Hypatia滑铁卢数学竞赛(Grade 11)-数学Mathematics-2008-试题 exam

合集下载

欧几里得滑铁卢数学竞赛_2010EuclidSolution

欧几里得滑铁卢数学竞赛_2010EuclidSolution

Since Bea flies at a constant speed, then the ratio of the two distances equals the ratio of
the corresponding times.
HF 60 minutes 4
Therefore, =
=.
GF 45 minutes 3
(b) Solution 1
Since ∠OP B = 90◦, then OP and P B are perpendicular, so the product of their slopes
is −1.
4−0 4
4−0
4
The slope of OP is
= and the slope of P B is
Since F GH is right-angled at F , then F GH must be similar to a 3-4-5 triangle, and
HG 5
so = .
GF 3
In
particular,
this
means
that
the
ratio
of
the
times
flying
H
to
Wednesday, April 7, 2010
Solutions
©2010 Centre for Education in Mathematics and Computing
2010 Euclid Contest Solutions
Page 2
1. (a) Solution 1 Since 3x = 27, then 3x+2 = 3x32 = 27 · 9 = 243.

caribou数学竞赛介绍

caribou数学竞赛介绍

caribou数学竞赛介绍
Caribou数学竞赛是一项面向学生的国际性数学竞赛,旨在激发学生对数学的兴趣,并提高他们的数学技能和解决问题的能力。

该竞赛由加拿大Caribou Mathematics Competition组织,每年举办一次。

Caribou数学竞赛分为多个级别,适合不同年级的学生参与,从幼儿园到高中都有相应的竞赛级别。

竞赛题目设计丰富多样,包括选择题、填空题、解答题等形式,涵盖了各个数学领域的知识和技能。

参加Caribou数学竞赛有许多好处。

首先,它可以培养学生的数学思维和解决问题的能力。

通过面对不同类型的数学问题,学生需要思考和分析,找到解题的方法和策略。

其次,竞赛可以激发学生对数学的兴趣和热爱,让他们深入了解数学的魅力和应用。

此外,竞赛还提供了一个与全球各地学生交流和比较的平台,激发学生的竞争意识和合作精神。

参加Caribou数学竞赛需要学校或个人报名,并按照竞赛规定的时间和方式进行答题。

竞赛结果将根据学生的得分和排名进行评定,并颁发相应的证书和奖励。

总而言之,Caribou数学竞赛是一项激发学生数学兴趣和提高数学能力的国际性竞赛,为学生提供了锻炼和展示自己数学才能的机会。

通过参与竞赛,学生可以发展数学思维,提高解决问题的能力,并与来自世界各地的学生交流和比较。

国际中学生数学竞赛含金量排行榜

国际中学生数学竞赛含金量排行榜

国际中学生数学竞赛含金量排行榜
国际中学生数学竞赛的含金量因赛事的权威性、参赛选手水平、奖项设置等因素而有所不同。

以下是部分国际中学生数学竞赛及简要介绍:
1. 国际数学奥林匹克(IMO):这是最具权威性的国际中学生数学竞赛之一,每年有来自世界各地的参赛选手。

IMO的奖项分为金牌、银牌和铜牌,其
中金牌是最高荣誉。

获奖者将获得世界范围内的认可和奖励,对于未来的学术和职业发展具有重要意义。

2. 亚洲太平洋数学奥林匹克(APMO):这是亚太地区最高水平的数学竞赛,每年有来自多个国家和地区的代表队参赛。

APMO的奖项分为金、银、铜
牌和优秀奖,其中金牌是最高荣誉。

获奖者将获得国际范围内的认可和奖励,对于未来的学术和职业发展具有重要意义。

3. 英国数学奥林匹克(BMO):这是英国最高水平的数学竞赛,每年有来
自全国各地的参赛选手。

BMO的奖项分为金、银、铜牌和优秀奖,其中金
牌是最高荣誉。

获奖者将获得英国范围内的认可和奖励,对于未来的学术和职业发展具有重要意义。

4. 罗马尼亚数学奥林匹克(RMO):这是罗马尼亚最高水平的数学竞赛,
每年有来自全国各地的参赛选手。

RMO的奖项分为金、银、铜牌和优秀奖,其中金牌是最高荣誉。

获奖者将获得国际范围内的认可和奖励,对于未来的学术和职业发展具有重要意义。

总的来说,这些国际中学生数学竞赛都具有较高的含金量,获奖者将获得国际范围内的认可和奖励,对于未来的学术和职业发展具有重要意义。

滑铁卢数学竞赛

滑铁卢数学竞赛

滑铁卢数学竞赛滑铁卢数学竞赛是加拿大滑铁卢大学举办的一项年度数学竞赛活动。

该竞赛旨在通过一系列难度不断增加的数学问题,考察参赛者的数学思维能力、解题能力以及创造力。

每年都有来自世界各地的学生参加该比赛,其中包括来自中小学的学生以及大学生。

滑铁卢数学竞赛分为两个阶段,第一阶段为全球性选拔赛,任何人都可以参加。

参赛者需要在线完成一套由滑铁卢大学编制的数学测试,题型涵盖代数、几何、组合数学等多个数学领域。

根据第一阶段的成绩,滑铁卢大学将选拔出前几百名成绩优异的参赛者晋级到第二阶段。

第二阶段为面试阶段,只有第一阶段晋级的学生才可以参加。

参赛者需要前往滑铁卢大学进行现场的笔试和面试。

笔试部分主要考察参赛者的数学基础知识和解题能力,而面试部分则更加注重参赛者的思维过程和解题思路。

面试时,学生需要与评委进行面对面的交流,展示自己的数学思考能力。

滑铁卢数学竞赛的题目通常非常有难度,涉及到一些高级数学概念和方法。

参赛者需要具备扎实的数学基础知识,并且具备独立思考和解决问题的能力。

