO ⊥BD ,AO ⊥BD ,且CO =1,AOAOC ∠是二面角A BD C --的平面角,令5[,]66AOC ππθ∠=∈,显然有BD ⊥平面AOC ,BD ⊂平面BCD ,则平面AOC ⊥平面BCD ,在平面AOC 内过O 作Oz OC ⊥,而平面AOC I 平面BCD OC =,因此Oz ⊥平面BCD ,即射线,,OC OD Oz 两两垂直,以O 为原点,射线,,OC OD Oz 分别为,,x y z轴非负半轴,建立空间直角坐标系,如图,则(0,1,0),(1,0,0),(0,1,0)B C D -,)A θθ,,1,),(1,1,0)BA CD θθ==-,设直线AB 与CD 所成的角为α,则||cos |cos ,|||||AB CD AB CD AB CD α⋅=〈〉==,由5[,66ππθ∈得:cos [,]22θ∈,15122θ-≤≤,则5|1|[0,2θ∈,于是得cos[0,]α∈,8.所以直线AB与CD 所成角的余弦值取值范围是[0,]8故选:A答案第18页,共18页。
最值模型之瓜豆模型(原理)圆弧轨迹型-2024年中考数学常见几何模型及参考答案

最值模型之瓜豆模型(原理)圆弧轨迹型动点轨迹问题是中考和各类模拟考试的重要题型,学生受解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。
掌握该压轴题型的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。
本专题就最值模型中的瓜豆原理(动点轨迹为圆弧型)进行梳理及对应试题分析,方便掌握。
【模型解读】模型1、运动轨迹为圆弧模型1-1. 如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.Q点轨迹是?如图,连接AO,取AO中点M,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.则动点Q是以M为圆心,MQ为半径的圆。
模型1-2. 如图,△APQ是直角三角形,∠PAQ=90°且AP=k⋅AQ,当P在圆O运动时,Q点轨迹是?如图,连结AO,作AM⊥AO,AO:AM=k:1;任意时刻均有△APO∽△AQM,且相似比为k。
则动点Q是以M为圆心,MQ为半径的圆。
模型1-3. 定义型:若动点到平面内某定点的距离始终为定值,则其轨迹是圆或圆弧。
(常见于动态翻折中)如图,若P为动点,但AB=AC=AP,则B、C、P三点共圆,则动点P是以A圆心,AB半径的圆或圆弧。
模型1-4. 定边对定角(或直角)模型1)一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.如图,若P为动点,AB为定值,∠APB=90°,则动点P是以AB为直径的圆或圆弧。
2)一条定边所对的角始终为定角,则定角顶点轨迹是圆弧.如图,若P为动点,AB为定值,∠APB为定值,则动点P的轨迹为圆弧。
【模型原理】动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。
1(2023·山东泰安·统考中考真题)如图,在平面直角坐标系中,Rt△AOB的一条直角边OB在x轴上,点A的坐标为(-6,4);Rt△COD中,∠COD=90°,OD=43,∠D=30°,连接BC,点M是BC中点,连接AM.将Rt△COD以点O为旋转中心按顺时针方向旋转,在旋转过程中,线段AM的最小值是()A.3B.62-4C.213-2D.22(2023·四川广元·统考一模)如图,线段AB为⊙O的直径,点C在AB的延长线上,AB=4,BC=2,点P是⊙O上一动点,连接CP,以CP为斜边在PC的上方作Rt△PCD,且使∠DCP=60°,连接OD,则OD长的最大值为.3(2023·四川宜宾·统考中考真题)如图,M是正方形ABCD边CD的中点,P是正方形内一点,连接BP,线段BP以B为中心逆时针旋转90°得到线段BQ,连接MQ.若AB=4,MP=1,则MQ的最小值为.4(2023·湖南·统考中考真题)如图,在矩形ABCD中,AB=2,AD=7,动点P在矩形的边上沿B→C→D→A运动.当点P不与点A、B重合时,将△ABP沿AP对折,得到△AB P,连接CB ,则在点P的运动过程中,线段CB 的最小值为.5(2023·山东·统考中考真题)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD< BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为.6(2023·浙江金华·九年级校考期中)如图,点A,C,N的坐标分别为(-2,0),(2,0),(4,3),以点C为圆心、2为半径画⊙C,点P在⊙C上运动,连接AP,交⊙C于点Q,点M为线段QP的中点,连接MN,则线段MN的最小值为.7(2023上·江苏连云港·九年级校考阶段练习)已知矩形ABCD,AB=6,BC=4,P为矩形ABCD内一点,且∠BPC=135°,若点P绕点A逆时针旋转90°到点Q,则PQ的最小值为.8(2023下·陕西西安·九年级校考阶段练习)问题提出:(1)如图①,在△ABC中,AB=AC,∠BAC=120°,BC=43,则AB的长为;问题探究:(2)如图②,已知矩形ABCD,AB=4,BC=5,点P是矩形ABCD内一点,且满足∠APB= 90°,连接CP,求线段CP的最小值;问题解决:(3)如图③所示,我市城市绿化工程计划打造一片四边形绿地ABCD,其中AD∥BC,AD= 40m,BC=60m,点E为CD边上一点,且CE:DE=1:2,∠AEB=60°,为了美化环境,要求四边形ABCD的面积尽可能大,求绿化区域ABCD面积的最大值.课后专项训练1(2023·安徽合肥·校考一模)如图,在△ABC中,∠B=45°,AC=2,以AC为边作等腰直角△ACD,连BD,则BD的最大值是()A.10-2B.10+3C.22D.10+22(2023春·广东·九年级专题练习)已知:如图,在△ABC中,∠BAC=30°,BC=4,△ABC面积的最大值是( ).A.8+43B.83+4C.83D.8+833(2022秋·江苏扬州·九年级校考阶段练习)如图,A是⊙B上任意一点,点C在⊙B外,已知AB=2,BC=4,△ACD是等边三角形,则△BCD的面积的最大值为()A.43+4B.4C.43+8D.64(2023·山东济南·一模)正方形ABCD中,AB=4,点E、F分别是CD、BC边上的动点,且始终满足DE=CF,DF、AE相交于点G.以AG为斜边在AG下方作等腰直角△AHG使得∠AHG=90°,连接BH.则BH的最小值为()A.25-2B.25+2C.10-2D.10+25(2023上·江苏连云港·九年级统考期中)如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接CM,则CM的最小值为.6(2023春·广东深圳·九年级专题练习)如图,点G是△ABC内的一点,且∠BGC=120°,△BCF是等边三角形,若BC=3,则FG的最大值为.7(2023·江苏泰州·九年级专题练习)如图,在矩形ABCD中,AD=10,AB=16,P为CD的中点,连接BP.在矩形ABCD外部找一点E,使得∠BEC+∠BPC=180°,则线段DE的最大值为.8(2023·陕西渭南·三模)如图,在矩形ABCD中,AB=6,BC=5,点E在BC上,且CE=4BE,点M 为矩形内一动点,使得∠CME=45°,连接AM,则线段AM的最小值为.9(2023江苏扬州·三模)如图,在等边△ABC和等边△CDE中,AB=6,CD=4,以AB、AD为邻边作平行四边形ABFD,连接AF.若将△CDE绕点C旋转一周,则线段AF的最小值是.10(2023秋·湖北武汉·九年级校考阶段练习)如图,△ABC为等腰直角三角形,∠BAC=90°,AB= AC=22,点D为△ABC所在平面内一点,∠BDC=90°,以AC、CD为边作平行四边形ACDE,则CE的最小值为.11(2023·福建泉州·统考模拟预测)如图,点E是正方形ABCD的内部一个动点(含边界),且AD= EB=8,点F在BE上,BF=2,则以下结论:①CF的最小值为6;②DE的最小值为82-8;③CE= CF;④DE+CF的最小值为10;正确的是.12(2021·广东·中考真题)在△ABC中,∠ABC=90°,AB=2,BC=3.点D为平面上一个动点,∠ADB=45°,则线段CD长度的最小值为.13(2023·广东·深圳市二模)如图,在矩形ABCD中,AB=3,BC=4,E为边BC上一动点,F为AE 中点,G为DE上一点,BF=FG,则CG的最小值为.14(2023秋·广东汕头·九年级校考期中)如下图,在正方形ABCD中,AB=6,点E是以BC为直径的圆上的点,连接DE,将线段DE绕点D逆时针旋转90°,得到线段DF,连接CF,则线段CF的最大值与最小值的和.15(2023·陕西渭南·统考一模)如图,在矩形ABCD中,AB=2,BC=4,Q是矩形ABCD左侧一点,连接AQ、BQ,且∠AQB=90°,连接DQ,E为DQ的中点,连接CE,则CE的最大值为.16(2023·安徽亳州·统考模拟预测)等腰直角△ABC 中,BAC =90°,AB =5,点D 是平面内一点,AD =2,连接BD ,将BD 绕D 点逆时针旋转90°得到DE ,连接AE ,当DAB =(填度数)度时,AE 可以取最大值,最大值等于.17(2023·河北廊坊·统考二模)已知如图,△ABC 是腰长为4的等腰直角三角形,∠ABC =90°,以A 为圆心,2为半径作半圆A ,交BA 所在直线于点M ,N .点E 是半圆A 上仟意一点.连接BE ,把BE 绕点B 顺时针旋转90°到BD 的位置,连接AE ,CD .(1)求证:△EBA ≌△DBC ;(2)当BE 与半圆A 相切时,求弧EM的长;(3)直接写出△BCD 面积的最大值.18(2022·北京·中考真题)在平面直角坐标系xOy 中,已知点M (a ,b ),N .对于点P 给出如下定义:将点P 向右(a ≥0)或向左(a <0)平移a 个单位长度,再向上(b ≥0)或向下(b <0)平移b 个单位长度,得到点P ',点P '关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点M (1,1),点N 在线段OM 的延长线上,若点P (-2,0),点Q 为点P 的“对应点”.①在图中画出点Q;②连接PQ,交线段ON于点T.求证:NT=12 OM;(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t12<t<1,若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示)19(2023下·广东广州·九年级校考阶段练习)如图,△ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.(1)求证:BD=CE;(2)连接CD,延长ED交BC于点F,若△ABC的边长为2;①求CD的最小值;②求EF的最大值.20(2023·江苏常州·统考二模)如图,在平面直角坐标系中,二次函数y=-13x2+bx-3的图像与x轴交于点A和点B9,0,与y轴交于点C.(1)求二次函数的表达式;(2)若点P是抛物线上一点,满足∠PCB+∠ACB=∠BCO,求点P的坐标;(3)若点Q在第四象限内,且cos∠AQB=35,点M在y轴正半轴,∠MBO=45°,线段MQ是否存在最大值,如果存在,直接写出最大值;如果不存在,请说明理由.最值模型之瓜豆模型(原理)圆弧轨迹型动点轨迹问题是中考和各类模拟考试的重要题型,学生受解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。
中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案一、轴对称求最小值1.如图,四边形ABCD是边长为6的正方形,△ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的值最小,求这个最小值.2.四边形ABCD中,∠BAD=122°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数.3.如图,∠AOB =45°,OC为∠AOB内部一条射线,点D为射线OC上一点,OD=√2,点E、F分别为射线0A、OB上的动点,求△DEF周长的最小值.二、垂线段最短求最值4.如图,矩形ABCD中,AD=3,AB=4,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,求PQ 的最小值.5.如图,边长为6的等边三角形ABC中,E是对称轴AD上一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动的过程中,求DF的最小值.6.如图所示,在RtΔABC中,∠C=90°,AC=4,BC=3,P为AB上一动点(不与A、 B重合),作PE ⊥AC于点E,PF⊥BC于点F,连接EF,求EF的最小值.7.如图,在ΔABC中,∠BAC=90,AB=6,BC=10,BD平分∠ABC,若P,Q分别是BD,AB上的动点,求PA+PQ的最小值.8.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE,P,N分别为AC,BE上的动点,连接AN, PN,若DF=5,AC=9,求AN+PN的最小值.二、两点之间,线段最短求最值9.如图,等边△ABC的边长为4,过点B的直线l⊥AB,且△ABC与△A´B´C´公关于直线l对称,D为线段BC´上一动点,求AD+CD的最小值是( )10.如图,在长方形ABCD中,AB=3,AD=4,动点P满足S△PCD=14S长方形ABCD´,求点P到A,B两点的距离之和PA+PB的最小值.三、三角形三边的关系求最值问题11.如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、 C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A´,求则A´C的最小值.参考答案1.析:连接BP.因为点B 与点D 关于直线AC 对称,所以PB=PD .所以PD+PE =PB+PE≥BE,所以PD+PE 的最小值即为BE 的长.BE =AB =6,则PD+PE 的值最小为6.2.析:如图,延长AB 到A ´使得BA ´=AB,延长AD 到A ´使得DA"=AD,连接A ´A"与BC 、CD 分别交于点M 、N.∵∠ABC=∠ADC=90° ∴ A 、A ´关于BC 对称,A 、A"关于CD 对称,此时ΔAMN 的周长最小∵BA=BA ´,MB ⊥ AB ∴MA =MA ´同理:NA=NA" ∴∠A ´=∠MAB,∠A"=∠NAD∵∠AMN =∠A ´+∠MAB =2∠A ´,∠ANM =∠A"+∠NAD =2∠A"∴∠AMN +∠ANM = 2(∠A ´+∠A")∵∠BAD=122° ∴ ∠A ´+LA"=180°-∠BAD=58° ∴∠AMN +∠ANM=2x58°=116∴∠MAN =180-116°=64°3.析:作点D 作关于OA 的对称点P,点D 关于OB 的对称点Q,连接PQ,与OA 的交点为点E,与OB 的交点为点F.△DEF 的最小周长为DE +EF +QF =PE+EF+QF =PQ连接OP 、OQ,则OP=0Q=√2 ∵∠POQ =2∠AOB=90°∴ΔOPQ 是等腰直角三角形∴PQ =√2OD=2∴ΔDEF 的周长的最小值是2.4.析:如图,连接CM∵MP ⊥CD 于点P,MQ ⊥BC 于点Q ∴∠CPM =∠CQM=90°∴四边形ABCD 是矩形∴BC=AD=3,CD=AB=4,∠BCD=90°∴四边形PCQM 是矩形,PQ =CM∴BD =√32+42=5当CM ⊥BD 时,CM 最小,则PQ 最小,此时,S △BCD =1 2BD ·CM=12BC ·CD ∴PQ 的最小值为125.5.析:取线段AC 的中点G,连接EG∵ΔABC 为等边三角形,AD 为△ABC 的对称轴∴CD=CG=1 2AB=3,∠ACD =60° ∵ ∠ECF =60°∴∠FCD =∠ECG在ΔFCD 和ΔECG 中,FC =EC,∠FCD=∠ECG,DC=GC∴ΔFCD ≌AECG ∴DF =GE当EG ⊥AD 时,EG 最短,即DF 最短∵点G 为AC 的中点,EG=DF=1 2CD=32 6.析: 连接CP.∵∠C=90,AC=3,BC =4 ∴AB =√32+42=5∵PE ⊥AC,PF ⊥BC,∠C=90°∴四边形CFPE 是矩形∴EF =CP由垂线段最短可得CP ⊥AB 时,线段EF 的值最小S △ABC=1 2BC ·AC=12AB ·CP ∴1 2×4×3=12×5·CP ∴CP =2.4 7.如图,作点Q 关于直线BD 的对称点Q ´∵BD 平分∠ABC ∴点Q 在BC 上连接PQ ´,则PA+PQ 的最小值即为PA+PQ ´的最小值∴当A 、P 、Q ´三点共线且AQ ´⊥BC 时,PA+PQ 的值最小过点A 作AM ⊥BC 于点M,则PA+PQ 的最小值即为AM 的长∵AB=6,BC=10 ∴AC ²=10²-6²=64 ∴AC=8∵ S △ABC =1 2AM ·BC=1 2AB ·AC ∴AM=AB·AC BC =48 10=4.88.析:连接AD ,与BE 交于点O∵四边形ABDE 是正方形 ∴BE ⊥AD,OD =OA ,点A 与点D 关于直线BE 对称 求PN + AN 的最小值,只需D ,N ,P 在同一条直线上,由于P ,N 分别是AC 和BE 上的动点,过点D 作DP ⊥AC 于P 交BE 于点 N ,此时PN + AN =PN+ND=PD ,由△ABC ≌ △BDF 可知,BF= AC = 9,BC=DF=5,易知四边形DFCP 是矩形,CF=PD=BF+BC=9+5=149.析:如图,连接AD∵△ABC 是边长为4的等边三角形 ∴AB =BC=4,∠ABC=60° ∵△ABC 与△ A ´B ´C ´关于直线l 对称∴A ´B=BC,∠AB ´C ´=60°∴∠CBC ´=60°=∠A ´BD∴△BCD ≌△BA ´D(SAS)∴A ´D=CD ∴CD +AD =AD +A ´D当A 、D 、A ´三点共线时,AD+A ´D 最小,此时CD+AD 最小,最小为4+4=8.10.析:如图,设APC 的CD 边上的高是h.∵S △PCD =1 2S 长形ABCD ,AD=4 ∴1 2·CD ·h =1 4CD ·AD ∴h=12AD=2 ∵动点P 在与CD 平行且与CD 的距离是2的直线l 上连接AC 交直线l 于点P ´∵l//CD,AD=4,四边形ABCD 是长方形 ∴l ⊥AD,l ⊥BC∴直线l 是BC 边的垂直平分线 ∴BP ´=CP ´∴AP ´+BP ´=AP ´+CP ´ ∴ AC 的长是最短距离∴AC=√32+4=5,PA +PB 的最小值为5.11.析:连接BA ´∵AB=√5,BC =4若点A 关于BP 的对称点为A ´ ∴BA ´=BA=√5在△BA ´C 中,A ´C ≥BC-BA ´,即AC ´≥4-√5∴AC ´的最小值为4-√5。
