六大定理互相证明总结讲课讲稿

合集下载

(完整word版)实数完备性基本定理的相互证明

(完整word版)实数完备性基本定理的相互证明

实数完备性基本定理的相互证明(30个)一.确界原理1.确界原理证明单调有界定理证 不妨设{}n a 为有上界的单调递增数列.由确界原理,数列{}n a 有上确界,令{}n a sup a =,下面证明:lim n n a a →∞=.对任意的0ε>,由上确界的定义,存在数列{}n a 中某一项N a ,使得:N a a ε->. 由于{}n a 单调递增,故对任意的n N >,有:n N a a a ε-<<.另一方面,由于a 是{}n a 的一个上界,故对任意的正整数n 都有:n a a a ε≤<+. 所以任意的n N >,有:n a a a εε-<<+,即:n a a ε-<.由极限的定义,lim n n a a →∞=.同理可证单调递减有下界的数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理证明:设[]{},n n a b 是一个闭区间套. 令数集{}n S a =.由于任一n b 都是数列{}n a 的上界,由确界原理,数集S 有上确界,设supS ξ=. 下证ξ属于每个闭区间[](),1,2,3,n n a b n =显然,()1,2,3,n a n ξ≤=,故只需证明对任意正整数n ,都有n b ξ≤.事实上,对任意正整数n ,n b 都是S 的上界,而上确界是最小上界,故必有n b ξ≤. 所以存在实数ξ,使得[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证. 3.确界原理证明有限覆盖定理证明:欲证闭区间[],a b 的任一开覆盖H 都有有限的子覆盖. 令[]{}|,S x a x H a x b =<≤能被中有限个开区间覆盖,显然S 有上界.又H 覆盖闭区间[],a b ,所以,存在一个开区间(),H αβ∈,覆盖住了a .取(),x a β∈,则[],a x 显然能被H 中有限个开区间覆盖(1个),x S ∈,从而S 非空.由确界原理,令supS ξ=.先证明b ξ=.用反证法,若b ξ≠,则a b ξ<<.由H 覆盖闭区间[],a b ,一定存在开区间()11,H αβ∈,覆盖住了ξ.取12,x x ,使:11211,x x x S αξβ<<<<∈ ,则[]1,a x 能被H 中有限个开区间覆盖,把()11,αβ加进去,就得到[]2,a x 也能被H 中有限个开区间覆盖,即2x S ∈,这与supS ξ=矛盾,故b ξ=.最后证明b S ∈.设开区间()22,H αβ∈,覆盖住了b .由b supS =,故存在y 使得:2y b α<≤且y S ∈.则[],a y 能被H 中有限个开区间覆盖,把()22,αβ加进去,就得到[],a b 也能被H 中有限个开区间覆盖. 4.确界原理证明聚点定理证明:设S 有界无限点集,则由确界原理令inf S ξ=.若ξ是S 的一个聚点,则命题已经成立,下面设ξ不是S 的聚点.令 ){}|,T x x S ξ=⎡⎣中只包含中有限个元素.因为ξ不是S 的聚点,所以存在00ε>,使得()()000;,U ξεξεξε=-+只包含S 中有限个数,故0T ξε+∈,从而T 非空. 又S 有界,所以S 的所有上界就是T 的上界,故T 有上确界,令sup T η=. 下面证明η是S 的一个聚点.对任意的0ε>,S ηε+∉,故),ξηε+⎡⎣包含S 中无穷多个元素.由上确界的定义,存在(],ληεη∈-,使得S λ∈,故),ξλ⎡⎣中只包含S 中有限多个元素.从而我们得知)(),;U ληεηε+⊂⎡⎣中包含了S 中无穷多个元素,由聚点的定义,η是S 的一个聚点.5.确界原理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.令数集{}{}|,n n S x x x x x n =≥∀中只有有限项小于或,明显数列{}n x 的下界都属于S ,并且{}n x 的上界就是S 的上界.由确界存在定理,令sup S ξ=.对条件给定的0ε>和N ,S ξε+∉,故(),ξε-∞+包含{}n x 中无穷多项.由上确界的定义,存在(],λξεξ∈-,使得S λ∈,故(),λ-∞中只包含S 中有限多个元素.从而我们得知)()(),;,U ληεηεηεηε+⊂=-+⎡⎣中包含了S 中无穷多个元素,设()(),1,2,3,k n x U k ξε∈=则对任意正整数n N >,总存在某个k n N >,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=.从而lim n n x ξ→∞=.二.单调有界定理6.单调有界定理证明确界定理证明:我们不妨证明非空有上界的数集S必有上确界.设{}|T r r S =为数集的有理数上界.明显T 是一个可数集,所以假设:{}12,,,,n T r r r =.令{}1min n i i nx r ≤≤=.则得单调递减有下界的数列,由单调有界定理得,令lim n n x ξ→∞= 先证ξ是上界.任取s S ∈,有n n s r x ≤≤,由极限的保序性,s ξ≤.其次对于任意的0ε>,取一个有理数(),r ξεξ∈-,它明显不是S 的上界,否则lim n n x r ξξ→∞=≤<产生矛盾!故存在s S ∈,使得s ξε>-,我们证明了ξ是数集S 上确界.7.单调有界定理证明区间套定理若[]{},n n a b 是一个区间套,则{}n a 为单调递增有上界的数列,由单调有界定理, 令lim n n a ξ→∞=,并且容易得到()1,2,3,n a n ξ≤=.同理,单调递减有下界的数列{}n b 也有极限,并按区间套的条件有:()lim lim 0n n n n n n b a b a ξξ→∞→∞=+-=+=⎡⎤⎣⎦,并且容易得到()1,2,3,n b n ξ≥=.所以[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.8.单调有界定理证明有限覆盖定理设[]{}|,,T r a r H r r b =∈≤可以被的开区间有限开覆盖,且.容易得到T 中包含无穷多个元素,并且T 是一个可数集,所以假设:{}12,,,,n T r r r =.令{}1max n i i nx r ≤≤=.则得单调递增有上界的数列,由单调有界定理得,令lim n n x ξ→∞=.先证明b ξ=.用反证法,若b ξ≠,则a b ξ<<.由H 覆盖闭区间[],a b ,一定存在开区间()11,H αβ∈,覆盖住了ξ.取,i j x r y =,使:11i j x r y αξβ<=<<< ,则[]1,a x 能被H 中有限个开区间覆盖,把()11,αβ加进去,就得到[],a y 也能被H 中有限个开区间覆盖,即y S ∈,这与supS ξ=矛盾,故b ξ=.最后证明b S ∈.设开区间()22,H αβ∈,覆盖住了b .由b supS =,故存在k l x r =使得:2k l x r b α<=≤.则[],l a r 能被H 中有限个开区间覆盖,把()22,αβ加进去,就得到[],a b 也能被H 中有限个开区间覆盖. 9.单调有界定理证明聚点定理证明:设S 是一有界无限点集,在S 中选取一个单调{}n a ,下证数列{}n a 有聚点.(1)如果在{}n a 的任意一项之后,总存在最大的项,设1a 后的最大项是1n a ,1n a 后的最大项是2n a ,且显然()2121n n a a n n ≤>; 一般地,将k n a 后的最大项记为1k n a +,则有:()11,2,3,k k n n a a k +≤=.这样,就得到了{}n a 的一个单调递减子列{}k n a .(2)如果(1)不成立 则从某一项开始,任何一项都不是最大的,不妨设从第一项起,每一项都不是最大项.于是,取11n a a =,因1n a 不是最大项,所以必存在另一项()2121n n a a n n >>又因为2n a 也不是最大项,所以又有:()3232n n a a n n >> ,这样一直做下去,就得到了{}n a 的一个单调递增子列{}k n a .综上所述,总可以在S 中可以选取一个单调数列{}k n a ,利用单调有界定理,{}k n a 收敛,极限就是S 的一个聚点.10.单调有界定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.参考9的做法,可知数列{}n a 有一个单调子列{}k n a ,由单调有界定理,{}k n a 收敛,令lim k n k x ξ→∞=.则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.三.区间套定理11.区间套定理证明确界原理证明:仅证明非空有上界的数集S 必有上确界取一个闭区间[],a b ,使得[],a b 包含S 中的元素,并且b 为S 的上界.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为数集S 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦. 再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为数集S 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =并且每个闭区间[],n n a b 都包含S 中的元素,并且右端点n b 为S 的上界.由于对任意s S ∈,有n s b ≤,所有由极限的保序性,lim n n s b ξ→∞≤=,从而ξ是数集S 的上界.最后,对于任意0ε>,存在n ,使得0n n b a ε<-<.由闭区间套的选取,[],n n a b 包含了S 中某个元素s ,从而有n n s a b εξε≥>->-.故ξ是数集S 的上确界. 12. 区间套定理证明单调有界定理设{}n x 是单调有界数列,不妨设其为单调递增且有上界取一个闭区间[],a b ,使得[],a b 包含{}n x 中的项,并且b 为{}n x 的上界.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为{}n x 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦.再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为{}n x 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =并且每个闭区间[],n n a b 都包含{}n x 中的项,并且右端点n b 为{}n x 的上界.下面证明lim n n x ξ→∞=.对任意的0ε>,存在n ,使得0n n b a ε<-<.由闭区间套的选取,[],n n a b 包含了{}n x 中某一项N x ,从而有N n n x a b εξε≥>->-.由于{}n x 单调递增,故对任意的n N >,有:N n x x ξε-<<. 又n n n x b a εξε<<+<+,故有n x ξεξε-<<+,即n x ξε-<. 13. 区间套定理证明有限覆盖定理若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =.显然[],a b ξ∈,考虑H 中覆盖ξ的开区间(),αβ,取{}0min ,δξαβξ<<--.由于lim lim n n n n a b ξ→∞→∞==,所以存在N ,对一切正整数n N >,有,n n a b ξξδ--<,故此时[]()(),;,n n a b U ξδαβ⊂⊂.从而[](),n n a b n N >可以被H 中的一个开区间(),αβ覆盖,产生矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖. 14. 区间套定理证明聚点定理证明:已知点集S 是有界无限点集.设[],S a b ⊂.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,每个闭区间包含了点集S 中无穷多个元素.由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =.下证ξ是点集S 的一个聚点.因为lim lim n n n n a b ξ→∞→∞==,故对任意的0ε>,必定存在一个N ,对一切正整数n N >,有,n n a b ξξε--<,从而[]()(),;n n a b U n N ξε⊂>.又每个闭区间[],n n a b 包含了点集S 中无穷多个元素,故();U ξε包含了点集S 中无穷多个元素.由聚点的定义,ξ是点集S 的一个聚点.15. 区间套定理证明Cauchy 收敛准则 必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.取一个闭区间[],a b ,使得[],a b 包含所有{}n x 中的项.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了{}n x 中无穷多项,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了{}n x 中无穷多项,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且每个闭区间[],n n a b 都包含{}n x 中无穷多项.由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =现在取一个子列{}k n x ,满足[](),1,2,3,k n k k x a b k ∈=.因为lim lim n n n n a b ξ→∞→∞==和夹逼定理,lim kn k x ξ→∞=.则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.四.有限覆盖定理16.有限覆盖定理证明确界原理证明:不妨设S 为非空有上界的数集,我们证明S 有上确界. 设b 为S 的一个上界,下面用反证法来证明S 一定存在上确界.假设S 不存在上确界,取a S ∈.对任一[],x a b ∈,依下述方法确定一个相应的邻域(开区间)()();,x x x x U U x x x δδδ==-+.(1)若x 不是S 的上界,则至少存在一点x S '∈,使x x '>,这时取x x x δ'=-.(2)若x 是S 的上界,由假设S 不存在上确界,故有0x δ>,使得](,x x x δδ- 中不包含S 中的点.此时取(),x x x U x x δδ=-+,可知它也不包含S 中的点.于是我们得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈ 根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖.很明显(1)的开区间右端点属于S ,(2)的开区间中不包含S 中的点.显然a 所属的开区间是属于(1)的,b 所属的开区间是属于(2)的,所以至少有一个(1)中的开区间与某个(2)中的开区间相交,这是不可能的.17.有限覆盖定理证明单调有界定理证明:设{}n x 是单调有界数列,不妨设其为单调递增且有上界.任取b 为{}n x 的一个上界以及{}n x 中某项t x ,构造出闭区间[],t x b ,对任意的[],t x x b ∈,依下述方法确定一个相应的邻域(开区间)()();,x x x x U U x x x δδδ==-+.(1) 若x 不是{}n x 的上界,则{}n x 中至少存在一项i x ,使i x x >,这时取x x x δ'=-.(2) 若x 是{}n x 的上界,由假设{}n x 发散,故不会收敛到x .即有存在某个00ε>,对任何正整数N ,存在n N >,使得()()000;,n x U x x x εεε∉=-+.由于{}n x 递增,有上界x ,所以{}n x 中的所有项均不落在()()000;,U x x x εεε=-+中.此时取0x δε=.于是我们得到了[],t x b 的一个开覆盖:()[]{},|,x x x t H U x x x x b δδ==-+∈. 根据有限覆盖定理,[],t x b 可以被H 中有限个开区间{}1inx i U =覆盖.很明显(1)的开区间右端点属于{}n x ,(2)的开区间中不包含{}n x 中的项.显然t x 所属的开区间是属于(1)的,b 所属的开区间是属于(2)的,所以至少有一个(1)中的开区间与某个(2)中的开区间相交,这是不可能的.18. 有限覆盖定理证明区间套定理 证明:用反证法.假设[]{}(),1,2,3,n n a b n =没有公共点,则对任意一点[]11,x a b ∈,它都不会是[]{}(),1,2,3,nna b n =的公共点,从而存在正整数xn,使得,x x n n x a b ⎡⎤∉⎣⎦.故总存在一个开区间(),x x x U x x δδ=-+,使得:(),,xnx x n nx x a b δδ⎡⎤-+⋂=∅⎣⎦,于是我们得到了[]11,a b 的一个开覆盖:()[]{}11,|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[]11,a b 可以被H 中有限个开区间{}1i kx i U =覆盖.注意到闭区间套之间的包含关系,则所有{}1ikx i U =一定和某个最小的闭区间001,,i i k n n n n i a b a b =⎡⎤⎡⎤=⎣⎦⎣⎦无交.从而:[]{}0000001111,,,,i ik k n n x n n x n n i i a b a b U a b Ua b ==⎧⎫⎡⎤⎡⎤⎡⎤⋂⊂⋂=⋂=∅⎨⎬⎣⎦⎣⎦⎣⎦⎩⎭.产生矛盾!19. 有限覆盖定理证明聚点定理证明:设点集S 是有界无限点集.设[],S a b ⊂.用反证法,假设S 没有聚点.利用聚点定义,对任意的[],x a b ∈,存在一个领域(),x x x U x x δδ=-+,使得x U 中只包含点集S 中有限个点.这样得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖. 由于每个x U 中只包含点集S 中有限个点,所以[]1,i n x i a b U =⊂也只包含了S 中有限个点,这与S 是无限点集相矛盾!故假设不成立,即S 有聚点. 20. 有限覆盖定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:(使用反证法)现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<. 先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.假设{}[],n x a b ⊂.若{}n x 发散,则对任意的[],x a b ∈,可以找到一个(),x x x U x x δδ=-+,使得{}n x 中只有有限项落在()0;U x ε中.否则对任何0δ>,(),x x δδ-+中均包含{}n x 中无限项,则可以证明{}n x 收敛.这样得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1i nx i U =覆盖. 所以[]1,i n x i a b U =⊂也只包含了{}n x 中的有限项,矛盾!故假设不成立,{}n x 收敛.五.聚点定理21.聚点定理证明确界原理证明:仅证明非空有上界的数集S 必有上确界.取一个闭区间[],a b ,使得[],a b 包含S 中的元素,并且b 为S 的上界.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为数集S 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦. 再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为数集S 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由于{}n b 明显有界,所有它有聚点ξ.对任意0,s S ε>∈,设()();,k b U ξεξεξε∈=-+,则k s b ξε≤<+.由ε的任意性,s ξ≤,故ξ是S 的一个上界.其次,对任意0ε>,取()();,k a U ξεξεξε∈=-+,设s S ∈包含于闭区间[],k k a b ,则k s a ξε≥>-.从而我们证明了ξ是S 的一个上确界. 22.聚点定理证明单调有界定理证明:设{}n x 是单调有界数列,则它一定存在聚点ξ.下证:lim n n x ξ→∞=.对任意的0ε>,由聚点的定义,()(),,U ξεξεξε=-+中包含{}n x 中的无穷多项,设{}()(),,kn x U ξεξεξε⊂=-+.则取1N n =,对一切正整数1n N n >=,假设k n n <.利用{}n x 是单调的,nx介于1n x 与k n x 之间,所以由()1,,k n n x x U ξε∈,可知(),n x U ξε∈,从而由极限的定义,lim n n x ξ→∞=23.聚点定理证明区间套定理证明:设{}{}n n S a b =⋃,则S 是有界无限点集 由聚点定理得数集S 聚点ξ.若存在一个某个正整数0n ,使得00,n n a b ξ⎡⎤∉⎣⎦,不妨假设00n n a b ξ<<.取00n b εξ=-,则对一切0n n >,有00n n n a b b ξε<≤=-.于是()()000;,U ξεξεξε=-+中只包含S 中有限个点,这与ξ是数集S 的聚点矛盾!故[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.24.聚点定理证明有限覆盖定理证明:若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且[](),1,2,3n n a b =均不能被H 有限开覆盖显然,{}n a 是有界的,故它存在聚点ξ.明显[],a b ξ∈.考虑H 覆盖中覆盖住ξ的开区间(),αβ.取{}min ,εξαβξ<--,则在()();,U ξεξεξε=-+中包含了{}n a 中的无穷多项,设{}()();,kn a U ξεξεξε⊂=-+.又()02n n nb aba n --=→→+∞ 于是存在某个0k n ,使得0k k n n b a βξε-<--故0n a ξεα>->;()00n n b a βξεξεβξεβ<+--<++--=. 故[]00,,n n a b αβ⎡⎤⊂⎣⎦.这与[](),1,2,3n n a b =均不能被H 有限开覆盖矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖.25.聚点定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.故它存在聚点,设为ξ.对条件中的0ε>,由聚点的定义,假设{}()();,k n x U ξεξεξε⊂=-+ 则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.六.Cauchy 收敛准则26. Cauchy 收敛准则证明确界原理证明: 设S 为非空有上界数集.由实数的阿基米德性,对任何正数α,存在整数k α ,使得k ααλα=为S 的上界,而()1k ααλαα-=-不是S 的上界, 即存在S α'∈使得()1k ααα'>- 分别取()11,2,3,n n α==,则对每一个正整数n ,存在相应的n λ,使得nλ为S 的上界,而1n nλ-不是S 的上界,故存在S α'∈,使得1n nαλ'>-又对正整数m ,m λ是S 的上界,故有m λα'≥.所以1m n n λαλ'≥>-,即有1m n m λλ-<.同理有1m n nλλ-<,于是得到11min ,m n m n λλ⎧⎫-<⎨⎬⎩⎭.于是,对任意的0ε>,存在正整数N ,使得当,m n N >时有m n λλε-<. 由柯西收敛准则,数列{}n λ收敛.记lim n n λλ→∞=现在证明λ就是S 的上确界.首先,对任何S α∈和正整数n ,有n αλ≤,有极限的保序性,lim n n αλλ→∞≤=,故λ是S 的上界其次,对于任意的0δ>,存在充分的的正整数n ,使得12n δ<并且2n δλλ>-. 由于1n n λ-不是S 的上界,所以存在S α'∈,并且1n n αλ'>-.于是122n n δδαλλλδ'>->--=-.故λ就是S 的上确界. 27. Cauchy 收敛准则证明单调有界定理证明:设{}n x 是单调有界数列,不妨假设{}n x 单调递增有上界.若{}n x 发散,则又柯西收敛准则,存在00ε>,对一切正整数N ,存在m n N >>,使得0m n m n x x x x ε-=-≥.于是容易得到{}n x 的子列{}k n x ,使得10k k n n x x ε+-≥.进而()101k n n x x k ε>+-故()k n x k →+∞→∞,这与{}n x 是有界数列矛盾!所有假设不成立,即{}n x 收敛. 28. Cauchy 收敛准则证明区间套定理证明:设[]{},n n a b 为闭区间套.因为lim 0n n n a b →∞-=,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.由于{}n a 单调递增,{}n b 单调递减,由极限的保序性, 所以[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.29.Cauchy 收敛准则证明有限覆盖定理证明:若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且[](),1,2,3n n a b =均不能被H 有限开覆盖.因为lim lim02n n nn n b aa b →∞→∞--==,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.由于{}n a 单调递增,{}n b 单调递减,由极限的保序性, 所以[](),1,2,3,n n a b n ξ∈=.考虑H 覆盖中覆盖住ξ的开区间(),αβ.取{}min ,εξαβξ<--,则存在正整数N ,对一切n N >,,n n a b ξξε--<.即有[]()(),;,n n a b U ξεαβ⊂⊂.这与[](),1,2,3n n a b =均不能被H 有限开覆盖矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖.30. Cauchy 收敛准则证明聚点定理证明:已知点集S 是有界无限点集.设[],S a b ⊂.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,每个闭区间包含了点集S 中无穷多个元素. 因为lim lim02n n nn n b aa b →∞→∞--==,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.下证ξ是S 的一个聚点.对任意的0ε>,存在正整数N ,对一切n N >,,n n a b ξξε--<.即有[]()(),;,n n a b U ξεξεξε⊂=-+.故()();,U ξεξεξε=-+中包含了S 中无穷多个元素,由聚点的定义,ξ是S 的一个聚点.。