竞赛的目的不仅是测试学生的数学水平,更重要的是培养他们解决问题的能力和数学思维方式。

参加滑铁卢数学竞赛对于学生来说是一次宝贵的经历。

这个竞赛可以提供一个展示自己数学才能的平台,也可以锻炼参赛者的思维能力和团队合作精神。

在竞赛中,学生们可以结识来自不同国家和地区的志同道合的数学爱好者,分享彼此的数学体验和解题方法。

滑铁卢数学竞赛也为参赛者提供了一些奖励和机会。

根据参赛者在竞赛中的表现,滑铁卢大学会为他们颁发证书和奖状,并且可以获得一些奖金和奖品。

此外,优秀的参赛者还有机会获得滑铁卢大学的奖学金和入学机会,为他们的未来发展开启了一扇大门。

总之,滑铁卢数学竞赛是一个非常有挑战性和有意义的数学竞赛活动。

通过参加这个竞赛,学生们可以提升自己的数学能力,拓展自己的数学视野,同时也能够展示自己的才能和潜力。

无论是对于中小学生还是大学生,参加滑铁卢数学竞赛都是一个值得鼓励和支持的选择。

滑铁卢数学竞赛

滑铁卢数学竞赛

滑铁卢数学竞赛1、21.|x|>3表示的区间是()[单选题] *A.(-∞,3)B.(-3,3)C. [-3,3]D. (-∞,-3)∪(3,+ ∞)(正确答案)2、15.下列数中,是无理数的为()[单选题] *A.-3.14B.6/11C.√3(正确答案)D.03、9.一棵树在离地5米处断裂,树顶落在离树根12米处,问树断之前有多高()[单选题] *A. 17(正确答案)B. 17.5C. 18D. 204、若tan(π-α)>0且cosα>0,则角α的终边在()[单选题] *A.第一象限B.第二象限C.第三象限D.第四象限(正确答案)5、下列说法正确的是[单选题] *A.带“+”号和带“-”号的数互为相反数B.数轴上原点两侧的两个点表示的数是相反数C.和一个点距离相等的两个点所表示的数一定互为相反数D.一个数前面添上“-”号即为原数的相反数(正确答案)6、16、在中,则( ). [单选题] *A. AB<2AC (正确答案)B. AB=2ACC. AB>2ACD. AB与2AC关系不确定7、260°是第()象限角?[单选题] *第一象限第二象限第三象限(正确答案)第四象限8、4.已知两圆的半径分别为3㎝和4㎝,两个圆的圆心距为10㎝,则两圆的位置关系是()[单选题] *A.内切B.相交C.外切D.外离(正确答案)9、下列各角中,是界限角的是()[单选题] *A. 1200°B. -1140°C. -1350°(正确答案)D. 1850°10、下列各对象可以组成集合的是()[单选题] *A、与1非常接近的全体实数B、与2非常接近的全体实数(正确答案)C、高一年级视力比较好的同学D、与无理数相差很小的全体实数11、若2?=a2=4 ?,则a?等于( ) [单选题] *A. 43B. 82C. 83(正确答案)D. 4?12、47、若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为()[单选题] *A.3B.4C.1或3D.3或5(正确答案)13、8. 下列事件中,不可能发生的事件是(? ? ).[单选题] *A.明天气温为30℃B.学校新调进一位女教师C.大伟身长丈八(正确答案)D.打开电视机,就看到广告14、3.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()[单选题] *A.10℃B.0℃C.-10 ℃(正确答案)D.-20℃15、19.对于实数a、b、c,“a>b”是“ac2(c平方)>bc2(c平方) ; ”的()[单选题] * A.充分不必要条件B.必要不充分条件(正确答案)C.充要条件D.既不充分也不必要条件16、22.如图棋盘上有黑、白两色棋子若干,找出所有使三颗颜色相同的棋在同一直线上的直线,满足这种条件的直线共有()[单选题] *A.5条(正确答案)B.4条C.3条D.2条17、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)18、10. 如图所示,小明周末到外婆家,走到十字路口处,记不清哪条路通往外婆家,那么他一次选对路的概率是(? ? ?).[单选题] *A.1/2B.1/3(正确答案)C.1/4D.119、15.如图所示,下列数轴的画法正确的是()[单选题] *A.B.C.(正确答案)D.20、-950°是()[单选题] *A. 第一象限角B. 第二象限角(正确答案)C. 第三象限角D. 第四象限角21、1.如图,∠AOB=120°,∠AOC=∠BOC,OM平分∠BOC,则∠AOM的度数为()[单选题] *A.45°B.65°C.75°(正确答案)D.80°22、27.下列计算正确的是()[单选题] *A.(﹣a3)2=a6(正确答案)B.3a+2b=5abC.a6÷a3=a2D.(a+b)2=a2+b223、16.“x2(x平方)-4x-5=0”是“x=5”的( ) [单选题] *A.充分不必要条件B.必要不充分条件(正确答案)C.充要条件D.既不充分也不必要条件24、19.下列两个数互为相反数的是()[单选题] *A.(﹣)和﹣(﹣)B.﹣5和(正确答案)C.π和﹣14D.+20和﹣(﹣20)25、13.在数轴上,下列四个数中离原点最近的数是()[单选题] *A.﹣4(正确答案)B.3C.﹣2D.626、14.命题“?x∈R,?n∈N*,使得n≥x2(x平方)”的否定形式是()[单选题] * A.?x∈R,?n∈N*,使得n<x2B.?x∈R,?x∈N*,使得n<x2C.?x∈R,?n∈N*,使得n<x2D.?x∈R,?n∈N*,使得n<x2(正确答案)27、8.(2020·课标Ⅱ)已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则?U(A∪B)=( ) [单选题] *A.{-2,3}(正确答案)B.{-2,2,3}C.{-2,-1,0,3}D.{-2,-1,0,2,3}28、7人小组选出2名同学作正副组长,共有选法()种。

