小学数学中的合情推理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学中的合情推理
(2009-07-29 16:35:15)
分类:教学
标签:
杂谈
合情推理,是美籍数学家波利亚在30年代提出的概念,它是指“观察、归纳、类比、实验、联想、猜测、矫正和调控等方法”。波利亚在致力改变美国数学落后状态的工作中,大力倡导合情推理的方法,并获得成功。
在数学学科教学中,我们重视和加强了双基教学,但学生在校所学到的学科知识,随着他们离开学校,多数会逐渐忘掉,甚至有的会忘得“一干二净”。如果说“教育是所有学会的东西都忘却以后,仍然留下来的那些东西”(M•劳厄),学生学习数学获得的不仅仅是知识,除此之外,更为重要的是思想与方法。而在研究探究性学习的今天,我们的教学一直在研究如何组织和组织的形式上,对在发展过程中使用的合情推理等方法没有予以足够的重视,而这些恰恰是人的优秀文化素质的重要组成部分。再联想到有关团体对中外学生调查结果显示的中国学生科学测验成绩较差的信息,不能不使我们感到加强对合情推理能力的培养已是刻不容缓。
一、合情推理在数学能力发展中的功能和作用
《数学课程标准(实验稿)》在课程的具体目标中明确提出了“培养和发展学生的合情推理能力”。合情推理,它“是在认知过程中,主体根据自己在日常生活中积累的知识、经验,经过非演绎(或非完全演绎)的思维而得到合乎情理、理想化结论的一种推理方式”。其主要表现在:“它可能是……”(猜测),“做出来看一看”(实验),“由上所述可得……”(归纳),“将人心比自心”(类比),“可以想象”(联想)等。
合理推理与通常所说的论证推理是不相同的。论证推理是可靠的;而合情推理是根据经验、知识、直观与感觉得到的一种可能性结论的推理,它推出的结论不一定都正确,却和论证推理一样在数学和生活中都有广泛的应用。在社会生活中,医生诊断疾病,法官审判案件,军事家指挥战争,人际交往等都应用合情推理。一些科学发现的思维,也主要是合情推理:量子力学方程是猜出来的;球体公式是阿基米德“称”出来的;而现代仿生学则是类比推理在科技中应用的杰出成果。事实证明,合情推理的这两种主要推理方式‘归纳’和‘类比’,不受逻辑规则的约束具有强烈的创造性质,它推动了数学的进步和发展。尽管由类比、归纳得出的结论不一定正确,必须加以论证才能确立,但它在数学教学中突出发展学生创造性思维的
重要作用应给予充分的重视,因为小学生的认知能力擅长归纳和类比。我们在教育实践中加强合情推理能力的培养,还可以使受教育者将日常事务中积累的经验、方法用于学习,提高学习的兴趣,提高解决问题的能力。而在其中,又将那自然状态下的合情推理,提高到一个更加合理更加科学的层次,可能成为“科学发现的金钥匙”。
二、小学数学教学中合情推理能力的培养
在小学数学教学中,可以根据儿童的心理特点,结合教材内容,有意识地从以下几个方
面来培养小学生的合情推理能力,从而培养学生的创造性思维。
(一)为学生的合情推理创设空间
波利亚说:“有效地应用合情推理是一种实际技能”,“要通过模仿和实践来学习它,在实践中发展合情推理能力”,因此,教师要充分发挥其主导作用,引导学生参与教学。问题情境的创设是学生参与学习的前提。把学科的内容隐入情境,提供给学生足以探索的数学材料,创设具有一定合理自由度的思维空间,要突出问题(应有一定的难度和开放性),把问题放在“需要”与“认知结构”矛盾的风口浪尖,同时也注意对学生情绪背景的创设。不仅要创设引入问题的情境,也要创设好每个环节的情境。情境的创设应满足:a.可能导致发现;b.一定的趣味性;C.便于学生参与,但要防止让学生看了书上的结论一语点破。