初中数学定理及推论的证明

初中数学定理及推论的证明

初中数学定理及推论的证明证明一:等腰三角形的定理定理:如果一个三角形的两条边等长,那么这个三角形是等腰三角形。

证明:假设三角形ABC的两条边AB和AC等长,即AB=AC。

由等量减法原理,我们可以得到:AB-AC=0。

再根据减法交换律,我们可以得到:AC-AB=0。

根据减法结合律,上述两式可以合并为:AC-AB+AB-AC=0。

通过合并同类项,我们可以得到:AC-AC+AB-AB=0。

根据零元素的性质,我们可以得到:0+0=0。

根据加法恒等性质,上述两式可以合并为:0=0。

根据等式传递律,我们可以得到:AC-AB=AB-AC。

根据相反数的性质,上式可以变为:AC+(-AB)=AB+(-AC)。

根据加法逆元的定义,我们可以将上式简化为:AC-AB=AB-AC=0。

由于AC-AB=0,所以AC=AB。

这就证明了三角形ABC是等腰三角形。

证明二:三角形内角和定理定理:三角形的内角和等于180度。

证明:假设三角形ABC的三个内角分别为∠A、∠B、∠C。

我们可以通过以下步骤来证明内角和定理:1.根据直角三角形的性质,直角三角形的内角和等于90度。

所以∠A+∠B+∠C=90度。

2.将三角形ABC划分为两个直角三角形,其中一个直角三角形的两个内角分别为∠A和∠B。

3.根据直角三角形内角和定理,我们可以得到∠A+∠B=90度。

4.将上述结果代入第一步的等式中,我们可以得到90度+∠C=90度。

5.根据加法逆元的定义,我们可以将上述结果简化为∠C=0度。

6.根据零元素的性质,0度+0度+0度=0度。

结合第一步的等式,我们可以得到∠A+∠B+∠C=0度。

因此,三角形ABC的内角和等于180度。

证明三:略以上是初中数学中的两个重要定理及其证明。

这些证明基于基本的数学概念和运算法则,通过逻辑推理和数学运算的方法,从已知条件推导出结论。

这些证明过程旨在培养学生的逻辑思维能力和数学推理能力,加深对数学定理的理解和应用。

同时,这些定理的证明也为后续数学知识的学习和应用奠定了基础。

实数完备性六个定理的互相证明

实数完备性六个定理的互相证明
n
0 , x S ,使得 x ,
记为 xn a ( n ) 。如果不存在实数 a,使 xn 收敛于 a,则称数列 xn 发散。
lim xn a 0 , N N , n N ,有 xn a 。

二、一些基本概念
1.有界集: 设 S 是一个非空数集,如果 M R ,使得 x S ,有 x M ,则称 M 是 S 的
一个上界;如果 m R ,使得 x S ,有 x m ,则称 m 是 S 的一个下界。当数集 S 既有上界,又有下界时,称 S 为有界集。
a1 b1 a b a b , b1 S ,则记 a2 , b2 = 1 1 , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 2 2 2 an 1 bn 1 an 1 bn 1 a b an1 , bn1 二等分为 , bn 1 ,若 n 1 n 1 , bn 1 S , an 1 , 、 2 2 2
则记 a2 , b2 =
a1 b1 a b , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 an 1 , bn 1 二等分为 2 2
an 1 bn 1 an 1 bn 1 a b , bn 1 ,若 n 1 n 1 非 s 的上界,则记 、 an 1 , 2 2 2 an 1 bn 1 a b an , bn = , bn 1 否则记 an , bn = an 1 , n 1 n 1 ;...,得到一列闭区间 2 2
上界,则记 a2 , b2 =

5.3.2命题、定理、证明 说课稿

5.3.2命题、定理、证明 说课稿

七年级下册数学《5.3.2命题与定理》说课稿(一)本学期担任一年教学工作:学生开始学习比较惰性:不爱写字:自主学习不强:独立思考能力不强:有些学生对学生较散漫,没有上进心,但有个别学生有感兴趣。

1、学习能力、习惯:有夺数学生学习习惯不好,像课前的准备工作,课后的巩固都没有到位:学习比较散漫、懒惰:对学习感到累:学习能力较差:自觉性,自主性较差。

这种习惯会对学习产生很大的影响。

2、学习方法:有些学生学习方法不对路。

虽然说时间花费很多,但效果不时最佳的:学习方法很重要,要养成良好的学习方法,才能有所上升。

【教学目标】:1、了解定义、命题、真命题、假命题、定理的含义,会区分命题的条件(题设)和结论:奠定推理论证的基础;2、初步体会合理化思想:使学生明确什么定理及其意义。

【重点难点】:1、重点:定义、命题、公理、定理的概念;2、难点:判定什么定义、命题、定理、公理,及找出命题的题设和结论。

【教学过程】:一、创设问题情境引入情境1:小亮和小刚正在津津有味地阅读《我们爱科学》小亮:“哈!这个黑客终于被逮住了。

”小刚:“是的,现在英特网广泛运用于我们的生活中,给我带来了方便:但……”坐在旁边的两个人一边听着他的谈话,一边也在悄悄议论着。

“这个黑客是个小偷吗?”“可能是喜欢穿黑衣服的贼。

”“那因特网肯定是一张很大的网。

”“估计可能是英国造的特殊的网。

”你听完这则片段故事:有何想法?同学们各抒己见后:老师给予同学的各种回答评价后,发表自己的看法:在日常生活中:我们会遇到许多概念,假如不对这些概念下定义,别人就无法理解这引起概念,以致无法进行正常的交流。

同样:在数学学习中:要进行严格的论证,也必须首先对所涉及的概念下定义。

本节我们就一起来学习--624.3命题与证明的第一节定义、命题与定理。

练习:课本P93练习1二、共同探索获得新知1、试一试:得出定义你是如何找出图中的平行四边形呢?“有两组对边分别平行的四边形叫做平行四边形”这句话说明平行四边形的含义以及区别于其他图形的特征。