Fermat滑铁卢数学竞赛(Grade 11)-数学Mathematics-2002-试题 exam

Fermat滑铁卢数学竞赛(Grade 11)-数学Mathematics-2002-试题 exam

Canadian Instituteof Actuaries Chartered AccountantsSybasei Anywhere SolutionsScoring:There is no penalty for an incorrect answer.Each unanswered question is worth 2, to a maximum of 10 unanswered questions.Part A: Each correct answer is worth 5.1.If x =3, the numerical value of 522–x is(A ) –1(B ) 27(C ) –13(D )–31(E ) 32.332232++ is equal to(A ) 3(B ) 6(C ) 2(D )32(E ) 53.If it is now 9:04 a.m., in 56 hours the time will be(A ) 9:04 a.m.(B ) 5:04 p.m.(C ) 5:04 a.m.(D ) 1:04 p.m.(E ) 1:04 a.m.4.Which one of the following statements is not true?(A ) 25 is a perfect square.(B ) 31 is a prime number.(C ) 3 is the smallest prime number.(D ) 8 is a perfect cube.(E ) 15 is the product of two prime numbers.5. A rectangular picture of Pierre de Fermat, measuring 20 cmby 40 cm, is positioned as shown on a rectangular postermeasuring 50 cm by 100 cm. What percentage of the areaof the poster is covered by the picture?(A ) 24%(B ) 16%(C ) 20%(D ) 25%(E ) 40%6.Gisa is taller than Henry but shorter than Justina. Ivan is taller than Katie but shorter than Gisa. Thetallest of these five people is(A ) Gisa (B ) Henry (C ) Ivan (D ) Justina (E ) Katie7. A rectangle is divided into four smaller rectangles. Theareas of three of these rectangles are 6, 15 and 25, as shown.The area of the shaded rectangle is(A ) 7(B ) 15(C ) 12(D ) 16(E) 108.In the diagram, ABCD and DEFG are squares with equal side lengths, and ∠=°DCE 70. The value of y is (A ) 120(B ) 160(C ) 130(D ) 110(E ) 1409.The numbers 1 through 20 are written on twenty golf balls, with one number on each ball. The golfballs are placed in a box, and one ball is drawn at random. If each ball is equally likely to be drawn,what is the probability that the number on the golf ball drawn is a multiple of 3?(A )320(B )620(C )1020(D )520(E )12010.ABCD is a square with AB x =+16 and BC x =3, as shown.The perimeter of ABCD is(A ) 16(B ) 32(C ) 96(D ) 48(E ) 24Part B: Each correct answer is worth 6.11. A line passing through the points 02,−() and 10,() also passes through the point 7,b (). The numericalvalue of b is(A ) 12(B )92(C ) 10(D ) 5(E ) 1412.How many three-digit positive integers are perfect squares?(A ) 23(B ) 22(C ) 21(D ) 20(E ) 1913. A “double-single” number is a three-digit number made up of two identical digits followed by adifferent digit. For example, 553 is a double-single number. How many double-single numbers are there between 100 and 1000?(A ) 81(B ) 18(C ) 72(D ) 64(E ) 9014.The natural numbers from 1 to 2100 are entered sequentially in 7 columns, with the first 3 rows asshown. The number 2002 occurs in column m and row n . The value of m n + isColumn 1Column 2Column 3Column 4Column 5Column 6Column 7Row 1 1 2 3 4 5 6 7Row 2 8 91011121314Row 315161718192021M M M M M M M M(A ) 290(B ) 291(C ) 292(D ) 293(E ) 294x + 163xA BD C15.In a sequence of positive numbers, each term after the first two terms is the sum of all of the previousterms . If the first term is a ,the second term is 2, and the sixth term is 56, then the value of a is(A ) 1(B ) 2(C ) 3(D ) 4(E ) 516.If ac ad bc bd +++=68 and c d +=4, what is the value of a b c d +++?(A ) 17(B ) 85(C ) 4(D ) 21(E ) 6417.The average age of a group of 140 people is 24. If the average age of the males in the group is 21 andthe average age of the females is 28, how many females are in the group?(A ) 90(B ) 80(C ) 70(D ) 60(E ) 5018. A rectangular piece of paper AECD has dimensions 8 cm by 11 cm. Corner E is folded onto point F , which lies on DC ,as shown. The perimeter of trapezoid ABCD is closest to (A ) 33.3 cm (B ) 30.3 cm (C ) 30.0 cm(D ) 41.3 cm (E ) 35.6 cm 19.If 238610a b =(), where a and b are integers, then b a − equals(A ) 0(B ) 23(C )−13(D )−7(E )−320.In the diagram, YQZC is a rectangle with YC =8 and CZ = 15. Equilateral triangles ABC and PQR , each withside length 9, are positioned as shown with R and B on sidesYQ and CZ , respectively. The length of AP is (A ) 10(B )117(C ) 9(D ) 8(E )72Part C: Each correct answer is worth 8.21.If 31537521219⋅⋅⋅⋅+−=L n n , then the value of n is(A ) 38(B ) 1(C ) 40(D ) 4(E ) 3922.The function f x () has the property that f x y f x f y xy +()=()+()+2, for all positive integers x and y .If f 14()=, then the numerical value of f 8() is(A ) 72(B ) 84(C ) 88(D ) 64(E ) 80continued ...Figure 1Figure 223.The integers from 1 to 9 are listed on a blackboard. If an additional m eights and k nines are added tothe list, the average of all of the numbers in the list is 7.3. The value of k m + is(A ) 24(B ) 21(C ) 11(D ) 31(E ) 8924. A student has two open-topped cylindrical containers. (Thewalls of the two containers are thin enough so that theirwidth can be ignored.) The larger container has a height of20 cm, a radius of 6 cm and contains water to a depth of 17cm. The smaller container has a height of 18 cm, a radius of5 cm and is empty. The student slowly lowers the smallercontainer into the larger container, as shown in the cross-section of the cylinders in Figure 1. As the smaller container is lowered, the water first overflows out of the larger container (Figure 2) and then eventually pours into thesmaller container. When the smaller container is resting onthe bottom of the larger container, the depth of the water in the smaller container will be closest to(A ) 2.82 cm (B ) 2.84 cm (C ) 2.86 cm(D ) 2.88 cm (E ) 2.90 cm25.The lengths of all six edges of a tetrahedron are integers. The lengths of five of the edges are 14, 20,40, 52, and 70. The number of possible lengths for the sixth edge is(A ) 9(B ) 3(C ) 4(D ) 5(E ) 6。

