《膜分离技术》PPT课件
合集下载
膜分离技术标准文档ppt
渗透现象:即纯溶剂通过半透膜由纯溶剂一侧向溶液一侧 的自发流动过程。
渗透压:渗透过程达平衡时半透膜两侧形成的压差 。
反渗透:在浓溶液一侧加压,使膜两侧的压差大于溶液的 渗透压(p>),溶剂从溶液一侧向纯溶剂一侧液流动。
涉及气体分离、水溶液分离、生化产品的分离与纯化等操作 的食品和饮料加工过程、工业污水处理、大规模空气分离、 湿法冶金、气体和液体燃料的生产及石油化工制品的生产等
常见的膜分离过程
过程
膜
微滤
对称细孔高分子膜 孔径0.03~10 nm
超滤
非对称多孔膜 孔径1~20 nm
反渗透
非对称性或复合膜 孔径0.1~1 nm
渗析(透析
非对称离子交换膜 孔径1~10 nm
电渗析
阴、阳离子交换膜 孔径1~10 nm
气体分离
均质膜和非对称膜
渗透汽化
复合膜
液膜
液体保存在多孔膜中
主要功能
滤除 50 nm的颗粒
滤除 5~100 nm的颗 粒
水溶液中溶解盐类 的脱除
水溶液中无机酸、 盐的脱除
水溶液中酸、碱、 盐的脱除
滤除 50 nm的颗粒
第一节膜分离技术
第一节 膜分离技术
膜分离: 一般是指利用膜对流体混合物中不同组分的选择性渗透的
特点来分离流体混合物的操作过程
膜分离的应用: (1) 分散得很细的固体,特别是与液体密度相近,胶状的可 压缩的固体微粒; (2) 低分子量的不挥发的有机物、药物与溶解的盐类; (3) 对温度、酸碱度等物理化学条件特别敏感的生物物质。
素(EC)等。
聚 尼龙-6(NY-6)、尼龙-66(NY- 具亲水性能,较耐碱而不耐酸,在酮、 酰 66)、芳香聚酰胺(PI)、芳香聚酰 酚、醚及高相对分子质量醇类中,不易 胺 胺酰肼(PPP)、聚苯砜对苯二甲酰 被浸蚀,孔径型号也较多。
渗透压:渗透过程达平衡时半透膜两侧形成的压差 。
反渗透:在浓溶液一侧加压,使膜两侧的压差大于溶液的 渗透压(p>),溶剂从溶液一侧向纯溶剂一侧液流动。
涉及气体分离、水溶液分离、生化产品的分离与纯化等操作 的食品和饮料加工过程、工业污水处理、大规模空气分离、 湿法冶金、气体和液体燃料的生产及石油化工制品的生产等
常见的膜分离过程
过程
膜
微滤
对称细孔高分子膜 孔径0.03~10 nm
超滤
非对称多孔膜 孔径1~20 nm
反渗透
非对称性或复合膜 孔径0.1~1 nm
渗析(透析
非对称离子交换膜 孔径1~10 nm
电渗析
阴、阳离子交换膜 孔径1~10 nm
气体分离
均质膜和非对称膜
渗透汽化
复合膜
液膜
液体保存在多孔膜中
主要功能
滤除 50 nm的颗粒
滤除 5~100 nm的颗 粒
水溶液中溶解盐类 的脱除
水溶液中无机酸、 盐的脱除
水溶液中酸、碱、 盐的脱除
滤除 50 nm的颗粒
第一节膜分离技术
第一节 膜分离技术
膜分离: 一般是指利用膜对流体混合物中不同组分的选择性渗透的
特点来分离流体混合物的操作过程
膜分离的应用: (1) 分散得很细的固体,特别是与液体密度相近,胶状的可 压缩的固体微粒; (2) 低分子量的不挥发的有机物、药物与溶解的盐类; (3) 对温度、酸碱度等物理化学条件特别敏感的生物物质。
素(EC)等。
聚 尼龙-6(NY-6)、尼龙-66(NY- 具亲水性能,较耐碱而不耐酸,在酮、 酰 66)、芳香聚酰胺(PI)、芳香聚酰 酚、醚及高相对分子质量醇类中,不易 胺 胺酰肼(PPP)、聚苯砜对苯二甲酰 被浸蚀,孔径型号也较多。
《膜分离技术》课件
控制运行参数
根据实际运行情况,调整压力、流量等运行 参数,优化处理效果。
应急处理
针对突发故障或水质异常情况,采取相应的 应急处理措施,确保系统稳定运行。
04
膜分离技术的优势与局限 性
优势
高效分离
膜分离技术能够高效地分离混合物中 的不同组分,实现高纯度产品的制备 。
节能环保
膜分离过程通常在常温下进行,能耗 较低,且不产生有害物质,符合绿色 环保理念。
