大学物理刚体力学基础
大学物理第三章刚体力学基础习题答案
方向竖直向下
3-15 由角动量守恒得
mul J mvl 1 1 2 1 2 2 mu m v J 因弹性碰撞,系统机械能守恒: 2 2 2 1 1 2 2 又: J M 2l Ml 12 3 6mu M 3m u 联立可得: v M 3m l M 3m
2 2 2 1 mv l [m( l ) M l 2 ] 3 3 3
o
2 l 3
6mv (4m 3M ) l
v
m
A
3-9 电风扇在开启电源后,经过t1时间到达了额定 转速,此时相应的角速度为 0。当关闭电源后,经 过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。 解: 设电机的电磁力矩为M,摩擦力矩为Mf
1
0
t1
3-9 (1)
mg T ma
T mg sin 30 ma
g 2 a m/s 4
方向竖直向下
T2 N 2
mg
(2)
mg T1 ma
T2 mg sin 300 ma
T1r T2r J
a r
T1
1
mg
J k m r2
g 联立求解得: a 22 k
质点运动 m 质 量 力 F 刚体定轴转动 2 J r 转动惯量 m dm 力矩 M Fr sin
dp dL F m a F 第二定律 转动定律 M J M dt dt p mv 动 量 角动量 L J t t2 动量定理 t Fdt mv2 mv1 角动量定理 t Mdt J 2 J1 1 动量守恒 F 0, mv 恒矢量 角动量守恒 M 0, J 恒矢量 力矩的功 W Md 力 的 功 W F dr
大学物理第三章刚体力学
薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理
大学物理2-1第5章
若质量离散分布:
(质点,质点系)
J i mi ri2
J r2 dm
若质量连续分布:
dm dl
其中: d m d s
d m dV
例题补充 求质量为m,半径为R 的均匀圆环的对中心 轴的转动惯量。 解: 设线密度为λ; d m d l
J R dm
2
2R
0
R dl
2
o
R
dm
R2 2R mR2
例题5-3 求质量为m、半径为R 的均匀薄圆盘对中心轴 的转动惯量。 解: 设面密度为σ。
取半径为 r 宽为d r 的薄圆环,
R
d m d s 2 r d r
J r d m r 2 2r 2 d r
2
3 3g 2L
2)由v r得: v A L
L 3 3 gL 3 3 gL vB 2 8 2
5.2 定轴转动刚体的功和能
一、刚体的动能 当刚体绕Oz轴作定轴转动时,刚体上各质元某一瞬时 均以相同的角速度绕该轴作圆周运动。
2 2 质元mi的动能 E ki mi v i mi ( i ri )2 mi ri 2
2)取C 点为坐标原点。 在距C 点为x 处取dm 。 说明
A
A
x dm
B
L
C
x
x
xd m B
L2
L2
2 mL x 2 d x 12
JC x 2 d m
L 2 L 2
1) 刚体的转动惯量是由刚体的总质量、质量分布、 转轴的位置三个因素共同决定; 2) 同一刚体对不同转轴的转动惯量不同, 凡提到转动惯量 必须指明它是对哪个轴的。
1.3大学物理(上)刚体力学基础
dm ds dm dV
面密度和体密度。
线分布
面分布
体分布
注 意
只有对于几何形状规则、质量连续且均匀分布
的刚体,才能用积分计算出刚体的转动惯量。
[例3.1]: 求长为L、质量为m的均匀细棒对图中不同 轴的转动惯量。 [分析]:取如图坐标,dm=dx
A B
L
X
J A r dm
2
x dx mL / 3
T1 mg sin ma 1 2 T2 R T1 R J mR 2 mg T2 ma
a R
mg
[例3.4]: 转动着的飞轮的转动惯量为J,在t=0时角速度 为ω0。此后飞轮经历制动过程,阻力矩M的大小与角速度 ω的平方成正比,比例系数为k(k>0),当ω= ω0/3时,飞 轮的角速度及从开始制动到现在的时间分别是多少? [分析]: (1)已知 M k 2
练习:右图所示,刚体对经过
棒端且与棒垂直的轴的转动惯
mL
量如何计算?(棒长为L、球
半径为R)
mO
J L1
1 2 mL L 3
2 2 J o mo R 5
2 2
J L 2 J 0 m0 d J 0 m0 ( L R)
1 2 2 2 2 J mL L mo R mo ( L R) 3 5