Cayley滑铁卢数学竞赛(Grade 10)-数学Mathematics-1998-试题 exam

Cayley滑铁卢数学竞赛(Grade 10)-数学Mathematics-1998-试题 exam

Chartered Accountants SybaseInc. (Waterloo) IBMCanada Ltd.Canadian Institute of ActuariesDo not open the contest booklet until you are told to do so.You may use rulers, compasses and paper for rough work.Calculators are permitted, providing they are non-programmable and without graphic displays.Part A: Each question is worth 5 credits.1.The value of 03012..()+ is(A ) 0.7(B ) 1(C ) 0.1(D ) 0.19(E ) 0.1092.The pie chart shows a percentage breakdown of 1000 votesin a student election. How many votes did Sue receive?(A ) 550(B ) 350(C ) 330(D ) 450(E ) 9353.The expression a a a 9153× is equal to(A ) a 45(B ) a 8(C ) a 18(D ) a 14(E ) a 214.The product of two positive integers p and q is 100. What is the largest possible value of p q +?(A ) 52(B ) 101(C ) 20(D ) 29(E ) 255.In the diagram, ABCD is a rectangle with DC =12. If the area of triangle BDC is 30, what is the perimeter ofrectangle ABCD ?(A ) 34(B ) 44(C ) 30(D ) 29(E ) 606.If x =2 is a solution of the equation qx –311=, the value of q is (A ) 4(B ) 7(C ) 14(D ) –7(E ) –47.In the diagram, AB is parallel to CD . What is the value ofy ?(A ) 75(B ) 40(C ) 35(D ) 55(E ) 508.The vertices of a triangle have coordinates 11,(), 71,() and 53,(). What is the area of this triangle?(A ) 12(B ) 8(C ) 6(D ) 7(E ) 99.The number in an unshaded square is obtained by adding thenumbers connected to it from the row above. (The ‘11’ is one such number.) The value of x must be (A ) 4(B ) 6(C ) 9(D ) 15(E) 10Scoring:There is no penalty for an incorrect answer.Each unanswered question is worth 2 credits, to a maximum of 20 credits.A BCD DAC B10.The sum of the digits of a five-digit positive integer is 2. (A five-digit integer cannot start with zero.)The number of such integers is(A ) 1(B ) 2(C ) 3(D ) 4(E ) 5Part B: Each question is worth 6 credits.11.If x y z ++=25, x y +=19 and y z +=18, then y equals(A ) 13(B ) 17(C ) 12(D ) 6(E ) –612. A regular pentagon with centre C is shown. The value of xis(A ) 144(B ) 150(C ) 120(D ) 108(E ) 7213.If the surface area of a cube is 54, what is its volume?(A ) 36(B ) 9(C ) 8138(D ) 27(E ) 162614.The number of solutions x y ,() of the equation 3100x y +=, where x and y are positive integers, is(A ) 33(B ) 35(C ) 100(D ) 101(E ) 9715.If y –55= and 28x =, then x y + equals(A ) 13(B ) 28(C ) 3316.Rectangle ABCDhas length 9 and width 5. Diagonal is divided into 5 equal parts at W , X , Y , and Z area of the shaded region.(A ) 36(B ) 365(C ) 18(D ) 41065(E ) 2106517.If N p q =()()()+75243 is a perfect cube, where p and q are positive integers, the smallest possible valueof p q + is(A ) 5(B ) 2(C ) 8(D ) 6(E ) 1218.Q is the point of intersection of the diagonals of one face ofa cube whose edges have length 2 units. The length of QRis(A ) 2(B ) 8(C ) 5(D ) 12(E ) 619.Mr. Anderson has more than 25 students in his class. He has more than 2 but fewer than 10 boys andmore than 14 but fewer than 23 girls in his class. How many different class sizes would satisfy these conditions?(A ) 5(B ) 6(C ) 7(D ) 3(E ) 420.Each side of square ABCD is 8. A circle is drawn through A and D so that it is tangent to BC . What is the radius of thiscircle?(A ) 4(B ) 5(C ) 6(D ) 42(E ) 5.25Part C: Each question is worth 8 credits.21.When Betty substitutes x =1 into the expression ax x c 32–+ its value is –5. When she substitutesx =4 the expression has value 52. One value of x that makes the expression equal to zero is(A ) 2(B ) 52(C ) 3(D ) 72(E ) 422. A wheel of radius 8 rolls along the diameter of a semicircleof radius 25 until it bumps into this semicircle. What is thelength of the portion of the diameter that cannot be touchedby the wheel?(A ) 8(B ) 12(C ) 15(D ) 17(E ) 2023.There are four unequal, positive integers a , b , c , and N such that N a b c =++535. It is also true thatN a b c =++454 and N is between 131 and 150. What is the value of a b c ++?(A ) 13(B ) 17(C ) 22(D ) 33(E ) 3624.Three rugs have a combined area of 2002m . By overlapping the rugs to cover a floor area of 1402m ,the area which is covered by exactly two layers of rug is 242m . What area of floor is covered by three layers of rug?(A ) 122m (B ) 182m (C ) 242m (D) 362m (E ) 422m 25.One way to pack a 100 by 100 square with 10000 circles, each of diameter 1, is to put them in 100rows with 100 circles in each row. If the circles are repacked so that the centres of any three tangent circles form an equilateral triangle, what is the maximum number of additional circles that can be packed?(A ) 647(B ) 1442(C ) 1343(D) 1443(E ) 1344。

欧几里得滑铁卢数学竞赛_2011EuclidSolution

欧几里得滑铁卢数学竞赛_2011EuclidSolution

=
6,
then
∠BDA
=
∠BAD
=
1 2
(180◦
− ∠DBA)
=
1 2
(180◦

30◦)
=
75◦.
We calculate the length of AD.
Method 1
AD
BA
By the Sine Law in DBA, we have
=
.
sin(∠DBA) sin(∠BDA)
6 sin(30◦)
4. (a) We consider choosing the three numbers all at once. We list the possible sets of three numbers that can be chosen:
{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}
∠B C D)
=
1 2
(180◦

60◦)
=
60◦.
Therefore, BCD is equilateral, and so BD = BC = CD = 6.
Consider DBA.
Note that ∠DBA = 90◦ − ∠CBD = 90◦ − 60◦ = 30◦.
Since
BD
=
BA
∠ADC = 360◦ − ∠ADB − ∠CDB = 360◦ − 130◦ − 150◦ = 80◦ .
(c) By the Pythag√orean Theorem in EAD, we have EA2 +AD2 = ED2 or 122 +AD2 = 132, and so AD = 169 − 144 = 5, since AD > 0. By the Pythag√orean Theorem in ACD, we have AC2 + CD2 = AD2 or AC2 + 42 = 52, and so AC = 25 − 16 = 3, since AC > 0. (We could also have determined the lengths of AD and AC by recognizing 3-4-5 and 5-12-13 right-angled triangles.) By the Pythag√orean The√orem in ABC, we have AB2 + BC2 = AC2 or AB2 + 22 = 32, and so AB = 9 − 4 = 5, since AB > 0.

欧几里得数学竞赛奖项设置

欧几里得数学竞赛奖项设置

欧几里得数学竞赛奖项设置
欧几里得数学竞赛(Euclid Mathematics Contest)是由加拿大滑铁卢大学的数学院(Centre for Education in Mathematics and Computing, CEMC)主办的一项国际性高中数学竞赛。

该竞赛为全球高中生提供了一个展示数学才能的平台,并设置了以下奖项:
个人奖项:
Certificate of Distinction:颁发给在全球参赛者中排名前25%的学生。

Contest Medal:由CEMC决定,通常授予每个学校表现最优秀的学生。

Honour Rolls:根据成绩分设不同的荣誉榜,如全国荣誉榜、省级荣誉榜等。

团队奖项:
虽然主要以个人形式参加,但竞赛可能也会基于学校或地区团队整体成绩进行评价,并设立相应的团队奖项。

区域奖项:
根据成绩,可能会评出不同等级的奖项,比如针对加拿大区域的Zone、Provincial和National级别奖项。

其他表彰:
高分选手可能还会获得额外的证书或其他形式的表彰。

需要注意的是,具体的奖项设置以及获奖标准可能会随着年份的不同有所调整,请参考当年竞赛官方发布的最新公告和规则。

1999滑铁卢竞赛试题答案

1999滑铁卢竞赛试题答案

( x – 2)( x + 1) = 0
∴ x = 2 or x = –1
Solution 2 1 6 x2 – x – 6 1– – 2 = x x x2 x 2 – x – 2) – 4 ( = x2 –4 2 2 (since x – x – 2 = 0 ) x 2 But x – x – 2 = ( x – 2)( x + 1) = 0 ∴ x = 2 or x = –1. x = –1, Substituting x = 2, or –4 –4 = 4 1 = –1. = –4 =
y
6
–3
–1 O
x
Solution 3 Let the equation of the parabola be y = a( x + 2)2 + c . Since (0, 6) is on parabola, 6 = 4 a + c , and ( –1, 0) is on parabola, 0 = a + c . Solving, a = 2, c = – 2. ∴ Equation is y = 2( x + 2)2 – 2 . 3. (a) How many equilateral triangles of side 1 cm, placed as shown in the diagram, are needed to completely cover the interior of an equilateral triangle of side 10 cm?
(b)
If the point P( – 3, 2) is on the line 3 x + 7ky = 5 , what is the value of k? Solution Since P is on the line, its coordinates must satisfy the equation of the line. Thus, 3( – 3) + 7k (2) = 5 14 k = 14 k =1