2024年中考复习-04 几何最值问题综合(解析版)

培优冲刺04几何最值问题综合1、将军饮马类几何最值2、辅助圆类几何最值3、瓜豆原理类几何最值4、其他类几何最值1.“两定一动”型将军饮马:①异侧型→直接连接,交点即为待求动点;后用勾股定理求最值②同侧型→对称、连接;后续同上2.“两定两动”型:①同侧型→先水平平移(往靠近对方的方向)、再对称、最后连接;也可先对称、再水平平移(往靠近对方的方向)、最后连接;后续同上。
同侧型异侧型②异侧型→先水平平移(往靠近对方的方向)、再连接;后续同上。
【中考真题练】1.(2023•泸州)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,的值是.【分析】找出点E关于AC的对称点E',连接FE'与AC的交点P'即为PE+PF取得最小值时,点P的位置,再设法求出的值即可.【解答】解:作点E关于AC的对称点E',连接FE'交AC于点P',连接PE',∴PE=PE',∴PE+PF=PE'+PF≥E'F,故当PE+PF取得最小值时,点P位于点P'处,∴当PE+PF取得最小值时,求的值,只要求出的值即可.∵正方形ABCD是关于AC所在直线轴对称,∴点E关于AC所在直线对称的对称点E'在AD上,且AE'=AE,过点F作FG⊥AB交AC于点G,则∠GFA=90°,∵四边形ABCD是正方形,∴∠DAB=∠B=90°,∠CAB=∠ACB=45°,∴FG∥BC∥AD,∠AGF=∠ACB=45°,∴GF=AF,∵E,F是正方形ABCD的边AB的三等分点,∴AE'=AE=EF=FB,∴GC=AC,,∴AG=AC,,∴AP'=AG=AC=AC,∴P'C=AC﹣AP'=AC﹣AC=AC,∴=,故答案为:.2.(2023•德州)如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=3,BC=4,点E在AB上,且AE=1.F,G为边AD上的两个动点,且FG=1.当四边形CGFE的周长最小时,CG的长为.【分析】先确定FG和EC的长为确定的值,得到四边形CGFE的周长最小时,即为CG+EF最小时,平移CG到C'F,作点E关于AD对称点E',连接E'C'交AD于点G',得到CG+EF最小时,点G与G'重合,再利用平行线分线段成比例求出C'G'长即可.【解答】解:∵∠A=90°,AD∥BC,∴∠B=90°,∵AB=3,BC=4,AE=1,∴BE=AB﹣AE=3﹣1=2,在Rt△EBC中,由勾股定理,得EC===,∵FG=1,∴四边形CGFE的周长=CG+FG+EF+EC=CG+EF+1+,∴四边形CGFE的周长最小时,只要CG+EF最小即可.过点F作FC'∥GC交BC于点C',延长BA到E',使AE'=AE=1,连接E'F,E'C',E'C'交AD于点G',可得AD垂直平分E'E,∴E'F=EF,∵AD∥BC,∴C'F=CG,CC'=FG=1,∴CG+EF=C'F+E'F≥E'C',即CG+EF最小时,CG=C'G',∵E'B=AB+AE'=3+1=4,BC'=BC﹣CC'=4﹣1=3,由勾股定理,得E'C'===5,∵AG'∥BC',∴=,即=,解得C'G'=,即四边形CGFE的周长最小时,CG的长为.故答案为:.3.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是3+3.【分析】分析已知,可证明△BCE≌△ACF,得∠CAF=∠CBE=30°,可知点F在△ABC外,使∠CAF =30°的射线AF上,根据将军饮马型,求得DF+CF的最小值便可求得本题结果.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°﹣∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=∠ABC=30°,CD=AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG 交于点I,连接CI,FH,则∠ACG=60°,CG=GH=AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=3,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=3,∴△CDF的周长的最小值为3+3.故答案为:3+3.【中考模拟练】1.(2024•衡南县模拟)已知:如图,直线y=﹣2x+4分别与x轴,y轴交于A、B两点,点P(1,0),若在直线AB上取一点M,在y轴上取一点N,连接MN、MP、NP,则MN+MP+NP的最小值是()A.3B.C.D.【分析】作点P关于y轴的对称点E,点P关于AB的对称点F,连接EN,EM,EF,FM,FP,设FP 交AB于C,过点F作FD⊥x轴于D,则EN=NP,FM=MP,FP⊥AB,OE=OP,FC=PC,MN+MP+NP =MN+FM+EN,根据“两点之间线段最短”得MN+FM+EN≥EF,则MN+MP+NP≥EF,因此MN+MP+NP 的最小值为线段EF的长;先求出点A(2,0),点B(0,4),则OA=2,OB=4,再由点P(1,0)得OP=1,则OE=OP=1,PA=OA﹣OP=1,再求出AB=,证△PAC∽△BAO得PC:OB=PA:AB,由此得PC=,则PF=,再证△PFD∽△BAO得FD:OA=PD:OB=PF:AB,由此可得FD=,PD=,则ED=OE+OP+PD=,然后在Rt△EFD中由勾股定理求出EF即可得MN+MP+NP的最小值.【解答】解:作点P关于y轴的对称点E,点P关于AB的对称点F,连接EN,EM,EF,FM,FP,设FP交AB于C,过点F作FD⊥x轴于D,如图所示:则EN=NP,FM=MP,FP⊥AB,OE=OP,FC=PC,∴MN+MP+NP=MN+FM+EN,根据“两点之间线段最短”得MN+FM+EN≥EF,∴MN+MP+NP≥EF,∴MN+MP+NP的最小值为线段EF的长,对于y=﹣2x+4,当x=0时,y=4,当x=0时,x=2,∴点A(2,0),点B(0,4),∴OA=2,OB=4,又∵点P(1,0),∴OP=1,∴OE=OP=1,PA=OA﹣OP=2﹣1=1,在Rt△OAB中,OA=2,OB=4,由勾股定理得:AB==,∵FP⊥AB,FD⊥x轴,∠BOA=90°,∴∠PCA=∠BOA=∠PDF=90°,又∵∠PAC=∠BAO,∴△PAC∽△BAO,∴PC:OB=PA:AB,∠APC=∠ABO,即,∴PC=,∴FC=PC=,∴PF=FC+PC=,∵∠APC=∠ABO,∠BOA=∠PDF=90°,∵△PFD∽△BAO,∴FD:OA=PD:OB=PF:AB,即,∴FD=,PD=,∴ED=OE+OP+PD=1+1+=,在Rt△EFD中,ED=,FD=,由勾股定理得:EF==.故选:C.2.(2023•龙马潭区二模)如图,抛物线y=﹣x2﹣3x+4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.若点D为抛物线上一点且横坐标为﹣3,点E为y轴上一点,点F在以点A为圆心,2为半径的圆上,则DE+EF的最小值.【分析】先求出点A(﹣4,0),点D(﹣3,4),作点D关于y轴对称的点T,则点T(3,4),连接AE交与轴于M,交⊙A于N,过点T作TH⊥x轴于H,连接AF,当点E与点M重合,点F与点N重合时,DE+EF为最小,最小值为线段TN的长,然后可在Rt△ATH中由勾股定理求出TA,进而可得TN,据此可得出答案.【解答】解:对于y=﹣x2﹣3x+4,当y=0时,﹣x2﹣3x+4=0,解得:x1=﹣4,x2=1,∴点A的坐标为(﹣4,0),对于y=﹣x2﹣3x+4,当x=﹣3时,y=4,∴点D的坐标为(﹣3,4),作点D关于y轴对称的点T,则点T(3,4),连接AE交与轴于M,交⊙A于N,过点T作TH⊥x轴于H,连接AF,当点E与点M重合,点F与点N重合时,DE+EF为最小,最小值为线段TN的长.理由如下:当点E与点M不重合,点F与点N不重合时,根据轴对称的性质可知:DE=TE,∴DE+EF=TE+EF,根据“两点之间线段最短”可知:TE+EF+AF>AT,即:TE+EF+AF>TN+AN,∵AF=AN=2,∴TE+EF>TN,即:DE+EF>TN,∴当点E与点M重合,点F与点N重合时,DE+EF为最小.∵点T(3,4),A(﹣4,0),∴OH=3,TH=4,OA=4,∴AH=OA+OH=7,在Rt△ATH中,AH=7,TH=4,由勾股定理得:,∴.即DE+EF为最小值为.故答案为:.3.(2024•碑林区校级一模)(1)如图①,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D是边AC的中点.以点A为圆心,2为半径在△ABC内部画弧,若点P是上述弧上的动点,点Q是边BC上的动点,求PQ+QD的最小值;(2)如图②,矩形ABCD是某在建的公园示意图,其中AB=200米,BC=400米.根据实际情况,需要在边DC的中点E处开一个东门,同时根据设计要求,要在以点A为圆心,在公园内以10米为半径的圆弧上选一处点P开一个西北门,还要在边BC上选一处点Q,在以Q为圆心,在公园内以10米为半径的半圆的三等分点的M、N处开两个南门.线段PM、NE是要修的两条道路.为了节约成本,希望PM+NE 最小.试求PM+NE最小值及此时BQ的长.【分析】(1)作点D关于BC的对称点D′,连接D′Q、AP,过点D′作D′E⊥AB交AB的延长线于E,则QD=QD′,DK=D′K,当A、P、Q、D′在同一条直线上时,PQ+QD=AD′﹣AP取得最小值,由DK∥AB,可得△CDK∽△CAB,运用相似三角形性质可得DK=3,CK=4,再由勾股定理即可求得答案;(2)连接MQ,NQ,过点Q作QK⊥MN于K,作点A关于直线MN的对称点A′,将E向左平移10米得到点E′,过点E′作E′L∥AB,过点A′作A′L⊥E′L于L,连接A′M、A′E′、E′M,由题意得随着圆心Q在BC上运动,MN在平行于BC且到BC距离为5的直线上运动,再运用勾股定理可得PM+NE最小值=A′E﹣AP=(20﹣10)米;设E′L与GH的交点为T,过点Q作QK ⊥MN于K,由E′L∥AA′,可得△E′MT∽△A′MG,即可求得BQ的值.【解答】解:(1)如图①,作点D关于BC的对称点D′,连接D′Q、AP,过点D′作D′E⊥AB 交AB的延长线于E,则QD=QD′,DK=D′K,∴PQ+QD=PQ+QD′=AQ﹣AP+QD′,当A、P、Q、D′在同一条直线上时,PQ+QD=AD′﹣AP取得最小值,∵∠ABC=90°,AB=6,BC=8,∴AC===10,∵点D是边AC的中点,∴CD=AC=5,∵DK∥AB,∴△CDK∽△CAB,∴==,即==,∴DK=3,CK=4,∴D′K=3,BK=4,∵∠E=∠EBK=∠BKD′=90°,∴四边形BED′K是矩形,∴D′E=BK=4,BE=D′K=3,∴AE=AB+BE=6+3=9,∴AD′===,∵AP=2,∴PQ+QD的最小值=﹣2;(2)如图②,连接MQ,NQ,过点Q作QK⊥MN于K,作点A关于直线MN的对称点A′,将E向左平移10米得到点E′,过点E′作E′L∥AB,过点A′作A′L⊥E′L于L,连接A′M、A′E′、E′M,∵M、N是半圆Q的三等分点,且半径为10,∴△QMN为等边三角形,且MN∥BC,MN=10,∵QK⊥MN,QM=10米,∴QK=5米,∴随着圆心Q在BC上运动,MN在平行于BC且到BC距离为5的直线上运动,∵EE′∥MN且EE′=MN=10米,∴四边形EE′MN是平行四边形,∴NE=ME′,∴PM+NE=PM+ME′≥AM﹣AP+ME′=AM+ME′﹣10,∵E是CD的中点,∴DE=CD=100,∴E′L=AA′﹣DE=2(AB﹣QK)﹣DE=2×(200﹣5)﹣100=290(米),A′L=BC﹣E′E=400﹣10=390(米),在Rt△A′E′L中,A′E′===20,∴PM+NE最小值=A′E﹣AP=(20﹣10)米;此时△MNQ在如图③的△M′N′Q位置,设E′L与GH的交点为T,过点Q作QK⊥MN于K,′∵∠CBG=∠BGK=∠GKQ=90°,∴四边形BGKQ是矩形,∴BQ=GK,∵E′L∥AA′,∴△E′MT∽△A′MG,∴=,∵MT=390﹣MG,E′T=EH=100﹣5=95(米),A′G=AG=200﹣5=195(米),GT=390米,∴=,∴MG=(米),∴GK=GM+MK=+5=(米),∴BQ=GK=米,∴当PM+NE取最小值时,BQ的长为米.4.(2023•卧龙区二模)综合与实践问题提出(1)如图①,请你在直线l上找一点P,使点P到两个定点A和B的距离之和最小,即PA+PB的和最小(保留作图痕迹,不写作法);思维转换(2)如图②,已知点E是直线l外一定点,且到直线l的距离为4,MN是直线l上的动线段,MN=6,连接ME,NE,求ME+NE的最小值.小敏在解题过程中发现:“借助物理学科的相对运动思维,若将线段MN看作静线段,则点E在平行于直线l的直线上运动”,请你参考小敏的思路求ME+NE的最小值;拓展应用(3)如图③,在矩形ABCD中,AD=2AB=2,连接BD,点E、F分别是边BC、AD上的动点,且BE=AF,分别过点E、F作EM⊥BD,FN⊥BD,垂足分别为M、N,连接AM、AN,请直接写出△AMN周长的最小值.【分析】(1)作点A的对称点,由两点之间线段最短解题即可;(2)将M、N看作定点,E看作动点,由(1)作法可解;(3)由相似得出MN为定值,再根据(2)作法求出AM+AN的最值,即可解答.【解答】解:(1)如图①,则点P为所求.做法:作点A关于l的对称点A′,连接A′B交l于点P,由对称得AP=A′P,∴AP+BP=A′P+BP,∵两点之间线段最短,∴A′P+BP最短,即PA+PB的和最小.(2)如图②,过点E作直线l1∥l,作点N关于l1的对称点N′,连接MN′,交l1于点P,则PM+PN的值即是EM+EN的最小值,∵点E到直线l的距离为4,∵NN′=8,∵MN=6,∴MN′==10,∴PM+PN=10,即ME+NE的最小值为10.(3)如图③,过A作l∥BD,AH⊥BD于点H,作点M关于l的对称点M′,连接M′N,由(2)得M′N为AM+AN的最小值,′∵AB=,AD=2,∴BD==5,∴AH==2,∴MM′=4,设ME=x,由△ABD∽△BME得,BM=2x,BE=x,∴AF=x,∴DF=2﹣x,由△DNF∽△ABD得,DN=4﹣2x,∴MN=5﹣2x﹣(4﹣2x)=1,∵l∥BD,MM′⊥l,∴MM′⊥BD,∴M′N==,∴△AMN周长的最小值为+1.题型二:辅助圆类几何最值动点的运动轨迹为辅助圆的三种形式:1、定义法——若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)2、定边对直角——若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)3.定边对定角——若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)【中考真题练】1.(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC 绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是4+.【分析】线段CE为定值,点F到CE距离最大时,△CEF的面积最大,画出图形,即可求出答案.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB=2BC=4,CE=AE=AB=2,AC=AB•cos30°=2,∴∠ECA=∠BAC=30°,过点A作AG⊥CE交CE的延长线于点G,∴AG=AC=,∵点F在以A为圆心,AB长为半径的圆上,∴AF=AB=4,∴点F到CE的距离最大值为4+,∴,故答案为:.【中考模拟练】1.(2023•永寿县二模)如图,在正方形ABCD中,AB=4,M是AD的中点,点P是CD上一个动点,当∠APM的度数最大时,CP的长为4﹣2.【分析】因为同弧所对的圆外角小于圆周角,因此过点A、M作⊙O与CD相切于点P',当点P运动到点P'处时,∠AP'M的度数最大,记AM的中点为N,可以证出四边形OP'DN是矩形,在Rt△MON中,利用勾股定理求出ON,从而得出DP'的长,进而求出CP的长.【解答】解:过点A、M作⊙O与CD相切于点P',记PM与⊙O交于点Q,连接AP′,MP′,OM,OP′,AQ,则∠AP'M=∠AQM>∠APM,∠OP′D=90°,∴当点P运动到点P'时,∠AP'M最大,作ON⊥AD于点N,则MN=AN=,∵四边形ABCD是正方形,∴∠D=90°,∴四边形OP'DN是矩形,∵AB=4,M是AD的中点,∴AM=DM=2,MN=1,∴OM=OP'=DN=DM+MN=3,在Rt△MON中,ON===2,∴DP'=ON=2,∴CP'=DC﹣DP'=4﹣2,∴当∠APM的度数最大时,CP的长为4﹣2.故答案为:4﹣2.2.(2023•营口一模)如图,等边三角形ABC和等边三角形ADE,点N,点M分别为BC,DE的中点,AB=6,AD=4,△ADE绕点A旋转过程中,MN的最大值为.【分析】分析题意可知,点M是在以AM为半径,点A为圆心的圆上运动,连接AN,AM,以AM为半径,点A为圆心作圆,反向延长AN与圆交于点M′,以此得到M、A、N三点共线时,MN的值最大,再根据勾股定理分别算出AM、AN的值,则MN的最大值M′N=AN+AM′=AN+AM.【解答】解:连接AN,AM,以AM为半径,点A为圆心作圆,反向延长AN与圆交于点M′,如图,∵△ADE绕点A旋转,∴点M是在以AM为半径,点A为圆心的圆上运动,∵AM+AN≥MN,∴当点M旋转到M′,即M、A、N三点共线时,MN的值最大,最大为M′N,∵△ABC和△ADE都是等边三角形,点N,点M分别为BC,DE的中点,AB=6,AD=4,∴AN⊥BC,AM⊥DE,BN=3,DM=2,在Rt△ABN中,由勾股定理得,在Rt△ADM中,由勾股定理得,根据旋转的性质得,AM′=AM=,∴M′N=AN+AM′=,即MN的最大值为.故答案为:.3.(2023•定远县校级一模)如图,半径为4的⊙O中,CD为直径,弦AB⊥CD且过半径OD的中点,点E为⊙O上一动点,CF⊥AE于点F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为.【分析】由∠AFC=90°,得点F在以AC为直径的圆上运动,当点E与B重合时,此时点F与G重合,当点E与D重合时,此时点F与A重合,则点E从点B出发顺时针运动到点D时,点F所经过的路径长为的长,然后根据条件求出所在圆的半径和圆心角,从而解决问题.