dL d ( mv ) dr d (mv ) dr r mv F , v dt dt dt dt dt dL v mv 0, r F M r F v mv dt dL 角动量定理的微分形式 M dt
平均角速度
角速度
t
大学物理 刚体力学基础习题思考题及答案
解:(1)设杆的线密度为:,在杆上取一小质元,有微元摩擦力: , 微元摩擦力矩:, 考虑对称性,有摩擦力矩: ; (2)根据转动定律,有:,
解:根据角动量守恒,有:
有: ∴
5-9.一质量均匀分布的圆盘,质量为,半径为,放在一粗糙水平面上 (圆盘与水平面之间的摩擦系数为),圆盘可绕通过其中心的竖直固定光 滑轴转动。开始时,圆盘静止,一质量为的子弹以水平速度垂直于圆盘 半径打入圆盘边缘并嵌在盘边上,求:(1)子弹击中圆盘后,盘所获 得的角速度;(2)经过多少时间后,圆盘停止转动。(圆盘绕通过的竖 直轴的转动惯量为,忽略子弹重力造成的摩擦阻力矩。) 解:(1)利用角动量守恒: 得:; (2)选微分,其中:面密度, ∴由有:, 知:
得: 。
5-13.如图所示,物体放在粗糙的水平面上,与水平桌面之间的摩擦系 数为,细绳的一端系住物体,另一端缠绕在半径为的圆柱形转轮上,物 体与转轮的质量相同。开始时,物体与转轮皆静止,细绳松弛,若转轮 以绕其转轴转动。试问:细绳刚绷紧的瞬时,物体的速度多大?物体运 动后,细绳的张力多大? 解:(1)细绳刚绷紧的瞬时前后,把物体和转轮、绳看成一个系统, 系统对转轴圆柱形中心角动量守恒,
(1) (2) (3)
(4) 联立方程可得 、, 。
5-2.一圆盘绕过盘心且与盘面垂直的轴以角速度按图示方向转动,若 如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力 沿盘面方向同时作用到盘上,则盘的角速度怎样变化? 答:增大 5-3.个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑 铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台 组成的系统的: (A)机械能守恒,角动量守恒;(B)机械能守恒,角动量不守恒; (C)机械能不守恒,角动量守恒;(D)机械能不守恒,角动量不守 恒。 答:(C)
大学物理_第06章 刚体力学
接触点相同线速度时: 1r1 2r2
联立解得:
1
J1
J1 ( r1 r2
)2
J2
0
2
r1 r2
J1
J1
(
r1 r2
)2
J
2
0
书上177页
解: dm
2 rdr
m2 rdr R2
2mrdr R2
df
2mrdr R2
g
dM
r
2mrdr R2
g et
2mr 2dr R2
g
M
R
dM
0
R 0
2mr 2 dr R2
dm dV
其中、、分别为质量线密度、面密度和体密度。
转动惯量
2). 转动惯量的计算:
质点、圆环、圆筒绕中心轴转动
z
z
Rm
oR m
R
m
o
质点的转动惯量为
Jo mR2
对于匀质圆环和薄圆筒,因各质元到轴的垂直距
离都相同,则有
Jo mR2
圆盘、圆柱绕中心轴转动
对于质量为m、半径为R、厚为l 的均匀圆盘取半径为 r宽
需要一个动力学方程 — 角动量定理
角动量定理: M dL
dt
转轴转动角动量表达式:
Mz
dLz dt
转轴分量角动量定理表达式:
n
Lz z mi (xi2 yi2 ) z J i1
转动定律:
Mz
dLz dt
d (J)
dt
J
d
dt
J
z v
r
P
当刚体绕固定轴转动时,刚体对该轴的转动惯量与角加速 度的乘积等于外力对此轴的合力距。 — 定轴转动定律
大学物理刚体力学
大学物理刚体力学标题:大学物理中的刚体力学在物理学的研究中,大学物理是引领我们探索自然界规律的重要途径。
而在大学物理中,刚体力学是一个相对独特的领域,它专注于研究物体在受到外力作用时的质点运动规律。
本文将探讨大学物理中的刚体力学。
一、刚体概念及特性刚体是指物体内部各质点之间没有相对位移,形状和体积不发生变化的理想化物体。
在刚体力学中,我们通常将刚体视为一个整体,研究其宏观运动规律。
刚体具有以下特性:1、内部质点无相对位移。
2、刚体不发生形变,形状和体积保持不变。
3、刚体在运动过程中,内部任意两质点间的距离保持不变。
二、刚体力学的基础知识1、刚体的运动形式刚体的运动形式包括平动、转动和振动。