滑铁卢数学竞赛

滑铁卢数学竞赛

滑铁卢数学竞赛年1月10日更新这篇主要来介绍一下滑铁卢系列数学竞赛,下面是该项赛事的特点以及备考建议:【特点】(1)全年龄段,从7年级到12年级都有,建议参加12年级Euclid 竞赛;(2)全球统考,高含金量,对于申请有帮助;(2)有些比赛项目并不是选择题,是填空、简答题,对于英语表达有一定要求;(3)难度相对比较小,获个奖比较容易;【建议】做真题!做真题!做真题!真题网址:下面是Waterloo数学竞赛的详细介绍以及21年Euclid真题卷:滑铁卢大学始建于1957年,在加拿大最权威的教育杂志Maclean's (麦克林)的排名榜上,连续五年综合排名第一第二。

滑铁卢大学设有加拿大唯一一所数学学院,这也是北美乃至全世界最大的数学学院,因滑铁卢大学在数学领域的优良声誉及传统,以及欧几里德数学竞赛考察标准的严格性和专业性,该竞赛成绩在加拿大和美国大学中已经得到广泛认可,被誉为类似加拿大“数学托福”的考试。

官方网址:【比赛特点】(1)可选择的比赛种类非常多,有适合各种不同年龄段学生的比赛;(2)比赛难度相对较小,比较适合想参加数学类竞赛,但本身数学程度并不是特别出挑的学生;(3)在加拿大的高校中有比较大的影响力,尤其是Euclid的比赛成绩;(4)部分赛题以测试学生的分析能力、逻辑思维能力为主,在2021年MAT考试中出现了21年Euclid的类似试题。

【比赛形式】注:上述数学竞赛都可以使用计算器。

【2021-2022赛程】大家可以看到Waterloo数学竞赛各项赛事跨度比较大,主要集中在四、五月份,特别是Euclid数学竞赛,是一项含金量比较高的全球数学竞赛。

【报名方式】当地可提供报名的机构或以自己学校的名义注册报名注:Waterloo报名时需要填写一个学校代码,所以一般需要通过学校报名。

【奖项设置】(1)国际生全球排名前25%的学生将获得杰出荣誉证书,2021年大概68分;(2)在参赛学校中成绩最高的学生会得到一个校级冠军的奖牌;(3)每位参赛者都可以获得一个参赛证书;从上述奖项的设置可以看出,我们参加Waterloo数学竞赛获一个奖相对而言是比较容易的。

滑铁卢数学竞赛高中试题

滑铁卢数学竞赛高中试题

滑铁卢数学竞赛高中试题一、选择题1. 已知函数\( f(x) = ax^2 + bx + c \),其中\( a, b, c \)为实数,且\( f(1) = 2 \),\( f(-1) = 0 \),\( f(2) = 6 \)。

求\( a \)的值。

2. 一个圆的半径为5,圆心位于原点,求圆上点\( P(3,4) \)到圆心的距离。

3. 若\( \sin(\alpha + \beta) = \frac{1}{2} \),\( \cos(\alpha + \beta) = \frac{\sqrt{3}}{2} \),且\( \alpha \)在第二象限,\( \beta \)在第一象限,求\( \sin(\alpha) \)的值。

二、填空题1. 计算\( \int_{0}^{1} x^2 dx \)。

2. 若\( \log_{2}8 = n \),则\( n \)的值为______。

3. 一个等差数列的前三项分别为2,5,8,求该数列的第10项。

三、解答题1. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 =\frac{n^2(n+1)^2}{4} \)。