感谢您的观看
THANKS
膜分离技术需要使用特定的化学品进行清洗和维护,因此化学品成本 也是需要考虑的因素。
环境效益分析
减少污染排放
膜分离技术可以有效地减少工业 废水中的有害物质排放,减轻对 环境的污染。
节约资源
膜分离技术可以提高资源的利用 率,减少浪费,对环境保护具有 积极的影响。
提高生产效率
膜分离技术可以优化生产流程, 提高生产效率,降低能耗和资源 消耗,从而减少对环境的负面影 响。
特点
孔径分布均匀、过滤精度 高、阻力小。
03
膜分离技术的工艺流程
原水预处理
去除大颗粒杂质
通过过滤、沉淀等方法去除原水中较大的颗粒、悬浮物和杂质。
降低浊度
通过加入絮凝剂、沉淀等方法降低原水的浊度,提高水质清晰度。
调节pH值
根据不同膜材料的特性,通过加酸或加碱调节原水的pH值至适宜 范围。
膜组件的安装与调试
2
膜分离技术可以有效地去除医药产品中的杂质和 有害物,膜分离技术的应用前 景越来越广阔,为新药研发和生产提供了新的技 术支持。
06
膜分离技术的经济效益分 析
投资成本分析
设备购置成本
膜分离技术的设备购置成本较高,包括膜组件、泵、管道等。
膜分离技术PPT
优化膜结构
通过改变膜孔径、孔道形状和分布等结构参数,提高 膜的分离性能和通量。
强化传质过程
采用促进传递、电场辅助等方法强化传质过程,提高 分离效率。
降低能耗
优化操作条件,如降低操作压力、提高操作温度等, 以降低膜分离过程的能耗。
面临挑战及解决思路
膜污染问题
开发抗污染膜材料、优化操作条件和 采用清洗技术等措施减轻膜污染问题。
石油化工
用于油品脱硫、脱蜡、脱色等石油加工过程,以及化工原料的分 离和提纯。
环保领域
应用于废气处理、重金属回收、垃圾渗滤液处理等环保工程。
05 膜污染与防治策略
膜污染类型及成因分析
无机物污染
由水中的金属离子、矿物质等无机物在膜表面积聚形成,降低膜的 通量。
有机物污染
水中的有机物,如腐殖质、蛋白质等,在膜表面吸附和沉积,导致 膜孔堵塞。
污水处理
采用膜生物反应器(MBR) 技术,结合膜分离和生物 处理,提高污水处理效率 和水质。
气体分离领域应用实例
氧气、氮气分离
工业气体分离
利用气体分离膜的选择透过性,从空 气中分离出氧气和氮气。
应用于合成气、氨分解气等工业气体 的分离和纯化。
天然气处理
通过膜分离技术去除天然气中的二氧 化碳、硫化氢等酸性气体,提高天然 气品质。
创新膜制备技术展望
1 2
3D打印技术
利用3D打印技术实现膜材料的精确控制和复杂 结构的制造,提高膜的分离性能和机械强度。
表面改性技术
通过表面涂覆、接枝等方法对膜表面进行改性, 提高膜的选择性、通量和抗污染性能。
3
纳பைடு நூலகம்技术
利用纳米技术制造纳米孔道或纳米结构,提高膜 的分离精度和效率,同时降低能耗。
通过改变膜孔径、孔道形状和分布等结构参数,提高 膜的分离性能和通量。
强化传质过程
采用促进传递、电场辅助等方法强化传质过程,提高 分离效率。
降低能耗
优化操作条件,如降低操作压力、提高操作温度等, 以降低膜分离过程的能耗。
面临挑战及解决思路
膜污染问题
开发抗污染膜材料、优化操作条件和 采用清洗技术等措施减轻膜污染问题。
石油化工
用于油品脱硫、脱蜡、脱色等石油加工过程,以及化工原料的分 离和提纯。
环保领域
应用于废气处理、重金属回收、垃圾渗滤液处理等环保工程。
05 膜污染与防治策略
膜污染类型及成因分析
无机物污染
由水中的金属离子、矿物质等无机物在膜表面积聚形成,降低膜的 通量。
有机物污染
水中的有机物,如腐殖质、蛋白质等,在膜表面吸附和沉积,导致 膜孔堵塞。
污水处理
采用膜生物反应器(MBR) 技术,结合膜分离和生物 处理,提高污水处理效率 和水质。
气体分离领域应用实例
氧气、氮气分离
工业气体分离
利用气体分离膜的选择透过性,从空 气中分离出氧气和氮气。