【解答】解:∵CF⊥AE,∴∠AFC=90°,∴点F在以AC为直径的圆上运动,以AC为直径画半圆AC,连接OA,当点E与B重合时,此时点F与G重合,当点E与D重合时,此时点F与A重合,∴点E从点B出发顺时针运动到点D时,点F所经过的路径长为的长,∵点G为OD的中点,∴OG=OD=OA=2,∵OG⊥AB,∴∠AOG=60°,AG=2,∵OA=OC,∴∠ACG=30°,∴AC=2AG=4,∴所在圆的半径为2,圆心角为60°,∴的长为,故答案为:.4.(2024•兰州模拟)综合与实践【问题情境】在数学综合实践课上,“希望小组”的同学们以三角形为背景,探究图形变化过程中的几何问题,如图,在△ABC中,AB=AC,∠BAC=90°,点D为平面内一点(点A,B,D三点不共线),AE为△ABD的中线.【初步尝试】(1)如图1,小林同学发现:延长AE至点M,使得ME=AE,连接DM.始终存在以下两个结论,请你在①,②中挑选一个进行证明:①DM=AC;②∠MDA+∠DAB=180°;【类比探究】(2)如图2,将AD绕点A顺时针旋转90°得到AF,连接CF.小斌同学沿着小林同学的思考进一步探究后发现:,请你帮他证明;【拓展延伸】(3)如图3,在(2)的条件下,王老师提出新的探究方向:点D在以点A为圆心,AD为半径的圆上运动(AD>AB),直线AE与直线CF相交于点G,连接BG,在点D的运动过程中BG存在最大值.若AB=4,请直接写出BG的最大值.【分析】(1)利用SAS证明△ABE≌△MDE,可得AB=DM,再结合AB=AC,即可证得DM=AC;由全等三角形性质可得∠BAE=∠DME,再运用平行线的判定和性质即可证得∠MDA+∠DAB=180°;(2)延长AE至点M,使得ME=AE,连接DM.利用SAS证得△ACF≌△DMA,可得CF=AM,再由AE=AM,可证得AE=CF;(3)延长DA至M,使AM=AD,设AM交CF于N,连接BM交CF于K,取AC中点P,连接GP,可证得△ACF≌△ABM(SAS),利用三角形中位线定理可得AE∥BM,即AG∥BM,利用直角三角形性质可得GP=AC=AB=2,得出点G在以P为圆心,2为半径的⊙P上运动,连接BP并延长交⊙P 于G′,可得BG′的长为BG的最大值,再运用勾股定理即可求得答案.【解答】(1)证明:①∵AE为△ABD的中线,∴BE=DE,在△ABE和△MDE中,,∴△ABE≌△MDE(SAS),∴AB=DM,∵AB=AC,∴DM=AC;②由①知△ABE≌△MDE,∴∠BAE=∠DME,∴AB∥DM,∴∠MDA+∠DAB=180°;(2)证明:延长AE至点M,使得ME=AE,连接DM.由旋转得:AF=AD,∠DAF=90°,∵∠BAC=90°,∠DAF+∠BAC+∠BAD+∠CAF=360°,∴∠BAD+∠CAF=180°,由(1)②得:∠MDA+∠DAB=180°,DM=AB=AC,∴∠CAF=∠MDA,在△ACF和△DMA中,,∴△ACF≌△DMA(SAS),∴CF=AM,∵AE=AM,∴AE=CF;(3)如图3,延长DA至M,使AM=AD,设AM交CF于N,连接BM交CF于K,取AC中点P,连接GP,由旋转得:AF=AD,∠DAF=90°,∴AF=AM,∠MAF=180°﹣90°=90°,∵∠BAC=90°,∴∠MAF+∠CAM=∠BAC+∠CAM,即∠CAF=∠BAM,在△ACF和△ABM中,,∴△ACF≌△ABM(SAS),∴∠AFC=∠AMB,即∠AFN=∠KMN,∵∠ANF=∠KNM,∴∠FAN=∠MKN=90°,∴BM⊥CF,∵E、A分别是DB、DM的中点,∴AE是△BDM的中位线,∴AE∥BM,即AG∥BM,∴AG⊥CF,∴∠AGC=90°,∵点P是AC的中点,∴GP=AC=AB=2,∴点G在以P为圆心,2为半径的⊙P上运动,连接BP并延长交⊙P于G′,∴BG′的长为BG的最大值,在Rt△ABP中,BP===2,∴BG′=BP+PG′=2+2,∴BG的最大值为2+2.题型三:瓜豆原理类几何最值大概动点问题符合瓜豆原理的模型时,也可以和几何最值结合【中考真题练】1.(2022•沈阳)【特例感知】(1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA上,点D在BO 的延长线上,连接AD,BC,线段AD与BC的数量关系是AD=BC;【类比迁移】(2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.【方法运用】(3)如图3,若AB=8,点C是线段AB外一动点,AC=3,连接BC.①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值是8+3;②若以BC为斜边作Rt△BCD(B,C,D三点按顺时针排列),∠CDB=90°,连接AD,当∠CBD=∠DAB=30°时,直接写出AD的值.【分析】(1)证明△AOD≌△BOC(SAS),即可得出结论;(2)利用旋转性质可证得∠BOC=∠AOD,再证明△AOD≌△BOC(SAS),即可得出结论;(3)①过点A作AT⊥AB,使AT=AB,连接BT,AD,DT,BD,先证得△ABC∽△TBD,得出DT=3,即点D的运动轨迹是以T为圆心,3为半径的圆,当D在AT的延长线上时,AD的值最大,最大值为8+3;②如图4,在AB上方作∠ABT=30°,过点A作AT⊥BT于点T,连接AD、BD、DT,过点T作TH⊥AD于点H,可证得△BAC∽△BTD,得出DT=AC=×3=,再求出DH、AH,即可求得AD;如图5,在AB下方作∠ABE=30°,过点A作AE⊥BE于点E,连接DE,可证得△BAC∽△BTD,得出DE=,再由勾股定理即可求得AD.【解答】解:(1)AD=BC.理由如下:如图1,∵△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,∴OA=OB,OD=OC,在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴AD=BC,故答案为:AD=BC;(2)AD=BC仍然成立.证明:如图2,∵∠AOB=∠COD=90°,∴∠AOB+∠AOC=∠AOC+∠COD=90°+α,即∠BOC=∠AOD,在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴AD=BC;(3)①过点A作AT⊥AB,使AT=AB,连接BT,AD,DT,BD,∵△ABT和△CBD都是等腰直角三角形,∴BT=AB,BD=BC,∠ABT=∠CBD=45°,∴==,∠ABC=∠TBD,∴△ABC∽△TBD,∴==,∴DT=AC=×3=3,∵AT=AB=8,DT=3,∴点D的运动轨迹是以T为圆心,3为半径的圆,∴当D在AT的延长线上时,AD的值最大,最大值为8+3,故答案为:8+3;②如图4,在AB上方作∠ABT=30°,过点A作AT⊥BT于点T,连接AD、BD、DT,过点T作TH⊥AD于点H,∵==cos30°=,∠ABC=∠TBD=30°+∠TBC,∴△BAC∽△BTD,∴==,∴DT=AC=×3=,在Rt△ABT中,AT=AB•sin∠ABT=8sin30°=4,∵∠BAT=90°﹣30°=60°,∴∠TAH=∠BAT﹣∠DAB=60°﹣30°=30°,∵TH⊥AD,∴TH=AT•sin∠TAH=4sin30°=2,AH=AT•cos∠TAH=4cos30°=2,在Rt△DTH中,DH===,∴AD=AH+DH=2+;如图5,在AB上方作∠ABE=30°,过点A作AE⊥BE于点E,连接DE,则==cos30°=,∵∠EBD=∠ABC=∠ABD+30°,∴△BDE∽△BCA,∴==,∴DE=AC=×3=,∵∠BAE=90°﹣30°=60°,AE=AB•sin30°=8×=4,∴∠DAE=∠DAB+∠BAE=30°+60°=90°,∴AD===;综上所述,AD的值为2+或.【中考模拟练】1.(2023•金平区三模)如图,长方形ABCD中,AB=6,BC=,E为BC上一点,且BE=,F为AB 边上的一个动点,连接EF,将EF绕着点E顺时针旋转45°到EG的位置,连接FG和CG,则CG的最小值为.【分析】如图,将线段BE绕点E顺时针旋转45°得到线段ET,连接DE交CG于J.首先证明∠ETG =90°,推出点G的在射线TG上运动,推出当CG⊥TG时,CG的值最小.【解答】解:如图,将线段BE绕点E顺时针旋转45°得到线段ET,连接DE交CG于J.∵四边形ABCD是矩形,∴AB=CD=6,∠B=∠BCD=90°,∵∠BET=∠FEG=45°,∴∠BEF=∠TEG,∵EB=ET,EF=EG,∴△EBF≌△ETG(SAS),∴∠B=∠ETG=90°,∴点G在射线TG上运动,∴当CG⊥TG时,CG的值最小,∵BC=,BE=,CD=6,∴CE=CD=6,∴∠CED=∠BET=45°,∴∠TEJ=90°=∠ETG=∠JGT=90°,∴四边形ETGJ是矩形,∴DE∥GT,GJ=TE=BE=,∴CJ⊥DE,∴JE=JD,∴CJ=DE=3,∴CG=CJ+GJ=+3,∴CG的最小值为+3,故答案为:+3.2.(2023•苍溪县一模)如图,线段AB为⊙O的直径,点C在AB的延长线上,AB=4,BC=2,点P是⊙O上一动点,连接CP,以CP为斜边在PC的上方作Rt△PCD,且使∠DCP=60°,连接OD,则OD 长的最大值为2+1.【分析】如图,作△COE,使得∠CEO=90°,∠ECO=60°,则CO=2CE,OE=2,∠OCP=∠ECD,由△COP∽△CED,推出==2,即ED=OP=1(定长),由点E是定点,DE是定长,推出点D在半径为1的⊙E上,由此即可解决问题.【解答】解:如图,作△COE,使得∠CEO=90°,∠ECO=60°,则CO=2CE,OE=2,∠OCP =∠ECD,∵∠CDP=90°,∠DCP=60°,∴CP=2CD,∴==2,∴△COP∽△CED,∴==2,即ED=OP=1(定长),∵点E是定点,DE是定长,∴点D在半径为1的⊙E上,∵OD≤OE+DE=2+1,∴OD的最大值为2+1,故答案为.3.(2023•海淀区校级三模)在平面直角坐标系xOy中,给定图形W和点P,若图形W上存在两个点M,N满足PM=PN且∠MPN=90°,则称点P是图形W的关联点.已知点A(﹣2,0),B(0,2).(1)在点P1(﹣,﹣1),P2(﹣,3),P3(﹣2,﹣2)中,P1,P2是线段AB的关联点;(2)⊙T是以点T(t,0)为圆心,r为半径的圆.①当t=0时,若线段AB上任一点均为⊙O的关联点,求r的取值范围;②记线段AB与线段AO组成折线G,若存在t≥4,使折线G的关联点都是⊙T的关联点,直接写出r 的最小值.【分析】(1)根据关联点的定义,结合勾股定理进行判断即可;(2)①根据题意推得三角形PMN为含30度角的直角三角形,根据瓜豆原理可得求得点O到点P的最大距离为,最小距离为,推得⊙O的所有关联点在以O为圆心,和为半径的两个圆构成的圆环中,结合图形求得半径r的取值范围;②结合①中的结论,画出满足条件的关联点的范围,进行求解即可.【解答】解:(1)∵∠MPN=90°,∴△MPN为直角三角形,∴满足MN2=PM2+PN2,根据勾股定理可得:,,,;,,;P3A=2,,,∵,且,∴是线段AB的关联点;∵,且,∴是线段AB的关联点;∵,且,∴∠BAO=30°,P3A⊥OA,∴∠P3AB=90°+30°=120°,∴对于线段AB上的任意两点M、N,当时,∠P 3NM>90°,如图,则∠MPN必是锐角,不可能是直角,∴不是线段AB的关联点;故答案为:P1,P2.(2)①由(1)可得:∵∠MPN=90°,∴△MPN为直角三角形,∴MN2=PM2+PN2=4PN2,即MN=2PN,即三角形PMN为含30度角的直角三角形,如图:则点P是以MN为斜边且含30度角的直角三角形的直角顶点.在圆O上取点M,N,则对于任意位置的M和N,符合的关联点有2个,如图:以点P为例,当点M在半径为r的⊙O上运动时,点N为圆上一定点,且MN=2PN,∠PNM=60°,则点M的运动轨迹为圆,故点P的轨迹也为圆,令点P的轨迹为圆R,如图:当M,O,N三点共线,P,R,N三点共线时,∠PNM=60°,∴,,则点O到点P的最大距离为,最小距离为,当点N也在⊙O上运动时,⊙R也随之运动,则⊙R扫过的区域为和r为半径围成的圆,即⊙O的所有关联点在以O为圆心,和为半径的两个圆构成的圆环中,∴当线段AB与半径为交于点A时,r最小,如图:则,解得,当线段AB与半径为的圆相切时,r最大,过点O作OH⊥AB,如图:则,即,解得,则,解得,∴②当关联点在线段AB上时,满足条件的关联点所在范围如图阴影部分:当关联点在线段AO上时,满足条件的关联点所在范围如图阴影部分:当关联点在不同线段上时,满足条件的关联点在点O和点B上的范围如图阴影部分:综上,所有区域叠加一起为:由①可知,满足T的所有关联点所在范围为圆环,故若使得圆环能够完整“包住”关联点,圆环中外圆的必须经过点G1,∵∠GBA=30°,∠G=90°,∠OBA=60°,∠O=90°,∴四边形AOBG为矩形,∴,则,即,解得(负值舍去);综上,r的最小值为.4.(2024•昆山市一模)如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A、C两点,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为B.(1)求抛物线解析式;(2)若点M为x轴下方抛物线上一动点,当点M运动到某一位置时,△ABM的面积等于△ABC面积的,求此时点M的坐标;(3)如图2,以B为圆心,2为半径的⊙B与x轴交于E、F两点(F在E右侧),若P点是⊙B上一动点,连接PA,以PA为腰作等腰Rt△PAD,使∠PAD=90°(P、A、D三点为逆时针顺序),连接FD.求FD长度的取值范围.【分析】(1)将点A(1,0),C(0,5)代入y=x2+bx+c,即可求解;=10,再由题意可得S△AMB=6=×4×(﹣m2+6m (2)设M(m,m2﹣6m+5),先求AB=4,则S△ABC﹣5),即可求M(2,﹣3)或M(4,﹣3);(3)将点B绕A点顺时针旋转90°到B',连接AB',PB,B'D,可证明△ADB'≌△APB(SAS),则可得D在以B'为圆心,2为半径的圆上运动,又由B'(1,﹣4),F(7,0),则B'F=2,所以DF 的最大值为+2,DF的最小值为﹣2,即可求2﹣2≤DF≤2+2.【解答】解:(1)令x=0,则y=5,∴C(0,5),令y=0,则x=1,∴A(1,0),将点A(1,0),C(0,5)代入y=x2+bx+c,得,∴,∴y=x2﹣6x+5;(2)设M(m,m2﹣6m+5),令y=0,则x2﹣6x+5=0,解得x=5或x=1,∴B(5,0),∴AB=4,=×4×5=10,∴S△ABC∵△ABM的面积等于△ABC面积的,=6=×4×(﹣m2+6m﹣5),∴S△AMB解得m=2或m=4,∴M(2,﹣3)或M(4,﹣3);(3)将点B绕A点顺时针旋转90°到B',连接AB',PB,B'D,∵∠B'AD+∠BAD=90°,∠PAB+∠BAD=90°,∴∠B'AD=∠PAB,∵AB=AB',PA=AD,∴△ADB'≌△APB(SAS),∴BP=B'D,∵PB=2,∴B'D=2,∴D在以B'为圆心,2为半径的圆上运动,∵B(5,0),A(1,0),∴B'(1,﹣4),∵BF=2,∴F(7,0),∴B'F=2,∴DF的最大值为2+2,DF的最小值为2﹣2,∴2﹣2≤DF≤2+2.题型四:其他类几何最值除了常见的模型与几何最值结合外,还有一些几何问题,应用直接的最值原理,比如:点到直线的距离垂线段最短等【中考真题练】1.(2023•锦州)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=4,按下列步骤作图:①在AC和AB上分别截取AD,AE,使AD=AE.②分别以点D和点E为圆心,以大于DE的长为半径作弧,两弧在∠BAC内交于点M.③作射线AM交BC于点F.若点P是线段AF上的一个动点,连接CP,则CP+AP的最小值是.【分析】根据题目中所给的条件,判断AF为角平分线,由问题可知,需要利用胡不归模型构建直角三角形,转化两条线段和为一条线段,利用三角函数求出线段长度.【解答】理由如下:由作图步骤可知,射线AM为∠CAB的角平分线,∵∠ABC=90°,∠B=30°,∴∠CAB=60°,∵AM平分∠CAB,∴∠CAF=∠BAF=∠CAB=30°,过点C作CN⊥AB于N,交AF于P,在Rt△APN中,∠BAF=30°,∴PN=AP,∴CP+AP=CP+PN=CN,根据点到直线的距离,垂线段最短,此时CP+PN值最小在Rt△ACN中,∠CAN=60°,AC=4,∴,∴CN=sin60°×AC==,∴CP+AP=CP+PN=CN=,故答案为:.2.(2023•德阳)如图,在底面为正三角形的直三棱柱ABC﹣A1B1C1中,AB=2,AA1=2,点M为AC 的中点,一只小虫从B1沿三棱柱ABC﹣A1B1C1的表面爬行到M处,则小虫爬行的最短路程等于.【分析】利用平面展开图可总结为3种情况,画出图形利用勾股定理求出B1M的长即可.【解答】解:如图1,将三棱柱ABC﹣A1B1C1的侧面BB1C1C和侧面CC1A1A沿CC1展开在同一平面内,连接MB1,∵M是AC的中点,△ABC和△A1B1C1是等边三角形,∴CM=AC==,∴BM=CM+BC=3,在Rt△MBB1中,由勾股定理得:B1M==,如图2,把底面ABC和侧面BB1A1A沿AB展开在同一平面内,连接MB1,过点M作MF⊥A1B1于点F,交AB于点E,则四边形AEFA1是矩形,ME⊥AB,在Rt△AME中,∠MAE=60°,∴ME=AM•sin60°=×=,AE=AM•cos60°=,∴MF=ME+EF=+2=,B1F=A1B1﹣A1F=,在Rt△MFB1中,由勾股定理得:B1M==,如图3,连接B1M,交A1C1于点N,则B1M⊥AC,B1N⊥A1C1,在Rt△A1NB1中,∠NA1B1=60°,∴NB1=A1B1•sin60°=3,∴B1M=NB1+MN=5,∵<5<,∴小虫爬行的最短路程为.故答案为:.3.(2023•常州)如图,在Rt△ABC中,∠BAC=90°,AB=AC=4,D是AC延长线上的一点,CD=2.M 是边BC上的一点(点M与点B、C不重合),以CD、CM为邻边作▱CMND.连接AN并取AN的中点P,连接PM,则PM的取值范围是..【分析】先根据题意确定点P的运动轨迹,即可确定MP的最大值和最小值,从而解答.【解答】解:∵AB=AC=4,∴AD=6,∵△ABC是等腰直角三角形,四边形CNMD是平行四边形,∴DN∥BC,DN=BC,CD∥MN,CD=MN,∴∠ADN=∠ACB=45°=∠ABC=∠CMN,当M与B重合时,如图M1,N1,P1,∠ABN1=90°,∴AN1==2,∵P1是中点,∴MP1=AN1=,当MP⊥BC时,如图P2,M2,N2,∵P1,P,P2是中点,∴P的运动轨迹为平行于BC的线段,交AC于H,∴CH=3﹣2=1,∵∠ACB=45°,∴PH与BC间的距离为P2M2=CH=,∵M不与B、C重合,∴.【中考模拟练】1.(2024•济南一模)如图,在矩形ABCD中,AB=4,BC=3,E为AB上一点,连接DE,将△ADE沿DE折叠,点A落在A1处,连接A1C,若F、G分别为A1C、BC的中点,则FG的最小值为1.【分析】连接A1B,由F、G分别为A1C、BC的中点可得FG=A1B,在△A1BD中有A1B+A1D≥BD,由勾股定理可得BD,由折叠性质和矩形性质可得A1D=AD=BC,即可求解.【解答】解:如图,连接A1B,BD,∵F、G分别为A1C、BC的中点,∴FG=A1B,当FG的最小时,即A1B最小,∵四边形ABCD为矩形,AB=4,BC=3,∴AD=BC=3,∠A=90°,∴BD==5,∵△ADE沿DE折叠,∴A1D=AD=3,在△A1BD中有A1B+A1D≥BD,∴A1B≥BD﹣A1D,。