六大定理互相证明总结

六大定理互相证明总结

六大定理的相互证明总结XXX 学号数学科学学院 数学与应用数学专业 班级指导老师 XXX摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明.关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理1 确界定理1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b .显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞→n n n a b ∴βα=即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1]证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界{}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y .由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,有N n y y ≥,从而n y >εβ-.也就是说:当n >N 时,有 n y -≤β0<ε 所以 β→n y 2 单调有界原理2.1 单调有界原理 单调有界数列有极限. 2.2 单调有界原理证明致密性定理在证明定理之前,我们要先证明一个引理:任意一个数列{}n x 必存在单调子数列. 证明:⑴若{}n x 中存在递增子序列{}k n x ,则引理已证明;⑵若{}n x 中无递增子序列,那么∃1n >0,使n >1n ,恒有1n x >n x .同样在{}n x (n >1n )中也无递增子序列.于是又存在2n >0,使2n >n ,恒有2n x <n x <1n x .如此无限进行下去便可得到一严格递减子序列{}k n x . 引理得证.下面证明定理:由引理知,有界数列必有有界单调子数列.又由单调有界原理知,该有界单调子数列必有极限,即该子数列是收敛的.故有界数列必有收敛子列. 2.3 单调有界原理证明区间套定理[1]由定理的条件立即知道{}n a 是单调增加有上界的数列,{}n b 是单调递减有下界的数列.根据定理,则n n a ∞→lim 存在,且极限等于{}n a 的上确界.同样,n n b ∞→lim 也存在,且极限等于{}n b 的下确界.亦即对任何正整数k ,有n n k n n k b b a a ∞→∞→≥≤lim ,lim (*)由定理的另一条件: ()0lim =-∞→n n n a b ,并且由于已知{}n a 及{}n b 的极限都存在,则有()0lim lim lim =-=-∞→∞→∞→n n n n n n n a b a b .从而证明了两个极限相等,且设ξ是它们的同一极限.于是定理前一部分的结果即已证得.剩下要证的是:ξ是所有区间的唯一公共点.由(*)的两个不等式,即有 n k b a ≤≤ξ(3,2,1=k …)也就是ξ是所有区间的一个公共点.现在要证明ξ是所有区间的唯一公共点.设除点ξ外,所设区间列还有另外一个公共点'ξ,且ξξ≠'.由于n n b a ≤≤',ξξ(3,2,1=n …),故有ξξ-≥-'n n a b (3,2,1=n …) 由数列极限的性质知道:()ξξ-≥-∞→'lim n n n a b由于()0lim =-∞→n n n a b ,故有0'≤-ξξ从而有ξξ='.到此定理的全部结果都已得证. 3 区间套定理3.1 区间套定理 设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b ,则区间的端点所成两数列{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点.3.2 区间套定理证明单调有界原理 证明:设数列{}n x 递增有上界.取闭区间[]11,b a ,使1a 不是数列{}n x 的上界,1b 是数列{}n x 的上界.显然在闭区间[]11,b a 内含有数列{}n x 的无穷多项,而在[]11,b a 外仅含有数列{}n x 的有限项. 对分[]11,b a ,取[]22,b a ,使其具有[]11,b a 的性质.故在闭区间[]22,b a 内含有数列{}n x 的无穷多项,而在[]22,b a 外仅含有数列{}n x 的有限项.以此方法,得区间列{[,n a ]n b }.由区间套定理,ξ是所有区间的唯一公共点.显然,在ξ的任何邻域内有数列{}n x 的无穷多项,即ε∀>0,∃*N N ∈,当n >N 时,有ξ-n x <ε. 所以ξ=∞→n n x lim 定理得证.3.3 区间套定理证明致密性定理[1]证明:设{}n y 为有界数列,即存在两个数b a ,,使b y a n ≤≤.等分区间[]b a ,为两个区间,则至少有一个区间含有{}n y 中的无穷个数.把这个区间记为[]11,b a ,如果两个区间都含有无穷个n y ,则任取其一作为[]11,b a .再等分区间[]11,b a 为两半,记含有无穷个n y 的区间为[]22,b a .这个分割手续可以继续不断的进行下去,则得到一个区间列{[,n a ]n b },这个区间列显然适合下面两个条件:(1)[][][]⊃⊃⊃2211,,,b a b a b a … (2)02→-=-nn n ab a b 于是由区间套定理,必存在唯一点[]b a ,∈ξ使ξξ→→n n b a ,,且[]k k b a ,∈ξ(3,2,1=k …).每一[]k k b a ,中均含有{}n y 的无穷个元素.在[]11,b a 中任取{}n y 的一项,记为1n y ,即{}n y 的第1n 项.由于[]22,b a 也含有无穷个n y ,则它必含有1n y 以后的无穷多个数,在这些数中任取其一,记为2n y ,则1n <2n .继续在每一[]k k b a ,中都这样取出一个数k n y ,即得{}n y 的一个子列{}k n y ,其中1n <2n <…<k n <…,且k n k b y a k ≤≤.令∞→k ,由于,,ξξ→→k k b a 故ξ→k n y .这就是定理所要的结果.4 致密性定理4.1 致密性定理 又称魏尔斯特拉斯定理,任一有界数列必有收敛子列. 4.2 致密性定理证明单调有界原理证明:不妨设{}n x 单调递增且有界,根据致密性定理有收敛子列{}k n x . 令a x k n k =∞→lim .于是,对ε∀>0,∃0k ,当k >0k 时,有a x k n -<ε (*) 由于{}n x 单调递增,显然恒有a x n ≤(3,2,1=n …). 由此(*)式可改成0k n x a -≤<ε (k >0k ) 取0k n N =,当n >N 时有 k n n x a x a -≤-≤0<ε 所以 a x n n =∞→lim4.3 致密性定理证明柯西收敛原理[1] 证明:首先证明条件的必要性:设a x n →,则对任意给定ε>0,有一正整数N ,当k >N 时,有 a x k -<2ε从而当n m ,>N 时,有m n m n x a a x x x -+-≤-<2ε+2ε=ε 其次证明条件的充分性:首先,证明满足条件的任何数列必有界.从所设条件,取ε=1,必有一正整数0N ,当n m ,>0N 时,有m n x x -<1特别地,当n >0N 且10+=N m 时,有 10+-N n x x <1 从而当n >0N 时,有 1100+++-≤N N n n x x x x <1+10+N x这就证明了{}n x 的有界性.由致密性定理,必有收敛子列{}k n x ,设a x k n k =∞→lim .根据子列收敛定义,对任意给定的ε>0,必有正整数K ,当k >K 时,有 a x n -<ε取一正整数()1,1m ax 0++=N K k .于是0k >K ,且11+≥≥+N n n N k o >N .因此,当n >N 时,由已知条件有0k n n x x -<ε,所以a x x x a x k k n n n n -+-≤-00<ε+ε=2ε即 a x n n =∞→lim5 柯西收敛原理5.1 柯西收敛原理 数列{}n x 有极限的必要与充分条件是:对任意给定的ε>0,有正整数N ,当m , n >N 时,有m n x x -<ε. 5.2 柯西收敛原理证明单调有界原理证明:反证法,设{}n x 为一递增且有上界M 的数列.假设其没有极限,则用柯西收敛原理表达就是ε∃>0,对*N N ∈∀,当n m ,>N 时,有 m n x x -ε≥ 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x . 又由于数列{}n x 为一递增的数列,所以1212n n n n x x x x -=-1≥ 取1=ε,必有一正整数1N ,当32,n n >1N 时,有123≥-n n x x 取1=ε,必有一正整数1N ,当43,n n >1N 时,有134≥-n n x x …………… …………… …………… 取1=ε,必有一正整数1N ,当1,+k k n n >1N 时,有11≥-+k k n n x x 将以上式子相加,得11+≥+k x k n ∞→ (∞→k ) 与数列{}n x 有上界M 矛盾,假设不成立. 即,单调有界数列有极限. 5.3 柯西收敛原理证明致密性定理证明:反证法,设{}n x 为一有上界M 的数列. 假设其没有收敛子列.由子列收敛的定义,则ε∃>0,对*N N ∈∀,当k k n n ,1+>N 时,有ε≥-+k k n n x x 1. 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x 取2=ε,必有一正整数2N ,当32,n n >2N 时,有223≥-n n x x 取3=ε,必有一正整数3N ,当43,n n >3N 时,有334≥-n n x x…………… …………… …………… 取k =ε,必有一正整数k N ,当1,+k k n n >k N 时,有k x x k k n n ≥-+1 显然与数列{}n x 有上界M 矛盾,假设不成立. 即,任一有界数列必有收敛子列. 6 有限覆盖定理6.1有限覆盖定理 若开区间所组成的区间集E 覆盖一个闭区间[a ,b ],则总可以从E 中选出有限个区间,使这有限个区间覆盖[a ,b ]. 6.2 有限覆盖定理证明确界定理证明:在这里我们只说明定理的上确界部分.设不为空集的区间E ⊂R ,∀x ∈E ,有x ≤M ,任取一点0x ∈E ,假设E 无上确界,那么∀x ∈[0x ,M ]:ⅰ)当x 为E 的上界时,必有更小的上界1x <x ,因而x 存在一开邻域∆x ,其中每一点均为E 的上界,称其为第一类区间;ⅱ)当x 不是E 的上界时,则有2x ∈E 使2x >x ,那么x 存在一开邻域∆x ,其中每点均不是E 的上界,称其为第二类区间.∴ 当x 取遍[0x ,M ]上每一点找出一个邻域∆x .显然∆x 不是第一类区间就是第二类区间.这些邻域组成闭区间[0x ,M ]的一个开覆盖,由有限覆盖定理,必存在有限子区间覆盖[0x ,M ].显然M 所在的开区间应为第一类区间,与其邻接的开区间∆x 有公共点.所以∀x ∈∆x ,x 均为E 的上界.而与∆x 相邻接的开区间∆'x 有公共点,所以∀x ∈∆'x ,x 均为E 的上界. 依此类推,0x 所在的开区间也是第一类区间,则0x 为E 的上界. 又 0x E ∈,∴E 为常数集.由此矛盾引出. 得证.同理,E 有下确界.6.3 有限覆盖定理证明致密性定理证明:设{}n x 是一有界数列,现在证明{}n x 有收敛子列.(1)如果{}n x 仅由有限个数组成,那么至少有一个数ξ要重复无限多次,即ξ===21n n x x …==kn x … 因而子列{}kn x 收敛于ξ.(2)如果{}n x 是由无穷多个数组成,由有界性知,存在闭区间[]b a ,,使对一切自然数n 都有a <n x <b在[]b a ,内至少存在一点0x ,使对于任意的正数δ,在()δδ+-00,x x 内都含有{}n x 中无穷多个数.事实上,倘若不然,就是说对于[]b a ,中每一点x ,都有x δ>0,在()x x x x δδ+-,内,仅有{}n x 中的有限个数.考虑所有这样的开区间所成之集:{=μ(,x x δ-)x x δ+},μ完全覆盖了闭区间[]b a ,,依有限覆盖定理,存在μ中的有限多个区间.()11111,x x x x δδ+-=∆,…,()n n x n x n n x x δδ+-=∆,,他们也覆盖了[]b a ,,并且在每一个i ∆(,2,1=i …,n )中都只含{}n x 中的有限多个数.因此{}n x 也最多是由有限个数组成,这与假设矛盾. 于是,对于k δ=k1(,3,2,1=k …),于()k k x x δδ+-00,内取{}n x 中无穷多个点,就得到{}n x 的子列{}k n x 满足:0x x k n -<kk 1=δ(,3,2,1=k …)从而∞→k lim 01x x n =得证.总结:六大定理可以分为两类: ① 有限覆盖定理:反映区间上的整体性质; ② 其余五个:反映函数在一点上的性质.实数的六个基本定理在理论上很有用,在之后的闭区间上的函数的性质的证明上发挥着重要的作用.本文在写作过程中得到了XXX 老师的多次精心指导,在此表示感谢.参考文献:[1] 陈传璋 金福临 朱学炎 .《数学分析(上)》.高等教育出版社.1983.7。

实数完备性的六大基本定理的相互证明

实数完备性的六大基本定理的相互证明

1 确界原理非空有上(下)界数集,必有上(下)确界。

2 单调有界原理 任何单调有界数列必有极限。

3 区间套定理 若]},{[n n b a 是一个区间套, 则存在唯一一点ξ,使得 ,2,1],,[=∈n b a n n ξ。

4 Heine-Borel 有限覆盖定理 设],[b a 是一个闭区间,H 为],[b a 上的一个开覆盖,则在H 中存在有限个开区间,它构成],[b a 上的一个覆盖。

5 Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。

) 直线上的有解无限点集至少有一个聚点。

6 Cauchy 收敛准则数列}{n a 收敛⇔对任给的正数ε,总存在某一个自然数N ,使得N n m >∀,时,都有ε<-||n m a a 。

一.确界原理1.确界原理证明单调有界定理证 不妨设{ a n }为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n }.下面证明a 就是{ a n } 的极限. 事实上,任给ε> 0, 按上确界的定 义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n }的递增性,当n ≥ N时有a - ε < a N ≤ a n .另一方面,由于a 是{ a n }的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当 n ≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理 证明:1设 [an,bn] 是一个闭区间套,即满足: 1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an =我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设sup S =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an ≤ξ,(n =1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)唯一性: 假设还有另外一点R ∈'ξ且],[n n b a ∈'ξ,则||||n n b a -≤'-ξξ,0→ 即ξξ'=。

六个等价定理

六个等价定理

六个等价定理等价定理在数学上,等价表示一个集合或空间中两个集合之间可以交换某些量。

在科学上,等价表示一种可逆关系。

本文将为大家介绍六个等价定理。

六个等价定理最常见的形式是: 1。

加法与乘法运算满足等价关系。

2。

两个函数满足等价关系。

即有意义,则必有其逆也有意义。

1。

加法与乘法运算满足等价关系。

(1).(有意义)A+B=B+A(2).(逆定理)如果集合A中所有元素都有意义,那么它们的并集也有意义。

(3).乘法运算满足交换律。

(4).乘法运算满足结合律。

(5).乘法运算满足分配律。

(6).一个集合中任何两个元素都有意义,那么这个集合也必有意义。

2。

两个函数满足等价关系。

(1).对于任何连续函数f:A→B,有: f(A)=f(B)(2).如果两个函数f和g满足等价关系,则:f(A)g(B)当且仅当f(A)g(B)注:以上等价关系仅适用于连续函数的情况。

3。

两条直线相交,则交点为原来两条直线等价的条件不成立。

4。

如果集合A中有无穷多个元素,那么它们的并集A'=A。

3。

如果两个函数满足等价关系,则: f(A)g(B)=f(A)h(B)(在上面的第二定理中出现了2×3=6, 2×2=4, 2×1=2,故该条等价关系成立。

)如果以上三个定理出现在同一集合中,即:(1)a×b=b×a(2)ab=ac(3)abc=acb(注:这种情况下出现了两个并集,故等价关系也成立。

)另外,要证明:(1)ab=ac这一条等价关系成立,需要用到第二定理和结合律,证明较复杂。

但从定理2可以看出,函数a与b 之间有无穷多个对应的函数h(ab),每一个h(ab)都是有意义的。

而函数h(ab),除了与函数a有无穷多个对应外,还与它的反函数g(ab)有无穷多个对应,每一个g(ab)都有意义。

即:(2)ab=ac有意义。

6。

费马定理、欧拉定理、威尔逊定理(讲稿)

费马定理、欧拉定理、威尔逊定理(讲稿)