平动是指刚体沿直线作均匀速度的运动;转动是指刚体绕某轴线作角速度变化的运动;振动是指刚体在平衡位置附近作往复运动的周期性运动。
2、刚体的动力学基础动力学是研究物体运动状态变化的原因和规律的科学。
在刚体力学中,动力学的基本方程包括牛顿第二定律、动量定理和动能定理等。
这些方程为我们提供了分析刚体运动状态变化的基本工具。
三、刚体的转动惯量转动惯量是描述刚体转动惯性大小的物理量。
它与刚体的质量、形状和大小有关。
在物理学中,转动惯量是研究刚体转动规律的重要参数。
通过计算转动惯量,我们可以了解刚体在受到外力矩作用时角速度变化的规律。
四、刚体的角动量角动量是描述物体绕某轴线旋转的物理量,与物体的质量、速度和半径有关。
在刚体力学中,角动量是一个非常重要的概念。
它可以帮助我们理解刚体在受到外力矩作用时的角速度变化规律。
同时,角动量守恒定律也是刚体力学中的一个重要定律。
在已知刚体的质量、转动惯量和角动量的基础上,我们可以建立刚体的动力学方程。
动力学方程可以帮助我们分析刚体在受到外力作用时的运动状态变化规律。
对于复杂的动力学问题,我们通常需要借助数学软件进行数值模拟和分析。
六、总结在大学物理中,刚体力学是一个相对独立且具有重要应用价值的领域。
大学物理学第二章刚体力学基础自学练习题
⼤学物理学第⼆章刚体⼒学基础⾃学练习题第⼆章刚体⼒学基础⾃学练习题⼀、选择题4-1.有两个⼒作⽤在有固定转轴的刚体上:(1)这两个⼒都平⾏于轴作⽤时,它们对轴的合⼒矩⼀定是零;(2)这两个⼒都垂直于轴作⽤时,它们对轴的合⼒矩可能是零;(3)当这两个⼒的合⼒为零时,它们对轴的合⼒矩也⼀定是零;(4)当这两个⼒对轴的合⼒矩为零时,它们的合⼒也⼀定是零;对上述说法,下述判断正确的是:()(A )只有(1)是正确的;(B )(1)、(2)正确,(3)、(4)错误;(C )(1)、(2)、(3)都正确,(4)错误;(D )(1)、(2)、(3)、(4)都正确。
【提⽰:(1)如门的重⼒不能使门转动,平⾏于轴的⼒不能提供⼒矩;(2)垂直于轴的⼒提供⼒矩,当两个⼒提供的⼒矩⼤⼩相等,⽅向相反时,合⼒矩就为零】4-2.关于⼒矩有以下⼏种说法:(1)对某个定轴转动刚体⽽⾔,内⼒矩不会改变刚体的⾓加速度;(2)⼀对作⽤⼒和反作⽤⼒对同⼀轴的⼒矩之和必为零;(3)质量相等,形状和⼤⼩不同的两个刚体,在相同⼒矩的作⽤下,它们的运动状态⼀定相同。
对上述说法,下述判断正确的是:()(A )只有(2)是正确的;(B )(1)、(2)是正确的;(C )(2)、(3)是正确的;(D )(1)、(2)、(3)都是正确的。
【提⽰:(1)刚体中相邻质元间的⼀对内⼒属于作⽤⼒和反作⽤⼒,作⽤点相同,则对同⼀轴的⼒矩和为零,因⽽不影响刚体的⾓加速度和⾓动量;(2)见上提⽰;(3)刚体的转动惯量与刚体的质量和⼤⼩形状有关,因⽽在相同⼒矩的作⽤下,它们的运动状态可能不同】3.⼀个⼒(35)F i j N =+v v v 作⽤于某点上,其作⽤点的⽮径为m j i r )34(-=,则该⼒对坐标原点的⼒矩为()(A )3kN m -?v ;(B )29kN m ?v ;(C )29kN m -?v ;(D )3kN m ?v。
【提⽰:(43)(35)4302092935i j kM r F i j i j k k k =?=-?+=-=+=v v v v v v v v v v v v v 】4-3.均匀细棒OA 可绕通过其⼀端O ⽽与棒垂直的⽔平固定光滑轴转动,如图所⽰。
大学物理:第 05 章 刚体力学基础
j
i
设作用在质元Dmi上的外力
位于转动平面内。
z
合外力对刚体做的元功: P
力矩的功:
功率:
三、刚体定轴转动的动能定理
合外力矩对刚体所作的功等于刚体转动动能的增量。
四、刚体的重力势能
以地面为势能零点,刚体和地球 系统的重力势能:
z
i O
五、 刚体定轴转动的功能原理
将重力矩作的功用重力势能差表示:
如:直立旋转陀螺不倒。
o
此时,即使撤去轴承的支撑作用, 刚体仍将作 定轴转动——定向回转仪—— 可以作定向装置。
二、非刚体( J 可变)的角动量守恒
当 J 增大, 就减小,当 J 减小, 就增大。
如:芭蕾舞,花样滑冰中的转动, 恒星塌缩 (R0,0) (R,) 中子星 的形成等。
[例5-11] 水平转台(m1 、 R ) 可绕竖直的中心轴转动,初角 速度0,一人(m2 )立在台中心,相对转台以恒定速度u沿 半径向边缘走去,计算经时间 t,台转过了多少角度。 解:人与转台组成的系统对竖直 轴的角动量守恒:
(2)
(3) (4)
[例5-16] 细杆A : (m , L)可绕轴转动,水平处静止释放, 在竖直位置与静止物块B : (m) 发生弹性碰撞,求碰后: (1)物块B的速度 vB ,(2)细杆A 的角速度2 , (3)细杆A 转过的最大角度 θmax 。 解: B
A
碰后反方向转动。
A
B
[例5-17] 圆锥体R,h,J,表面有浅槽,令以ω0转动, 小滑块m 由静止从顶端下滑,不计摩擦,求滑到底部滑 块相对圆锥体的速度、圆锥体角速度。
是关于刚体定轴转动的动力学方程。 (与 F = ma 比较) 推广到 J 可变情形: ——刚体定轴转动的角动量定理
大学物理教案-第3章 刚体力学基础
J —描述刚体的转动惯性,称之为转动惯量。
二、力矩的功
对于 i 质点,其受外力为 F i ,则
Wi Fi dsi Fi cos α i ridθ Fiτ ridθ
Mid 对 i 求和,当整个刚体转动 d ,则力矩
的元功
dW ( Mi )d Md
∴ 当刚体转过有限角时,力矩的功为
W 2 Md 1
对于单个质点 转动惯量
J mr2 ,
质点系 转动惯量
n
J miri2 ,式中 ri 为 i 质点到轴的矩离。 i 1
质量连续分布的刚体 转动惯量 I r2dm 。 m
2
大学物理学
大学物理简明教程教案
刚体的转动惯量与
刚体的质量的有关, 刚体的质量分布有关, 。
轴的位置有关。
三、转动定律的应用
三、刚体定轴转动的动能定理
Md
J
d dt
d
J
d dt
dt
J
d
d
1 2
J2
2 1
M
d
1 2
J22
1 2
J12
力矩对刚体所做的功,等于刚体转动动能的增量。
§3.4 刚体定轴转动的角动量定理和角动量守恒定律
一、质点的角动量 角动量定理和角动量守恒定律(教材 P40 §2.4)
1、质点对固定点的角动量
ani ri 2
质点(a =常数)
v v0 at
x
x0
v0t
1 at 2 2
v2 v02 2ax x0
刚体( =常数)
0 t
0
0
t
1
2
t2
2 02 2 0
1
大学物理学
大学物理 刚体力学基础自测题2
mR 2 v mR 2 v (D) (C) , 逆时针 ,顺时针 2 2 J mR R J mR R
解:选人和转台为研究系统,则系统角 动量守恒
转动 平面
0 Rmv J 2 mR v Rmv ( ) J R J
11、光滑的水平桌面上,有一长为2L、质量为m的匀质细 杆,可绕过其中点且垂直于杆的竖直光滑固定轴O自由转动, 其转动惯量为1/3(mL2),起初杆静止,桌面上有一个质 量为m的小球,在杆的垂直方向正对着杆的一端以速率v运动, (如图所示),当小球与杆的端点发生完全非弹性碰撞后, 就与杆粘在一起运动,则这一系统碰撞后的转动角速度为
GM v R
L m GMR
2. 体重、身高相同的甲乙两人,分别用双手握住跨过 无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为 零向上爬,经过一定时间,甲相对绳子的速率是乙相对 绳子速率的两倍,则到达顶点的情况是 (A)甲先到达. (B)乙先到达. (C)同时到达. (D)谁先到达不能确定。
解:绕固定光滑轴自由转动说明合外力矩为0,角动量 守恒:
1 2 J ML 3
如果受热膨胀,L增长,J增加,角速度变小
二.填空题
1.质量为 m 的质点以速度 则它对直线上任一点的角动量为
沿一直线运动, v
零
L r mv
L rmv sin
2.质量为 m 的质点以速度 v 沿一直线运动,
解:当刚体作匀角加速转动时,有运动学关系:
0 t 1 2 0 0t t 2 2 2 0 2 ( 0 )
大学物理CH.-刚体力学(PDF)
β
ri Fi
sinϕi
+
ri
fi
sinθi
=
∆mi
r2 i
β
质点∆mi的外力矩
质点∆mi的内力矩
对所有质点求和,可以得到:
∑ ∑ ∑ riFi sinϕi +
ri fi sinθi =
∆mi
r2 i
β
i=1
i=1
i=1
合内力矩∑ri fi sinθi 为零,则:
∑ ∑ riFi sinϕi =
∆mi
F = 0 p = 常量
Ek
=
1 2
mv2
A = ∫ F ⋅ dr =∆Ek
刚体定轴转动规律
M = r × F = dL = J β
dt
L = r × p = Jω
∫t2 Mdt = ∆L t1