2020重庆中考复习数学几何最值专题训练九:四边形周长最小问题(含答案解析)

2020重庆中考复习数学几何最值专题训练九------四边形周长最小问题例1、如图,已知,在矩形ABCD中,AD=4,AB=8,点E,F是边CD上的动点(点F在点E右侧),且EF=2,则四边形ABFE周长的最小值为 .例2、在矩形ABCD中,AB=8,BC=10,G为AD边的中点.如图,若E、F为边AB上的两个动点,且EF=4,当四边形CGEF的周长最小时,则求AF的长为 .G例3、如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3,若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2,当四边形MEQG的周长最小时,最小周长为( )A.18 B.7+6 C.7+5 D.7+5例4、如图,矩形ABCD中,AB=5,AD=10,点E,F,G,H分别在矩形各边上,点F,H为不动点,点E,G为动点,若要使得AF=CH,BE=DG,则四边形EFGH周长的最小值为( )A.5 B.10 C.15 D.10练习:1、如图,在矩形ABCD中,AB=4,BC=6,G为边AD的中点,若E、F为边AB上的两个动点,点E在点F左侧,且EF=1,则四边形CGEF周长的最小值为 .2、(2017春•博山区期末)如图,在矩形ABCD中,AB=6,AD=8,点P是BC中点,点E、F是边CD上的任意两点,且EF=2,当四边形APEF的周长最小时,则DF的长为( )A.2 B.4 C. D.3、(2018•保定一模)如图,矩形ABCD中,AB=8,BC=6,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为( )A.10 B.4 C.20 D.84、如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3,若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=3,当四边形MEQG的周长最小时,最小周长为( )A.16 B.5 C.6+ D.7+2020重庆中考复习数学几何最值专题训练九参考答案例1、(2017春•新城区校级期中)如图,已知,在矩形ABCD中,AD=4,AB=8,点E,F是边CD上的动点(点F在点E右侧),且EF=2,则四边形ABFE周长的最小值为 20.解:在AB上截取AM=EF,作点M关于直线DC的对称点N,连接BN交CD于F,此时四边形AEFB 的周长最小.四边形AEFB的周长的最小值=AB+EF+AE+BF=AB+EF+MF+BF=AB+EF+NF+BF=AB+EF+NB=8+2+=20,例2、(2018秋•金牛区校级月考)在矩形ABCD中,AB=8,BC=10,G为AD边的中点.如图,若E、F为边AB上的两个动点,且EF=4,当四边形CGEF的周长最小时,则求AF 的长为 .G解:∵E为AB上的一个动点,∴如图,作G关于AB的对称点M,在CD上截取CH=4,然后连接HM交AB于E,接着在EB上截取EF=4,那么E、F两点即可满足使四边形CGEF的周长最小. ∵在矩形ABCD中,AB=8,BC=10,G为边AD的中点,∴AG=AM=5,MD=15,而CH=4,∴DH=4,而AE∥CD,∴△AEM ∽△DHM ,∴AE :HD=MA:MD,∴AE===,∴AF=4+=.例3、(2017春•雁塔区校级期末)如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3,若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2,当四边形MEQG的周长最小时,最小周长为( )A.18 B.7+6 C.7+5 D.7+5解:连接PC,得到四边形PCEM是菱形,PC=5,作点M关于AB的对称点M′,在EN上截取ER =2,连接M′R交AB于点G,再过点E作EQ∥RG,交AB于点Q,∵ER=GQ,ER∥GQ,∴四边形ERGQ是平行四边形,∴QE=GR,∵GM=GM′,∴MG+QE=GM′+GR=M′R,此时MG+EQ最小,四边形MEQG的周长最小, 在Rt△M′RN中,NR=4﹣2=2,M′R=,∵ME=5,GQ=2,∴四边形MEQG的最小周长值是7+5.故选:D.例4、(2019•长丰县二模)如图,矩形ABCD中,AB=5,AD=10,点E,F,G,H分别在矩形各边上,点F,H为不动点,点E,G为动点,若要使得AF=CH,BE=DG,则四边形EFGH周长的最小值为( )A.5 B.10 C.15 D.10解:作点F关于CD的对称点F′,连接F′H交CD于点G,此时四边形EFGH周长取最小值,过点H作HH′⊥AD于点H′,如图所示.∵AF=CH,DF=DF′,∴H′F′=AD=10,∵HH′=AB=5,∴F′H==5,∴C四边形EFGH=2F′H=10.故选:D.练习:1、如图,在矩形ABCD中,AB=4,BC=6,G为边AD的中点,若E、F为边AB上的两个动点,点E在点F左侧,且EF=1,则四边形CGEF周长的最小值为 .解:如图,作G关于AB的对称点M,在CD上截取CH=1,然后连接HM交AB于E,在EB上截取EF=1,那么E、F两点即可满足使四边形CGEF的周长最小.∵AB=4,BC=6,G为边AD的中点,∴DG=AG=AM=3,∵AE∥DH,∴=,∴=,=,故AE=1,∴GE==,BF=2,CF===2,CG==5,∴C四边形GEFC=GE+EF+FC+CG=6+3,2、(2017春•博山区期末)如图,在矩形ABCD中,AB=6,AD=8,点P是BC中点,点E、F是边CD上的任意两点,且EF=2,当四边形APEF的周长最小时,则DF的长为( )A.2 B.4 C. D.解:∵点E、F是边CD上的任意两点,∴如图,作P关于CD的对称点M,在AB上截取AH=2,然后连接HM交CD于E,接着在EB上截取EF=2,那么E、F两点即可满足使四边形APEF的周长最小.∵在矩形ABCD中,AB=6,BC=8,点P是BC中点,∴CP=CM=4,MB=12,而AH=2, ∴BH=4,∵AB∥CD,∴△CEM∽△BHM,∴CE:BH=MC:MB,∴CE==,∴DF=CD﹣CE﹣EF=6﹣﹣2=.故选:C.3、(2018•保定一模)如图,矩形ABCD中,AB=8,BC=6,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为( )A.10 B.4 C.20 D.8解:作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,EF=E'F,过点G作GG′⊥AB于点G′,如图所示.∵AE=CG,BE=BE′,∴E′G′=AB=8,∵GG′=AD=6,∴E′G==10,∴C四边形EFGH=2(GF+EF)=2E′G=20.4、如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3,若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=3,当四边形MEQG的周长最小时,最小周长为( )A.16 B.5 C.6+ D.7+解:连接PC,得到四边形PCEM是菱形,PC=5,作点M关于AB的对称点M′,在EN上截取ER=1,连接M′R交AB于点G,再过点E作EQ∥RG,交AB于点Q,∵ER=GQ,ER∥GQ,∴四边形ERGQ是平行四边形,∴QE=GR,∵GM=GM′,∴MG+QE=GM′+GR=M′R,此时MG+EQ最小,四边形MEQG的周长最小,在Rt△M′RN中,NR=4﹣3=1,M′R==,∵ME=5,GQ=1,∴四边形MEQG的最小周长值是6+.故选:D.。
苏科版初三数学中考复习小专题系列1:最值问题 (精讲精练及参考答案)

xyBOMAxy CEO'BOMAD系列一:最值问题(1)—两线段之和的最值一、 【背景分析】 几何问题中的线段之和最值问题是中考复习问题常见情形,除了要运用最基本的“将军饮马”的原理之外,它最明显的特征:紧紧围绕“将军饮马”原理可以包含多种初中阶段的常用知识点,在不同的背景中,如直角坐标系中,各种特殊平行四边形,或圆中,可以全方位的考察必考知识点和常用方法,能有效考察学生对知识方法的分析能力,作图能力,计算能力等,故需要进行相应程度的训练与巩固。
二、 基本原理呈现:问题:已知在直线l 外有两定点A ,B ,试在l 上寻找点O ,使得AO +OB 的长度最短。
作法: ①从点A 作关于直线l 的对称点A',连接A'B 与直线l 相交于点O ;②此时AO =A'O ,即AO +OB =A'O +OB =A'B ,根据“两点之间线段最短”可知此时AO +OB 的长度最短。
③点O 即为所求。
步骤简述:作对称点,连接产生交点。
三、课堂例题精讲例1则BO+BA 的最小值是 。
(图1) (图2)结合知识点:全等构造,勾股定理,一次函数直线思路与解析:如图2,过点B 作BC 垂直y 轴与点C ,构造“K 型”△BC M ≌△表示出点B (m,m+8),得出B 点运动路径为一次函数直线y=x +8,根据上ACAG述原理,作点O 关于直线y=x +8的对称点,再构建Rt △O ,EA 求出BO+BA 的最小值= O ,A=5816822=+。
【点评】:本题的难点之处是需分析出点B 的运动轨迹例2、已知如图3,在菱形ABCD 中,∠DAB=60°,AD=3,点E 、F 分别是AB ,AC 上的动点,且满足AE=CF ,则DE+DF 的最小值为(图3) (图考察点:全等构造,最值,对称,勾股定理思路与解析:如图4,因AE=CF 和30° ,在AC 上取点G ,使AG=AD=DC ,连GE ,易证:△DFC ≌△GEA ,通过构造全等形成转换,DF=EG ,因G 为定点,作点G 关于的对称点,连接DG ,,故DE+DF 的最小值转为熟悉的“将军饮马”ED+EG 的最小值=DG ,=233322=+。
隐形圆模型的最值问题-含答案

隐形圆模型的最值问题【母题示例】如图,在矩形ABCD中,AB=4,BC=2,点E是CD上一动点,沿AE折叠矩形,使得点D落在矩形ABCD内的点D′处,连接CD′,则CD′的最小值为________.【命题形式】常在几何图形中,结合折叠、旋转问题计算最值,一般会出现直角、定点和定长等特征信息.【母题剖析】先判断点D′在以A为圆心,AD为半径的圆上,再根据勾股定理确定CD′的最小值即可.【母题解读】隐形圆模型的最值问题是一种特殊的最值问题,其中以基本图形(三角形、矩形等)为背景,结合图形变换(折叠、旋转)来计算图形中某条线段的最值.常见的模型有:直角模型;定角模型;折叠旋转模型等.解题的关键是先确定动点轨迹所在圆的圆心,再连接定点与圆心,从而实现问题的解决.模型一直角模型【模型解读】直角模型是在问题中出现“直角”“垂直”“90°”等关键词,利用“90°的圆周角所对的弦是直径”从而确定动点所在轨迹,以及动点的圆心,再确定定点和圆的位置关系,最后利用勾股定理等方法求线段的最值.【基本图形】基本图形BM⊥BN,点C是∠MBN内一点,且AC⊥BC,则点C在说明以AB为直径的圆上【核心突破】1.如图,正方形ABCD的边长为6,点E、F分别从点D和点C出发,沿射线DA、射线CD运动,且DE=CF,直线AF、直线BE交于点H,连接DH,则线段DH长度的最小值为( )A.35-3 B.25-3 C.33-3 D.32.如图,在平面直角坐标系中,点A的坐标为(-3,0),点B的坐标为(3,0),点P是平面内一点,且AP⊥BP,点M的坐标为(3,4),连接MP,则MP的最小值为________.模型二定角模型【模型解读】定角模型是直角模型的一种变形形式,其依据是已知定角,则根据“同弧所对的圆周角相等”得到动点的轨迹为圆弧,再画出对应图形进行计算.【基本图形】基本图形说明点P是正方形ABCD内一点,且∠APB=60°,则以AB为边在正方形ABCD 内作等边△ABM,点P在△ABM的外接圆在正方形内的部分弧上基本图形说明点P是平面内一点,且∠APB=45°,则以AB为斜边作等腰Rt△AOB,点P在以O为圆心,OA为半径的圆的优弧上【模型突破】1.如图,矩形ABCD中,AD=5,AB=23,点P是矩形ABCD内(含边界)上一点,且∠APB=60°,连接CP,则CP的最小值为________.2.如图,在平面直角坐标系中,矩形ABCD的顶点A,D均在x轴上,点B在第三象限,且OA=2,OD=1,AB=4,点E是AB的中点,连接OE,动点P是平面内一点,且∠OPE=45°,连接CP,求CP的最小值.模型三折叠、旋转模型【模型解读】折叠、旋转模型是在几何图形中,通过折叠或旋转变换得到动点,而此时动点的轨迹为以定点为圆心,定长为半径的圆,从而画出动点轨迹,并进行计算.【基本图形】基本图形沿过矩形ABCD的顶点A折叠△ADE,得到△AD′E,则点D′说明在以A为圆心,AD为半径的圆弧上基本图形△AEF绕正方形ABCD的顶点A旋转,则点F的轨迹为以A 说明为圆心,AF为半径的圆【模型突破】1.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上任意一点(点E不与点B重合),沿DE翻折△DBE,使点B落在点F处,连接AF,则线段AF的长取最小值时,BF的长为________.。
高一物理最值问题(答案)(1)

高一物理最值问题(参考答案)一、选择题1. 【答案】 B【解析】 设屋檐的底边长为L ,屋顶的坡面长度为s ,雨滴下滑的加速度为a ,雨滴只受重力mg 和屋顶面对它的支持力N ,垂直于屋顶面方向:N =mg cos θ,平行于屋顶面方向:mg sin θ=ma ,得雨滴的加速度a =g sin θ,根据几何关系,屋顶面的长度为:s =L 2cos θ,由s =12at 2得:t =2sa= 2Lg sin2θ,θ=45°时t 最短,故B 正确。
2. 【答案】A【解析】3. 【答案】C【解析】解:设圆形轨道的半径为r ,则小球做平抛运动的高度为H ﹣r , 小球从最高点运动到轨道最低点的过程中,运用动能定理得: mgr=mv 2 解得:v=小球从轨道最低点抛出后做平抛运动,则有 t=水平位移S=vt=•=2当H ﹣r=r 时,S 取最大值,即r= 所以v=gH 4. 【答案】B【解析】 物块上升到最高点的过程,机械能守恒,有12mv 2=2mgr +12mv 21,由平抛运动规律,水平方向,有x=v 1t ,竖直方向,有2r =12gt 2,解得x =4v 2g r -16r 2,当r =v 28g 时,x 最大,B 正确.5. 【答案】D【解析】设拉力F 与水平方向的夹角为θ,对重物,在水平方向有F cos θ-F f =ma, 竖直方向有F sin θ+F N =mg ,滑动摩擦力F f =μF N ,根据以上三式联立可以求得a =F cos θ+μF sin θm-μg ,当tan θ=μ时,加速度最大,最大加速度为a max =F m1+μ2-μg ,故D 正确,A 、B 、C 错误.6. 【答案】D【解析】设PQ 的水平距离为L ,由运动学公式可知21sin cos 2L g t θθ= 可得24sin 2L t g θ=可知45θ=︒时,t 有最小值,故当θ从由30°逐渐增大至60°时下滑时间t 先减小后增大。
立体几何中最值问题

立体几何中最值问题【典例1】【20218·陕西西安市·长安一中】如图,已知三棱柱BCF ADE -的侧面CFED 与ABFE 都是边长为1的正方形,M 、N 两点分别在AF 和CE 上,且AM EN =.(1)求证://MN 平面BCF ;(2)若点N 为EC 的中点,点P 为EF 上的动点,试求PA PN +的最小值.【思路引导】(1)过点M 作MG EF ⊥交EF 于G ,连结NG ,通过证明平面//MNG 平面BCF 得线面平行;(2)将平面EFCD 绕EF 旋转到与ABFE 在同一平面内,则当点A 、P 、N 在同一直线上时,PA PN +最小.【典例2】【2021山西省大同市大同一中期末模拟】已知梯形ABCD 中,//AD BC ,2ABC BAD π∠=∠=,24AB BC AD ===,E ,F 分别是AB ,CD上的点,//EF BC ,AE x =,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF (如图).(1)当2x =时,①证明:EF ⊥平面ABE ;②求二面角D BF E --的余弦值;(2)三棱锥D FBC -的体积是否可能等于几何体ABE FDC -体积的49?并说明理由. 【思路引导】(1)①可证,EF AE EF BE ⊥⊥,从而得到EF ⊥平面ABE .②如图,在平面AEGD 中,过D 作DG EF ⊥且交EF 于G .在平面DBF 中,过D 作DH BF ⊥且交BF 于H ,连接GH .可证DHG ∠为二面角D BF E --的平面角,求出DG 和GH 的长度后可求二面角的余弦值.(2)若存在,则5=4B ADFE D BFC V V --,利用体积公式可得关于x 的方程,解方程后可得2x =,故假设成立.【典例3】【北京市昌平区2020届模拟】如图,在长方体ABCD -A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1. 过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G .(I )证明:AD ∥平面EFGH ;(II ) 设AB=2AA 1="2" a .在长方体ABCD -A 1B 1C 1D 1内随机选取一点.记该点取自几何体A 1ABFE-D 1DCGH 内的概率为p ,当点E ,F 分别在棱A 1B 1上运动且满足EF=a 时,求p 的最小值.【针对训练】1. 【2021·浙江省杭州市第一中学高三上学期月考】(高三专题练习)设三棱锥P ABC -的每个顶点都在球O 的球面上,PAB ∆是面积为33的等边三角形,AC BC ⊥,AC BC =,且平面PAB ⊥平面ABC .(1)求球O 的表面积;(2)证明:平面POC ⊥平面ABC ,且平面POC ⊥平面PAB .(3)与侧面PAB 平行的平面α与棱AC ,BC ,PC 分别交于D ,E ,F ,求四面体ODEF 的体积的最大值.【思路引导】(1)先取AB 的中点G ,连接PG .根据AC BC ⊥,得出ABC ∆的外心为G .再因为PA PB =,则PG AB ⊥.平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,所以PG ⊥平面ABC ,球心O 在PG 上.