应用于合成气、氨分解气等工业气体 的分离和纯化。
天然气处理
通过膜分离技术去除天然气中的二氧 化碳、硫化氢等酸性气体,提高天然 气品质。
创新膜制备技术展望
1 2
3D打印技术
利用3D打印技术实现膜材料的精确控制和复杂 结构的制造,提高膜的分离性能和机械强度。
表面改性技术
通过表面涂覆、接枝等方法对膜表面进行改性, 提高膜的选择性、通量和抗污染性能。
3
纳பைடு நூலகம்技术
利用纳米技术制造纳米孔道或纳米结构,提高膜 的分离精度和效率,同时降低能耗。
膜分离 (Membrane Separation)PPT课件
Na+ +
固定离子
Cl-
正极 阴离子交换膜 负极
高分子膜中间有足够大的孔隙,水中的离子 在膜孔隙通道(比膜厚度大得多)中电迁移运 动。例如,在水溶液中, 阴离子交换膜的活性 基团会发生离解,留下的是带正电荷的固定基 团,构成了强烈的正电场。在外加直流电场作 用下,根据异电相吸原理,溶液中带负电的阴 离子就可被它吸引、传递而通过离子交换膜到 另一侧,而带正电荷的阳离子则离子膜上固定 负电荷基团的排斥不能通过交换膜。
静压膜分离操作
1) 膜的选择性
2) 常用被分离溶质的截留率/去留率表示:
3)
R = (CF-CP)/ CF×100%
4) CF:原液浓度, CP:透过液中溶质浓度。
2) 浓度极化现象
通常沉淀溶液过滤时会出现“滤饼”现象, 使滤膜
孔洞受阻变小, 流速变慢。
对于实际过程, 膜的排除率应修正为:
(CM -CP) / (CF-CP) = exp (JV /k) JV : 膜 透 过 流 束 (cm2/cm·s) ; k : 物 质 移 动 系 数
根据溶质与流动载体之间的可逆化学反应提出了促进传递概念上世纪60年代中期bloch等采用支撑液膜研究了金属提取过程黎念之发明乳化液膜推演出了促进传递膜的新概念并导致了后来各种新型液膜的发明?湿法冶金?废水处理?核化工?气体分离?有机物分离?生物制品分离与生物医学分离?化学传感器与离子选择性电极液膜过程和萃取类似但它的萃取与反萃取分别发生在膜的两侧界面溶质从料液相萃入膜相并扩散到膜相另一侧再被反萃入接收相由此实现萃取与反萃取的内耦合
应用:
➢ 低聚糖的分离和精制 ➢ 果汁的高浓度浓缩
多肽和氨基酸的分离
离子与荷电膜之间存在道南(Donnan) 效应,即相同电荷排斥 而相反电荷吸引的作用。氨基酸和多肽在等电点时是中性的, 当高于或低于等电点时带正电荷或负电荷。由于一些纳滤膜带 有静电官能团, 基于静电相互作用, 对离子有一定的截留率, 可 用于分离氨基酸和多肽。纳滤膜对于处于等电点状态的氨基酸 和多肽等溶质的截留率几乎为零, 因为溶质是电中性的并且大 小比所用的膜孔径要小。而对于非等电点状态的氨基酸和多肽 等溶质的截留率表现出较高的截留率, 因为溶质离子与膜之间 产生静电排斥, 即Donnan 效应而被截留。
《膜分离技术》PPT课件
蛋白质、无机盐
缓冲液
精选ppt
无机盐
34
2. 微 滤
以多孔薄膜为过滤介质,压力差为推动力,利用 筛分原理使不溶性粒子(0.1-10um)得以分离的 操作。操作压力0.05-0.5MPa。
精选ppt
35
• 微滤应用 1) 除去水/溶液中的细菌和其它微粒; 2) 除去组织液、抗菌素、血清、血浆蛋白 质等多种溶液中的菌体; 3) 除去饮料、酒类、酱油、醋等食品中的 悬浊物、微生物和异味杂质。
F
精选ppt
11
17.1 膜材料 与膜的制造
精选ppt
12
膜材料的特性
• 对于不同种类的膜都有一个基本要求:
– 耐压:膜孔径小,要保持高通量就必须施加较高的压 力,一般膜操作的压力范围在0.1~0.5MPa,反渗透 膜的压力更高,约为1~10MPa
– 耐高温:高通量带来的温度升高和清洗的需要 – 耐酸碱:防止分离过程中,以及清洗过程中的水解; – 化学相容性:保持膜的稳定性; – 生物相容性:防止生物大分子的变性; – 成本低;