如:我们学习“分数的基本性质”时,可以用“猴王分饼”这一童话故事创设趣味情境;如学习“乘法运算定律”时,可以联系学生原有“学习加法运算定律”的知识经验,利用类比推理创设问题情境;如学习“圆的认识”时为学生创设一个操作情境:可以提供图钉、铅笔、棉线等材料,让学生在自主探索如何画圆时,发现圆的基本性质和概念。
师生感情融洽也是参与教学的感情保证,而“知识情感”则是学生参与教学的“认知内驱力”,教师要把学生的情感调整到乐于研究、探索问题上,让学生在“寻找回来的世界中”动脑、动手、动口去探索猜测(要积极鼓励各种猜测,不能只限定在教师的猜想中),在亲身经历知识的产生过程中,提高应用合情推理的技能。
(二)引导学生运用合情推理探索和发现数学知识
日本的著名教育家米山国藏曾说:“我们搞了这么多年的数学教育,发现学生们在初中、高中等接受的数学知识,出校不到一两年,很快就忘掉了。然而,不管他们从事什么工作,惟有深深铭记于头脑中的数学精神、数学思维的方法、研究方法、推理方法却随时发生作用,使他们受益终生”。也正因为如此,我们在不同教学时如果能注意数学思想方法的渗透,学生也会因此积累一些解决问题的经验。比如,在小学数学中的法则、性质、公式或辨析易混概念等教学时,我们可以有意识地引导学生根据所掌握的信息,对一定条件下可能产生的结
论,用合理推理的方法先进行合理的猜测,形成假说、猜想,然后再予以验证,从而得出法则、性质、公式等知识。
1、发现规律性知识时
合情推理的两种主要推理方式是“类比”和“归纳”。类比是指通过比较两个对象或两类事物属性的相似、相同,从而猜测等待解决的问题或事物与相关问题或事物的属性是否相同或相似,得出数学新命题或新方法,如教学“分数的基本性质”、“商不变性质”、“分数和除法有密切关系”等常常利用类比推理。而归纳就是对研究对象或问题从一定数量的特例进行观察分析,应用不完全归纳法得出有关命题的形式,结论或方法的猜想,根据这种推理作出直觉发现的过程,如著名的歌德巴赫猜想,“三角形的面积等于平行四边形面积的一半”等。从理论上讲,两种方法是分开的,事实上,我们在实际教学时,常常是几种方法互相配合,交叉使用的。
比如说如在小学数学中教学“长方体的体积公式”时,可以先引导学生用小木块摆长方体,获得有关长方体的长、宽、高和体积的数据。再要求学生观察这些数据进行合理的猜想,猜想出长方体的体积公式,然后再要求学生进行论证以确认长方体的体积公式是否正确。最后引导学生将长方形和长方体作类比,比较长方形、长方体的名称、图形及边的长度名称,找出相同之处及两者之间的联系(归纳),从而进一步提高学生的合情推理能力。
学生在学习过程中,积累的一些发现问题、解决问题的经验,这正是进一步学习所需要的能够持续发展的动力之所在,是教学可供利用的重要资源。也正因为如此,我们应该在教学中加强合情推理能力的培养。
现附具体操作要求如下:
教学目标教学内容教学形式对教师要求
1、积极思维,大胆猜测,形成假说(猜想);
2、合情推理的方法得到训练。
假说、猜想形成过程及其运用。一般是学生观察,独立思考,辅以二、三人的讨论、研究,也可以是全班的“七嘴八舌”。 1、心理换位,用一个普通学生的角色参与探讨;2、在观察、归纳、类比等的难点上给学生以点拨;3、要给学习的后进生以特别的关注,给他们的提示可直接些、具体些;4、要引导学生积极地运用其自身所拥有的合情推理方法,教师本人也要进行较高层次的合情推理方法的示范,以此逐步提高学生的合情推理的能力,提高猜想的可靠性。
2、预测可能性问题时