得出O 是线段PG 上靠近点G 的一个三等分点.然后求出球的半径R ,则得出球的表面积为. (2)根据O 在PG 上,则PO ⊥平面ABC ,又PO ⊂平面POC ,则有平面POC ⊥平面ABC .再证平面PAB ⊥平面ABC ,所以有CG ⊥平面PAB ,又CG ⊂平面POC ,即可证得平面POC ⊥平面PAB . (3)先求C 到平面PAB 的距离H .设()01CD CA λλ=<<,C 到平面DEF 的距离为h .由平面PAB 平面DEF ,得到三角形相似DEF ABP ∆∆,则可得DEF ∆的面积,求出3h λ=,得到O 到平面DEF 的距33λ,则四面体ODEF 的体积()231V λλ=-.转化为函数,利用导函数求得最大值.2.【安徽省安庆市2020届模拟】如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,2,3AB EB ==.(1)求证:DE ⊥平面ADC ;(2)设AC x =,(x)V 表示三棱锥B ACE -的体积,求函数(x)V 的解析式及最大值.【思路引导】(1)要证(1)要证DE ⊥平面ADC ,需证BC ⊥平面ADC ,需证DC BC BC AC ⊥⊥,,用综合法书写即可.(2)由(1)可知BE ⊥平面ABC ,所以体积为13ABC BE S ⨯,2 43AC x BC x EB =-,,均值不等式求解最大值.3.【2021山东省菏泽市菏泽一中模拟测试】如图,在正三棱柱111ABC A B C -中,2AB =,12AA =,由顶点B 沿棱柱侧面经过棱1AA 到顶点1C 的最短路线与1AA 的交点记为M ,求:(1)三棱柱的侧面展开图的对角线长;(2)求该最短路线的长及1A M AM的值; (3)三棱锥1C ABM -体积.【思路引导】(1)由正三棱柱的侧面展开图是长为6,宽为2的矩形求解.(2)将侧面11AA B B 绕棱1AA 旋转120使其与侧面11AACC 在同一平面上,点B 运动到点D 的位置,连接1DC 交于M ,则1DC 即为所求;然后由DMA △≌11C MA 求解1A M AM; (3)根据1//CC 平面ABM ,利用等体积法,由1C ABM C ABM M ABC V V V ---==求解.4.【北京市城六区2019届高三模拟】已知三棱锥P ABC -(如图1)的平面展开图(如图2)中,四边形ABCD 2ABE 和△BCF 均为正三角形,在三棱锥P ABC -中:(I)证明:平面PAC ⊥平面ABC ;(Ⅱ)求二面角A PC B --的余弦值;(Ⅲ)若点M 在棱PC 上,满足CM CPλ=,12[,]33λ∈,点N 在棱BP 上,且BM AN ⊥,求BN BP 的取值范围.【思路引导】⊥,根据题中所给的边长,利用勾股定理求得第一问取AC中点O,根据等腰三角形的性质求得PO AC⊥,利用线面垂直的判定定理以及面面垂直的判定定理得到结果;第二问根据题中所给的条件建立PO OB空间直角坐标系,写出相应的点的坐标,求得面的法向量,利用法向量所成角的余弦值得出结果;第三问利用向量间的关系,利用向量垂直的条件,利用向量的数量积等于0,得出所求的比值μ与λ的关系式,利用函数的有关知识求得结果.参考答案【典例1】【20218·陕西西安市·长安一中】如图,已知三棱柱BCF ADE -的侧面CFED 与ABFE 都是边长为1的正方形,M 、N 两点分别在AF 和CE 上,且AM EN =.(1)求证://MN 平面BCF ;(2)若点N 为EC 的中点,点P 为EF 上的动点,试求PA PN +的最小值.【思路引导】(1)过点M 作MG EF ⊥交EF 于G ,连结NG ,通过证明平面//MNG 平面BCF 得线面平行;(2)将平面EFCD 绕EF 旋转到与ABFE 在同一平面内,则当点A 、P 、N 在同一直线上时,PA PN +最小.【解析】(1)过点M 作MG EF ⊥交EF 于G ,连结NG ,则CN FM FG NE MA GE==, ∴//NG CF又NG ⊄面BCF ,CF ⊂面BCF ,∴//NG 面BCF ,同理可证//MG 面BCF ,又⋂=MG NG G ,∴平面//MNG 平面BCF ,∵MN ⊂平面MNG ,//MN 面BCF .(2)如图将平面EFCD 绕EF 旋转到与ABFE 在同一平面内,则当点A 、P 、N 在同一直线上时,PA PN +最小,在AEN 中,∵135AEN ∠=,1AE =,22NE = 由余弦定理得2222cos135AN AE EN AE EN =+-⋅,∴102AN =,即()min 102PA PN +=.【典例2】【2021山西省大同市大同一中期末模拟】已知梯形ABCD 中,//AD BC ,2ABC BAD π∠=∠=,24AB BC AD ===,E ,F 分别是AB ,CD上的点,//EF BC ,AE x =,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF (如图).(1)当2x =时,①证明:EF ⊥平面ABE ;②求二面角D BF E --的余弦值;(2)三棱锥D FBC -的体积是否可能等于几何体ABE FDC -体积的49?并说明理由. 【思路引导】(1)①可证,EF AE EF BE ⊥⊥,从而得到EF ⊥平面ABE .②如图,在平面AEGD 中,过D 作DG EF ⊥且交EF 于G .在平面DBF 中,过D 作DH BF ⊥且交BF 于H ,连接GH .可证DHG ∠为二面角D BF E --的平面角,求出DG 和GH 的长度后可求二面角的余弦值.(2)若存在,则5=4B ADFE D BFC V V --,利用体积公式可得关于x 的方程,解方程后可得2x =,故假设成立.【解析】(1)①在直角梯形ABCD 中,因为2ABC BAD π∠=∠=,故,DA AB BC AB ⊥⊥, 因为//EF BC ,故EF AB ⊥.所以在折叠后的几何体中,有,EF AE EF BE ⊥⊥,而AE BE E =,故EF ⊥平面ABE .②如图,在平面AEFD 中,过D 作DG EF ⊥且交EF 于G . 在平面DBF 中,过D 作DH BF ⊥且交BF 于H ,连接GH .因为平面AEFD ⊥平面EBCF ,平面AEFD ⋂平面EBCF EF =, DG ⊂平面AEFD ,故DG ⊥平面EBCF ,因为BF ⊂平面EBCF ,故DG BF ⊥,而DG DH D =, 故BF ⊥平面DGH ,又GH ⊂平面DGH ,故GH BF ⊥, 所以DHG ∠为二面角D BF E --的平面角,在平面AEFD 中,因为,AE EF DG EF ⊥⊥,故//AE DG , 又在直角梯形ABCD 中,//EF BC 且()132EF BC AD =+=, 故//EF AD ,故四边形AEGD 为平行四边形,故2DG AE ==,1GF =在直角三角形BEF 中,2tan 3BFE ∠=,因BFE ∠为三角形内角, 故sin 13BFE ∠=,故1sin 13GH BFE =⨯∠=, 故2tan 13213DHG ∠==,因DHG ∠为三角形内角,故14cos DHG ∠=. 所以二面角D BF E --的平面角的余弦值为1414.(2)若三棱锥D FBC -的体积等于几何体ABE FDC -体积的49, 则9=4B ADFE D BFC D BFC V V V ---+即5=4B ADFE D BFC V V --.由(1)的证明可知,DG ⊥平面BEFC ,同理可证BE⊥平面AEFD ,AE DG =. 故113B ADFE V BE S -=⨯⨯,其中1S 为直角梯形ADFE 的面积. 而1133D BFC BCF BCF V DG S AE S -=⨯⨯=⨯⨯, 在直角梯形ABCD 中,过D 作BC 的垂线,与,EF BC 分别交于,M N , 则24FM x =,故2x FM =,所以22x FE =+,所以21112242222x x S x x ⎛⎫⎛⎫=++⨯=+ ⎪ ⎪⎝⎭⎝⎭. 所以()()22111444432262B ADFEx x V x x x x -⎛⎫⎛⎫=⨯-⨯+=⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭. 又()1242BCF S BE BC x =⨯⨯=-, 故()1243D BFC V x x -=⨯⨯-,所以()()215144246243x x x x x ⎛⎫⨯-⨯+=⨯⨯⨯- ⎪⎝⎭, 解得2x =,故当2AE =时,三棱锥D FBC -的体积等于几何体ABE FDC -体积的49. 【典例3】【北京市昌平区2020届模拟】如图,在长方体ABCD -A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1. 过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G .(I )证明:AD ∥平面EFGH ;(II ) 设AB=2AA 1="2" a .在长方体ABCD -A 1B 1C 1D 1内随机选取一点.记该点取自几何体A 1ABFE-D 1DCGH 内的概率为p ,当点E ,F 分别在棱A 1B 1上运动且满足EF=a 时,求p 的最小值.【思路引导】解法一:(I ) 证明:在长方体ABCD -A 1B 1C 1D 1中,AD ∥A 1D 1又∵EH ∥A 1D 1,∴AD ∥EH.∵AD ¢平面EFGH EH 平面EFGH∴AD//平面EFGH.(II ) 设BC=b ,则长方体ABCD -A 1B 1C 1D 1的体积V=AB·AD·AA 1=2a 2b , 几何体EB 1F-HC 1G 的体积V 1=(1/2EB 1 ·B 1F )·B 1C 1=b/2·EB-1·B 1 F ∵EB 12+ B 1 F 2=a 2∴EB 12+ B 1 F 2≤ (EB 12+ B 1 F 2)/2 = a 2 / 2,当且仅当EB-1=B 1 F=22a 时等号成立 从而V 1≤ a 2b /4 . 故 p=1-V 1/V ≥22412a b a b-=78 解法二:(I ) 同解法一(II ) 设BC=b ,则长方体ABCD -A 1B 1C 1D 1的体积V=AB·AD·AA 1=2a 2b , 几何体EB 1F-HC 1G 的体积V 1=(1/2 EB-1·B 1 F )·B 1C 1=b/2 EB-1·B 1 F设∠B 1EF=θ(0°≤θ≤90°),则EB-1=" a" cosθ,B 1 F ="a" sinθ故EB-1·B 1 F = a 2sinθcosθ=,当且仅当sin 2θ=1即θ=45°时等号成立.从而214a b V ≤∴p=1- V 1/V≥22412a b a b-=78,当且仅当sin 2θ=1即θ=45°时等号成立. 所以,p 的最小值等于7/8【针对训练】1. 【2021·浙江省杭州市第一中学高三上学期月考】(高三专题练习)设三棱锥P ABC -的每个顶点都在球O 的球面上,PAB ∆是面积为33的等边三角形,AC BC ⊥,AC BC =,且平面PAB ⊥平面ABC .(1)求球O 的表面积;(2)证明:平面POC ⊥平面ABC ,且平面POC ⊥平面PAB .(3)与侧面PAB 平行的平面α与棱AC ,BC ,PC 分别交于D ,E ,F ,求四面体ODEF 的体积的最大值.【思路引导】(1)先取AB 的中点G ,连接PG .根据AC BC ⊥,得出ABC ∆的外心为G .再因为PA PB =,则PG AB ⊥.平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,所以PG ⊥平面ABC ,球心O 在PG 上.得出O 是线段PG 上靠近点G 的一个三等分点.然后求出球的半径R ,则得出球的表面积为.(2)根据O 在PG 上,则PO ⊥平面ABC ,又PO ⊂平面POC ,则有平面POC ⊥平面ABC .再证平面PAB ⊥平面ABC ,所以有CG ⊥平面PAB ,又CG ⊂平面POC ,即可证得平面POC ⊥平面PAB . (3)先求C 到平面PAB 的距离H .设()01CD CA λλ=<<,C 到平面DEF 的距离为h .由平面PAB 平面DEF ,得到三角形相似DEF ABP ∆∆,则可得DEF ∆的面积,求出3h λ=,得到O 到平面DEF 的距33λ,则四面体ODEF 的体积()231V λλ=-.转化为函数,利用导函数求得最大值.【解析】(1)解:取AB 的中点G ,连接PG .因为AC BC ⊥,所以ABC ∆的外心为G .因为PA PB =,所以PG AB ⊥.又平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,所以PG ⊥平面ABC ,所以O 在PG 上.因为PAB ∆是等边三角形,所以O 是线段PG 上靠近点G 的一个三等分点. 由题意得23334AB =,解得23AB =, 所以球O 的半径32223R AB =⨯⨯=,球O 的表面积为2416R ππ⨯=. (2)证明:因为O 在PG 上,所以PO ⊥平面ABC ,又PO ⊂平面POC ,所以平面POC ⊥平面ABC .连接CG ,则CG AB ⊥,又平面PAB ⊥平面ABC ,所以CG ⊥平面PAB ,又CG ⊂平面POC ,所以平面POC ⊥平面PAB .(3)解:因为23AB =,所以C 到平面PAB 的距离3H =.设()01CD CA λλ=<<,C 到平面DEF 的距离为h .因为平面PAB 平面DEF ,所以DEF ABP ∆∆,则DEF ∆的面积为233λ.又3h λ=,所以O 到平面DEF 的距离为33λ-, 所以四面体ODEF 的体积()()2213333313O DEF V V λλλλ-==⨯⨯-=-. 设()()()23101f λλλλ=-<<,()()323f λλλ'=-,当203x <<时,()0f λ'>;当213x <<时,()0f λ'<. 所以()max 2439f f λ⎛⎫== ⎪⎝⎭, 即四面体ODEF 的体积的最大值为49.2.【安徽省安庆市2020届模拟】如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,2,3AB EB ==.(1)求证:DE ⊥平面ADC ;(2)设AC x =,(x)V 表示三棱锥B ACE -的体积,求函数(x)V 的解析式及最大值.【思路引导】(1)要证(1)要证DE ⊥平面ADC ,需证BC ⊥平面ADC ,需证DC BC BC AC ⊥⊥,,用综合法书写即可.(2)由(1)可知BE ⊥平面ABC ,所以体积为13ABC BE S ⨯,2 43AC x BC x EB =-,,均值不等式求解最大值.详解:(1)证明:∵四边形DCBE 为平行四边形,∴CD ∥BE ,BC ∥DE .∵DC ⊥平面ABC ,BC ⊂平面ABC ,∴DC ⊥BC .∵AB 是圆O 的直径,∴BC ⊥AC ,且DC ∩AC =C .∴BC ⊥平面ADC .∵DE ∥BC ,∴DE ⊥平面ADC ;(2)∵DC ⊥平面ABC ,∴BE ⊥平面ABC .在Rt △ABE 中,AB =2,EB =3√.在Rt △ABC 中,∵AC =x ,BC =4−x 2−−−−−√(0<x <2).∴S △ABC =12AC ⋅BC =12x ⋅4−x 2−−−−−√,∴V (x )=VE −ABC =3√6x ⋅4−x 2−−−−−√,(0<x <2).∵x 2(4−x 2)⩽(x 2+4−x 22)2=4,当且仅当x 2=4−x 2,即x =2√时,取等号,∴x =2√时,体积有最大值为3√3.3.【2021山东省菏泽市菏泽一中模拟测试】如图,在正三棱柱111ABC A B C -中,2AB =,12AA =,由顶点B 沿棱柱侧面经过棱1AA 到顶点1C 的最短路线与1AA 的交点记为M ,求:(1)三棱柱的侧面展开图的对角线长;(2)求该最短路线的长及1A M AM的值; (3)三棱锥1C ABM -体积.【思路引导】(1)由正三棱柱的侧面展开图是长为6,宽为2的矩形求解.(2)将侧面11AA B B 绕棱1AA 旋转120使其与侧面11AACC 在同一平面上,点B 运动到点D 的位置,连接1DC 交于M ,则1DC 即为所求;然后由DMA △≌11C MA 求解1A M AM; (3)根据1//CC 平面ABM ,利用等体积法,由1C ABM C ABM M ABC V V V ---==求解.【解析】(1)因为正三棱柱111ABC A B C -的侧面展开图是长为6,宽为2的矩形, 2262210+=(2)将侧面11AA B B 绕棱1AA 旋转120使其与侧面11AACC 在同一平面上, 点B 运动到点D 的位置,连接1DC 交于M ,则1DC 是由顶点B 沿棱柱侧面经过棱1AA 到顶点1C 的最短路线, 其长为2222114225D DC C CC =+=+=, ∵DMA △≌11C MA ,∴1AM AM =,故11A M AM=; (3)∵1//CC 平面ABM ,∴1C ABM C ABM M ABC V V V ---==,111323332ABC S AM =⋅=⨯⨯=4.【北京市城六区2019届高三模拟】已知三棱锥P ABC -(如图1)的平面展开图(如图2)中,四边形ABCD 2ABE 和△BCF 均为正三角形,在三棱锥P ABC -中:(I)证明:平面PAC ⊥平面ABC ;(Ⅱ)求二面角A PC B --的余弦值;(Ⅲ)若点M 在棱PC 上,满足CM CPλ=,12[,]33λ∈,点N 在棱BP 上,且BM AN ⊥,求BN BP 的取值范围.【思路引导】第一问取AC 中点O ,根据等腰三角形的性质求得PO AC ⊥,根据题中所给的边长,利用勾股定理求得PO OB ⊥,利用线面垂直的判定定理以及面面垂直的判定定理得到结果;第二问根据题中所给的条件建立空间直角坐标系,写出相应的点的坐标,求得面的法向量,利用法向量所成角的余弦值得出结果;第三问利用向量间的关系,利用向量垂直的条件,利用向量的数量积等于0,得出所求的比值μ与λ的关系式,利用函数的有关知识求得结果.(Ⅰ)方法1:设AC 的中点为O ,连接BO ,PO . 由题意 2PA PB PC ==1PO =,1AO BO CO ===因为在PAC ∆中,PA PC =,O 为AC 的中点所以PO AC ⊥,因为在POB ∆中,1PO =,1OB =,2PB =所以PO OB ⊥因为AC OB O ⋂=,,AC OB ⊂平面ABC所以PO ⊥平面ABC因为PO ⊂平面PAC所以平面PAC ⊥平面ABC方法2:设AC 的中点为O ,连接BO ,PO .因为在PAC ∆中,PA PC =,O 为AC 的中点所以PO AC ⊥,因为PA PB PC ==,PO PO PO ==,AO BO CO ==所以POA ∆≌POB ∆≌POC ∆所以90POA POB POC ∠=∠=∠=︒所以PO OB ⊥因为AC OB O ⋂=,,AC OB ⊂平面ABC所以PO ⊥平面ABC因为PO ⊂平面PAC所以平面PAC ⊥平面ABC方法3:设AC 的中点为O ,连接PO ,因为在PAC ∆中,PA PC =, 所以PO AC ⊥设AB 的中点Q ,连接PQ ,OQ 及OB .因为在OAB ∆中,OA OB =,Q 为AB 的中点所以OQ AB ⊥.因为在PAB ∆中,PA PB =,Q 为AB 的中点所以PQ AB ⊥.因为PQ OQ Q ⋂=,,PQ OQ ⊂平面OPQ所以AB ⊥平面OPQ因为OP ⊂平面OPQ所以OP AB ⊥因为AB AC A ⋂=,,AB AC ⊂平面ABC所以PO ⊥平面ABC因为PO ⊂平面PAC所以平面PAC ⊥平面ABC(Ⅱ)由PO ⊥平面ABC ,OB AC ⊥,如图建立空间直角坐标系,则()0,0,0O ,()1,0,0C ,()0,1,0B ,()1,0,0A -,()0,0,1P 由OB ⊥平面APC ,故平面APC 的法向量为()0,1,0OB = 由()1,1,0BC =-,()1,0,1PC =-设平面PBC 的法向量为(),,n x y z =,则由00n BC n PC ⎧⋅=⎨⋅=⎩得:00x y x z -=⎧⎨-=⎩ 令1x =,得1y =,1z =,即()1,1,1n = 3cos ,31n OBn OB n OB ⋅===⋅⋅由二面角A PC B --是锐二面角,所以二面角A PC B --的余弦值为3(Ⅲ)设BN BP μ=,01μ≤≤,则()()()1,1,01,0,11,1,BM BC CM BC CP λλλλ=+=+=-+-=-- ()()()1,1,00,1,11,1,AN AB BN AB BP μμμμ=+=+=+-=- 令0BM AN ⋅=得()()()11110λμλμ-⋅+-⋅-+⋅= 即1111λμλλ==-++,μ是关于λ的单调递增函数, 当12,33λ⎡⎤∈⎢⎥⎣⎦时,12,45μ⎡⎤∈⎢⎥⎣⎦, 所以12,45BN BP ⎡⎤∈⎢⎥⎣⎦。