孔膜,其孔隙大小在电镜的分辨范围内。
精选ppt
28
4完整性试验
• 本法用于试验膜和组件是 否完整或渗漏。
• 将超滤器保留液出口封闭, 透过液出口接上一倒置的 滴定管。自料液进口处通 入一定压力的压缩空气, 当达到稳态时,测定气泡 逸出速度,如大于规定值, 表示膜不合格。
× 保留液 出口封闭
压缩空气
• 透析过程中透析膜内无流体流动,溶质 以扩散的形式移动。
精选ppt
32
透析原理图
大分子
透析膜 小分子
水分子
精选ppt
33
透析法的应用
常用于除去蛋白或核酸样品中的盐、变性剂、还原剂之类 的小分子杂质,
缓冲液
精选ppt
无机盐
34
2. 微 滤
以多孔薄膜为过滤介质,压力差为推动力,利用 筛分原理使不溶性粒子(0.1-10um)得以分离的 操作。操作压力0.05-0.5MPa。
精选ppt
35
• 微滤应用 1) 除去水/溶液中的细菌和其它微粒; 2) 除去组织液、抗菌素、血清、血浆蛋白 质等多种溶液中的菌体; 3) 除去饮料、酒类、酱油、醋等食品中的 悬浊物、微生物和异味杂质。
F
精选ppt
11
17.1 膜材料 与膜的制造
精选ppt
12
膜材料的特性
• 对于不同种类的膜都有一个基本要求:
– 耐压:膜孔径小,要保持高通量就必须施加较高的压 力,一般膜操作的压力范围在0.1~0.5MPa,反渗透 膜的压力更高,约为1~10MPa
– 耐高温:高通量带来的温度升高和清洗的需要 – 耐酸碱:防止分离过程中,以及清洗过程中的水解; – 化学相容性:保持膜的稳定性; – 生物相容性:防止生物大分子的变性; – 成本低;
孔膜,其孔隙大小在电镜的分辨范围内。
精选ppt
28
4完整性试验
• 本法用于试验膜和组件是 否完整或渗漏。
• 将超滤器保留液出口封闭, 透过液出口接上一倒置的 滴定管。自料液进口处通 入一定压力的压缩空气, 当达到稳态时,测定气泡 逸出速度,如大于规定值, 表示膜不合格。
× 保留液 出口封闭
压缩空气
• 透析过程中透析膜内无流体流动,溶质 以扩散的形式移动。
精选ppt
32
透析原理图
大分子
透析膜 小分子
水分子
精选ppt
33
透析法的应用
常用于除去蛋白或核酸样品中的盐、变性剂、还原剂之类 的小分子杂质,
膜分离技术
2024/7/5
膜分离技术
3
1、膜分离技术发展概述
1784年 阿贝.诺伦特首次揭示膜分离现象 1960年洛布和索里拉金 醋酸纤纸素膜 1964年 美国通用原子公司 螺旋式反渗透组件 1965年 美国加利福尼亚大学 管式反渗透装置 1967年 美国杜邦公司首次研制了以尼龙为材料 的中空纤维组件, 1970年又研制了以芳香聚酰 胺为膜材料的中空纤维组件 1968年 美籍华人黎念之研究出乳化液膜 70年代 Cussler研制了含流动载体的液膜
第1章 膜分离技术
(Membrane Separation Processes)
本章主要内容:
膜分离技术概述
扩散渗析(diffusion dialysis)
反渗透( reverse osmosis)
电渗析(electro-dialysis)
2024/7/5
膜分离技术
2
1.1 膜分离概述
1、膜分离发展概述 2、膜分离的概念 3、膜分离法的分类 4、膜分离技术的特点 5.膜分离法的应用
99%
多孔层, 孔径 (1000-4000) ×10-10m
这种膜有不对称结构: 表面结构致密, 孔隙很小, 通称为表皮 层或致密层、活化层; 下层结构较疏松, 孔隙较大, 通称为多 孔层或支撑层。
2024/7/5
膜分离技术
29
膜的照片
在相对湿度为100%时, 膜的含水量高达60%, 其中表皮层只含10%-20%, 且主要是以氢 键形式结合结合水。
2024/7/5
膜分离技术
17
2. 扩散渗析法原理