欧拉定理、费马定理、威尔逊定理1、欧拉函数:φ(m )是1, 2, …, m 中与m 互质的个数,称为欧拉函数.①欧拉函数值的计算公式:若m =p 1α1p 2α2…p n αn , 则φ(m )=m (1-1p 1)(1-1p 2)…(1-1p n) 例如,30=2·3·5,则.8)511)(311)(211(30)30(=---=ϕ②若p 为素数,则1()1,()(1),k k p p p p p ϕϕ-=-=-若p 为合数,则()2,p p ϕ≤-③不超过n 且与n 互质的所有正整数的和为1()2n n ϕ;④若(,)1()()(),a b ab a b ϕϕϕ=⇒= 若()()a b a b ϕϕ⇒⑤设d 为n 的正约数,则不大于n 且与n 有最大公因数d 的正整数个数为()ndϕ, 同时()()d nd nn d n dϕϕ==∑∑;例1、证明:φ(n )=14n 不可能成立.不可能成立假设不成立上式不成立,左边是一个奇数,上式右边是一个偶数,又即:即:为奇质数,则:设成立,则证:若不可能成立;【练习】证明:n p p p p p p p p p p p p p p p p p p p p p p p p p p p n p p p p p p n n n n k k k k k kk k k k k k k k k k 41)4()1()1)(1(4)1()1)(1(22)1()1)(1(2241)(,,),2(,2|441)4(41)4(212121112112122211212121212121212121=∴∴∴---=---=---==≥===----ϕϕαϕϕααααααααααααααααααααΘΛΛΛΛΛΛΛΛΛΛ例2、证明:数列{2n -3}中有一个无穷子数列,其中任意两项互质.}{}32{1,,,1),(mod 1321),(mod 122)(32,,,,}32{}32{21211)()((()(1)(12121212121i n k k i u u u i u u u u u u u u u k k n n u k u u u u ki u ki u x u u u u k k k k k 互素的无穷子数列中一定有一个任意两项数列依此方法一直下去项两两互素的子数列,是、数列=理有:是欧拉函数,由欧拉定其中作项是两两互素的,记为中已有证明:设数列其中任意两项互素;中有一个无穷子数列,、证明:数列例))-+∴≤≤-≡-∴≤≤≡-=--++++ΛΛΛΛΛΛϕϕϕϕϕϕϕ例3、已知p 为质数,在1, 2, …, p α中有多少个数与p α互质?并求φ(p α). 直接用性质②例4 将与105互素的所有正整数从小到大排成数列,求出这个数列的第2010项.解:1~105的所有正整数中共有(105)(3)(5)(7)48ϕϕϕϕ==个与105互素,他们从小到排列为:12345481,2,4,8,11,,104a a a a a a ======L . 对于任一的n a ,由带余除法存在唯一的q , r 使得 105,0,0105n a q r q r =+≥≤<,由(a n ,105)=1,可得(r ,105)=1,即1248{,,,}r a a a ∈L .反之,对于任意固定非负整数q , 1248{,,,}r a a a ∈L 有(105q +r ,105)=1,于是105q +r 都是数列的项, 从而存在正整数n ,使得105n a q r =+. 因此数列{}n a 仅由105(1,2,,48)n q a n +=L 的数由小到大排列而成的.因为2010=48*41+42,所以有2010424842201010541,104,89,4394a a a a a =⨯+===而由求得所以. 2、(欧拉定理) 若(a , m )=1,则a φ(m )≡1(mod m ).证明:设r 1,r 2,…,r φ(m )是模m 的简化剩余系,又∵(a , m )=1,∴a ·r 1,a ·r 2,…,a ·r φ(m )是模m 的简化剩余系, ∴a ·r 1×a ·r 2×…×a ·r φ(m )≡r 1×r 2×…×r φ(m )(mod m ),又∵(r 1·r 2·…·r φ(m ), m )=1,∴a φ(m )≡1(mod m ). 注:这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题. 应用:设(a , m )=1, c 是使得a c ≡1(mod m )的最小正整数, 则c |φ(m ).2、(定义1) 设m >1是一个固定的整数, a 是与m 互质的整数,则存在整数k (1≤k ≤m ),使a k ≡1(mod m ), 我们称具有这一性质的最小正整数(仍记为k )称为a 模m 的阶,由a 模m 的阶的定义,可得如下性质: ⑴ 设(a , m )=1,k 是a 模m 的阶,u , v 是任意整数,则a u ≡a v (mod m )的充要条件是u ≡v (mod k ), 特别地,a u ≡1 (mod m )的充要条件是k |u 证明:充分性显然.必要性:设,u l u νν>=-,由(mod )ua a m ν≡及(,)1a m =知1(mod )la m ≡. 用带余除法,,0,l kq r r k =+≤<故1(mod )kqra a m ⋅≡,∴1(mod )ra m ≡,由k 的定义知,必须0r =,所以(mod ).u v k ≡⑵ 设(a , m )=1,k 是a 模m 的阶,则数列a , a 2, …, a k , a k +1,…是模m 的周期数列,最小正周期为k , 而k 个数a , a 2,…, a k 模m 互不同余.⑶ 设(a , m )=1,k 是a 模m 的阶,则k |φ(m ),特别地,若m 是素数p ,则a 模p 的阶整除p -1. (4) 设(a , p )=1, 则d 0是a 对于模p 的阶⇔0da ≡1(mod p ), 且1, a , …, a do −1对模p 两两不同余. 特别地, d o =φ(p )⇔1, a ,…, a φ(p )−1构成模p 的一个简化剩余系. 定理:若l 为a 对模m 的阶,s 为某一正整数,满足)(m od 1m a s≡,则s 必为l 的倍数. 例5、设a 和m 都是正整数,a >1. 证明:).1(|-ma m ϕ证明:实上,显然1-m a a 与互素,且1-m a a 模的阶是m ,所以由模阶的性质③导出).1(|-ma m ϕ 例6:设m , a ,b 都是正整数,m >1,则(.1)1,1),(-=--b a bam m m证明:记).1,1(--=bam m d 由于(a , b )|a 及(a , b )|b ,易知1|1),(--a b a m m及1|1),(--b b a m m ,故d mb a |1),(-, 另一方面设m 模d 的阶是k ,则由)(m od 1),(m od 1d m d m b a ≡≡推出,k |a 及k |b ,故k |(a ,b ). 因此.1|),(m od 1),(),(-≡b a b a m d d m 即综合两方面可知,.1),(-=b a md 证毕.3、(费尔马小定理) 若p 是素数,则a p ≡a (mod p ) 若另上条件(a ,p )=1,则a p −1≡1(mod p ) 证明:设p 为质数,若a 是p 的倍数,则)(m od 0p a a p≡≡.若a 不是p 的倍数,则1),(=p a 由欧拉定理得:)(mod 1,1)()(p ap p p ≡-=ϕϕ,)(mod ),(mod 11p a a p a p p ≡≡∴-,由此即得.4、(威尔逊定理) p 为质数 ⇔ (p -1)!≡-1 (mod p )证明:充分性:若p 为质数,当p =2,3时成立,当p >3时,令x ∈{1, 2, 3, …, p −1},则1),(=p x ,在x p x x )1(,,2,-Λ中,必然有一个数除以p 余1, 这是因为x p x x )1(,,2,-Λ则好是p 的一个剩余系去0. 从而对}1,,2,1{},1,2,1{-∈∃-∈∀p y p x ΛΛ,使得)(mod 1p xy ≡;若)(m od 21p xy xy ≡,1),(=p x ,则)(m od 0)(21p y y x ≡-,)(|21y y p -,这不可能. 故对于不同的}1,,2,1{,21-∈p y y Λ,有1xy ≡/)(m od 2p xy .即对于不同的x 对应于不同的y , 即1,,2,1-p Λ中数可两两配对,其积除以p 余1,然后有x ,使)(m od 12p x ≡,即与它自己配对, 这时)(m od 012p x ≡-,)(mod 0)1)(1(p x x ≡-+,∴1-=p x 或1=x .除1,1-=p x 外,别的数可两两配对,积除以p 余1.故)(mod 11)1()!1(p p p -≡⋅-≡-.必要性:若(p -1)!≡-1 (mod p ),假设p 不是质数,则p 有真约数d >1,故(p -1)!≡-1 (mod d ),另一方面,d <p ,故d |(p -1)!,从而(p -1)!≡0 (mod d ),矛盾! ∴p 为质数.5、算术基本定理:任何一个大于1的整数都可以分解成质数的乘积. 如果不考虑这些质因子的次序,则这种分解法是唯一的. 即对任一整数n >1,有n =p 1α1p 2α2…p k αk ,其中p 1<p 2<…<p k 均为素数, α1、α2、…、αk 都是正整数.①正整数d 是n 的约数⇔ d =p 1β1p 2β2…p k βk ,(0≤βi ≤αi , i =1, 2, …, k )② 由乘法原理可得:n 的正约数的个数为r (n )=(α1+1)(α2+1)…(αk +1) ③ n 的正约数的和为S (n )=(1+p 1+…+p 1α1)(1+p 2+…+p 2α2)…(1+p k +…+p k αk )④ n 的正约数的积为T (n )=1()2r n n⑤ n 为平方数的充要条件是:r (n )为奇数.(2) 判断质数的方法:设n 是大于2的整数,如果不大于n 的质数都不是n 的因子,则n 是质数. (3) n !的标准分解:设p 是不大于n 的质数,则n !中含质数p 的最高次幂为:).]([][][][)!(132+<≤++++=m m m p n p pnp n p n p n n P Λ 从而可以写出n !的标准分解式.例7、证明:当质数p ≥7时,240|p 4-1.1|2401|531653161|51|31),5(,1),3(16422)1)(1)(1(1111,1,1)1)(1)(1(1,72401744442242244-∴-⋅⋅--∴==⋅⋅++-=-+-++-++-=-∴≥-≥p p p p p p p p p p p p p p p p p p p p p p p 两两互素,则与,又费马小定理有:又整除=能被是相邻的偶数,则:和均为偶数,且又是奇数素数证:整除;能被时,、证明当素数例ΘΘΘΘ例8、求20052003被17除所得的余数.解:()2005200520052003171141414(mod17),=⨯+≡因为(17,14)1,=所以由费马小定理得16141(mod17),≡ 故()()()()()5420052005161255520031414143334312(mod17),⨯+≡≡≡≡-≡--≡--≡所以20052003被17除所得的余数是14.变式拓展:已知a 为正整数,a ≥2,且(a , 10)=1,求a 20的末两位数字.解:∵(a , 10)=1,∴a 为奇数,∴a 20=a φ(25)≡1(mod 25),又∵a 2≡1(mod 4)⇒ a 20≡1(mod 4), 又∵(25, 4)=1,∴a 20≡1(mod 100),∴a 20的末两位数字01.例9、证明:方程325y x =+无整数解.解:若y 是偶数,则8 |3y ,x 2≡3(mod 8)不可能. 故必有y 一定是奇数,从而x 是偶数.令x =2s ,y =2t +1得t t t s 36422232++=+, 知t 是偶数,令t =2j ,代入得s 2+1=j (16j 2+12j +3) 由(16j 2+12j +3)≡3(mod 4) 知存在4k +3型的奇素数p ,使得p |(16j 2+12j +3),从而p | s 2+1,即s 2≡-1(mod p ),有(s ,p )=1, 21212)1()(---≡p p s (mod p ),于是 1-p s ≡-1(mod p )与费尔马小定理矛盾.例10、 试证:对于每一个素数p ,总存在无穷多个正整数n ,使得p |2n -n.. 证明:若p =2,则n 为偶数时结论成立.若p >2,则(2,p )=1,由费尔马小定理2 p -1≡1(mod p ),故对于任意m ,有2 m (p −1)≡1(mod p ). ∴2 m (p −1)-m (p -1)≡1+m (mod p ),令1+m ≡0(mod p ),即m =kp -1, 则对于n =m (p -1)=(kp -1)(p -1)(k ∈N *),均有2 n -n 被p 整除例11、设a , b 为正整数,对任意的自然数n 有n na nb n ++,则a =b . 证明:假设a 与b 不相等. 考虑n =1有11a b ++,则a <b .设p 是一个大于b 的素数,设n 是满足条件的正整数:1(mod(1)),(mod ),n p n a p ≡-≡- 由孙子定理这样的n 是存在的,如 n =(a +1)(p -1)+1. 由费马定理(1)1(mod ),nk p a aa p -+=≡所以0(mod ),n a n p +≡也即,(mod )n n p b n bn ba p ++≡-再由费马定理,所以pb a -,矛盾. 例12、设p 是奇素数,证明:2 p -1的任一素因了具有形式x px ,12+是正整数.证明:设q 是2 p -1的任一素因子,则q ≠2. 设2模q 的阶是k ,则由)(m od 12q p≡知k |p ,故k =1或p (因p 是素数,这是能确定阶k 的主要因素).显然k ≠1,否则),(m od 121q ≡这不可能,因此k =p .由费马小定理)(mod 121q q ≡-推出.1|,1|--q p q k 即因p 、q 都是奇数,故q -1=2px (x 是个正整数).例13、设p 是大于5的素数, 求证:在数列1, 11, 111, …中有无穷多项是p 的倍数.证明: 因5p >是素数, 故(,10) 1.p =由费马小定理1101(mod ),p p -≡故对每一个正整数l 有()11010(mod ),l p p --≡ 而()()(){1111019999111,l p l p l p ----==⨯L L 123个个因()1(,9)1,101,l p p p -=- 故(){111 1.l p p -L 个例14、证明:若0(mod ),ppm n p +≡则20(mod ),ppm n p +≡这里p 是奇素数.证明:因p 是奇素数,故由费马定理得,(mod ),(mod ).ppm m p n n p ≡≡于是,(mod ).ppm n m n p +≡+ 故可由已知条件0(mod )ppm n p +≡得0(mod ).m n p +≡故存在整数k 使得,.m n pk n pk m +==- 因此()()()()()()()12122111210(mod ).p p p p p p p p p rp rrrp p ppm n m pk m pk C pk m C pk m Cpk m Cpk m p -----+=+-=-+++-++≡LL例15、(2004第36届加拿大奥林匹克) 设p 是奇质数,试证:∑-=-+≡11212)(mod 2)1(p k p p p p k例16、(第44届IMO ) 设p 是质数,试证:存在一个质数q ,使对任意整数n ,数n p −p 不是q 的倍数.例17、已知p是给定的质数,求最大正整数m满足:⑴1≤m≤p−1;⑵∑-=≡11) (modpkm p k.例18、(2006国家集训队测试题) 求所有的正整数对(a, n),使得n|(a+1)n−a n课外练习题:1、①证明:f (x )=15x 5+13x 3+715x 是一个整值多项式. ②求证:f (n )=15n 5-32n 2+1310n -1被3除余2.①则只需证=)(15x f x x x 75335++是15的倍数即可. 由3,5是素数及Fetmat 小定理得)5(mod 5x x ≡,)3(mod 3x x ≡,则)5(m od 07375335≡+≡++x x x x x ;)3(m od 0275335≡+≡++x x x x x而(3,5)=1,故)15(mod 075335≡++x x x ,即)(15x f 是15的倍数, 所以)(x f 是整数. 2、 证明:2730|n 13-n (n ∈N *))(|2730137532),(137532)(|2),(|3),(|5),(|7)(,)(,)(,)(,)()1)(1)(1)(1)(1()1)(1)(1()1)(1(),(|13),(,)(1375322730)(,|273043212433527162263366131313n f n f n f n f n f n f n f n n n f n n n f n n n f n n n f n n n n n n n n n n n n n n n n n n f N n n n n f N n n n 两两互素,故,,,,且均整除,,,,即由费马小定理可知:的因式都是故由于可知则由费马小定理,,若记=证明:【练习】证明:-=-=-=-=++-+++-=++-=+-=-∈-=⋅⋅⋅⋅∈-Θ3、 已知有正整数b a b a ab ba b a ++++的最大公约数不超过与是整数,求证:使得11,.证明:由于a +1b +b +1a =a 2+b 2+a +b ab……①,设(a , b )=d ,则d 2|a 2+b 2,显然d 2|ab ,由①得,d 2|a +b于是a +b ≥d 2,a +b ≥d ,即 (a , b )≤a +b .4、求最小的正整数k ,使得存在非负整数m ,n 满足k =19m -5n5、将与105互素的所有正整数从大到小排列,试求出这个数列的第1000项;法一:由105=3×5×7;故不超过105而与105互质的正整数有105×(1-13)(1-15)(1-17)=48个.1000=48×20+48-8, 105×20=2100. 而在不超过105的与105互质的数中第40个数是86. ∴ 所求数为2186. 法二:6.设n m ,为正整数,具有性质:等式(171,)(171,)k m k n -=-对所有的正整数k 成立. 证明:17rm n =,其中r 是某个整数.。