2. 一个矩形的长是宽的两倍,若矩形的周长为24,求矩形的面积。

3. 已知一个等比数列的前三项分别为3,9,27,求该数列的第5项。

四、应用题1. 一个工厂每天生产相同数量的零件,如果每天生产100个零件,工厂可以在30天内完成订单。

如果每天生产150个零件,工厂可以在20天内完成订单。

求工厂每天实际生产的零件数量。

2. 一个圆环的外圆半径是内圆半径的两倍,且圆环的面积为π。

求外圆的半径。

五、证明题1. 证明:对于任意实数\( x \),\( \cos(x) + \cos(2x) + \cos(3x) \)可以表示为一个单一的余弦函数。

六、开放性问题1. 考虑一个无限大的棋盘,每个格子可以放置一个硬币。

滑铁卢数学竞赛

滑铁卢数学竞赛

滑铁卢数学竞赛滑铁卢数学竞赛是加拿大一项著名的数学竞赛活动,每年都吸引了许多有志于挑战自己数学能力的学生参加。

它的历史可以追溯到1967年,从那以后,滑铁卢数学竞赛已经成为了全球最重要的数学竞赛之一。

滑铁卢数学竞赛分为不同的级别,包括高中水平的离散数学竞赛和全国高中生数学竞赛等。

它不仅仅考察了学生的计算能力,更注重培养学生的数学思维能力和解决问题的能力。

滑铁卢数学竞赛的题目涵盖了数学的各个领域,如代数、几何、数论和组合数学等。

这些题目往往以形式化和抽象的方式出现,需要参赛学生进行深入的分析和推理。

竞赛要求学生在有限的时间内回答一系列问题,并用严谨的数学推导来解决问题。

滑铁卢数学竞赛的题目难度非常高,需要具备扎实的数学基础和高超的解题能力。

参赛学生需要理解问题的本质,并能够找到解题的关键步骤。

在竞赛中,学生往往需要面对复杂的数学问题,需要运用各种数学知识和技巧来解答。

参加滑铁卢数学竞赛对于学生的数学能力和素质有着很高的要求。

它不仅考察了学生的记忆和计算能力,更注重培养学生的数学思维和解决问题的能力。

通过参加竞赛,学生可以提高自己的数学水平,拓宽数学思维的广度和深度。

滑铁卢数学竞赛为学生提供了一个展示自己数学才能的舞台。

通过竞赛,学生可以与其他优秀的数学爱好者交流和切磋,共同进步。

竞赛的结果不仅是学生们的荣誉和成绩,更是他们自信心的提升和未来学习、发展的动力。

作为一项重要的学科竞赛,滑铁卢数学竞赛不仅在加拿大,而且在国际上都享有较高的声誉。

许多优秀的数学家和科学家都曾经参加过滑铁卢数学竞赛,这为他们日后的学术研究和职业发展奠定了坚实的基础。

总之,滑铁卢数学竞赛是一个激励学生充分发挥数学潜能、提高数学能力和培养创新思维的重要平台。

通过参加竞赛,学生可以不断挑战自我,锻炼解决问题的能力,为未来的学习和职业发展奠定良好的基础。

滑铁卢数学竞赛的成功举办,为数学教育和科学研究做出了重要贡献。

欧几里得滑铁卢数学竞赛_2001EuclidSolution

欧几里得滑铁卢数学竞赛_2001EuclidSolution

Solution
If f (k) = k , then k2 – 3k – 5 = k
k2 – 4k – 5 = 0
(k – 5)(k + 1) = 0
so
k = 5 or k = –1.
(c) Determine all (x, y) such that x2 + y2 = 25 and x – y = 1.
25
Therefore BC = 59 m to the nearest metre.
Solution 2
Since QR AC, ∠QRP = ∠ BAC (alternating angles).
B
This means ∆ ABC ~ ∆ RPQ (two equal angles).
By Pythagoras, PR2 = QP2 + QR2
2. (a) The vertex of the parabola y = (x – b)2 + b + h has coordinates (2, 5). What is the value of h?
Solution Since the x-coordinate of the vertex is 2, then b = 2. Since the y-coordinate of the vertex is 5, then b + h = 5. Since b = 2, then h = 3.
Solution
Let n be the smallest integer in one of these sequences.
So we want to solve the equation n2 + (n + 1)2 + (n + 2)2 = (n + 3)2 + (n + 4)2 (translating the

2014-2012加拿大滑铁卢大学11年级数学竞赛试题

2014-2012加拿大滑铁卢大学11年级数学竞赛试题

2014-2012加拿⼤滑铁卢⼤学11年级数学竞赛试题1.For real numbers a and b with a≥0and b≥0,the operation is de?ned bya b=√For example,5 1=5+4(1)=√9=3.(a)What is the value of8 7?(b)If16 n=10,what is the value of n?(c)Determine the value of(9 18) 10.(d)With justi?cation,determine all possible values of k such that k k=k.2.Each week,the MathTunes Music Store releases a list of the Top200songs.A newsong“Recursive Case”is released in time to make it onto the Week1list.The song’s position,P,on the list in a certain week,w,is given by the equation P=3w2?36w+110.The week number w is always a positive integer.(a)What position does the song have on week1?(b)Artists want their song to reach the best position possible.The closer that theposition of a song is to position#1,the better the position.(i)What is the best position that the song“Recursive Case”reaches?(ii)On what week does this song reach its best position?(c)What is the last week that“Recursive Case”appears on the Top200list?3.A pyramid ABCDE has a square base ABCD of side length 20.Vertex E lies on theline perpendicular to the base that passes through F ,the centre of the base ABCD .It is given that EA =EB =EC =ED = 18.(a)Determine the surface area of the pyramidABCDEincluding its base.(b)Determine the height EF of the pyramid.A B C D EF 2018(c)G and H are the midpoints of ED and EA ,respectively.Determine the area of thequadrilateral BCGH .4.The triple ofpositive integers (x,y,z )is called an Almost Pythagorean Triple (or APT)if x >1and y >1and x 2+y 2=z 2+1.For example, (5,5,7)is an APT.(a)Determine the values of y and z so that (4,y,z )is an APT.(b)Prove that for any triangle whose side lengths form an APT,the area of thetriangle is not an integer.(c)Determine two 5-tuples (b,c,p,q,r )of positive integers with p ≥100for which(5t +p,bt +q,ct +r )is an APT for all positive integers t .1.At the JK Mall grand opening,some lucky shoppers are able to participate in a moneygiveaway.A large box has been?lled with many$5,$10,$20,and$50bills.The lucky shopper reaches into the box and is allowed to pull out one handful of bills.(a)Rad pulls out at least two bills of each type and his total sum of money is$175.What is the total number of bills that Rad pulled out?(b)Sandy pulls out exactly?ve bills and notices that she has at least one bill of eachtype.What are the possible sums of money that Sandy could have?(c)Lino pulls out six or fewer bills and his total sum of money is$160.There areexactly four possibilities for the number of each type of bill that Lino could have.Determine these four possibilities.2.A parabola has equation y=(x?3)2+1.(a)What are the coordinates of the vertex of the parabola?(b)A new parabola is created by translating the original parabola3units to the leftand3units up.What is the equation of the translated parabola?(c)Determine the coordinates of the point of intersection of these two parabolas.(d)The parabola with equation y=ax2+4,a<0,touches the parabola withequation y=(x?3)2+1at exactly one point.Determine the value of a.3.A sequence of m P’s and n Q’s with m>n is called non-predictive if there is some pointin the sequence where the number of Q’s counted from the left is greater than or equal to the number of P’s counted from the left.For example,if m=5and n=2the sequence PPQQPPP is non-predictive because in counting the?rst four letters from the left,the number of Q’s is equal to the number of P’s.Also,the sequence QPPPQPP is non-predictive because in counting the? rst letterfrom the left,the number of Q’s is greater than the number ofP’s.(a)If m=7and n=2,determine the number of non-predictive sequences that beginwith P.(b)Suppose that n=2.Show that for every m>2,the number of non-predictivesequences that begin with P is equal to the number of non-predictive sequences that begin with Q.(c)Determine the number of non-predictive sequences with m=10and n=3.4.(a)Twenty cubes,each with edge length1cm,are placed together in4rows of5.What isthe surface area of this rectangularprism?(b)A number of cubes,each with edge length1cm,are arranged to form a rectangularprism having height1cm and a surface area of180cm2.Determine the number of cubes in the rectangular prism.(c)A number of cubes,each with edge length1cm,are arranged to form a rectangularprism having length l cm,width w cm,and thickness1cm.A frame is formed byremoving a rectangular prism with thickness 1cm located k cm from each of the sides of the original rectangular prism,as shown. Each of l,w and k is a positive integer.If the frame has surface area532cm2,determine all possible values for l and w such that l≥w.l cmw cmk cmk cmk cmk cm1 cm1.Quadrilateral P QRS is constructed with QR =51,as shown.The diagonals of P QRS intersect at 90?at point T ,such that P T =32and QT =24.322451P QRST (a)Calculate the length of P Q.(b)Calculate the area of P QR .(c)If QS :P R =12:11,determine the perimeter of quadrilateral P QRS .2.(a)Determine the value of (a +b )2,given that a 2+b 2=24and ab =6.(b)If (x +y )2=13and x 2+y 2=7,determine the value of xy .(c)If j +k =6and j 2+k 2=52,determine the value of jk .(d)If m 2+n 2=12and m 4+n 4=136,determine all possible values of mn .3.(a)Points M (12,14)and N (n,n 2)lie on theparabola with equation y =x 2,as shown.Determine the value of n such that∠MON =90?.yx(b)Points A (2,4)and B (b,b 2)are the endpointsofa chord of the parabola with equationy =x 2,as shown.Determine the value of bso that ∠ABO =90?.y x(c)Right-angled triangle P QR is inscribed inthe parabola with equation y =x 2,asshown.Points P,Q and R have coordinates(p,p 2),(q,q 2)and (r,r 2),respectively.If p ,qand r are integers,show that 2q +p +r =0.y x4.The positive divisors of 21are 1,3,7and 21.Let S (n )be the sum of the positive divisors of the positive integer n .For example,S (21)=1+3+7+21=32.(a)If p is an odd prime integer,?nd the value of p such that S (2p 2)=2613.(b)The consecutive integers 14and 15have the property that S (14)=S (15).Determine all pairs of consecutive integers m and n such that m =2p and n =9q for prime integers p,q >3,and S (m )=S (n ).(c)Determine the number of pairs of distinct prime integers p and q ,each less than 30,with the property that S (p 3q )is not divisible by 24.。