渗析液A+ B-
H2O
H2O A+
B- B- B-
(1)
膜分离技术的应用PPT课件
法、离子交换法和沉淀法,这些方法各有特点但工 艺往往都十分繁杂所需时间长、易变性失活、需消 耗大量的原料、能耗高、回收率低、废水污染严重 且处理难度大。
膜分离技术作为一门新型的分离、浓缩、提纯
及净化技术具有节能、不破坏产品结构、少污染和 操作简单,可在常温下连续操作、可直接放大、可 专一配膜等特点,且各种膜过程具有不同的分离机 制,适用于不同对象和要求。
膜分离技术在低度白酒除浊中具有很大的应用前景, 正在成为酿酒业的一个重要过滤技术,在去除杂质、 保持品质、降低能耗、缩短处理时间方面具有较大 的优势。
利用超滤膜技术把发酵液中产品和菌体分离,再采 用其它方法精制流程。其优点是:生产效率和产品 质量提高;简化了工艺流程;菌体蛋白不含外加杂质, 利用价值高,达到资源综合利用。
膜分离技术在乳清蛋白的回收的应用
干酪乳清先进行预处理,pH 值调整到5.2~5.9,在 71~85℃灭菌15s。然后进行超滤分离,常用醋酸 纤维素膜、聚砜膜或聚丙烯腈膜等, 截留相对分子 质量20000~25000,压力70~700kPa。乳清蛋白被 截留,截留率为95%~99%,而含有乳糖和无机盐 的溶液透过。利用该法乳清蛋白提得率提高近4倍, 而乳糖下降40%。截留的浓缩乳清蛋白经喷雾干燥 可得乳清粉,可用于配制婴儿乳粉、老人乳粉等。
▪ 医药用水 医药针剂用水是采用多级蒸馏制备的,其工艺繁琐、 能耗高、而且质量常常得不到保证。用超滤膜技术除 针剂热源和终端水热源,取得很好效果。
▪ 工艺水的处理(分离、浓缩、分级和纯化) 在各工业生产过程中,往往有分离、浓缩、分级和纯 化某种水溶液的需求。传统用的方法是沉淀、过滤、 加热、冷冻、蒸馏、萃取和结晶等过程。这些方法表 现出流程长、耗能多、物料损失多、设备庞大、效率 低、操作繁琐等缺点,以超滤膜技术取代某种传统技
膜分离技术作为一门新型的分离、浓缩、提纯
及净化技术具有节能、不破坏产品结构、少污染和 操作简单,可在常温下连续操作、可直接放大、可 专一配膜等特点,且各种膜过程具有不同的分离机 制,适用于不同对象和要求。
膜分离技术在低度白酒除浊中具有很大的应用前景, 正在成为酿酒业的一个重要过滤技术,在去除杂质、 保持品质、降低能耗、缩短处理时间方面具有较大 的优势。
利用超滤膜技术把发酵液中产品和菌体分离,再采 用其它方法精制流程。其优点是:生产效率和产品 质量提高;简化了工艺流程;菌体蛋白不含外加杂质, 利用价值高,达到资源综合利用。
膜分离技术在乳清蛋白的回收的应用
干酪乳清先进行预处理,pH 值调整到5.2~5.9,在 71~85℃灭菌15s。然后进行超滤分离,常用醋酸 纤维素膜、聚砜膜或聚丙烯腈膜等, 截留相对分子 质量20000~25000,压力70~700kPa。乳清蛋白被 截留,截留率为95%~99%,而含有乳糖和无机盐 的溶液透过。利用该法乳清蛋白提得率提高近4倍, 而乳糖下降40%。截留的浓缩乳清蛋白经喷雾干燥 可得乳清粉,可用于配制婴儿乳粉、老人乳粉等。
▪ 医药用水 医药针剂用水是采用多级蒸馏制备的,其工艺繁琐、 能耗高、而且质量常常得不到保证。用超滤膜技术除 针剂热源和终端水热源,取得很好效果。
▪ 工艺水的处理(分离、浓缩、分级和纯化) 在各工业生产过程中,往往有分离、浓缩、分级和纯 化某种水溶液的需求。传统用的方法是沉淀、过滤、 加热、冷冻、蒸馏、萃取和结晶等过程。这些方法表 现出流程长、耗能多、物料损失多、设备庞大、效率 低、操作繁琐等缺点,以超滤膜技术取代某种传统技
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可编辑课件
6.1 膜材料 与膜的制造
可编辑课件
18
膜材料的特性
• 对于不同种类的膜都有一个基本要求:
– 耐压:膜孔径小,要保持高通量就必须施加较 高的压力,一般模操作的压力范围在 0.1~0.5MPa,反渗透膜的压力更高,约为
0.1~10MPa
– 耐高温:高通量带来的温度升高和清洗的需要
– 耐酸碱:防止分离过程中,以及清洗过程中的 水解;
➢ 在1987年日本东京国际膜与膜过程会议上, 明确指出“在21世纪多数工业中,膜过程扮演着 战略的角色”。
➢ 世界著名的化工与膜专家,美国国家工程院 院士,北美膜学会会长黎念之博士在 1994年应 邀访问我国化工部及所属大学时说:“要想发展 化工就必须发展膜技术”。
➢ 国际上流行的说法“谁掌握了膜技术,谁就 掌握了化工的未来”
Fofirol..etc
Mangold, Michaels.M
用赛璐玢和消化纤维素膜观察了电解质和非电解质的反 渗透现象
obain..etc
Teorell, Meyer,
Sievers
进行了膜电势的研究,是电渗析和膜电极的基础
William Kolff
初次成功使用了人工肾
Juda, Mcrae
合成膜的研究,发明了电渗析,微孔过滤和血液透析等 分离工程
1917
Fick
Graham Van‘t Hoff, Tranbe,Preffer Kahlenbery
Kober
发现了扩散定律,至今用于通过膜的扩散; 制备了早期的人工半渗透膜
发现气体通过橡皮有不同的的渗透率,发现 渗析(Dialysis)现象
渗透压定律
观察到烃/乙醇溶液选择透过橡胶薄膜
引入名词渗透气化(Pervaporqtion)
血液渗析、工业 废液等
Amicon Corp.,Koch Eng.Inc., 制药工业、乳品
Nittl Denko
工业等
Permea/Air Prod.,Ube Ind., Hoechst/Celanese
医疗、燃烧过程 等
GFT GmbH 可编辑课件
无水乙醇生产
8
1950’ 荷兰——人工肾——血液透析
Loeb-
相转化法制出了非对称反渗透膜
Sourirajan
N.N.Li 发明了液膜
Cadotte 制出了界面可反编应辑聚课件合复合膜
7
膜工业的发展史
分离过程 年代
目前主要厂商
应用
微滤 电渗析 反渗透
渗析 超滤 气体分离 渗透汽化
1925 1960 1965 1965 1970 1980 1990
Millipore Corp,Pall corp.,Asahi 微电子、医学、
可编辑课件
5
膜科学的发展史
年代
科学家
主要内容
1748 1827
Abbe Nollet Dutrochet
水能自发地穿过猪膀胱进入酒精溶液,发生 渗透现象
名词渗透作用(Osmosis)的引入
1831
J.V.Mitchell 气体透过橡胶膜的研究
1855
1861~ 1966
1860~ 1977
1906
可编辑课件
人工肾
1955’ 美国——电渗析——海水脱盐淡化
可编辑课件
可编辑课件
11
电渗析除盐装置
可编辑课件
1965’ 美国——反渗透——海水脱盐、饮用水生产
可编辑课件
概述
★膜分离的特点
• ①操作在常温下进行; • ②是物理过程,不需加入化学试剂; • ③不发生相变化(因而能耗较低); • ④在很多情况下选择性较高; • ⑤浓缩和纯化可在一个步骤内完成; • ⑥设备易放大,可以分批或连续操作。 • 因而在生物产品的处理中占有重要地位
可编辑课件
14
概述
ห้องสมุดไป่ตู้
膜分离技术的重要性
膜分离技术兼具分离、浓缩和纯化的功能,又
有使用简单、易于控制及高效、节能的特点
选择适当的膜分离技术,可替代过滤、沉淀、
萃取、吸附等多种传统的分离与过滤方法。
膜分离技术得到各国重视:国际学术界一致认
为“谁掌握了膜技术,谁就掌握了化工的未 来”。
膜分离技术在短短的时间迅速发展起来,近
压力
膜包括最简单的滤纸 过滤到高选择性的生物膜。
可编辑课件
什么是膜分离技术?