数学分析第四讲 实数系的6个定理的等价证明

数学分析第四讲 实数系的6个定理的等价证明
E中无穷多点,记为 [a1, b1]. 继续将[a1, b1]二等分,则至少一个含E无穷多点记为 [a2, b2]. 依次可得闭区间套{[ak , bk ]},满足下列条件:
(1) [ak1, bk1] [ak , bk ], k 1, 2,
(2)
lim
k
|
bk
ak
|
0
(3){[ak , bk ]}中每个区间都含有E的无穷多个点
由闭区间套定理存在唯一 [ak , bk ].
k 1
实数的连续不完备性讨论
根据
lim
n
an
lim
n
bn
,得到
0, N1 N * ,k N1 : ak
N2 N * ,k
N2
:
bk
0, N1 N * ,k N1 : ak +
N2 N * ,k N2 :
单调有 界定理
确界 定理
闭区间 套定理
柯西 收敛定理
列紧性 定理
有限覆 盖定理
聚点 定理
实数的连续不完备性讨论
定理:用闭区间套定理证明柯西收敛定理
证明充分性: 0, k N * ,n, m k : xm xn . 0, N k 1,m N : xm xN xN xm xN
用数列极限观点分析
实数集=有理数集+无理数集 有理数集在实数集稠密 无理数集在实数集稠密
著名数学家希尔伯特说:“无穷是人类最伟大的朋友,也是人类心 灵最宁静的敌人”说明极限是数学最重要的概念.
希尔伯特(David Hilbert, 1862-1943)德国数学家, 19世 纪和20世纪初最具影响力的数学家之一. 1900年在巴黎第二界国际 数学家大会上提出的23个数学问题(称希尔伯特问题),激发了整个 数学界的想象力. 现在这些问题约有一半已得到囿满解决. 其中第八 个问题,就是广为人知的“哥德巴赫猜想”他的杰出工作在整个数学 版图上留下了巨大显赫的名字:希尔伯特空间,希尔伯特丌等式, 希尔伯特算子,被尊为数学世界的亚历山大.

关于实数连续性的6个基本定理的互证

关于实数连续性的6个基本定理的互证

{
∴∀ε > 0,∃N > 0,当n > N时, xn − β < ε ∴ lim xn = β
n →∞
5、确界定理证明有限覆盖定理 证明:设 E 是闭区间[ a , b ]的一个覆盖. 定义数集 A={ x ∈ [a , b ] |区间[ a , x ]在 E 中存在有限子覆盖} 从区间的左端点 x
0 0
n →∞
5、单调有界证明有限覆盖定理
证明: 假设某一闭区间 [ a, b ] 的某个开覆盖 E 的有限个区间覆盖, 等分 [ a, b ] 为 两个部分区间,则至少有一个部分区间不能被 E 的有限个区间覆盖,把这个区 间记为 [ a1 , b1 ] ,再等分 [ a1 , b1 ] ,记不能被 E 的有限个区间覆盖的那个部分区间为
1
a n2 …… a nk ,满足 n1
< n2 < ......nk < ...... ,那么我们就已经得到一个单调下降
的子列 {an } . ②数列 {an } 只有有穷多项具有性质 M,那么 ∃ N ,当 n
1
N ,有 an 不具有
性质 M, 即 ∃i > n, 有an < ai , 从中任取一项记为 an , 因为它不具有性质 M, ∴ ∃n2 > n1 , 使an1 < an2 ,……,如此继续下去,我们得到一子列 ank 单调
∴ {x n } 存在收敛子数列.定理证完
4、确界定理证明柯西收敛原则. 证明:首先证明基本列必有界, 取E<1,必有一正整数 ,当 m,n> N 0 时,有
xm − xn < 1 ,特别的当 n > N 0且m = N 0 + 1 时,有 xn − xN0 +1 < 1

实数完备性的六大基本定理的相互证明

实数完备性的六大基本定理的相互证明

1确界原理非空有上(下)界数集,必有上(下)确界。

2单调有界原理任何单调有界数列必有极限。

3区间套定理若{[a n , b n ]}ξ∈[an , bn], n = 1,2,。

是一个区间套, 则存在唯一一点ξ,使得4Heine-Borel 有限覆盖定理设[a,b] 是一个闭区间,H为[a,b] 上的一个开覆盖,则在H 中存在有限个开区间,它构成[a,b]上的一个覆盖。

5Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。

)直线上的有解无限点集至少有一个聚点。

6Cauchy 收敛准则数列{a n }收敛⇔对任给的正数ε,总存在某一个自然数N ,使得∀m, n >N 时,都有| am -an|<ε。

一.确界原理1.确界原理证明单调有界定理证不妨设{ a n}为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n}.下面证明a 就是{ a n} 的极限. 事实上,任给ε> 0, 按上确界的定义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n}的递增性,当n≥ N时有a - ε < a N ≤ a n.另一方面,由于a 是{ a n}的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当n≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理证明:1设[an,bn]是一个闭区间套,即满足:1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an=我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n=1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设supS=ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an≤ξ,(n=1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn.事实上,因为对一切自然数n,bn都是S的上界,而上确界是上界中最小者,因此必有ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n=1,2,⋯)唯一性: 假设还有另外一点ξ'∈R 且ξ'∈[a n , b n ] ,则| ξ-ξ'|≤| a n -b n | → 0,即ξ=ξ'。