M = 0 L = 常量
Ek
=
1 2
Jω2
A = ∫ M ⋅ dθ = ∆Ek
第五节 进 动 一、 进动(precession)现象:
= ∫ r 2λdl l
质量体分布,例如立方体、球体 质量面分布,例如薄片、薄球壳 质量线分布,例如细棒、细环
例2 计算质量为 m ,长为 L 的匀质细棒绕通过其 端点的垂直轴的转动惯量。
解:J = ∫ r 2dm
z
dm = λdl = m dl o
L
∫ J = L l2 ⋅ m dl 0L = 1 mL2 3
o ω
o’
ω
oG
二、杠杆回转仪的分析
设右图中的刚体回转仪处于平
o
衡状态,现将重物左移并将飞
ω 轮作如图方向旋转。则飞轮进
动的方向如何?
大学物理03-刚体力学基础
J
r
m
2
dm
• 刚体的形状(质量分布)
16
J
注 意
r
m
2
dm
只有对于几何形状规则、质量连续且均匀分布 的刚体,才能用积分计算出刚体的转动惯量
例3-2 一均匀细棒,质量为 m ,长为 l 。求该棒对下列转轴 的转动惯量:(1)通过棒中心且与棒垂直的轴;(2)通过 棒的一端且与棒垂直的轴。 解:取如图坐标,在棒上任取质元,到转轴的垂直距离为x, 长度为 d x,该质元的质量为 dm = (m/l )dx (质量为线分布)。 A L/2 C
S
O
Mz r d
P
F
M r F
O r
F
P
F
F //
大小: M rF sin Fd 方向: 由右手螺旋法则确定
转动平面
F 应该理解为外力在转动平面内的 分力F//
转动平面
在定轴转动中,M 的方向只有两种可能指向。若先选 定了转轴的正方向,则 M 与转轴方向一致时取正 值,反之为负值
11
(3) 如果有几个外力矩作用在刚体上,则合力矩等 于各个力矩的代数和
M
i i i
ri Fi
12
2
二 刚体绕定轴的转动定律
刚体可视为由许多质点组成的,而每一个质点都遵从质点力学 的规律。刚体转动定律可由牛顿第二定律直接导出。
Fi f i mi ai mi ri
一、力对转轴的力矩
力是引起质点运动状态变化的原因,而力 矩是引起转动物体运动状态变化的原因
(2) 外力F 不在转动平面内(任意力) 可将 F 分解为转动平面内的分力 F// 和垂直于转动平面的分力F F不能引起刚体转动状态的变化 力矩:
刚体力学基础习题解答
命题教师:郑永春试题审核人:张郡亮1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。
此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma _,对通过三角形中心且平行于其一边的轴的转动惯量为J A = _丄口£_,对通过三角形— --- =—2—"中心和一个顶点的轴的转动惯量为匾(C ) 5、一圆盘正绕垂直于盘面的水平光滑固定轴 0转动,如图1射来两个质量 相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,衡水学院理工科专业 《大学物理B 》刚体力学基础习题2、两个质量分布均匀的圆盘 A 和B 的密度分别为设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为3、一作定轴转动的物体,对转轴的转动惯量J =力矩M 12 N • m 当物体的角速度减慢到 =rad/s 时,物体已转过了角度P A 和P B ( P A > P B ),且两圆盘的总质量和厚度均相同。
J A 和 J B ,则有 J A < J B 。
4、 两个滑冰运动员的质量各为70 kg ,均以m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m 当彼此交错时,各抓住一 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =__2275 kg -m 2-s 1 ;它们各自收拢绳索,到绳长为 5 m 时,各自的速率 =13 m-s 1。
5、 有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。
如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将变大,角加速度大小将 变小。