• 概念:用天然或人工制备的、具有选择性透过的膜, 以外界能量或化学位差为推动力,对双组分或多组分 的溶质和溶剂进行分离、分级、提纯和浓缩的方法。
推动力: 压力差 浓度差 电位差
可编辑课件
概述
人类认识到膜的功能源于1748年,然而用于为人类服 务是近几十年的事。 1960年Loeb和Sourirajan制备 出第一张具有高透水性和高脱盐率的不对称膜,是膜 分离技术发展的一个里程碑。
Chemical
食品、化工等
Oonics Ins.,Tokuyama Soda, 苦咸水脱盐、水
Asahi Glass
分解、氯碱工业
Film Tech./DOW,
海水脱盐、饮用
Hydronautics/Nitto,Torray,Ddu 水生产、食品工
Pont
业、造纸工业等
Enka/AKZO,Gambro,Asahi Chemical
•
6 膜分离技术
(membrane separation)
第一讲
可编辑课件
1
本讲的主要内容
膜分离技术概述 膜材料与膜的制造 表征膜性能的参数 各种膜分离技术及其分离机理
可编辑课件
2
膜是什么?
指在一种流体相内或是在两种流体相之间有一层薄的凝 聚相,把流体相分隔为互不相通的两部分,使这两部分 之间产生传质作用。可以是固态、液态或气态的。
可编辑课件
6
续表:
1911 1922
1920
1930 1944 1950 1960 1968 1980
Donnan
Donnan分布定律。研究了分子带电荷体的形成,电荷分 布,Donnan电渗析和伴生传递的平衡现象
Zsigmondy Bachman
微孔膜用于分离极细粒子、初期的超滤和反渗透(膜材 料为赛璐玢和再生纤维)
30年膜分离技术,已广泛用于食品、医药、 化工及水处理等各个领域。产生了巨大的经济 效益和社会效益,已成为当今分离科学中最重 要的手段之一。
可编辑课件
15
膜分离技术的重要性评论: ➢ 美国官方文件曾说“18世纪电器改变了整个 工业进程,而20世纪膜技术将改变整个面貌”, 又说“目前没有一种技术,能像膜技术这么广 泛地被应用”。 ➢ 国外有关专家夸大地把膜技术的发展称为 “第三次工业革命” ➢ 日本则把膜分离技术作为21世纪的基础技术 进行研究和开发。 可编辑课件
6.1 膜材料 与膜的制造
可编辑课件
18
膜材料的特性
• 对于不同种类的膜都有一个基本要求:
– 耐压:膜孔径小,要保持高通量就必须施加较 高的压力,一般模操作的压力范围在 0.1~0.5MPa,反渗透膜的压力更高,约为
0.1~10MPa
– 耐高温:高通量带来的温度升高和清洗的需要
– 耐酸碱:防止分离过程中,以及清洗过程中的 水解;
➢ 在1987年日本东京国际膜与膜过程会议上, 明确指出“在21世纪多数工业中,膜过程扮演着 战略的角色”。
➢ 世界著名的化工与膜专家,美国国家工程院 院士,北美膜学会会长黎念之博士在 1994年应 邀访问我国化工部及所属大学时说:“要想发展 化工就必须发展膜技术”。
➢ 国际上流行的说法“谁掌握了膜技术,谁就 掌握了化工的未来”
Fofirol..etc
Mangold, Michaels.M
用赛璐玢和消化纤维素膜观察了电解质和非电解质的反 渗透现象
obain..etc
Teorell, Meyer,
Sievers
进行了膜电势的研究,是电渗析和膜电极的基础
William Kolff
初次成功使用了人工肾
Juda, Mcrae
合成膜的研究,发明了电渗析,微孔过滤和血液透析等 分离工程
1917
Fick
Graham Van‘t Hoff, Tranbe,Preffer Kahlenbery
Kober
发现了扩散定律,至今用于通过膜的扩散; 制备了早期的人工半渗透膜
发现气体通过橡皮有不同的的渗透率,发现 渗析(Dialysis)现象
渗透压定律
观察到烃/乙醇溶液选择透过橡胶薄膜
引入名词渗透气化(Pervaporqtion)
血液渗析、工业 废液等
Amicon Corp.,Koch Eng.Inc., 制药工业、乳品
Nittl Denko
工业等
Permea/Air Prod.,Ube Ind., Hoechst/Celanese
医疗、燃烧过程 等
GFT GmbH 可编辑课件
无水乙醇生产