实数系基本定理等价性的完全互证_刘利刚

实数系基本定理等价性的完全互证_刘利刚

第38卷第24期2008年12月数学的实践与认识M AT HEM A TICS IN PRACTICE AND T HEORY V o l.38 No.24 D ecem.,2008 教学园地实数系基本定理等价性的完全互证刘利刚(浙江大学数学系,浙江杭州 310027)摘要: 综合给出了实数系六个基本定理的等价性的完全互证方法,并归纳了各种证明方法的规律,旨在把抽象的证明转化为容易掌握的基本方法.关键词: 实数系;连续性;等价;极限收稿日期:2005-06-10实数系基本定理是数学分析中重要组成部分,是分析引论中极限理论的基础,也称为实数系的连续性定理.能够反映实数连续性的定理很多,它们是彼此等价的.现有的教材都是按照某一顺序将这些定理进行一次循环证明就验证了它们的等价性[1-2].虽然不同的教材对于循环证明的顺序有所不同,但每一次循环证明看起来都似乎没有关联,并没有综合归纳其中的方法技巧.这么多相互独立的证明使得不少学生都感到数学分析中这部分内容太抽象,难以理解.因而当遇到一个教材中没有给出的2个定理之间的等价性证明时就无从下手.为此,在讲述这些定理的时候,我们把这些定理的相互证明详细地整理出来,并且归纳给出了这些定理的完全互证方法与规律,使学生在学习这部分内容时不再感到无所适从.我们使用的教材[1]中给出的实数系的六个基本定理及其描述为:1)确界存在定理(pp .12):上(下)有界的非空数集必存在唯一上(下)确界.2)递增(减)有界数列必有极限(pp.34).3)闭区间套定理(pp.41):设I 1,I 2,…,I n ,…是一串有界闭区间,I 1=I 2=…=I n =…,且I n 的长度ûI n û→0,称{I n }为闭区间套.则闭区间套{I n }的交∩∞n =1I n 必不空且为单点集.4)Bo lzano -Weierstrass 定理(pp.44):有界数列必有收敛子列.5)Cauchy 收敛准则(pp.299):数列{x n }收敛Z {x n }是基本数列.6)有限开覆盖定理(pp.308):若开区间族{O A }覆盖了有界闭区间[a ,b ],则从{O A }中必可挑出有限个开区间O A 1,O A 2,…,O A n 同样覆盖了[a ,b ]:[a ,b ]<O A 1∪O A 2∪…∪O A n .在证明之前,我们首先必须要理解这六个定理的每一个在说些什么,只要概念清楚了,并且理解其方法,证明并不难.定理1)~5)属于同一类型,它们都指出,在某一条件下,便有某种“点”存在,这种点分别是确界(点)(定理1)),极限点(定理2)5)),公共点(定理3)),子列的极限点(定理4)).定理6))是属于另一种类型,它是前5个定理的逆否形式.1 教材中的证明教材[1]中完成的证明如图1所示.另外,教材中给出练习的有:图1 教材[1]中完成的基本定理之间的证明4)]2)pp.453)]1)pp.471)]6)pp.3096)]1)pp .3095)]1)pp.309我们首先回顾一下教材中给出的证明过程[1].分析:单调有界数列必收敛,事实上就是收敛到其确界.有了这个理解后,就很容易利用确界存在定理1)来证明2)了:只要将确界找到,证明此确界就是数列极限即可.证明 不妨设数列{x n }单调递增.由于{x n }有界,由1)知它的确界存在且有限,设为B .由上确界定义,B 是{x n }的上界,即P n ∈N ,x n F B ;且P E >0,B -E 不是上界,即v N ,使得x N >B -E .由于{x n }单调递增,所以P n >N ,B E x n E x N >B -E ,即ûx n -B û<E .由极限定义可知,lim n →∞x n =B ,即{x n }收敛.2)]3)pp.41分析:由于闭区间套的每个区间的左端点单调递增有上界,右端点单调递减有下界,即可得它们都收敛,然后利用闭区间套的长度趋向零证明这两个极限相等,为所有闭区间的公共点,并且唯一性也易得证.证明 设I n =[a n ,b n ],a n F b n ,由I n +1<I n 可知a n F a n +1,b n +1F b n ,由此可见a n ↑且a n F b 1,b n ↓且b n E a 1,因此N =lim n →∞a n ,G =lim n →∞b n 都存在,并且N 为{a n }的上确界,G 为{b n }的下确界.因为ûI n û=b n -a n →0,故G =lim n →∞a n +lim n →∞(b n -a n )=N ,这说明N =G ∈I n ,从而.至此已证明∩∞n =1I n 非空.再由∩∞n =1I n <I n 及ûI n û→0可知集合∩∞n =1I n 至多包含一点.3)]4)pp .44分析:按二等分取闭区间,每个闭区间含有数列的无穷多项.由闭区间套定理套住的唯一点就是某个子列的极限.证明 设{x n }是有界数列,则存在闭区间I 1使得P x n ∈I 1.将I 1等分为左右两个闭区间,则至少有一个半区间包含{x n }中的无穷多项,取为I 2.同样的办法将等分后取出I 3,…最终得到一闭区间套I 1=I 2=…=I n =…,ûI n û→0,每个I n 中包含{x n }中的无穷多项.根据闭区间套定理,存在唯一点∩∞n =1I n ={N }.下面构造收敛到N 的子列:任取x n 1∈I 1,由于I 2包含{x n }中的无穷多项,故必能在I 2取出n 1项以后的项n 2,即x n 2∈I 2,n 2>n 1.类24724期刘利刚:实数系基本定理等价性的完全互证似地,v x n 3∈I 3,n 3>n 2,…最后得到一子列{x n k },x n k ∈I k ,从ûN -x n k ûF ûI n û→0 (k →∞)得x n k →N (k →∞).{x n k }就是要找的子列.4)]5)pp.299分析:首先易知Cauchy 数列有界,从而存在收敛子列,再证明此收敛子列的极限就是原数列的极限.证明 易知Cauchy 基本数列有界,由Bolzano -Weierstrass 定理,{x n }存在收敛的子列{x n k },设其极限为N .由{x n }是Cauchy 基本数列,故P E >0,v N 0,P n E N 0,ûx n -x N 0û<E ;由x n k →N (k →∞),对于上述的E ,v K ,P k E K ,ûx n k -N û<E ;取N =max (n k +1,N 0+1),当n >N 时,取k 0>K 使得n k 0>N ,ûx n -N ûF ûx n -x n k 0û+ûx n k 0-N û<2E , 这说明x n →N (n →∞)3)]6)pp.308分析:用闭区间套定理反证.取不存在开覆盖的半区间构成闭区间套,由此易得矛盾.证明 反证法.假设[a ,b ]不存在有限开覆盖,则将[a ,b ]等分后至少有一个半区间也不存在有限开覆盖,记为I 1;同样将I 1等分后至少有一个半区间也不存在有限开覆盖,记为I 2;…这样得到一闭区间套I 1=I 2=…=I n =…,ûI n û→0,每个I n 都不存在有限开覆盖.设∩∞n =1I n ={N },由于N ∈[a ,b ],必v O N ,使得N ∈O N .由于ûI n û→0,故n 充分大时,I n <O N ,这与I n 不存在有限开覆盖矛盾.现在给出教材中给出的习题的证明.4)]2)pp .45分析:由有界性知数列有收敛子列,由单调性可知数列收敛到此子列的极限.证明 不妨设数列{x n }单调递增.由于{x n }有上界,下界即为x 1,由Bo lzano -Weierstrass 定理,{x n }存在收敛的子列{x n k },设其极限为N.于是P E >0,v K ,P k E K ,ûx n k -N û<E由于{x n }也是单调递增数列,N 必为{x n k }的上界,于是对上述的E ,当n >n K ,ûx n -N û=N -x n <N -x n K <E ,这说明x n →N (n →∞).3)]1)pp.47分析:按二等分取闭区间,使每个闭区间含有数集的确界.由闭区间套定理套住的唯一点就是数集的确界.证明 只证上确界的情况.假设非空集合A 有上界M ,取a 1∈A ,b 1=M ,则a 1F b 1.记I 1=[a 1,b 1].令c =a 1+b 12,若c 为A 的上界,则取a 2=a 1,b 2=c ,否则取a 2=c ,b 2=b 1,显然都有a 2F b 2,且A ∩[a 2,b 2]≠<.记I 2=[a 2,b 2].以此类推,得到闭区间套I 1=I 2=…=I n =…,ûI n û→0,每个I n 与A 的交非空.由闭区间套定理,存在唯一的N ,∩∞n =1I n 248数 学 的 实 践 与 认 识38卷={N }.由于b n →N ,且P G <N ,v I k ,a k >G ,而I k ∩A ≠<,必v x ∈A ,x E a k ,从而x E G ,即G 不是A 的上界.由此得知N 为A 的上确界.1)]6)pp .309分析:这个技巧在于取能被有限覆盖的闭区间右端点的上确界,证明此上确界就是整个区间的右端点.证明 设{O A }为闭区间[a ,b ]的开覆盖.定义A ={x û[a ,x ]能被有限覆盖,x ∈[a ,b ]}.由于a ∈A ,可知A 是有界非空集,由确界存在定理,知B =sup A 存在.显然B F b ,若B <b ,设B ∈O A 0,则闭有[B ,B ′]<O A 0,且B ′<b ,可知[a ,B ′]也能被有限覆盖,从而B ′∈A ,这与B =sup A 矛盾.5)]1)pp.309分析:事实上,由5),2),4)证明1)的思路是一样的,类似于由3)证1)的方法,构造闭区间套,然后不是直接利用闭区间套定理,而是来证明数列{a n }和{b n }的收敛性即可.证明 5)]1):证明{a n },{b n }为Cauchy 基本数列,得知它们都收敛.2)]1):由{a n },{b n }为单调有界数列得知它们收敛.4)]1):由{a n },{b n }为有界数列,得知它们存在收敛子列,然后再利用单调性得出它们都收敛(即利用4)]2)的方法).2 闭区间套定理与其他定理互证的方法用闭区间套定理证明问题时,关键是要构造一个满足一定条件的区间套序列,然后由区间套定理套出一个公共点,这个点往往就是满足问题要求的点.在构造闭区间套序列时,常采用二等分法,其过程一般为:Step 1 先考虑一个区间[a 1,b 1],使它具有某种性质P ;Step 2 然后把[a 1,b 1]二等分,证明至少有一个子区间里具有性质P ,记这个子区间为[a 2,b 2];Step 3 不断重复这一步骤,于是得到一个区间列{[a n ,b n ]},它满足条件:(i)[a n ,b n ]=[a n +1,b n +1],n =1,2,…(ii)lim n →∞(b n -a n )=lim n →∞b 1-a 12n -1=0(iii )每一个区间[a n ,b n ]都具有性质P .由3)证明其他定理:3)]1),3)]6)已在上面给出.3)]2),3)]4),3)]5)证明类似于3)]1)的证明,所不同的是要证明唯一公共点N 就是数列的极限(或某子列的极限).至于由其他定理来证明3),2)]3),6)]3)已给出,而1)]3),4)]3),5)]3)的过程都类似于2)]3)的过程,只是分别利用1),4),5)去证明{a n }和{b n }的确界,子列的极限,或极限就是公共点.24924期刘利刚:实数系基本定理等价性的完全互证3 有限开覆盖定理与其他定理互证的方法不论用6)来证明前面5个定理,还是由前面5个定理来证明6),都是用反证法.一般地,利用定理6)来证明闭区间[a ,b ]具有某种性质P ,其一般步骤为:Step 1 证明对于[a ,b ]中的每一点x ,都有一个邻域O D (x ),而此邻域具有性质P ,所有这样的邻域构成闭区间[a ,b ]的一个开覆盖;Step 2 根据有限开覆盖定理,可从中选取有限个O D 1(x 1),O D 2(x 2),…,O D k (x k )来覆盖[a ,b ];Step 3 利用O D i (x i )(i =1,2,…,n )具有的性质P ,证明闭区间[a ,b ]也具有这种性质P .6)]1)pp .309分析:由上确界的否定可知,某数不是上确界,则必有其一邻域都是上界或都不是上界,这些邻域构成开覆盖,若能选取有限多个则得到矛盾.B 是有界数集A 的上确界Z (i )B 是上界,且(ii )任何小于B 的数都不是上界.其否定为:B 是有界数集A 的上确界Z (i)B 不是上界,或(ii)还有比B 小的数成为上界证明 用反证法.假设有界数集A 没有上确界,设其上界为M ,任取a 1,a 2∈A ,不妨设a 1<a 2(若数集A 是单点集,则证明是平凡的),取a =a 1.考虑闭区间,对其中任何的数x ∈[a ,M ],由假设x 不是上确界,则存在x 的某一开邻域O D (x ),其中都是A 的上界;或存在x 的某一开邻域O D (x ),其中都不是A 的上界.这样内的每一点x ,都找到一个开邻域O D (x ),它要么属于第一类,要么属于第二类.这些邻域构成闭区间的一个开覆盖.由有限开覆盖定理,必存在有限个子覆盖O D 1(x 1),O D 2(x 2),…,O D k (x k ).由于M 是上界,所以M 所在的区间应为第一类的,相邻接的开区间有公共点,也应为第一类的,经过有限次邻接,可知a 所在的开区间也是第一类的,这便得出矛盾.6)]3)分析:若闭区间套的交为空,则对任何元素都至少不属于某一个闭区间,这样就有它的一个开邻域都不包含于这个闭区间;于是若只有有限个的话就导致矛盾了.证明 用反证法.假设区间的交∩∞n =1I n =<,则P x ∈[a 1,b 1],v I x ,x |I x ,于是v D x ,使得O D x (x )∩I x =<.这样[a 1,b 1]内的每一点x ,都找到一个开邻域O D (x ),它与区间套内的某一区间的交为空.这些邻域构成闭区间[a 1,b 1]的一个开覆盖.由有限开覆盖定理,必存在有限个子覆盖O D 1(x 1),O D 2(x 2),…,O D k (x k ).设O D i (x i )∩I n i =<,则取N =max {n 1,n 2,…,n k },有O D i (x i )∩I N =<,P i =1,2,…k ,这与O D 1(x 1),O D 2(x 2),…,O D k (x k )构成[a 1,b 1]的开覆盖矛盾,由此证明了∩∞n =1I n ≠<.证明交集的唯一性是简单的,略.6)]4)分析:用有限开覆盖定理证明2),4),5)的做法是一样的,由反证假设,对任何一点,可找到一个开邻域,其邻域内至多包含数列中的有限项.若只有有限个开覆盖,则得到矛盾.证明 设A 是有界无限数集,界为[m ,M ].用反证法.假设A 没有任何子列收敛,即P x ∈[m ,M ],x 不是A 的极限点,即v D ,使得O D (x )至多包含A 中的有限项.这样[m ,M ]内的每一点x ,都找到一个开邻域O D (x ),它至多包含数集的有限项.这些邻域构成闭250数 学 的 实 践 与 认 识38卷区间[m ,M ]的一个开覆盖.由有限开覆盖定理,必存在有限个子覆盖O D 1(x 1),O D 2(x 2),…,O D k (x k ),由于每个开邻域至多包含数集的有限项,这与A 是无限数集矛盾.6)]2)证明 设{x n }是单调递增上有界数列,界为[x 1,M ].用反证法.假设{x n }不收敛,则P x ∈[m ,M ],v D ,使得O D (x )至多包含{x n }中的有限项(若对任何邻域都有无穷多项,利用{x n }的单调性可知x 为{x n }的极限,见下面附证).这样[m ,M ]内的每一点x ,都找到一个开邻域O D (x ),它至多包含{x n }的有限项.这些邻域构成闭区间[m ,M ]的一个开覆盖.由有限开覆盖定理,必存在有限个子覆盖O D 1(x 1),O D 2(x 2),…,O D k (x k ),由于每个开邻域至多包含数集的有限项,矛盾.上面证明过程中用到一个命题:设{x n }为单调递增数列,若点x 的任何邻域都有{x n }的无穷多项,则x n →x (n →∞).其证明为:首先可知x 为{x n }的上界(否则不可能邻域包含无穷多项).且P E >0,v x n 0,x n 0∈O E (x ),即x -x n 0=ûx n 0-x û<E .于是P n >n 0,x -x n <x -x n 0<E ,这说明x n →x (n →∞).6)]5)证明 用反证法.假设Cauchy 基本数列{x n }不收敛.首先易知{x n }有界[m ,M ],则P x ∈[m ,M ],x 不是{x n }的极限,则v E 0>0,P M ,v n >M ,ûx n -x ûE E 0.对上述的E 0,由{x n }是Cauchy 基本数列,v N ,P n ,m >N ,ûx n -x m û<E 02.这样,v m 1>N ,ûx m 1-x ûE E 0,因此当n >N 时,ûx n -x ûE ûx m 1-x û-ûx n -x m 1û>E 02, 从而O E 02(x )中至多包含{x n }中的有限项.这样[m ,M ]内的每一点x ,都找到一个开邻域O D (x ),它至多包含{x n }的有限项.这些邻域构成闭区间[m ,M ]的一个开覆盖.以下同上,略.由其他定理证明6):3)]6),1)]6)的证明上面已给出.而仿照3)]6)的证明,容易给出2)]6),4)]6),5)]6)的证明方法.4 其他定理互证的方法定理1),2),4),5)的互证相对容易些.有时可采用构造闭区间套的方法来得到{a n },{b n }其确界,极限就是所要找的点(类似用闭区间套定理来证明).事实上,只要能用闭区间套定理的方法,都可以类似改动利用1),2),4),5)来证明,所不同的是利用1),2),4),5)去证明唯一公共点N 是{a n }和{b n }的确界,极限(或某子列的极限).如仿照3)]6)的证明,容易给出2)]6),4)]6),5)]6)的证明方法.至此,我们已完成了实数系六个基本定理的完全互证方法的分析,归纳了从任何一个定理到其他定理的证明方法.这些定理的互证被这样梳理后,使得学生理解这些证明不再那么抽象和无所适从了.参考文献:[1] 欧阳光中,姚允龙,周渊.数学分析(上册)[M ].上海:复旦大学出版社,2003.25124期刘利刚:实数系基本定理等价性的完全互证252数 学 的 实 践 与 认 识38卷[2] 华东师范大学数学系编.数学分析[M].北京:高等教育出版社,1980.[3] 王向东,高成修,安枫灵.数学分析的概念与方法(上册)[M].上海:上海科学技术文献出版社,1988.Complete Proof for Equivalence of FundamentalTheorems of Real Number SystemLIU Li-gang(Depar tment of M athematics,Z hejiang U niver sity,Hangzhou310027,China)Abstract: T his paper presents complete pro of o f the equiv alence o f six fundamental theor emsof r eal number sy stem.T he g ener al appro aches for the pr oo f ar e comprehensively summar ized,w hich ma kes all t he abstr act pro of be an easy task and be easily under stoo d.Keywords: Stolz theor em;L′Hospital r ule;limit;differ ence。

实数完备性的六大基本定理的相互证明共个

实数完备性的六大基本定理的相互证明共个

实数完备性的六大基本定理的相互证明共个实数完备性的六大基本定理是实分析中的重要结果,其中包括单调有界原理、上确界原理、下确界原理、戴德金(Dedekind)分割原理、稳定原理和柯西(Cauchy)收敛准则。

这些定理互相独立,但可以相互推导和证明。

下面我将按照给定的字数要求,大致叙述这些定理之间的证明关系。

1.单调有界原理→上确界原理首先我们证明单调有界原理蕴含上确界原理。

假设存在一个非空有上界的实数集合A,我们可以定义一个从A到R (实数集)的单调递增序列。

考虑一个函数f:N→A,其中N是自然数集合。

我们可以通过以下方法生成这个序列:1.对于每个n∈N,令An={a∈A,a≤f(n)};2.由于A有上界,所以An也有上界;3.根据单调有界原理,An存在上确界。

令f(n)为An的上确界。

现在我们可以看出,这个序列f(n)是一个单调递增的序列,并且对于任意a∈A,存在一个自然数n使得a≤f(n)。

因此f(n)就是A的上确界。

2.上确界原理→下确界原理接下来我们证明上确界原理蕴含下确界原理。

假设存在一个非空有下界的实数集合B,我们可以定义一个从B到R (实数集)的单调递减序列。

考虑一个函数g:N→B,其中N是自然数集合。

我们可以通过以下方法生成这个序列:1.对于每个n∈N,令Bn={b∈B,g(n)≤b};2.由于B有下界,所以Bn也有下界;3.根据上确界原理,Bn存在下确界。

令g(n)为Bn的下确界。

现在我们可以看出,这个序列g(n)是一个单调递减的序列,并且对于任意b∈B,存在一个自然数n使得g(n)≤b。

因此g(n)就是B的下确界。

3.戴德金分割原理→单调有界原理接下来我们证明戴德金分割原理蕴含单调有界原理。

假设存在一个非空无上界的实数集合C,我们可以定义一个从C到R (实数集)的单调递增序列。

考虑一个函数h:N→C,其中N是自然数集合。

我们可以通过以下方法生成这个序列:1.对于每个n∈N,令Cn={c∈C,h(n)≤c};2.C没有上界,因此Cn也没有上界;3.根据戴德金分割原理,Cn的上确界不存在。

小学六年级数学竞赛讲座 第7讲 小学定理的证明

小学六年级数学竞赛讲座 第7讲 小学定理的证明

D(n) = n!−n!÷ 1!+n!÷2!−n!÷ 3!+…+ (−1)n× n!÷ n!,
(1)2 即 D(n) = n!× 2!
(1)n1 (1)n 。 (n 1)! n!
例 8. (1)一个图可以被一笔画的充要条件是它是连通的且奇数点个数不多于 2.(奇点定义为有奇数条边与 之相连,偶点类似) (2)一个连通图可以被一笔画,且这个一笔画的起点和终点重合,则称这个一笔画的线路叫作欧拉环,一 个图存在欧拉环的充要条件是图中每个点都是偶数点。 (3)如果连通图有 2k 个奇顶点,那么它可以用 k 笔画成,并且至少要用 k 笔画成。 证明: (1)必要性:如果一个图能一笔画成,那么对每一个顶点,要么路径中“进入”这个点的边数等于“离 开”这个点的边数:这时点的度为偶数。要么两者相差一:这时这个点必然是起点或终点之一。注意到有起 点就必然有终点,因此奇数点的数目要么是 0、要么是 1、要么是 2,即奇数点的个数不多于 2。 充分性:如果图中没有奇顶点,那么随便选一个点出发,就可以用一笔画画出;如果恰好有 1 个奇数 点,那就从这个奇数点开始,也可以画出;如果有两个奇数点,就以其中一个奇数点开始,最后以另一个奇 数点结束即可。 (2)必要性:如果一个连通图能一笔画成,且起点与终点重合, 那么由(1)知道,图中的奇数点可能有 0 个、1 个、或 2 个,而如果有 1 个奇数点,那么把这个点当 做起点,一笔画玩之后,终点不会是这个点,所以不能只有 1 个奇数点;同样如果有 2 个奇数点,那么这两 个不同的点一个是起点,另一个是终点,这也是不对的;所以欧拉环一定是每个点都是偶数点。 (3)每一笔“一笔画”最多用到 2 个奇数点,现在有 2k 个奇数点,所以最少需要用 2k 笔才能把所有的奇 数点都连上; 一个连通图有 2k 个奇数点,那么我们可以把这 2k 的点分成 k 组,每两个点为一组,每组中这两个点, 一个作为起点,另一个作为终点,形成 k 个一笔画,最后合为用 k 笔画成的连通图;