、单项选择题(每小题2分)1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的是: B. A.这两个力都平行于轴作用时,它们对轴的合力矩一定是零; 这两个力都垂直于轴作用时,它们对轴的合力矩一定是零; C. D.当这两个力的合力为零时,它们对轴的合力矩也一定是零; 当这两个力对轴的合力矩为零时,它们的合力也一定是2、 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为 J ,绳下端挂一物体。
大学物理刚体力学基础
r
mv
r mv 常数
mv
LL
mv p2 v mv
r
rr
p1
开普勒行星运动定律的面积定律
1 2
r
p1 p2
sin
1 2
rvt sin
面积 1 rv sin 常数
t 2
再考虑到行星的质量m为恒量, r mv 常数 许多实例都说明 r mv 是一个独立的物理量,
r mv 在描述行星的轨道运动,自转运动,卫星的
T2R T1R=J
④
由于绳不可伸长,所以
aA aB R
⑤
又
J 1 mR2
2
联立式①,②,③,④,⑤得
T1=
2+3sin 5
mg
T2=
3+2 sin 5
mg
aA
aB
2(1- sin )
5
g
例 转动着的飞轮的转动惯量为J,在t=0时角速度为 .此0后飞轮经历
制动过程,阻力矩M的大小与角速度ω的平方成正比,比例系数为k(k为
Firid M id
M d
dri
i
Fi
ri mi
dsi
对 i 求和,当整个刚体转动d ,则力矩的元功
dA Mid (Mi )d Md
式中M 为作用于刚体上外力矩之和---其表明:力矩的元功等于 力矩与角位移之乘积(∵内力矩之和为零)
∴ 当刚体转过有限角时,力矩的功为 A 2 Md 1
3、刚体定轴转动的动能定理:
转动定律说明了 J是物体转动惯性大小的量度。因为:
M一定时J J
即 J 越大的物体,保持原来转动状态的性质就越强,转动惯性 就越大;反之,J越小,越容易改变其转动状态,保持原有状态 的能力越弱,或者说转动惯性越小。
大学物理第5章刚体
B C
分析受力和力矩情况
第一篇 力 学
解:由ABC和绳子组成系统为研究对象,分析受力和力矩情况。
系统受到的合力矩: M m2 gr m3gr
对整个系统列出角动量定理积分形式
t
Mdt Lt L0
t0
分别计算,有 Mdt (m2gr m1gr)t
L0 0
0
L
LA
若质量连续分布 J r2dm
一维
二维
三维
dm
dl
线密度 dm dl
J r2dl
面密度 dm dS
J r2dS
体密度 dm dV
J r2dV
第一篇 力 学
例1.求长为L、质量为m的均匀细棒对图中不同轴的转动惯量。
解:取如图坐标,dm=dx
J A
L x2dx mL2 / 3
0
L
JC
2 L
x2dx
mL2
/12
2
A L
A
C
L/2
B X
B L/2 X
例2.求质量为m、半径为R的均匀圆环的转动惯量。轴与圆环平面垂
直并通过圆心。
解:
J R2dm R2 dm mR2
O
R
dm
第一篇 力 学
例3.求长求质量为m、半径为R均匀圆盘的转动惯量。轴与盘平面垂 直并通过盘心。
解:取半径为r宽为dr 的薄圆环
dm 2rdr
dJ r2dm 2r3dr
dr rR
J dJ R 2r3dr 1 R4
0
2
m
R 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 刚体
质点模型基本上只能表征物体的平动特征。 当物体自身线度l与所研究的物体运动的空间范围r相比不 可以忽略;物体又不作平动而作转动时,即必须考虑物体 的空间方位时,我们可以引入刚体模型。 刚体是指在任何情况下,都没有形变的物体。 刚体也是一个各质点之间无相对位置变化且质量连续分布 的质点系。 平动和转动是刚体的两种基本运动形式。刚体的任何复杂 运动都可以看成平动与转动的合成。
解 (1)转轴通过棒的中心并与棒垂直 在棒上任取一质元,其长度为dx,距轴O的距离为x,设棒的线密度(即 m 单位长度上的质量)为 ,则该质元的质量dm=λdx.该质元对中心 l 轴的转动惯量为
dJ x dm x dx
2 2
整个棒对中心轴的转动惯量为
J dJ
l 2 l 2
1 x dx ml 2 12
2
(2)转轴通过棒一端并与棒垂直时,整个棒对该轴的转动惯量为
1 2 J x dx ml 0 3
l 2
由此看出,同一均匀细棒,转轴位置不同,转动惯量不同.