三角形中的最值问题

三角形中的最值问题三角形中的最值问题一、利用三角函数有界性求最值 例1.1.在△ABC 中,2222a c b ac +=(1)求B 的大小; (2)2cos A +cos C 的最大值. 二、利用均值不等式求最值 例2.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan tan cos cos A BB A+. (1)证明:a +b =2c ; (2)求cos C 的最小值. 例3.3.已知ABC 中,30C =︒,2AB =,则ABC 面积的最大值为__________. 三、利用有限与无限思想求最值 例4.4.如图在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是___________.例5.5.已知ABC 中,302C AB AC =︒==,,点P 满足34PA PB ⋅=−,则PC 的最小值为_______.例6.6.已知ABC ∆中,3AB AC ==ABC ∆所在平面内存在点P 使得22233PB PC PA +==,则ABC ∆面积的最大值为__________. 四、利用解析法求最值 例7.7.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,D 为AC 边的中点,且60B =︒,4a c +=,则线段BD 长的最小值为_______. 五、利用向量法求最值 例8.8.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,D 为AC 边的中点,且60B =︒,4a c +=,则线段BD 长的最小值为_______.通过对以上几道例题的分析,我们发现,对涉及三角的最值问题,虽然具有一定的灵活性,但只要我们能结合题意,从实际出发选取恰当的方法,就能使问题得到较好的解决.因此,教师在平时的教学过程中,要注重学生的数学思想方法的生成、发展内化、升华过程,以达到举一反三、触类旁通的效果. 六、与其它知识点交汇的最值问题研究三角形的对象主要是边、角和面积,其中边与角是研究问题的主体,且这些对象都是以实数大小体现出来,所以它们可以与其它知识点进行交汇,如向量、数列、不等式等,等解题时要综合运用这些知识和相关方法,灵活处理. 例9.9.在ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若向量n ,m 分别满足:()5cos 1cos cos 822A B A B n m A B −−⎛⎫⎛⎫==−+ ⎪ ⎪⎝⎭⎝⎭,,,,且98m n ⋅=.(1)求tan tan A B 的值; (2)求222sin ab Ca b c +−的最大值.综上所述,我们不难发现:求三角形中不定量(式)的取值范围或最值掌握正(余)弦定理的“本”(边化角,角化边)是解决问题的前提条件,能充分而又正确运用正(余)弦定理的“本”去实现三角形中边角关系的互换是解决问题所必须具备的能力,而问题能解决的关键是在正确运用正(余)弦定理的“本”的基础上合理运用不等式思想和三角函数思想,并通过利用不等式的性质(均值不等式等)和三角函数的有界性求出所求问题的结论. 同步练习10.已知△ABC 的三边分别为a ,b ,c ,若满足a 2+b 2+2c 2=8,则△ABC 面积的最大值为( )A 5B 25C 35D 511.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若cos 2cos b C c B =,且2c =,则ABC ∆面积的最大值为__________.12.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +−=−,则ABC 面积的最大值为____________.13.在ABC ∆中,角A B C ,,所对的边分别为a b c ,,,若()()3 1cosA sinB sin A cosB −=+,6a c +=,则ABC ∆的面积的最大值为________14.已知A ,B ,C 为ABC 的三个内角,若cos 0A >,且cos23sin 10A A −+=,求()()31sin 2cos 2C A A B C −+−+的最大值. 15.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C. (1)求A ;(2)若BC =3,求ABC 周长的最大值. 16.在ABC ,若33A a π==,,求ABC 面积的最大值.17.已知ABC 中,132CA AB CB ==,,则ABC 面积的最大值为__________.18.等腰△ABC 中,AB =AC ,BD 为AC 边上的中线,且BD =3,则△ABC 的面积最大值为_____. 19.已知ABC 中,2AB =,3AC BC =,则ABC 面积的最大值是__________.三角形中的最值问题三角形中的最值问题一、利用三角函数有界性求最值 例1.1.在△ABC 中,222a c b +=+(1)求B 的大小; (2)+cos C 的最大值. 二、利用均值不等式求最值 例2.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan tan cos cos A BB A+. (1)证明:a +b =2c ; (2)求cos C 的最小值. 例3.3.已知ABC 中,30C =︒,2AB =,则ABC 面积的最大值为__________. 三、利用有限与无限思想求最值 例4.4.如图在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是___________.例5.5.已知ABC 中,302C AB AC =︒==,,点P 满足34PA PB ⋅=−,则PC 的最小值为_______.例6.6.已知ABC ∆中,AB AC ==ABC ∆所在平面内存在点P 使得22233PB PC PA +==,则ABC ∆面积的最大值为__________. 四、利用解析法求最值 例7.7.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,D 为AC 边的中点,且60B =︒,4a c +=,则线段BD 长的最小值为_______. 五、利用向量法求最值 例8.8.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,D 为AC 边的中点,且60B =︒,4a c +=,则线段BD 长的最小值为_______.通过对以上几道例题的分析,我们发现,对涉及三角的最值问题,虽然具有一定的灵活性,但只要我们能结合题意,从实际出发选取恰当的方法,就能使问题得到较好的解决.因此,教师在平时的教学过程中,要注重学生的数学思想方法的生成、发展内化、升华过程,以达到举一反三、触类旁通的效果. 六、与其它知识点交汇的最值问题研究三角形的对象主要是边、角和面积,其中边与角是研究问题的主体,且这些对象都是以实数大小体现出来,所以它们可以与其它知识点进行交汇,如向量、数列、不等式等,等解题时要综合运用这些知识和相关方法,灵活处理. 例9.9.在ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若向量n ,m 分别满足:()5cos 1cos cos 822A B A B n m A B −−⎛⎫⎛⎫==−+ ⎪ ⎪⎝⎭⎝⎭,,,,且98m n ⋅=.(1)求tan tan A B 的值; (2)求222sin ab Ca b c +−的最大值.综上所述,我们不难发现:求三角形中不定量(式)的取值范围或最值掌握正(余)弦定理的“本”(边化角,角化边)是解决问题的前提条件,能充分而又正确运用正(余)弦定理的“本”去实现三角形中边角关系的互换是解决问题所必须具备的能力,而问题能解决的关键是在正确运用正(余)弦定理的“本”的基础上合理运用不等式思想和三角函数思想,并通过利用不等式的性质(均值不等式等)和三角函数的有界性求出所求问题的结论. 同步练习10.已知△ABC 的三边分别为a ,b ,c ,若满足a 2+b 2+2c 2=8,则△ABC 面积的最大值为( ) A 5B .55C .355D 511.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若cos 2cos b C c B =,且2c =,则ABC ∆面积的最大值为__________.12.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +−=−,则ABC 面积的最大值为____________.13.在ABC ∆中,角A B C ,,所对的边分别为a b c ,,,若()()3 1cosA sinB sin A cosB −=+,6a c +=,则ABC ∆的面积的最大值为________14.已知A ,B ,C 为ABC 的三个内角,若cos 0A >,且cos23sin 10A A −+=,求()()1sin 2cos 2C A A B C −−+的最大值. 15.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C. (1)求A ;(2)若BC =3,求ABC 周长的最大值. 16.在ABC ,若33A a π==,,求ABC 面积的最大值.17.已知ABC 中,132CA AB CB ==,,则ABC 面积的最大值为__________.18.等腰△ABC 中,AB =AC ,BD 为AC 边上的中线,且BD =3,则△ABC 的面积最大值为_____.19.已知ABC 中,2AB =,AC =,则ABC 面积的最大值是__________.参考答案:1.(1)π4(2)1【详解】试题分析:(1)由余弦定理及题设得222cos 222a cb B ac ac +−===⇒4B π∠=;(2)由(1)知34A C π∠+∠=⇒3cos cos()4A C A A π+=+−cos()4A π=−⇒当4A π∠=cos A C +取得最大值1.试题解析: (1)由余弦定理及题设得222cos 2a c b B ac +−===又∵0B π<∠<,∴4B π∠=;(2)由(1)知34A C π∠+∠=,3cos cos()4A C A A π+=+−cos sin 22A A A =−+cos()4A A A π+=−,因为304A π<∠<,所以当4A π∠=cos A C +取得最大值1.考点:1、解三角形;2、函数的最值.2.(1)见解析;(2)12.【详解】试题分析:(1)根据三角函数的基本关系式,可化简得2(sin cos sin cos )sin sin A B B A A B +=+,再根据A B C π++=,即可得到sin sin 2sin A B C +=,利用正弦定理,可作出证明;(2)由(1)2a bc +=,利用余弦定理列出方程,再利用基本不等式,可得cos C 的最小值. 试题解析:(1)由题意知,sin sin sin sin 2()cos cos cos cos cos cos A B A BA B A B A B+=+, 化简得:2(sin cos sin cos )sin sin A B B A A B +=+即2sin()sin sin A B A B +=+,因为A B C π++=,所以sin()sin()sin A B C C π+=−=, 从而sin sin 2sin A B C +=,由正弦定理得2a b c +=.(2)由(1)知,2a b c +=,所以222222()3112cos ()22842a b a b a b c b a C ab ab a b ++−+−===+−≥,当且仅当a b =时,等号成立,故cos C 的最小值为12. 考点:三角恒等变换的应用;正弦定理;余弦定理.【方法点晴】本题主要考查了三角恒等变换的应用、正弦定理与余弦定理的应用,涉及到三角函数的基本关系式和三角形中的性质和基本不等式的应用,着重考查了转化与化归思想和学生的推理与运算能力,以及知识间的融合,属于中档试题,解答中熟记三角函数恒等变换的公式是解答问题的关键.3.22.【分析】利用余弦定理和基本不等式求出(42ab ≤,利用ABC 面积公式即可求出ABC 面积的最大值.【详解】设角A ,B ,C 的对边分别为a ,b ,c ,由余弦定理,得2222222cos302a b ab a b ab =+−︒=+≥.所以(42ab ≤=,当且仅当a b =时等号成立.所以11sin 224ABCSab C ab ==≤所以ABC 面积的最大值为2故答案为:24.【详解】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得sin sin BC BEE C=∠∠,即o o2sin 30sin 75BE=,解得BE AD ,当D 与C 重合时,AB 最短,此时与AB交于F ,在△BCF 中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,sin sin BF BCFCB BFC=∠∠,即o o2sin 30sin 75BF =,解得AB .考点:正余弦定理;数形结合思想512##12−【分析】以BC 中点为原点,以BC 所在的直线为x 轴,建立如图所示的平面直角坐标系,利用空间向量数量积的坐标运算可得2211224x y ⎛⎛⎫++−= ⎪ ⎝⎭⎝⎭.进而根据圆的几何性质即可求出结果.【详解】以BC 中点为原点,以BC 所在的直线为x 轴,建立如图所示的平面直角坐标系,则()01A ,,()B ,.设()P x y ,,则()(),1,3,PA x y PB x y =−−−−−,由34PA PB ⋅=−,得221124x y ⎛⎛⎫+−= ⎪ ⎝⎭⎝⎭.所以点P 的轨迹是圆心为12M ⎛⎫ ⎪ ⎪⎝⎭,,半径为12的圆,MC =.由圆的几何性质可知,PC 12.12.6【详解】设||2BC a=,以BC所在直线为x轴、其中垂线OA所在直线为y轴建立直角坐标系(如图所示),则(,0),(,0),B aC a A−,设(,)P x y,由22233PB PC PA+==,得222222()()3(1x a y x a yx y⎧+++−+=⎪⎨+=⎪⎩,即2222223231x y ax y a⎧+=−⎪⎨⎪+−+−=⎩,则272211ay⎧−=⎪≤≤,则222(3)2(3)a a−−≤≤−+即22272(3)22(3)2a a a−−≤−≤−+解得a≤122ABCS a∆=⨯≤即ABC∆面积的最大值为16.7【分析】以点B 为坐标原点建立平面直角坐标系,求得1244cD a c⎛⎫+⎪⎪⎝⎭,,再利用两点间距离公式结合基本不等式求解.【详解】如图所示,以点B 为坐标原点建立平面直角坐标系,则点()102A c C a ⎛⎫ ⎪ ⎪⎝⎭,,. 因为D 为AC 边的中点,所以点124c D a ⎛⎫+ ⎪ ⎪⎝⎭,所以2221244c BD a c ⎫⎛⎫=++⎪ ⎪⎪⎝⎭⎝⎭, ()2214a c ac =++, 21()4a c ac ⎡⎤=+−⎣⎦, 144ac =−≥214342a c +⎛⎫−= ⎪⎝⎭. 当且仅当2a c ==时取等号,所以线段BD8【分析】以点B 为坐标原点建立平面直角坐标系,求得1244c D a c ⎛⎫+ ⎪ ⎪⎝⎭,,再利用两点间距离公式结合基本不等式求解. 【详解】如图所示,以点B 为坐标原点建立平面直角坐标系,则点()102A c C a ⎛⎫ ⎪ ⎪⎝⎭,,. 因为D 为AC 边的中点,所以点124c D a ⎛⎫+ ⎪ ⎪⎝⎭,所以2221244c BD a c ⎫⎛⎫=++⎪ ⎪⎪⎝⎭⎝⎭, ()2214a c ac =++, 21()4a c ac ⎡⎤=+−⎣⎦, 144ac =−≥214342a c +⎛⎫−= ⎪⎝⎭. 当且仅当2a c ==时取等号,所以线段BD9.(1)19;(2)38−.【分析】(1)根据()5cos 1cos cos 822A B A B n m A B −−⎛⎫⎛⎫==−+ ⎪ ⎪⎝⎭⎝⎭,,,,利用数量积的坐标运算化简求解;(2)根据余弦定理化简得到222sin sin 1tan 2cos 2ab C ab C C a b c ab C ==+−,再结合(1)1tan tan 9A B =,利用两角和的正切公式结合基本不等式求解.