简易数字显示交毫伏表(最终定稿)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简易数字显示交流毫伏表

摘要:

本系统由高级模拟器件、CPLD,可实现具有自动量程转换功能的真有效值测量、交流频率测量和标准幅度可控的正弦波输出等功能。测量部分具有高输入阻抗(R ≥2M,C<2.5pF),宽频带范围(10 HZ-5M HZ),宽电压范围(1mV-250V),高精度(有效值≤1%,频率<10-6)的优越性能。可满足多方位的需要。

关键词:静电计频率计高频放大真有效值

1.系统方案选择与论证

1.1设计要求

设计并制作一个简易数字显示的交流毫伏表,示意图如图-1所示。

图-1 简易数字显示交流毫伏表示意图

1.1.1基本要求

(1)电压测量

a、测量电压的频率范围100Hz~500KHz。

b、测量电压范围100mV~100V(可分多档量程)。

c、要求被测电压数字显示。

d、电压测量误差±5%±2个字。

e、输入阻抗≥1MΩ,输入电容≤50pF(本项可不做测试,在电路设计中给予保证)

f、具有超量程自动闪烁功能。

(2)设计并制作该仪表所需要的直流稳压电源。

1.1.2发挥部分

(1)将测量电压的频率范围扩展为10Hz~1MHz。

(2)将测量电压的范围扩展到10mV~200V。

(3)交流毫伏表具有自动量程转换功能。

(5)其他。

1.2系统基本方案及框图

根据题目要求及适当的发挥,我们的硬件电路主要包括输入信号的有效值测量、输入信号的频率测量。其中前两者构成一个测量系统。测量系统包括:信号调理模块、A/D,D/A模块、信号真有效值转换模块、CPLD频率测试模块、算法控制器模块、键盘显示模块、语音播报及打印模块、电源模块等。图-3所示。为实现各模块的功能,分别作了几种不同的设计方案并进行了论证,我们选取了较好的方案实现。

图-3 测量系统框图

1.2.1各模块方案选择和论证

(1)有效值测量部分:

方案一:用分立元件搭焊高频放大电路,用精密整流电路测量输入信号的真有效值。这种方案成本较低。但是这种电路结构复杂,调试困难,精度低,温漂大,稳定度低。而且,放大电路的放大倍数难以准确控制,导致放大和测量的结果不准确。

方案二:用优质运算放大器做前级跟随放大,用专用真有效值转换芯片做有效值转换。这种方案成本较高。但是,通过合理的选择各级运放,可以做到电路简单可靠,输入阻抗高、测量精度高、近似无级量程转换的优良性能。

(2)频率测量部分:

作为扩展功能对输入交流信号的频率进行测量。要实现快速准确的测量频率,必须要有良好的硬件响应速度和良好的测量策略。

方案一:用单片机的计数器对基准时钟源进行计数。然后通过计数的比值计算出被测信号的频率。这种方案节省硬件,用一片单片机实现计数,运算等工作。但是,由于单片机内部的计数器所能计数的频率有限,更重要的是开始计数和停止计数难以做到同步,所以,此种方法测得的频率精度低,范围窄。

方案二:用8253等专用硬件计数器配合逻辑电路设计一套硬件测量电路。此种电路如果能合理设计,能做到实时性好,测量准确。但是设计起来较为麻烦。需要的硬件多,电路制作复杂。

方案三:采用CPLD(复杂可编程逻辑器件)编写代码实现频率计数功能。可编程逻辑器件响应速度快可以达到十几纳秒甚至几纳秒,响应频率可以达到几十兆甚至上百兆,可以实现高速计数。可编程逻辑器件可以用代码实现硬件的功能,易于修改,而且性能优于传统的电路连接方式,对于一定规模的数字电路尤其显示了其优越性。

1.2.2系统各模块的最终方案

(1)有效值测量部分:

我们选用方案二:用各种优质运算放大器做信号调理,用有效值转换专用芯片AD637作为有效值测量器件。

(2)频率测量部分:

我们选用方案三:用CPLD作为硬件平台进行同步计数,然后用单片机进行数据读取、处理。精度可达<10-6,测量速度可达0.2s/次。

2.系统的硬件设计与实现

2.1系统硬件的基本组成概述

本系统由电源、保护电路、分压跟随、信号放大、信号真有效值转换、A/D、D/A、CPLD频率测试、算法控制器、键盘、显示、语音播报、打印、电源等十几个模块组成。各部分紧密联系,形成了一套完善的测量系统。

2.2有效值测量单元电路的设计

2.2.1有效值转换电路总揽

此部分为交流毫伏表的主要构成部分,负责输入信号的处理以及测量。图-4为此部分电路图,可分为分压网络,输入缓冲级,高频放大级以及测量级。

图-4有效值测量原理图

2.2.4高频放大级

经过分压后的信号一般是比较微弱的,还不能直接去进行真有效值转换,需要放大至合适的幅值。这种放大器应该是可变的,以保证使输入电压都放大到一个合适的幅度。我们设计了两种方案,一种方案是通过继电继来改变串入放大的电路的放大级,通过不同放大倍数的组合来实现更多放大比,这种方法增加了继

电器的使用,使得切换时有大量的噪声,且不能实现任意放大比;另一种方案就是采用程控放大器,通过电压来控制放大倍数,从而得到最合适的输出幅值,我们采用了此种方案。我们选择了AD603可变增益放大器。AD603在增益为-11dB 至31dB范围内具有90MHz的带宽,通过两级AD603级联可实现-20dB至60dB 极宽范围的增益,从而使得放大纺输出的有效值在2V附近,达到最高的精度。超低温漂基准源AD586的输出经过分压产生500mV的电压加在增益控制脚GNEG 上,而单片机DA输出0-1V的电压加在GPOS上,从而使控制电压Vg=(Vgpos-Vgneg)在-500mV至500mV内,增益公式为Gain=80Vg+20dB。

由于AD603的输入电阻仅为100欧姆,对于级间耦合电容,则需要很大才能达到理想的低频响应,我们用0.1uF,1uF和470uF的电容并联,达到全频带都有理想的响应。由于AD603的输出幅值仅为+-2V,所以我们级联了一级由AD811构成的同相放大器,其增益为2.从而提高了放大器输出的幅度,进而提高了精度。如图-8所示:

图-8高频放大原理图

2.2.5真有效值转换

一个交变信号的有效值的定义为:

为信号的有效值,T为测量时间,V(t)是信号的波形。

这时,V

RMS

V(t)是一个时间的函数,但不一定是周期性的。

对等式的两边进行平方得:

相关文档
最新文档