例 设质量为m,半径为R的细圆环和均匀圆盘分别绕通过各自中心并与圆 面垂直的轴转动,求圆环和圆盘的转动惯量.
2
分离变量,并考虑到t=0时, 0 ,两边积分
1 0 3
0
d
k dt 2 0 J
t
2J 1 故当 0 时,制动经历的时间为 t . k0 3
3-3 刚体定轴转动的动能定理
1、转动动能 i质点的动能
1 2 1 Eki mi vi mi ri 2 2 2 2
(2)质量元的选取: 线分布 面分布 体分布
dm dx(或dl)
dm ds dm dv
线分布
面分布
体分布
(3)由于刚体是一个特殊质点系,即各质点之间无相对位移, 对于给定的刚体其质量分布不随时间变化,故对于 定轴而言,刚体的转动惯量是一个常数。
例 如图 (a)所示,质量均为m的两物体A,B. A放在倾角为α的光滑 斜面上,通过定滑轮由不可伸长的轻绳与B相连.定滑轮是半径为R的圆盘, 其质量也为m.物体运动时,绳与滑轮无相对滑动.求绳中张力 T1 和 T2及物体 的加速度a(轮轴光滑).
2)刚体定轴转动的特点 所有质点的角量都相同 ; 质点的线量与该质点的轴矢径大小成正比 。
vi ri ai ri ani ri 2
3-2 力矩 刚体定轴转动的转动定律
一、力矩
1、力对固定点的力矩 1)定义:作用于质点的力对 惯性系中某参考点的力矩, 等于力的作用点对该点的位 矢与力的矢积,即
转动定律说明了 J是物体转动惯性大小的量度。因为:
M 一定时J
J
即 J 越大的物体,保持原来转动状态的性质就越强,转动惯性 就越大;反之,J越小,越容易改变其转动状态,保持原有状态 的能力越弱,或者说转动惯性越小。 如一个外径和质量相同的实心圆柱与空心圆筒, 若 受力和力矩一样,谁转动得快些呢?
ri
0
f ji
rj
rij
f ij
二、刚体定轴转动的转动定律: 刚体绕定轴转动,在刚体上取一质元 mi ,绕轴作半 径 ri 的圆周运动,作用在质点上的合力矩
M i ri Fi fi ri Fi ri fi
ri
i
Fi
由牛顿第二定律可知
r sin F F rF sin rF
F r
F
式中为力F到轴的距离
若力的作用线不在转动在平面内, 则只需将力分解为与轴垂直、平行 的两个分力即可。
1.力对固定点的力矩为零的情况:
力F等于零, 力F的作用线与矢径r共线(力F的作用线穿过0点, 即,有心 力对力心的力矩恒为零)。
有两种情况, M 0
F 0 B)力的方向沿矢径的方向( sin 0 )
A)
F
2.力对固定轴的力矩为零的情况:
若力的作用线与轴平行 若力的作用线与轴相交
有心力的力矩为零
则力对该轴无力矩作用。
3.质点系内一对内力对任一点的力矩之矢量和为零
M i 0 M j 0 ri f ji rj f ij f ij f ji M i 0 M j 0 (ri rj ) f ji rij f ji 0
MZ JZ
M
M
4、转动惯量的计算 对于单个质点
J mr 2
J mi ri 2
i 1 n
质点系 若物体质量连续分布,
J r dm r dV
2 m m
2
转动惯量的单位:千克· 米2(kg· m2 ) 转动惯量计算举例:
例 如图所示,求质量为m,长为l的均匀细棒的转动惯量: (1)转轴通过棒的中心并与棒垂直;(2)转轴通过棒一端并与棒垂直.