8
1950’ 荷兰——人工肾——血液透析
Loeb-
相转化法制出了非对称反渗透膜
Sourirajan
N.N.Li 发明了液膜
Cadotte 制出了界面可反编应辑聚课件合复合膜
7
膜工业的发展史
分离过程 年代
目前主要厂商
应用
微滤 电渗析 反渗透
渗析 超滤 气体分离 渗透汽化
1925 1960 1965 1965 1970 1980 1990
Millipore Corp,Pall corp.,Asahi 微电子、医学、
可编辑课件
5
膜科学的发展史
年代
科学家
主要内容
1748 1827
Abbe Nollet Dutrochet
水能自发地穿过猪膀胱进入酒精溶液,发生 渗透现象
名词渗透作用(Osmosis)的引入
1831
J.V.Mitchell 气体透过橡胶膜的研究
1855
1861~ 1966
1860~ 1977
1906
可编辑课件
人工肾
1955’ 美国——电渗析——海水脱盐淡化
可编辑课件
可编辑课件
11
电渗析除盐装置
可编辑课件
1965’ 美国——反渗透——海水脱盐、饮用水生产
可编辑课件
概述
★膜分离的特点
• ①操作在常温下进行; • ②是物理过程,不需加入化学试剂; • ③不发生相变化(因而能耗较低); • ④在很多情况下选择性较高; • ⑤浓缩和纯化可在一个步骤内完成; • ⑥设备易放大,可以分批或连续操作。 • 因而在生物产品的处理中占有重要地位
可编辑课件
14
概述
ห้องสมุดไป่ตู้
膜分离技术的重要性
膜分离技术兼具分离、浓缩和纯化的功能,又
有使用简单、易于控制及高效、节能的特点
选择适当的膜分离技术,可替代过滤、沉淀、
萃取、吸附等多种传统的分离与过滤方法。
膜分离技术得到各国重视:国际学术界一致认
为“谁掌握了膜技术,谁就掌握了化工的未 来”。
膜分离技术在短短的时间迅速发展起来,近
压力
膜包括最简单的滤纸 过滤到高选择性的生物膜。
可编辑课件
什么是膜分离技术?
• 概念:用天然或人工制备的、具有选择性透过的膜, 以外界能量或化学位差为推动力,对双组分或多组分 的溶质和溶剂进行分离、分级、提纯和浓缩的方法。
推动力: 压力差 浓度差 电位差
可编辑课件
概述
人类认识到膜的功能源于1748年,然而用于为人类服 务是近几十年的事。 1960年Loeb和Sourirajan制备 出第一张具有高透水性和高脱盐率的不对称膜,是膜 分离技术发展的一个里程碑。
Chemical
食品、化工等
Oonics Ins.,Tokuyama Soda, 苦咸水脱盐、水
Asahi Glass
分解、氯碱工业
Film Tech./DOW,
海水脱盐、饮用
Hydronautics/Nitto,Torray,Ddu 水生产、食品工
Pont
业、造纸工业等
Enka/AKZO,Gambro,Asahi Chemical
•
6 膜分离技术
(membrane separation)
第一讲
可编辑课件
1
本讲的主要内容
膜分离技术概述 膜材料与膜的制造 表征膜性能的参数 各种膜分离技术及其分离机理
可编辑课件
2
膜是什么?
指在一种流体相内或是在两种流体相之间有一层薄的凝 聚相,把流体相分隔为互不相通的两部分,使这两部分 之间产生传质作用。可以是固态、液态或气态的。
可编辑课件
6
续表:
1911 1922
1920
1930 1944 1950 1960 1968 1980
Donnan
Donnan分布定律。研究了分子带电荷体的形成,电荷分 布,Donnan电渗析和伴生传递的平衡现象
Zsigmondy Bachman
微孔膜用于分离极细粒子、初期的超滤和反渗透(膜材 料为赛璐玢和再生纤维)
30年膜分离技术,已广泛用于食品、医药、 化工及水处理等各个领域。产生了巨大的经济 效益和社会效益,已成为当今分离科学中最重 要的手段之一。
可编辑课件
15
膜分离技术的重要性评论: ➢ 美国官方文件曾说“18世纪电器改变了整个 工业进程,而20世纪膜技术将改变整个面貌”, 又说“目前没有一种技术,能像膜技术这么广 泛地被应用”。 ➢ 国外有关专家夸大地把膜技术的发展称为 “第三次工业革命” ➢ 日本则把膜分离技术作为21世纪的基础技术 进行研究和开发。 可编辑课件