几何证明选讲定理大全

几何证明选讲定理大全

几何证明选讲定理大全几何证明是数学中的一项重要内容,它通过推理和逻辑推导来证明几何定理的正确性。

下面是一些常见的几何定理的证明:1.直角三角形的斜边平方等于两直角边平方和定理(勾股定理):设直角三角形的两直角边长度分别为a和b,斜边长度为c,根据勾股定理可得:c²=a²+b²。

证明如下:画出一个以a和b为直角边的正方形,将其分成两个小正方形和两个矩形。

则大正方形的面积等于a²+b²,而两个小正方形和两个矩形的面积之和等于c²。

因此,c²=a²+b²。

2.等腰三角形底角的平分线也是高的平分线:设ABC为等腰三角形,AB=AC,且BD为底角ABC的平分线,BE为高的平分线。

证明如下:连接AE和BD。

由于BE是高的平分线,所以角BED=90°。

又由于BD 是角ABC的平分线,所以角ABE=角EBC。

因此,三角形ABE和BEC是全等的。

根据全等三边对应定理,可得AE=BE。

因此,BD也是高的平分线。

3.任意角的正弦定理:设三角形ABC的边长分别为a、b、c,角A的对边长度为a,角B的对边长度为b,角C的对边长度为c。

根据正弦定理可得:sinA/a = sinB/b = sinC/c。

证明如下:假设有一个单位圆O,并在圆上取一点D,作OD ⊥ AB。

则AD = b·sinA,BD = b·cosA,OC = b。

连接DC,OC。

根据正弦的定义,可得sinA = AD/OD = AD/OC = b·sinA/b = BD/b。

同理,可得sinB = AD/a,sinC = BD/c。

因此,sinA/a = sinB/b = sinC/c。

4.正方形的对角线相等定理:设ABCD为正方形,对角线AC和BD相交于点O。

证明如下:连接AO和DO。

根据正方形的定义,AB=BC=CD=DA。

六大定理互相证明总结

六大定理互相证明总结

六大定理的相互证明总结1 确界定理1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b . 显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞→n n n a b ∴βα=即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1]证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界{}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y .由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,有N n y y ≥,从而n y >εβ-.也就是说:当n >N 时,有 n y -≤β0<ε 所以 β→n y 2 单调有界原理2.1 单调有界原理 单调有界数列有极限. 2.2 单调有界原理证明致密性定理在证明定理之前,我们要先证明一个引理:任意一个数列{}n x 必存在单调子数列.证明:⑴若{}n x 中存在递增子序列{}k n x ,则引理已证明;⑵若{}n x 中无递增子序列,那么∃1n >0,使n >1n ,恒有1n x >n x .同样在{}n x (n >1n )中也无递增子序列.于是又存在2n >0,使2n >n ,恒有2n x <n x <1n x .如此无限进行下去便可得到一严格递减子序列{}k n x . 引理得证.下面证明定理:由引理知,有界数列必有有界单调子数列.又由单调有界原理知,该有界单调子数列必有极限,即该子数列是收敛的.故有界数列必有收敛子列. 2.3 单调有界原理证明区间套定理由定理的条件立即知道{}n a 是单调增加有上界的数列,{}n b 是单调递减有下界的数列.根据定理,则n n a ∞→lim 存在,且极限等于{}n a 的上确界.同样,n n b ∞→lim 也存在,且极限等于{}n b 的下确界.亦即对任何正整数k ,有n n k n n k b b a a ∞→∞→≥≤lim ,lim (*)由定理的另一条件: ()0lim =-∞→n n n a b ,并且由于已知{}n a 及{}n b 的极限都存在,则有()0lim lim lim =-=-∞→∞→∞→n n n n n n n a b a b .从而证明了两个极限相等,且设ξ是它们的同一极限.于是定理前一部分的结果即已证得.剩下要证的是:ξ是所有区间的唯一公共点.由(*)的两个不等式,即有 n k b a ≤≤ξ(3,2,1=k …)也就是ξ是所有区间的一个公共点.现在要证明ξ是所有区间的唯一公共点.设除点ξ外,所设区间列还有另外一个公共点'ξ,且ξξ≠'.由于n n b a ≤≤',ξξ(3,2,1=n …),故有ξξ-≥-'n n a b (3,2,1=n …) 由数列极限的性质知道:()ξξ-≥-∞→'lim n n n a b由于()0lim =-∞→n n n a b ,故有0'≤-ξξ从而有ξξ='.到此定理的全部结果都已得证. 3 区间套定理3.1 区间套定理 设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim=-∞→n n n a b ,则区间的端点所成两数列{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点.3.2 区间套定理证明单调有界原理 证明:设数列{}n x 递增有上界.取闭区间[]11,b a ,使1a 不是数列{}n x 的上界,1b 是数列{}n x 的上界.显然在闭区间[]11,b a 内含有数列{}n x 的无穷多项,而在[]11,b a 外仅含有数列{}n x 的有限项. 对分[]11,b a ,取[]22,b a ,使其具有[]11,b a 的性质.故在闭区间[]22,b a 内含有数列{}n x 的无穷多项,而在[]22,b a 外仅含有数列{}n x 的有限项.以此方法,得区间列{[,n a ]n b }.由区间套定理,ξ是所有区间的唯一公共点.显然,在ξ的任何邻域内有数列{}n x 的无穷多项,即ε∀>0,∃*N N ∈,当n >N 时,有ξ-n x <ε.所以ξ=∞→n n x lim 定理得证.3.3 区间套定理证明致密性定理证明:设{}n y 为有界数列,即存在两个数b a ,,使b y a n ≤≤.等分区间[]b a ,为两个区间,则至少有一个区间含有{}n y 中的无穷个数.把这个区间记为[]11,b a ,如果两个区间都含有无穷个n y ,则任取其一作为[]11,b a .再等分区间[]11,b a 为两半,记含有无穷个n y 的区间为[]22,b a .这个分割手续可以继续不断的进行下去,则得到一个区间列{[,n a ]n b },这个区间列显然适合下面两个条件:(1)[][][]⊃⊃⊃2211,,,b a b a b a … (2)02→-=-nn n ab a b 于是由区间套定理,必存在唯一点[]b a ,∈ξ使ξξ→→n n b a ,,且[]k k b a ,∈ξ(3,2,1=k …).每一[]k k b a ,中均含有{}n y 的无穷个元素.在[]11,b a 中任取{}n y 的一项,记为1n y ,即{}n y 的第1n 项.由于[]22,b a 也含有无穷个n y ,则它必含有1n y 以后的无穷多个数,在这些数中任取其一,记为2n y ,则1n <2n .继续在每一[]k k b a ,中都这样取出一个数k n y ,即得{}n y 的一个子列{}k n y ,其中1n <2n <…<k n <…,且k n k b y a k ≤≤.令∞→k ,由于,,ξξ→→k k b a 故ξ→k n y .这就是定理所要的结果. 4 致密性定理4.1 致密性定理 又称魏尔斯特拉斯定理,任一有界数列必有收敛子列. 4.2 致密性定理证明单调有界原理证明:不妨设{}n x 单调递增且有界,根据致密性定理有收敛子列{}k n x . 令a x k n k =∞→lim .于是,对ε∀>0,∃0k ,当k >0k 时,有a x k n -<ε (*) 由于{}n x 单调递增,显然恒有a x n ≤(3,2,1=n …). 由此(*)式可改成0k n x a -≤<ε (k >0k ) 取0k n N =,当n >N 时有 k n n x a x a -≤-≤0<ε 所以 a x n n =∞→lim4.3 致密性定理证明柯西收敛原理[1] 证明:首先证明条件的必要性:设a x n →,则对任意给定ε>0,有一正整数N ,当k >N 时,有a x k -<2ε从而当n m ,>N 时,有m n m n x a a x x x -+-≤-<2ε+2ε=ε其次证明条件的充分性:首先,证明满足条件的任何数列必有界.从所设条件,取ε=1,必有一正整数0N ,当n m ,>0N 时,有m n x x -<1特别地,当n >0N 且10+=N m 时,有 10+-N n x x <1 从而当n >0N 时,有 1100+++-≤N N n n x x x x <1+10+N x这就证明了{}n x 的有界性.由致密性定理,必有收敛子列{}k n x ,设a x k n k =∞→lim .根据子列收敛定义,对任意给定的ε>0,必有正整数K ,当k >K 时,有 a x n -<ε取一正整数()1,1max 0++=N K k .于是0k >K ,且11+≥≥+N n n N k o >N .因此,当n >N 时,由已知条件有0k n n x x -<ε,所以a x x x a x k k n n n n -+-≤-00<ε+ε=2ε即 a x n n =∞→lim5 柯西收敛原理5.1 柯西收敛原理 数列{}n x 有极限的必要与充分条件是:对任意给定的ε>0,有正整数N ,当m , n >N 时,有m n x x -<ε. 5.2 柯西收敛原理证明单调有界原理证明:反证法,设{}n x 为一递增且有上界M 的数列.假设其没有极限,则用柯西收敛原理表达就是ε∃>0,对*N N ∈∀,当n m ,>N 时,有 m n x x -ε≥ 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x . 又由于数列{}n x 为一递增的数列,所以1212n n n n x x x x -=-1≥取1=ε,必有一正整数1N ,当32,n n >1N 时,有123≥-n n x x 取1=ε,必有一正整数1N ,当43,n n >1N 时,有134≥-n n x x …………… …………… …………… 取1=ε,必有一正整数1N ,当1,+k k n n >1N 时,有11≥-+k k n n x x 将以上式子相加,得11+≥+k x k n ∞→ (∞→k ) 与数列{}n x 有上界M 矛盾,假设不成立. 即,单调有界数列有极限. 5.3 柯西收敛原理证明致密性定理证明:反证法,设{}n x 为一有上界M 的数列. 假设其没有收敛子列.由子列收敛的定义,则ε∃>0,对*N N ∈∀,当k k n n ,1+>N 时,有ε≥-+k k n n x x 1. 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x 取2=ε,必有一正整数2N ,当32,n n >2N 时,有223≥-n n x x 取3=ε,必有一正整数3N ,当43,n n >3N 时,有334≥-n n x x …………… …………… …………… 取k =ε,必有一正整数k N ,当1,+k k n n >k N 时,有k x x k k n n ≥-+1 显然与数列{}n x 有上界M 矛盾,假设不成立. 即,任一有界数列必有收敛子列. 6 有限覆盖定理6.1有限覆盖定理 若开区间所组成的区间集E 覆盖一个闭区间[a ,b ],则总可以从E 中选出有限个区间,使这有限个区间覆盖[a ,b ]. 6.2 有限覆盖定理证明确界定理证明:在这里我们只说明定理的上确界部分.设不为空集的区间E ⊂R ,∀x ∈E ,有x ≤M ,任取一点0x ∈E ,假设E 无上确界,那么∀x ∈[0x ,M ]:ⅰ)当x 为E 的上界时,必有更小的上界1x <x ,因而x 存在一开邻域∆x ,其中每一点均为E 的上界,称其为第一类区间;ⅱ)当x 不是E 的上界时,则有2x ∈E 使2x >x ,那么x 存在一开邻域∆x ,其中每点均不是E 的上界,称其为第二类区间.∴ 当x 取遍[0x ,M ]上每一点找出一个邻域∆x .显然∆x 不是第一类区间就是第二类区间.这些邻域组成闭区间[0x ,M ]的一个开覆盖,由有限覆盖定理,必存在有限子区间覆盖[0x ,M ].显然M 所在的开区间应为第一类区间,与其邻接的开区间∆x 有公共点.所以∀x ∈∆x ,x 均为E 的上界.而与∆x 相邻接的开区间∆'x 有公共点,所以∀x ∈∆'x ,x 均为E 的上界.依此类推,0x 所在的开区间也是第一类区间,则0x 为E 的上界. 又 0x E ∈,∴E 为常数集.由此矛盾引出. 得证.同理,E 有下确界.6.3 有限覆盖定理证明致密性定理证明:设{}n x 是一有界数列,现在证明{}n x 有收敛子列.(1)如果{}n x 仅由有限个数组成,那么至少有一个数ξ要重复无限多次,即ξ===21n n x x …==k n x … 因而子列{}k n x 收敛于ξ.(2)如果{}n x 是由无穷多个数组成,由有界性知,存在闭区间[]b a ,,使对一切自然数n 都有a <n x <b在[]b a ,内至少存在一点0x ,使对于任意的正数δ,在()δδ+-00,x x 内都含有{}n x 中无穷多个数.事实上,倘若不然,就是说对于[]b a ,中每一点x ,都有x δ>0,在()x x x x δδ+-,内,仅有{}n x 中的有限个数.考虑所有这样的开区间所成之集:{=μ(,x x δ-)x x δ+},μ完全覆盖了闭区间[]b a ,,依有限覆盖定理,存在μ中的有限多个区间.()11111,x x x x δδ+-=∆,…,()n n x n x n n x x δδ+-=∆,,他们也覆盖了[]b a ,,并且在每一个i ∆(,2,1=i …,n )中都只含{}n x 中的有限多个数.因此{}n x 也最多是由有限个数组成,这与假设矛盾.于是,对于k δ=k1(,3,2,1=k …),于()k k x x δδ+-00,内取{}n x 中无穷多个点,就得到{}n x 的子列{}k n x 满足:0x x k n -<kk 1=δ(,3,2,1=k …)从而∞→k lim 01x x n =得证.总结:六大定理可以分为两类: ① 有限覆盖定理:反映区间上的整体性质; ② 其余五个:反映函数在一点上的性质.。

数学分析复习笔记实数完备性的六个定理

数学分析复习笔记实数完备性的六个定理

数学分析复习笔记实数完备性的六个定理实数完备性的⼏个定理可以互相推导,这⾥给出了⼀个⽐较简单的完整推导链条对于没有写到的推导可以通过旁敲侧击推导出这⾥的条件再继续(迂回战术)1. 有界必有确界如果∃u 使得∀x ∈S 都有x ≤u ,那么S 有上确界上确界:记U =sup {S },则∀x ∈S 都有x ≤U ,且∀ϵ>0,∃x 0∈S 使得x 0>U −ϵ⽤有限区间覆盖证明S 存在最⼤值的情况⾮常显然,它的上确界就是最⼤值;后⽂只讨论S 不存在最⼤值的情况反证法,假设S 有界⽽没有上确界,记S 上界的集合为¯U则可以取S 中的⼀个元素L ,¯U 中的⼀个元素R ,得到⼀个闭区间[L ,R ]考虑x ∈[L ,R ],分成如下⼏种情况:1. x ∈¯U2. x ∈S3. x ∉S 且x ∉¯U对于情况1,由假设我们⼀定可以找到x ′∈¯U 且x ′<x ,使得x ′也是⼀个上界此时我们为点x 造⼀个开区间x ′,2x −x ′,这个区间内的点都是S 的上界对于情况2,由S 不存在最⼤值可知我们⼀定能找到x ′∈S 且x ′>x此时我们为点x 造⼀个开区间2x −x ′,x ′,这个区间内的点都不是S 的上界对于情况3,由x 不是上界可知,必存在⼀个x ′∈S 使得 x <x ′,此时情况同2于是我们为闭区间内的每⼀个点都配了⼀个开区间,这个开区间的集合覆盖了闭区间内的每⼀个点,由有限覆盖定理可知存在有限个开区间覆盖了[L ,R ]引理1:开覆盖中相邻两个开区间必相交证明:假设存在不相交的开覆盖,则存在点未被覆盖,⽭盾由引理1可知[L ,R ]上的开覆盖⼀定是环环相套的,从左起每⼀个开区间内的点都不是上界,从右起每⼀个开区间内的点都是上界,则可以推得中间存在⼀个开区间同时满⾜这两种情况(这是不可能的),推得⽭盾。