mi
Fi fi mi ai
则质点所受力矩
Mi mi ri
2
对刚体所受所有力矩求和得:
ri Fi ri fi mi ri
2
由于刚体各质点相对轴距离不变,令
J mi ri
2
2、刚体定轴转动的转动定理
M J
作定轴转动的刚体,其转动角加速度与外力对该轴的力矩之 和成正比,与刚体对该轴的转动惯量成反比。 其在定轴转动中的地位与牛顿定律在质点运动中地位相当。
dA M i d ( Mi )d Md
式中M 为作用于刚体上外力矩之和---其表明:力矩的元功等于 力矩与角位移之乘积(∵内力矩之和为零) ∴ 当刚体转过有限角时,力矩的功为
A Md
1
2
3、刚体定轴转动的动能定理:
A Md 1 J d 1
※在直角坐标系中,其表示式为
( yFz zFy )i ( zFx M xi M y j M z k i j k M x y z Fx Fy Fz
xFz ) j ( xFy yFx )k
M x yFz zFy
M y zFx xFz
M z xFy yFx
2、力对轴的矩: 力矩在x,y,z轴的分量式,称力对轴的矩。例如上面所列 Mx , My , Mz , 即为力对X轴、Y轴、Z轴的矩。 设力F 的作用线就在Z轴 的转动平面内,作用点到Z Mz 轴的位矢为r,则力对Z轴 F// 的力矩为 r F M z rF sin ·
dJ r 2 dm 2 r 3dr
则整个圆盘对中心轴的转动惯量为
J dJ
R
0
1 2 r dr mR 2 2
3
以上计算表明,质量相同,转轴位置相同的刚体,由于质量分布不同,转 动惯量不同.
以上各例说明: (1)刚体的转动惯量 与刚体的总质量有关, 与刚体的质量分布有关, 与轴的位置有关。
m m
(2)求质量为m,半径为R的圆盘对中心轴的转动惯量.整个圆盘可以看成许 多半径不同的同心圆环构成.为此,在离转轴的距离为r处取一小圆环,如 图2.36(b)所示,其面积为dS=2πrdr,设圆盘的面密度(单位面积上的质量) m ,则小圆环的质量 dm=σdS=σ2πrdr,该小圆环对中心轴的转动惯量为 R2
整个刚体的动能 — 对i 求和
2 2 2 1 1 Ek Eki mi vi mi ri 2 2 i i i 1 2 2 1 ( mi ri ) J 2 2 i 2
可见,刚体的转动动能等于刚体的转动惯量与角速度平方 乘积的一半。 1 E J 2 转动动能 k
又 J 1 mR 2 2
⑤
联立式①,②,③,④,⑤得
T1= 2+3sin mg 5 3+2sin mg 5 2(1-sin ) g 5
T2=
a A aB
0 例 转动着的飞轮的转动惯量为J,在t=0时角速度为 .此后飞轮经历 制动过程,阻力矩M的大小与角速度ω的平方成正比,比例系数为k(k为 1 大于零的常数),当ω= 0 时,飞轮的角加速度是多少?从开始制动到 3 现在经历的时间是多少?
1
2
2
2
2 d d J d J dt 1 dt dt
2
1
1 1 2 2 J d J 2 J 1 2 2
2
1
1 2 Md ( J ) 2
力矩对刚体所做的功,等于刚体转动动能的增量。
Y
M
vC
4、刚体的势能
EP mi gyi
i
C mi
本节讨论转动中最简单的运动-定轴转动。
二、 刚体定轴转动的描述
若物体在运动过程中,其所有的质元都绕某一直线作圆周运 动,这种运动称之为转动。该直线称为转轴。
1、转动瞬轴、定轴转动 若转轴的方向或位置在运动 过程中变化,这个轴在某个时 刻的位置称为该时刻的转动瞬 轴。
Z
O
若转动轴固定不动,即既不能改 变方向又不能平移,这个转轴为固 定轴,这种转动称为定轴转动。 我们只讨论定轴转动。
m gyc
其中m为刚体的总质量, yc为刚体质心的高度。 质量分布均匀而有一 定几何形状的刚体,质 心的位置为它的几何中 心。 NhomakorabeayC
O
yi
X
例 如图所示,一根质量为m,长为l的均匀细棒OA,可绕固定点O在竖直平 面内转动.今使棒从水平位置开始自由下摆,求棒摆到与水平位置成30°角 时中心点C和端点A的速度. 解 棒受力如图2.39所示,其中重力G l 对O轴的力矩大小等于 mg 2 cos ,是θ 的函数,轴的支持力对O轴的力矩为零 .由转动动能定理,有