【详解】(1)因为()5cos 1cos cos 822A B A B n m A B −−⎛⎫⎛⎫==−+ ⎪ ⎪⎝⎭⎝⎭,,,,由数量积的坐标运算可得:()()()255191991cos cos 1cos 1cos cos cos sin sin 82828888A B A B A B A B A B A B −⎡⎤⎡⎤⎡⎤−++=−+++−=−+=⎣⎦⎣⎦⎣⎦,化简整理得:cos cos 9sin sin A B A B =, 因为cos cos 0A B ≠, 所以1tan tan 9A B =. (2)由余弦定理得2222cos a b c ab C +−=, 所以222sin sin 1tan 2cos 2ab C ab C C a b c ab C ==+−,又因为(1)知1tan tan 9A B =, 所以A ,B 皆为锐角,即tan 0A >,tan 0B >,所以()()tan tan 993tan tan tan 1tan tan 884A B A B A B A B ++==+≥⨯=−,所以()222sin 113tan tan 228ab C C A B a b c ==−+≤−+−, 即222sin 38ab C a b c ≤−+−, 所以222sin ab Ca b c +−的最大值为38−.10.B【解析】根据a 2+b 2+2c 2=8,得到22282a b c +=−,由余弦定理得到22cos 83ab C c =−,由正弦定理得到2sin 4ab C S =,两式平方相加得()()()22224834ab c S =−+,而222822a b c ab +=−≥,两式结合有()()()()222222248283165S c c c c ≤−−−=−,再用基本不等式求解.【详解】因为a 2+b 2+2c 2=8, 所以22282a b c +=−,由余弦定理得222283cos 22a b c c C ab ab +−−==, 即22cos 83ab C c =−① 由正弦定理得in 12s S ab C =,即2sin 4ab C S =②由①,②平方相加得()()()()()222222222483482ab c S a b c =−+≤+=−,所以()()()()2222222222116556448283165525c c S cc c c ⎛⎫−+≤−−−=−≤= ⎪⎝⎭,即245S ≤,所以S ≤, 当且仅当22a b =且221655c c −=即222128,55a b c ===时,取等号. 故选:B【点睛】本题主要考查了正弦定理和余弦定理及基本不等式的应用,还考查了运算求解的能力,属于中档题. 11.3【分析】根据cos 2cos b C c B =,利用正弦定理得sin cos 2cos sin B C B C =,再利用两角和的正弦,有sin 3cos sin =A B C ,再根据2c =,表示:2sin sin Aa C=,2sin sin B b C =,然后代入正弦定理三角形面积公式求解.【详解】由cos 2cos b C c B =得sin cos 2cos sin B C B C =, 所以sin sin()sin cos cos sin 3cos sin A B C B C B C B C =+=+=, 由2c =可得2sin sin sin a bC A B==, 所以2sin sin Aa C=,2sin sin B b C =,所以2114sin sin sin sin sin 2sin 22sin sin ∆=⋅==⋅ABC A B Aab C C B C S C 6sin cos 3sin 23==B B B 当4B π=时,ABC ∆面积取得最大值3.【点睛】本题主要考查正弦定理和两角和与差的三角函数的应用,还考查了运算求解的能力,属于中档题. 12【分析】先利用正弦定理将条件()(sin sin )()sin a b A B c b C +−=−中的角转化为边的关系,再利用余弦定理求解出角A 的值,再利用边a 的余弦定理和均值不等式求出bc 的最大值后即可求解出面积的最大值.【详解】因为()(sin sin )()sin a b A B c b C +−=−, 所以根据正弦定理得:(a b)()(c b)a b c +−=−,化简可得:222b c a bc +−=, 即2221cos 22b c a A bc +−==,(A 为三角形内角) 解得:60A ︒=,又224b c bc bc +−=≥,(b =c 时等号成立)故1sin 2ABC S bc A ∆=≤【点睛】本题考查了正弦定理和余弦定理在解三角形中的应用,属于中档题目,解题的关键有两点,首先是利用正余弦定理实现边角之间的互化,其次是利用余弦定理和均值不等式求出三角形边的乘积的最大值.13.【解析】利用正弦定理得出,,a b c 的关系,利用余弦定理,同角三角函数基本关系式可求得sin B ,利用基本不等式,三角形面积公式即可求解.【详解】()()3cos sin sin 1cos A B A B −=+,3sin sin sin cos cos sin sin sin B A A B A B A C =++=+,∴由正弦定理可得:36b a c =+=, ∴解得2b =.6a c +=,6a c ∴=+≥9ac ≤(当且仅当3a c ==时等号成立), 2222()2416cos 22a c b a c ac acB ac ac ac +−+−−−∴===,可得sin B ===11csin 22S a B ac ∴==⨯=≤=3a c ==时等号成立).故答案为:【点睛】本题主要考查的是正弦定理,余弦定理的应用,基本不等式的应用以及同角三角函数基本关系式的应用,熟练掌握正余弦定理是解本题的关键,是中档题. 14【分析】由cos23sin 10A A −+=结合二倍角余弦公式求得sin A ,进而得到角A ,然后利用将()()1sin 2cos 2C A A B C −−+,转化为关于角C 的三角函数求解. 【详解】由cos23sin 10A A −+=得212sin 3sin 10A A −−+=,即22sin 3sin 20A A +−=, 解得1sin 2A =或sin 2A =−(舍去), 又因为0A π<<, 所以6A π=或56A π=, 由cos 0A >,则6A π=,所以56B C π+=,从而()()1sin 2cos 22C A A B C −+−+,1sin cos 632C B C ππ⎛⎫⎛⎫=−−+ ⎪ ⎪⎝⎭⎝⎭,11cos cos 2222C C C C =−++,C ,又因为506C π<<, 所以(]sin 01C ∈,,C ≤ 故当2C π=15.(1)23π;(2)3+ 【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +−⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB −−=⋅,2221cos 22AC AB BC A AC AB +−∴==−⋅,()0,A π∈,23A π∴=.(2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+−⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +−⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+−⋅≥+−=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法) 设,66ππαα=+=−B C ,则66ππα−<<,根据正弦定理可知sin sin sin a b cA B C===以sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++− ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤0α=,即6B C π==时,等号成立.此时ABC周长的最大值为3+[方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c.令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=6πθ⎛⎫+≤ ⎪⎝⎭6C π=时,max ()b c +=所以ABC周长的最大值为3+【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.16【分析】利用余弦定理结合基本不等式求解.【详解】由余弦定理得:2222232cos3b c bc b c bc π=+−=+−∵222b c bc +≥, ∴229b c bc bc =+−≥∴9bc ≤,当且仅当b c =时等号成立∴1sin 244ABCSbc A ==≤所以ABC 17.3【分析】设AC x =,则2BC x =,根据余弦定理及面积公式可得ABC S ∆,再由二次函数的性质即可求得ABC S ∆的最大值;或利用坐标法求出点C 的轨迹方程,即求. 【详解】解法一: 设AC x =,由12CA CB =,得2BC x =. 由余弦定理,得22223(2)3cos 232x x x A x x+−−==⨯.所以sin A ==所以13333sin 22222ABCx SAC AB A =⋅===.由2323x x x x +>⎧⎨−<⎩,,得13x <<.所以当25x =时,ABC 面积的最大值为3.解法二:以A 为原点,以AB 所在的直线为x 轴,建立如图所示的平面直角坐标系,则()()0,0,3,0A B ,设(),C x y .由12CACB =12=. 即22(1)4x y ++=.所以点C 的轨迹是圆心为()1,0M −,半径为2的圆(不含与AB 共线的两点). 所以13322ABCc c SAB y y =⋅=≤. 即ABC 面积的最大值为3. 故答案为:3 18.6【详解】设1,2AB AC x AD x ===,由题设可得222219554cos 4x x A x x +−==−,则22255sin 1()4A x=−−,故2222422115()sin [(9)]244S x A x x ∆==−−,即242242151945[(9)][81]444162S x x x x ∆=−−=−+−,则当24522098x =−=−时,2max 19451()[4002081]1443641624S ∆=−⨯+⨯−=⨯=,即max ()6S ∆=,应填答案6.点睛:本题以三角形中的边角关系为背景设置了求三角形面积的最大值问题.求解时,先运用余弦定理求得等腰三角形的顶角的余弦值,再运用三角函数中的平方关系求出其正弦值,然后依据三角形的面积公式,建立关于三角形的边长的函数关系,进而借助二次函数的图像和性质,分析探求出其最大值使得问题获解. 19【详解】依题意,设BC a =,则AC =,又2AB =,由余弦定理得:)2222cos a AB a AB B =+−⋅,即224cos 40a a B +−=,∴2421cos 42a aB a a −==−,∴2221cos 14a B a =+−,∴22221sin 1cos 24a B B a =−=−−,∵11sin 2sin sin 22ABC S AB BC B a B a B =⋅=⨯=,∴()24222222211sin 22143444ABCa a Sa B a a a a ⎛⎫==−−=−+−=−−+ ⎪⎝⎭,当24a =,即2a =时,∴23max S=,∴max S点睛:本题考查三角恒等式,余弦定理在解三角形中的应用,着重考查转化思想与二次函数的配方法,求得面积的表达式是关键,也是难点,属于难题;设BC a =,则AC =,利用余弦定理可求得2221cos 14a B a =+−,再利用三角形的面积公式可求得sin ABCSa B =,继而可求()221434ABC S a =−−+,从而可得ABC 面积的最大值.。
三角形中点与几何最值问题

三角形中的中点(讲义)课前预习先在图上走通思路,然后填空:已知:如图,在四边形ABCD中,AD// BC, E是CD的中点,若AB=AD+BC, / ABC=50°,求/ BAE 的度数.A思路分析:①因为AD// BC, E是CD的中点,考虑延长AE交BC的延长线于点F;②进而利用全等三角形的判定___________ ,证明___________ 罕___________ ;③由全等可得______________________ ;④结合已知条件AB=AD+BC,得AB= ________ ,从而/ BAE= _______ ,所以在△ ABF中,根据三角形的内角和等于180°得, / BAE= _______ .知识点睛1. 中位线(1) ______________________________________________ 三角形的中位线:______________________________________________________ ;(2) 三角形中位线定理:________________________________2. 遇到中点常见的五种思路(1) ______________________________________________ 遇到等腰三角形底边的中点,考虑_____________________________________ ;(2)遇到直角三角形斜边的中点,考虑____________________ ;(3)遇到三角形一边上的中点,考虑______________________ ;(4)遇到“平行夹中点”,考虑__________________________ ;DD(5)遇到多个中点,考虑(或构造) __________________________ L精讲精练1. 如图,点D, E, F分别是△ ABC的边AB, BC, AC的中点,若△ DEF的周长为10cm,则厶ABC的周长为________ .第1题图第2题图2. 如图,在四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从点C向点D移动而点R不动时,下列结论成立的是()A .线段EF的长逐渐增大B. 线段EF的长逐渐减小C. 线段EF的长保持不变D .线段EF的长与点P的位置有关3. 如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点.若/ ACB=66°,/ CAD=20°,则/ EFG= ________ .第3题图第4题图4. 如图,B D,C E分别是/ ABC 和/ ACB的角平分线,已知AG丄BD,AF丄CE. 若BF=2,DE=3,CG=4,贝ABC 的周长为8.5. 如图,M 是厶ABC 的边BC 的中点,AN 平分/ BAC ,BN 丄AN 于点N ,若 AB=10, A . 38 BC=15, MN=3,则厶ABC 的周长为( )C . 40D . 41B . 39 第5题图 第6题图6. ABC 中, NP .有以下结论:/ BAC=60° BN , CM 为高,P 是BC 的中 如图,在锐角三角形 点,连接MN ,MP , ①NP=MP ;②当/ABC=60° 时,MN // BC ;③ BN=2AN ;④AN:AB=AM: AC .其中正确的有(A . 1 个B . 2 个C .7. 如图,在梯形 ABCD 中,AD // BC , 中点,且AF 丄AB . A . 2 2 B . 点E 在BC 边上,AE=BE ,若 AD=2.7, AF=4, AB=6,贝U CE 的长为( 2 3 -1 C . 2.5F 是CD 的 ) 第7题图 第8题图如图, 中占 I 八、、, A . 35在直角梯形 ABCD 中,AB // CD , 且CD=CE ,贝U/ EAD 的度数为( ° B . 45° C . 55° / ADC=90° / C=70°)D . 65°E 是BC 的9. 如图,AB// CD, E, F分别为AC, BD的中点.若AB=5, CD=3,贝U EF的长为____________ .第9题图第10题图10. 如图,在△ ABC中,/ B=2Z C,AD丄BC于点D,M为BC的中点.若AB=10cm,则DM的长为_____________ .11. 如图,在△ ABD 中,C 是BD 的中点,/ BAC=90° / CAD=45° 求证:AB=2AC.12. 如图,在四边形ABCD中,AD=BC, E, F分别是AB, CD的中点,AD, BC的延长线分别与EF的延长线交于点H,点G,则/ AHE ________ Z BGE.(填> , 二或< )【参考答案】课前预习②ASA , △ ADE, △ FCE③AD=FC④FC+BC=BF,/ F, 65°知识点睛1. (1)连接三角形两边中点的线段叫做三角形的中位线(2)三角形的中位线平行于第三边且等于第三边的一半2. (1)三线合一(2)直角三角形斜边中线等于斜边的一半(3)倍长中线(4)延长证全等(5)中位线精讲精练1. 20cm2. C3. 23°4. 305. D6. C7. D8. A9. 110. 5cm11. 证明略12. =E三角形中的中点(随堂测试)1. 如图,D是厶ABC内一点,BD丄CD, AD=6, BD=4, CD=3, E, F, G, H分别是AB, AC, CD, BD的中点,则四边形EFGH的周长为________________ :2. 如图,在Rt A ABC中,/ ACB=90° D是斜边AB的中点,DE丄AC于点E.若DE=2, CD=2亦,贝U BE的长为_____ .B3. 已知在Rt A ABC中,Q为斜边AB的中点,P是斜边AB上一动点(不与点A,Q, B重合),分别过点A, B向直线CP作垂线,垂足分别为E, F.若QE=3, 则QF的长为________ .【参考答案】1. 112. 423. 3三角形中的中点(习题)例题示范例1:如图,已知AB=12, AB丄BC于点B, AB丄AD于点A, AD=5, BC=10, E 是CD的中点,连接AE, BE,则BE的长为 ________ .思路分析:1. 平行夹中点,考虑延长AE得全等,则FC=AD=5.2. 在Rt A ABF 中,AB=12, BF=5,由勾股定理得,AF=13.1 133. 由直角+中点,得BE=丄AF=^-.2 2巩固练习1. 如图,在△ ABC中,AB=AC=9cm, AD丄BC, M为AD的中点,直线CM交AB于点E, F为CE的中点,连接DF,贝U DF的长为__________ .第1题图第2题图2. 如图,在四边形ABCD中,P是对角线BD的中点,E, F分别是AB, CD的中点.若AD=BC=8, EF=7.6,则厶PEF的周长为 ______________ .3. 如图,在△ ABC中,/ ACB=52° D, E分别是AB, AC的中点.若点F在线段DE 上,且/ AFC=90°,则/ FAE= _______ .第3题图第4题图4. 如图,在Rt A ABC中,/ ACB=90° D , E分别是AC, AB的中点.若DE=3, CE=5,贝U AC 的长为__________ .5. 如图,在△ ABC中,AD是中线,AE是角平分线,CF丄AE于点F,若AB=5, AC=3,贝U DF 的长为 _______ .6.如图,MN为过Rt△ ABC的直角顶点A的直线,且BD丄MN于点D , CE丄MN于点E, AB=AC, F为BC的中点,连接DF , EF.求证:DF=EF.7.如图,已知AD ABC的角平分线,ABvAC,在AC上截取CE=AB, M,N分别为BC, AE的中点.求证:/ DAN=Z MNC .