滑铁卢大学数学竞赛

滑铁卢大学数学竞赛

加拿大滑铁卢大学举办费马国际数学竞赛及欧几里得数学竞赛。

滑铁卢大学是加拿大综合排名第三的大学,其创新精神在加拿大排名第一,该大学面向青少年举办的数学竞赛,在全球具有影响力。

费马国际数学竞赛面向高一学生的费马数学竞赛,考试时间60为分钟,满分为150分,其间学生必须面对全英语试卷解答问题。

欧几里得数学竞赛据360教育集团介绍,面向高二学生的欧几里得数学竞赛,考试时间150为分钟,满分为100分,其间学生必须面对全英语试卷解答问题。

最初的数学考试是由安大略省西南部的几个高中老师联合创办的,从六十年代初年每年300人参加考试到今天,累计已经有21万名学生参加了这个考试。

根据滑铁卢大学的校方统计资料:21万名学生中有40%是来自安大略省的学生,20%是来自英属哥伦比亚省的学生,35%是来自加拿大其他省份的,还有5%是来自国际学生,包括美国、英国、中国等世界各国的学生。

2003年因为安大略省取消13年级,部分涉及微积分的试题不再使用,于是将迪卡尔(法国著名数学家)数学竞赛(DescartesContest)更名为(欧几里德数学竞赛)。

现在,欧几里德数学竞赛的分数已经成为Waterloo数学学院各专业以及“软件工程”专业入学录取的重要指标,更成为学生申请该学院奖学金的重要考核标准。

欧几里德数学竞赛(EuclidContest)主要是为高二年级(加拿大11年级)的高中学生提供的考试,考试内容主要包括:代数(函数、三角、排列、组合)、平面组合、解析几何等,他不仅仅看的是结果,更看重的是学生的解题思路和技巧。

考试的及格分数每年大概在40分左右。

因滑铁卢大学在数学领域的优良声誉及传统,以及欧几里德数学竞赛考察标准的严格性和专业性,该竞赛成绩在加拿大大学中已经得到广泛认可,被誉为类似加拿大“数学托福”的考试。

滑铁卢大学数学竞赛。

Fryer滑铁卢数学竞赛(Grade 9)-数学Mathematics-2012-试题 exam

Fryer滑铁卢数学竞赛(Grade 9)-数学Mathematics-2012-试题 exam

1.(a)In Carrotford,candidate A ran for mayor and received 1008votes out of a totalof 5600votes.What percentage of all votes did candidate A receive?(b)In Beetland,exactly three candidates,B,C and D,ran for mayor.Candidate Bwon the election by receiving 35of all votes,while candidates C and D tied withthe same number of votes.What percentage of all votes did candidate C receive?(c)In Cabbagetown,exactly two candidates,E and F,ran for mayor and 6000votes were cast.At 10:00p.m.,only 90%of these votes had been counted.Candidate E received 53%of those votes.How many more votes had been countedfor candidate E than for candidate F at 10:00p.m.?(d)In Peaville,exactly three candidates,G,H and J,ran for mayor.When all of thevotes were counted,G had received 2000votes,H had received 40%of the votes,and J had received 35%of the votes.How many votes did candidate H receive?2.The prime factorization of 144is 2×2×2×2×3×3or 24×32.Therefore,144is a perfect square because it can be written in the form (22×3)×(22×3).The prime factorization of 45is 32×5.Therefore,45is not a perfect square,but 45×5is a perfect square,because 45×5=32×52=(3×5)×(3×5).(a)Determine the prime factorization of 112.(b)The product 112×u is a perfect square.If u is a positive integer,what is thesmallest possible value of u ?(c)The product 5632×v is a perfect square.If v is a positive integer,what is thesmallest possible value of v ?(d)A perfect cube is an integer that can be written in the form n 3,where n is aninteger.For example,8is a perfect cube since 8=23.The product 112×w is aperfect cube.If w is a positive integer,what is the smallest possible value of w ?3.The positive integers are arranged in rows and columns,as shown,and described below.A B C D E F GRow1123456Row2121110987Row3131415161718Row4242322212019...The odd numbered rows list six positive integers in order from left to right beginning in column B.The even numbered rows list six positive integers in order from right toleft beginning in columnF.(a)Determine the largest integer in row30.(b)Determine the sum of the six integers in row2012.(c)Determine the row and column in which the integer5000appears.(d)For how many rows is the sum of the six integers in the row greater than10000and less than20000?4.The volume of a cylinder with radius r and height h equalsπr2h.The volume of a sphere with radius r equals43πr3.(a)The diagram shows a sphere thatfits exactlyinside a cylinder.That is,the top and bottomfaces of the cylinder touch the sphere,and thecylinder and the sphere have the same radius,r.State an equation relating the height of thecylinder,h,to the radius of the sphere,r.(b)Forthe cylinder and sphere given in part(a),determine the volume of the cylinder if the volume of the sphere is288π.(c)A solid cube with edges of length1km isfixed in outer space.Darla,the babyspace ant,travels on this cube and in the space around(but not inside)this cube.If Darla is allowed to travel no farther than1km from the nearest point on the cube,then determine the total volume of space that Darla can occupy.Fryer Contest(English) 2012。