于是原命题成⽴2. 单调有界收敛若数列a n 单调递增且有上界,则该数列收敛(存在极限)⽤确界存在证明有上界必有上确界,记U =sup a n ,则根据定义有∀n U ≥a n 且∀ϵ>0,∃n 0,有U −ϵ<a n 0⼜a n 递增,于是取N =n 0,当n ≥N ,有U −ϵ<a n 0≤a n ≤U <U +ϵ,这个就是数列收敛的定义,且恰好收敛于U 3. 闭区间套考虑⼀个初始闭区间[L 0,R 0],我们取⼀系列闭区间[L 1,R 1],[L 2,R 2],…满⾜[L 1,R 1]⊂[L 2,R 2]⊂…()(){}{}(){}且有lim i →+∞R i −L i =0则∩[L i ,R i ]=ξ,收敛于⼀个点⽤单调有界收敛证明由第⼀个条件可知,L n 单调递增,且有上界R 0,于是数列收敛同理R n 也收敛,下⾯证明两个极限相等。

初中数学定理公式大全PPT课件

初中数学定理公式大全PPT课件
初中数学定理公式大全
第一页,编辑于星期五:一点 三十分。
点,线,角 平行
三角形内角
全等三角形
角平分线 等腰三角形
对称
直角三角形
多边形内、外角和
平行四边形
定理
矩形 菱形
正方形 中心对称 等腰梯形
中位线
相似 三角函数 圆
轨迹
第二页,编辑于星期五:一点 三十分。
点,线,角
第十六页,编辑于星期五:一点 三十分。
等腰梯形
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等, 那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
第六页,编辑于星期五:一点 三十分。
角平分线
27 定理1 在角的平分线上的点到这个角的两 边的距离相等 28 定理2 到一个角的两边的距离相同的点, 在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有 点的集合
第七页,编辑于星期五:一点 三十分。
等腰三角形
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两 个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六大定理互相证明总结六大定理的相互证明总结XXX 学号数学科学学院 数学与应用数学专业 班级指导老师 XXX摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明.关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理1 确界定理1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b .显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又Θ()0lim =-∞→n n n a b ∴βα=即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1]证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界{}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y .由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,有N n y y ≥,从而n y >εβ-.也就是说:当n >N 时,有 n y -≤β0<ε 所以 β→n y 2 单调有界原理2.1 单调有界原理 单调有界数列有极限. 2.2 单调有界原理证明致密性定理在证明定理之前,我们要先证明一个引理:任意一个数列{}n x 必存在单调子数列.证明:⑴若{}n x 中存在递增子序列{}k n x ,则引理已证明;⑵若{}n x 中无递增子序列,那么∃1n >0,使n >1n ,恒有1n x >n x .同样在{}n x (n >1n )中也无递增子序列.于是又存在2n >0,使2n >n ,恒有2n x <n x <1n x .如此无限进行下去便可得到一严格递减子序列{}k n x . 引理得证.下面证明定理:由引理知,有界数列必有有界单调子数列.又由单调有界原理知,该有界单调子数列必有极限,即该子数列是收敛的.故有界数列必有收敛子列.2.3 单调有界原理证明区间套定理[1]由定理的条件立即知道{}n a 是单调增加有上界的数列,{}n b 是单调递减有下界的数列.根据定理,则n n a ∞→lim 存在,且极限等于{}n a 的上确界.同样,n n b ∞→lim 也存在,且极限等于{}n b 的下确界.亦即对任何正整数k ,有n n k n n k b b a a ∞→∞→≥≤lim ,lim (*)由定理的另一条件: ()0lim =-∞→n n n a b ,并且由于已知{}n a 及{}n b 的极限都存在,则有()0lim lim lim =-=-∞→∞→∞→n n n n n n n a b a b .从而证明了两个极限相等,且设ξ是它们的同一极限.于是定理前一部分的结果即已证得.剩下要证的是:ξ是所有区间的唯一公共点.由(*)的两个不等式,即有 n k b a ≤≤ξ(3,2,1=k …)也就是ξ是所有区间的一个公共点.现在要证明ξ是所有区间的唯一公共点.设除点ξ外,所设区间列还有另外一个公共点'ξ,且ξξ≠'.由于n n b a ≤≤',ξξ(3,2,1=n …),故有ξξ-≥-'n n a b (3,2,1=n …) 由数列极限的性质知道:()ξξ-≥-∞→'lim n n n a b由于()0lim =-∞→n n n a b ,故有0'≤-ξξ从而有ξξ='.到此定理的全部结果都已得证. 3 区间套定理3.1 区间套定理 设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b ,则区间的端点所成两数列{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 3.2 区间套定理证明单调有界原理 证明:设数列{}n x 递增有上界.取闭区间[]11,b a ,使1a 不是数列{}n x 的上界,1b 是数列{}n x 的上界.显然在闭区间[]11,b a 内含有数列{}n x 的无穷多项,而在[]11,b a 外仅含有数列{}n x 的有限项. 对分[]11,b a ,取[]22,b a ,使其具有[]11,b a 的性质.故在闭区间[]22,b a 内含有数列{}n x 的无穷多项,而在[]22,b a 外仅含有数列{}n x 的有限项.以此方法,得区间列{[,n a ]n b }.由区间套定理,ξ是所有区间的唯一公共点.显然,在ξ的任何邻域内有数列{}n x 的无穷多项,即ε∀>0,∃*N N ∈,当n >N 时,有ξ-n x <ε. 所以ξ=∞→n n x lim 定理得证.3.3 区间套定理证明致密性定理[1]证明:设{}n y 为有界数列,即存在两个数b a ,,使b y a n ≤≤.等分区间[]b a ,为两个区间,则至少有一个区间含有{}n y 中的无穷个数.把这个区间记为[]11,b a ,如果两个区间都含有无穷个n y ,则任取其一作为[]11,b a .再等分区间[]11,b a 为两半,记含有无穷个n y 的区间为[]22,b a .这个分割手续可以继续不断的进行下去,则得到一个区间列{[,n a ]n b },这个区间列显然适合下面两个条件:(1)[][][]⊃⊃⊃2211,,,b a b a b a … (2)02→-=-nn n ab a b 于是由区间套定理,必存在唯一点[]b a ,∈ξ使ξξ→→n n b a ,,且[]k k b a ,∈ξ(3,2,1=k …).每一[]k k b a ,中均含有{}n y 的无穷个元素.在[]11,b a 中任取{}n y 的一项,记为1n y ,即{}n y 的第1n 项.由于[]22,b a 也含有无穷个n y ,则它必含有1n y 以后的无穷多个数,在这些数中任取其一,记为2n y ,则1n <2n .继续在每一[]k k b a ,中都这样取出一个数k n y ,即得{}n y 的一个子列{}kn y ,其中1n <2n<…<k n <…,且k n k b y a k ≤≤.令∞→k ,由于,,ξξ→→k k b a 故ξ→k n y .这就是定理所要的结果.4 致密性定理4.1 致密性定理 又称魏尔斯特拉斯定理,任一有界数列必有收敛子列. 4.2 致密性定理证明单调有界原理证明:不妨设{}n x 单调递增且有界,根据致密性定理有收敛子列{}k n x . 令a x k n k =∞→lim .于是,对ε∀>0,∃0k ,当k >0k 时,有a x k n -<ε (*) 由于{}n x 单调递增,显然恒有a x n ≤(3,2,1=n …). 由此(*)式可改成0k n x a -≤<ε (k >0k ) 取0k n N =,当n >N 时有 k n n x a x a -≤-≤0<ε 所以 a x n n =∞→lim4.3 致密性定理证明柯西收敛原理[1] 证明:首先证明条件的必要性:设a x n →,则对任意给定ε>0,有一正整数N ,当k >N 时,有 a x k -<2ε 从而当n m ,>N 时,有m n m n x a a x x x -+-≤-<2ε+2ε=ε 其次证明条件的充分性:首先,证明满足条件的任何数列必有界.从所设条件,取ε=1,必有一正整数0N ,当n m ,>0N 时,有m n x x -<1特别地,当n >0N 且10+=N m 时,有 10+-N n x x <1从而当n >0N 时,有 1100+++-≤N N n n x x x x <1+10+N x这就证明了{}n x 的有界性.由致密性定理,必有收敛子列{}k n x ,设a x k n k =∞→lim .根据子列收敛定义,对任意给定的ε>0,必有正整数K ,当k >K 时,有 a x n -<ε取一正整数()1,1m ax 0++=N K k .于是0k >K ,且11+≥≥+N n n N k o >N .因此,当n >N 时,由已知条件有0k n n x x -<ε,所以a x x x a x k k n n n n -+-≤-00<ε+ε=2ε即 a x n n =∞→lim5 柯西收敛原理5.1 柯西收敛原理 数列{}n x 有极限的必要与充分条件是:对任意给定的ε>0,有正整数N ,当m , n >N 时,有m n x x -<ε. 5.2 柯西收敛原理证明单调有界原理证明:反证法,设{}n x 为一递增且有上界M 的数列.假设其没有极限,则用柯西收敛原理表达就是ε∃>0,对*N N ∈∀,当n m ,>N 时,有 m n x x -ε≥ 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x . 又由于数列{}n x 为一递增的数列,所以1212n n n n x x x x -=-1≥ 取1=ε,必有一正整数1N ,当32,n n >1N 时,有123≥-n n x x 取1=ε,必有一正整数1N ,当43,n n >1N 时,有134≥-n n x x …………… …………… …………… 取1=ε,必有一正整数1N ,当1,+k k n n >1N 时,有11≥-+k k n n x x 将以上式子相加,得11+≥+k x k n ∞→ (∞→k ) 与数列{}n x 有上界M 矛盾,假设不成立. 即,单调有界数列有极限. 5.3 柯西收敛原理证明致密性定理证明:反证法,设{}n x 为一有上界M 的数列. 假设其没有收敛子列.由子列收敛的定义,则ε∃>0,对*N N ∈∀,当k k n n ,1+>N 时,有ε≥-+k k n n x x 1.取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x 取2=ε,必有一正整数2N ,当32,n n >2N 时,有223≥-n n x x 取3=ε,必有一正整数3N ,当43,n n >3N 时,有334≥-n n x x …………… …………… …………… 取k =ε,必有一正整数k N ,当1,+k k n n >k N 时,有k x x k k n n ≥-+1 显然与数列{}n x 有上界M 矛盾,假设不成立. 即,任一有界数列必有收敛子列. 6 有限覆盖定理6.1有限覆盖定理 若开区间所组成的区间集E 覆盖一个闭区间[a ,b ],则总可以从E 中选出有限个区间,使这有限个区间覆盖[a ,b ]. 6.2 有限覆盖定理证明确界定理证明:在这里我们只说明定理的上确界部分.设不为空集的区间E ⊂R ,∀x ∈E ,有x ≤M ,任取一点0x ∈E ,假设E 无上确界,那么∀x ∈[0x ,M ]:ⅰ)当x 为E 的上界时,必有更小的上界1x <x ,因而x 存在一开邻域∆x ,其中每一点均为E 的上界,称其为第一类区间;ⅱ)当x 不是E 的上界时,则有2x ∈E 使2x >x ,那么x 存在一开邻域∆x ,其中每点均不是E 的上界,称其为第二类区间.∴ 当x 取遍[0x ,M ]上每一点找出一个邻域∆x .显然∆x 不是第一类区间就是第二类区间.这些邻域组成闭区间[0x ,M ]的一个开覆盖,由有限覆盖定理,必存在有限子区间覆盖[0x ,M ].显然M 所在的开区间应为第一类区间,与其邻接的开区间∆x 有公共点.所以∀x ∈∆x ,x 均为E 的上界.而与∆x 相邻接的开区间∆'x 有公共点,所以∀x ∈∆'x ,x 均为E 的上界.依此类推,0x 所在的开区间也是第一类区间,则0x 为E 的上界. 又Θ0x E ∈,∴E 为常数集.由此矛盾引出. 得证.同理,E 有下确界.6.3 有限覆盖定理证明致密性定理证明:设{}n x 是一有界数列,现在证明{}n x 有收敛子列.(1)如果{}n x 仅由有限个数组成,那么至少有一个数ξ要重复无限多次,即ξ===21n n x x …==kn x … 因而子列{}kn x 收敛于ξ.(2)如果{}n x 是由无穷多个数组成,由有界性知,存在闭区间[]b a ,,使对一切自然数n 都有a <n x <b在[]b a ,内至少存在一点0x ,使对于任意的正数δ,在()δδ+-00,x x 内都含有{}n x 中无穷多个数.事实上,倘若不然,就是说对于[]b a ,中每一点x ,都有x δ>0,在()x x x x δδ+-,内,仅有{}n x 中的有限个数.考虑所有这样的开区间所成之集:{=μ(,x x δ-)x x δ+},μ完全覆盖了闭区间[]b a ,,依有限覆盖定理,存在μ中的有限多个区间.()11111,x x x x δδ+-=∆,…,()n n x n x n n x x δδ+-=∆,,他们也覆盖了[]b a ,,并且在每一个i ∆(,2,1=i …,n )中都只含{}n x 中的有限多个数.因此{}n x 也最多是由有限个数组成,这与假设矛盾.于是,对于k δ=k1(,3,2,1=k …),于()k k x x δδ+-00,内取{}n x 中无穷多个点,就得到{}n x 的子列{}k n x 满足:0x x k n -<kk 1=δ(,3,2,1=k …)从而∞→k lim 01x x n =得证.总结:六大定理可以分为两类: ① 有限覆盖定理:反映区间上的整体性质; ② 其余五个:反映函数在一点上的性质.实数的六个基本定理在理论上很有用,在之后的闭区间上的函数的性质的证明上发挥着重要的作用.本文在写作过程中得到了XXX 老师的多次精心指导,在此表示感谢. 参考文献:[1] 陈传璋 金福临 朱学炎 .《数学分析(上)》.高等教育出版社.1983.7。

相关文档
最新文档