思考小结我们已经学过一些常见的组合搭配及其对应的思考角度,请根据特征补全图形.直角相关的搭配和用法:(1)边:勾股定理(2)角:直角三角形两锐角互余(3)面积:直角边看成高(等面积结构)(4)固定结构和用法:①直角+中点(直角三角形斜边中线等于斜边的一半)②直角+特殊角(由特殊角构造直角三角形)③直角+角平分线(等腰三角形三线合一)④弦图结构中点相关的搭配和用法:(2)直角三角形斜边的中点,考虑直角三角形斜边中线等于斜边的一半(3) 三角形一边上的中点,考虑倍长中线(4) 平行夹中点,考虑延长证全等(5) 多个中点,考虑(或构造)中位线【参考答案】巩固练习1. 3cm2. 15.63. 64°4. 85. 16. 证明略7. 证明略1.1.2.2.3.3.几何最值问题(讲义)知识点睛解决几何最值问题的理论依据①两点之间,线段最短(已知两个定点)②垂线段最短(已知一个定点、一条定直线)③三角形三边关系(已知两边长固定或其和、差固定)解决几何最值问题的主要方法是__________ 通过变化过程中_______________ 的分析,利用_________ 、_______________ 手段把所求量进行转化,构造出符合几何最值问题理论依据的_____________ 而解决问题.几何最值问题基本结构分析①利用几何变换进行转化②利用图形性质进行转化精讲精练1. 如图,在Rt A ABC 中,/ C=90° / ABC=60° 点D在BC边上,且CD=1,将厶ABC沿直线AD翻折,点C恰好落在AB边上的点E处•若P是直线AD 上的动点,则△ PEB周长的最小值是_____________ .第1题图第2题图2. 如图,在平面直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ ABC的周长最小时,点C的坐标是()A. (0,0)B. (0,1)C. (0,2)D. (0,3)3. 如图,/ AOB=60°点P在/ AOB的平分线上,OP=10cm, E,F分别是/ AOB的两边OA, OB上的动点,当△ PEF的周长最小时,点P到EF的距离是()A. 10cmB. 5cmC. 10 3 cmD. 5、3 cm4. 如图1甲、乙两个单位分别位于一条封闭式街道的两旁,现准备合作修建 一座过街天桥(注意:天桥必须与街道垂直)•请按下面的要求作图.(1)桥建在何处才能使由甲到乙的路线最短?在图 1中完成.(2) 桥建在何处才能使甲、乙到桥的距离相等?在图2中完成.5. 如图,已知直线a // b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2, 点B 到直线b 的距离为3, AB=2 30 .在直线a 上找一点M ,在直线b 上找点N ,满足 MN 丄a 且AM+MN+NB 的值最小,则此时 AM+NB=()第6题图 AB=4, BC=8, E 为CD 边的中点,若P , Q 为BC 边上的两个动点,且PQ=2,则当BP= ________ 时,四边形APQE 的周长 最小.C . 10D . 12 第5题图6.如图,在长方形 ABCD 中, 甲ab7.如图,两点A, B在直线MN的同侧,A到MN的距离AC=8, B到MN的距离BD=4, CD=4,点P在直线MN上运动,则PA — PB的最大值为8. 点A,B均在由面积为1的相同小长方形组成的网格的格点上,建立平面直角坐标系如图所示•若P是x轴上使得PA—PB的值最大的点,Q是y轴上使得QA+QB的值最小的点,贝U OP OQ=9. 如图,/ MON=90°长方形ABCD的顶点A,B分别在0M, ON上,当点B 在ON上运动时,点A随之在0M上运动,且长方形ABCD的形状和大小保持不变•若AB=2,BC=1,则在运动过程中,点D到点O的最大距离为( )A. 、2+1B. .5第9题图10. 如图,点P在第一象限,△ ABP是边长为2的等边三角形,当点A 在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,则在运动过程中,点P到原点的最大距离是_______ •【参考答案】知识点睛2. 转化,不变特征,几何变换、图形性质,基本结构精讲精练1. 1 、32. D3. B4. 略5. B6. 47. 4.28. 39. A10. V .3几何最值问题(随堂测试)2. 如图,在厶ABC 中,/ ACB=90° AC=2, BC=1,点A , C 分别在x 轴、y 轴上.当 点A 在x 轴上运动时,点C 随之在y 轴上运动,则在运动过程中,点 B 到原 点0的最大距离为 _____________ .【参考答案】1. (1, 0),(-3, 0)2. 1x2 如图,在平面直角坐标系中,长方形 OACB 的顶点0在坐标原点,顶点A ,B分别在x 轴、y 轴的正半轴上,OA=3, OB=4. D 是OB 边的中点,E 是x 轴上的一个动点,当厶CDE 的周长最小时,点E 的坐标为 ;当| DC | 的值最大时,点 W E 的坐标为 1. B DCOE A ‘yi 第1题图几何最值问题(习题)例题示范例1:如图,已知/ AOB的大小为a, P是/ AOB内部的一个定点,且0P=2, E, F分别是OA, 0B边上的动点•若△ PEF周长的最小值为2,则a=()A. 30°B. 45°C. 60°D. 90°思路分析:1. 分析定点、动点.定点:P动点(定直线):E (射线OA), F (射线0B)和最小(周长最小)对称到异侧2. 根据不变特征分析判断属于轴对称最值问题,可调用轴对称最值问题的处理方式:作点P关于OA的对称点P',点P关于OB的对称点P','连接P'P','交OA于点E,交OB于点F,此时△ PEF的周长取得最小值.3. 设计算法.如图,由题意得OP=OP,=P P,=2,所以△ OP'P'是等边三角形,故a=30°.巩固练习1.如图,在平面直角坐标系xOy中,Rt A OAB的直角顶点A在x轴的正半轴上,顶点B的坐标为(3,.. 3),P为斜边OB上一动点•若点C的坐标为1(才,0),则PA+PC的最小值为()A. B.』C . 3 19D. 2 72 2 22.如图,已知A,B两点在直线I的异侧,A到直线I的距离AM=4, B到直线l的距离BN=1,且MN=4.若点P在直线I上运动,则PA- PB的最大值为3 41B. 4153. 已知点A,B均在由面积为1的相同小长方形组成的网格的格点上,建立如图所示的平面直角坐标系,若P是x轴上使得PA+PB的值最小的点,Q是y 轴上使得|QA- QB|的值最大的点,贝U OP OQ= ___________ .4. 如图1, A , B 两个单位位于一条封闭街道的两旁(直线 l i , I 2分别是街道的两边),现准备合作修建一座过街人行天桥.A■ l i 丨2 車B图图2(1) 天桥建在何处才能使由 A 经过天桥走到B 的路程最短?在图2中作出 此时桥PQ 的位置.(注:桥的宽度忽略不计,桥必须与街道垂直)(2) 根据图1中提供的数据计算由A 经过天桥走到B 的最短路程.(单位: 米)5. 如图,已知正方形ABCD 的边长为2,当点A 在x 轴上运动时,点D 随之在y 轴上运动,则在运动过程中,点 B 到原点0的最大距离为 ______________ .【参考答案】巩固练习1. B2. A3. 34. (1)略(2)由A 经过天桥走到B 的最短路程是85米5. 1 +、・ 51112。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何最值问题一.选择题(共6小题)1.(2015•孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC 的中点,点P为BD上一点,则PE+PC的最小值为()A.3B.3C.2D.3考点:轴对称-最短路线问题.分析:由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PA=PC,故PE+PC=AE,由两点之间线段最短可知,AE即为PE+PC的最小值.解答:解:∵△ABC是等边三角形,点D为AC的中点,点E为BC的中点,∴BD⊥AC,EC=3,连接AE,线段AE的长即为PE+PC最小值,∵点E是边BC的中点,∴AE⊥BC,∴AE===3,∴PE+PC的最小值是3.故选D.点评:本题考查的是轴对称﹣最短路线问题,熟知等边三角形的性质是解答此题的关键.2.(2014•鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为()A.50 B.50C.50﹣50 D.50+50考点:轴对称-最短路线问题;坐标与图形性质.专压轴题.题:分析:过B点作BM⊥y轴交y轴于E点,截取EM=BE,过A点作AN⊥x轴交x轴于F 点,截取NF=AF,连接MN交X,Y轴分别为P,Q点,此时四边形PABQ的周长最短,根据题目所给的条件可求出周长.解答:解:过B点作BM⊥y轴交y轴于E点,截取EM=BE,过A点作AN⊥x轴交x轴于F点,截取NF=AF,连接MN交x,y轴分别为P,Q点,过M点作MK⊥x轴,过N点作NK⊥y轴,两线交于K点.MK=40+10=50,作BL⊥x轴交KN于L点,过A点作AS⊥BP交BP于S点.∵LN=AS==40.∴KN=60+40=100.∴MN==50.∵MN=MQ+QP+PN=BQ+QP+AP=50.∴四边形PABQ的周长=50+50.故选D.点评:本题考查轴对称﹣最短路线问题以及坐标和图形的性质,本题关键是找到何时四边形的周长最短,以及构造直角三角形,求出周长.3.(2014秋•贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为()A.30°B.40°C.50°D.60°考点:轴对称-最短路线问题.分析:根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=70°,进而得出∠MAB+∠NAD=70°,即可得出答案.解答:解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值,作DA延长线AH,.∵∠DAB=110°,∴∠HAA′=70°,∴∠AA′M+∠A″=∠HAA′=70°,∵∠MA′A=∠MAB,∠NAD=∠A″,∴∠MAB+∠NAD=70°,∴∠MAN=110°﹣70°=40°.故选B.点评:本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.4.(2014•无锡模拟)如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON 上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为()A.B.C.2D.考点:勾股定理;三角形三边关系;直角三角形斜边上的中线.分析:取AB的中点,连接OE、DE,根据直角三角形斜边上的中线等于斜边的一半求出OE,利用勾股定理列式求出DE,然后根据三角形的任意两边之和大于第三边判断出O、E、D三点共线时点D到点O的距离最大,过点A作AF⊥OD于F,利用∠ADE的余弦列式求出DF,从而得到点F是OD的中点,判断出AF垂直平分OD,再根据线段垂直平分线上的点到两端点的距离相等可得OA=AD.解答:解:如图,取AB的中点,连接OE、DE,∵∠MON=90°,∴OE=AE=AB=×2=1,∵三边形ABCD是矩形,∴AD=BC=,在Rt△ADE中,由勾股定理得,DE===2,由三角形的三边关系得,O、E、D三点共线时点D到点O的距离最大,此时,OD=OE+DE=1+2=3,过点A作AF⊥OD于F,则cos∠ADE==,即=,解得DF=,∵OD=3,∴点F是OD的中点,∴AF垂直平分OD,∴OA=AD=.故选B.点评:本题考查了勾股定理,三角形的任意两边之和大于第三边,直角三角形斜边上的中线等于斜边的一半的性质,线段垂直平分线上的点到两端点的距离相等的性质,作辅助线并判断出OD最大时的情况是解题的关键,作出图形更形象直观.5.(2015•鞍山一模)如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是()A.B.C.D.1考点:轴对称-最短路线问题;正方形的性质.分析:根据题意得出作EF∥AC且EF=,连结DF交AC于M,在AC上截取MN=,此时四边形BMNE的周长最小,进而利用相似三角形的判定与性质得出答案.解答:解:作EF∥AC且EF=,连结DF交AC于M,在AC上截取MN=,延长DF 交BC于P,作FQ⊥BC于Q,则四边形BMNE的周长最小,由∠FEQ=∠ACB=45°,可求得FQ=EQ=1,∵∠DPC=∠FPQ,∠DCP=∠FQP,∴△PFQ∽△PDC,∴=,∴=,解得:PQ=,∴PC=,由对称性可求得tan∠MBC=tan∠PDC==.故选:A.点评:此题主要考查了正方形的性质以及相似三角形的判定与性质,得出M,N的位置是解题关键.6.(2015•江干区一模)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为()A.B.C.2D.考点:圆的综合题.分析:根据等腰三角形的性质可得点D是AB的中点,然后根据三角形中位线定理可得DP=BG,然后利用两点之间线段最短就可解决问题.解答:解:连接BG,如图.∵CA=CB,CD⊥AB,AB=6,∴AD=BD=AB=3.又∵CD=4,∴BC=5.∵E是高线CD的中点,∴CE=CD=2,∴CG=CE=2.根据两点之间线段最短可得:BG≤CG+CB=2+5=7.当B、C、G三点共线时,BG取最大值为7.∵P是AG中点,D是AB的中点,∴PD=BG,∴DP最大值为.故选A.点评:本题主要考查了圆的综合题,涉及了等腰三角形的性质、三角形中位线定理、勾股定理、两点之间线段最短等知识,利用三角形中位线定理将DP转化为BG是解决本题的关键.二.填空题(共3小题)7.(2014•江阴市校级模拟)如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD和等腰直角△BCE,那么DE长的最小值是2.考点:等腰直角三角形.分析:设AC=x,BC=4﹣x,根据等腰直角三角形性质,得出CD=x,CD′=(4﹣x),根据勾股定理然后用配方法即可求解.解答:解:设AC=x,BC=4﹣x,∵△ABC,△BCD′均为等腰直角三角形,∴CD=x,CD′=(4﹣x),∵∠ACD=45°,∠BCD′=45°,∴∠DCE=90°,∴DE2=CD2+CE2=x2+(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∴当x取2时,DE取最小值,最小值为:4.故答案为:2.点评:本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.8.(2012•河南校级模拟)如图,矩形ABCD中,AB=4,BC=8,E为CD边的中点,点P、Q为BC边上两个动点,且PQ=2,当BP=4时,四边形APQE的周长最小.考点:轴对称-最短路线问题.专题:压轴题.分析:要使四边形APQE的周长最小,由于AE与PQ都是定值,只需AP+EQ的值最小即可.为此,先在BC边上确定点P、Q的位置,可在AD上截取线段AF=DE=2,作F 点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,则此时AP+EQ=EG最小,然后过G点作BC的平行线交DC的延长线于H点,那么先证明∠GEH=45°,再由CQ=EC即可求出BP的长度.解答:解:如图,在AD上截取线段AF=DE=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,过G点作BC的平行线交DC的延长线于H点.∵GH=DF=6,EH=2+4=6,∠H=90°,∴∠GEH=45°.设BP=x,则CQ=BC﹣BP﹣PQ=8﹣x﹣2=6﹣x,在△CQE中,∵∠QCE=90°,∠CEQ=45°,∴CQ=EC,∴6﹣x=2,解得x=4.故答案为4.点评:本题考查了矩形的性质,轴对称﹣最短路线问题的应用,题目具有一定的代表性,是一道难度较大的题目,对学生提出了较高的要求.9.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1.考点:正方形的性质.专题:压轴题.分析:根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.解答:解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD===,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.(解法二:可以理解为点H是在Rt△AHB,AB直径的半圆上运动当O、H、D 三点共线时,DH长度最小)故答案为:﹣1.点评:本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出DH最小时点H的位置是解题关键,也是本题的难点.三.解答题(共1小题)10.(2015•黄冈中学自主招生)阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是6.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是(或不化简为).(结果可以不化简)考点:旋转的性质;全等三角形的判定与性质;等边三角形的性质;勾股定理;等腰直角三角形.专题:几何综合题.分析:(1)根据旋转的性质知A′A=AB=BA′=2,AP=A′C,所以在△AA′C中,利用三角形三边关系来求A′C即AP的长度;(2)以B为中心,将△APB逆时针旋转60°得到△A'P'B.根据旋转的性质推知PA+PB+PC=P'A′+P'B+PC.当A'、P'、P、C四点共线时,(P'A′+P'B+PC)最短,即线段A'C最短.然后通过作辅助线构造直角三角形A′DC,在该直角三角形内利用勾股定理来求线段A′C的长度.解答:解:(1)如图2,∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)如图3,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A'P'B.则A'B=AB=BC=4,PA=P′A′,PB=P′B,∴PA+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,(P'A+P'B+PC)最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在Rt△A'DC中A'C====2+2;∴AP+BP+CP的最小值是:2+2(或不化简为).故答案是:2+2(或不化简为).点评:本题综合考查了旋转的性质、等腰直角三角形的性质、勾股定理以及等边三角形的判定与性质.注意:旋转前、后的图形全等.。