2017滑铁卢竞赛试题答案

2017滑铁卢竞赛试题答案

9559 = (100 + 21)(100 − 21) = 121 · 79 Therefore, (a, b) = (121, 79) satisfies the conditions. (In addition, the pairs (a, b) = (79, 121), (869, 11), (11, 869) satisfy the conditions. The last two of these pairs cannot be obtained in the same way.) 3. (a) The area of quadrilateral ABCD is the sum of the areas of ABC and ACD. 1 1 Since ABC is right-angled at B , its area equals 2 (AB )(BC ) = 2 (3)(4) = 6. Since ABC is right-angled at B , then by the Pythagorean Theorem, √ √ √ AC = AB 2 + BC 2 = 32 + 42 = 25 = 5 because AC > 0. (We could have also observed that ABC must be a “3-4-5” triangle.) Since ACD is right-angled at A, then by the Pythagorean Theorem, √ √ √ AD = CD2 − AC 2 = 132 − 52 = 144 = 12 because AD > 0. (We could have also observed that ACD must be a “5-12-13” triangle.) 1 (AC )(AD) = 2 (5)(12) = 30. Thus, the area of ACD equals 1 2 Finally, the area of quadrilateral ABCD is thus 6 + 30 = 36. (b) Let the width of each of the identical rectangles be a. In other words, QP = RS = T W = W X = U V = V Y = a. Let the height of each of the identical rectangles be b. In other words, QR = P S = T U = W V = XY = b. The perimeter of the whole shape equals QP + P S + SX + XY + V Y + U V + T U + T R + QR Substituting for known lengths, we obtain a + b + SX + b + a + a + b + T R + b or 3a + 4b + (SX + T R). But SX + T R = (T R + RS + SX ) − RS = (T W + W X ) − RS = a + a − a = a. Therefore, the perimeter of the whole shape equals 4a + 4b. The perimeter of one rectangle is 2a + 2b, which we are told equals 21 cm. Finally, the perimeter of the whole shape is thus 2(2a + 2b) which equals 42 cm. (c) Solution 1 Suppose that the rectangular prism has dimensions a cm by b cm by c cm. Suppose further that one of the faces that is a cm by b cm is the face with area 27 cm2 and that one of the faces that is a cm by c cm is the face with area 32 cm2 . (Since every pair of non-congruent faces shares exactly one side length, there is no loss of generality in picking these particular variables for these faces.) Therefore, ab = 27 and ac = 32. Further, we are told that the volume of the prism is 144 cm3 , and so abc = 144.

滑铁卢数学竞赛

滑铁卢数学竞赛

滑铁卢数学竞赛滑铁卢数学竞赛是一项受广泛关注的数学竞赛活动。

作为加拿大著名的数学竞赛之一,滑铁卢数学竞赛每年吸引了来自全国各地高中生的参与。

本文将介绍滑铁卢数学竞赛的背景、组织方式、题型以及参赛经验等方面内容。

滑铁卢数学竞赛由滑铁卢大学主办,旨在鼓励和推广数学学科的学习和研究。

该竞赛已经举办了多年,吸引了大量对数学感兴趣的学生参与。

这项竞赛不仅考察学生的数学知识和解题能力,还培养了学生的逻辑思维、问题解决和团队协作能力。

滑铁卢数学竞赛一般分为初赛和决赛两个阶段。

初赛通常在本校进行,学生需接受一场笔试考试。

考试题目涵盖了数学的各个领域,包括代数、几何、概率与统计等。

考试时间为3个小时,学生需要在规定时间内回答一系列选择题和解答题。

初赛结束后,滑铁卢数学竞赛组织方将选取成绩优秀的学生进入决赛。

决赛通常在滑铁卢大学校园内举行,参赛学生将进行更加复杂和综合的数学题目的解答。

决赛题目的难度较高,往往需要学生灵活运用各种数学方法和技巧来解答。

参加滑铁卢数学竞赛对学生而言是一次宝贵的学习和锻炼机会。

不仅可以巩固和应用所学的数学知识,还能提高逻辑思维和解决问题的能力。

同时,参与竞赛还有利于学生将所学的数学知识与实际问题相结合,培养创新和发散思维能力。

在准备滑铁卢数学竞赛时,学生需要进行系统的复习和训练。

可以通过参加数学讲座和培训班来提高数学素养和解题能力。

此外,参考往年的竞赛试题,分析解题思路和方法也是非常重要的。

通过多做题、多联系,不断提升自己的数学水平和解题技巧。

总之,滑铁卢数学竞赛是一项受广泛关注的数学竞赛活动。

通过参与竞赛,学生可以提高数学素养、锻炼解题能力,并为将来的学习和科研打下坚实的数学基础。

希望更多的学生参与到这项活动中来,探索数学的魅力,享受数学竞赛的乐趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008Hypatia Contest(Grade11)
Wednesday,April16,2008
1.For numbers a and b,the notation a∇b means2a+b2+ab.
For example,1∇2=2(1)+22+(1)(2)=8.
(a)Determine the value of3∇2.
(b)If x∇(−1)=8,determine the value of x.
(c)If4∇y=20,determine the two possible values of y.
(d)If(w−2)∇w=14,determine all possible values of w.
2.(a)Determine the equation of the line through the points A(7,8)and B(9,0).
(b)Determine the coordinates of P,the point of intersection of the line y=2x−10and the
line through A and B.
(c)Is P closer to A or to B?Explain how you obtained your answer.
3.In the diagram,ABCD is a trapezoid with AD parallel to BC and
BC perpendicular to AB.Also,AD=6,AB=20,and BC=30.
(a)Determine the area of trapezoid ABCD.
(b)There is a point K on AB such that the area of KBC
equals the area of quadrilateral KADC.Determine the length of BK.
(c)There is a point M on DC such that the area of MBC
equals the area of quadrilateral MBAD.Determine the length of MC.
C
4.The peizi-sum of a sequence a1,a2,a3,...,a n is formed by adding the products of all of the
pairs of distinct terms in the sequence.For example,the peizi-sum of the sequence a1,a2,a3,a4 is a1a2+a1a3+a1a4+a2a3+a2a4+a3a4.
(a)The peizi-sum of the sequence2,3,x,2x is−7.Determine the possible values of x.
(b)A sequence has100terms.Of these terms,m are equal to1and n are equal to−1.The
rest of the terms are equal to2.Determine,in terms of m and n,the number of pairs of distinct terms that have a product of1.
(c)A sequence has100terms,with each term equal to either2or−1.Determine,with
justification,
the minimum possible peizi-sum of the sequence.。

相关文档
最新文档