圆的参数方程的应用求最值问题
与圆有关的最值(范围)问题
![与圆有关的最值(范围)问题](https://img.taocdn.com/s3/m/5bc5d2b4e518964bce847c25.png)
xx与圆有关的最值(范围)问题圆是数学中优美的图形,具有丰富的性质.由于其图形的对称性和完美性,很多与圆有关的最值问题都可以运用圆的图形性质,利用数形结合求解.当然,根据《教学要求》的说明,“平面解析几何的重要内容,教学重点是让学生从中感受运用代数方法处理几何问题的思想”,因此在此类问题的求解中,有时也会用到函数思想和基本不等式思想等.本文将就与圆的最值问题有关的题目进行归纳总结,希望能为学生在处理此类问题时提供帮助. 类型一:圆上一点到直线距离的最值问题应转化为圆心到直线的距离加半径,减半径例1 已知P 为直线y=x +1上任一点,Q 为圆C :22(3)1x y -+=上任一点,则PQ 的最小值为 。
【分析】:这是求解“圆上一动点到直线距离”的常见考题,可以通过平面几何的知识得“圆心到直线的距离减半径”即为最短距离,这一结论在解题时可直接应用.解:如图1,圆心C到直线y=x +1的距离d =圆半径1r =,故1PQ PC r ≥-=变题1:已知A (0,1),B (2,3),Q 为圆C 22(3)1x y -+=上任一点,则QABS的最小值为 。
【分析】本题要求QABS的最大值,因为线段AB 为定长,由三角形面积公式可知,只需求“Q 到AB l 的最小值",因此问题转化为“圆上一动点到直线的最小距离”,即例1. 解:如图2,设Q h 为Q 到AB l 的距离,则11)42QABQ Q SAB h =⋅===+图1 图2变题2:由直线y=x +1上一点向圆C :22(3)1x y -+=引切线,则切线长的最小值为 【分析】一般地,当直线和圆相切时,应连接圆心和切点,构造直销三角形进行求解.因为222PA PC r =-,故即求PC 的最小值,即例1.解:如图3,22221PA PC r PC =-=-,∵min PC=∴min PA变题3:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB ,A 、B 为切点,则当PC= 时,APB ∠最大.【分析】APB APC ∠=∠,故即求角APC ∠的最大值,利用其正弦值即可转化为求PC 的最小值,即例1.解:如图4,∵APB APC ∠=∠,1sin APC PC∠=,∵min PC =,∴PC =APC ∠最大,即APB ∠最大.图3 图4变题4:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则四边形PACB 面积的最小值为 .【分析】将四边形面积转化为两个全等的三角形的面积,从而转化为PA 的最小值,问题又转化为求切线段的最小值问题.解:如图4,1222PAC PAB PAB S S S S PA AC PA ∆∆∆=+==⨯⋅⋅=四边形PACB ,由变式2可知,min PA =PACB【解题回顾】在上面例1及几个变试题的解题过程中,我们可以总结一句“万变不离其宗”,一般地,求“圆上一动点到直线距离”的常见考题,可以通过平面几何的知识得“圆心到直线的距离减半径”即为最短距离,“圆心到直线的距离加半径”即为最大距离,这一结论在解题时可直接应用.另:和切线段有关的问题常利用“连接圆心和切点,构造直销三角形“进行求解.也即将“ 两个动点的问题转化为一个动点的问题”.如下例.例2已知圆C:222430x y x y ++-+=,从圆C 外一点11(,)P x y 向该圆引一条切线,切点为M ,O 为坐标原点,且有PM=PO ,求使得PM 取得最小值的点P 坐标.【分析】本题中,由于点P 和点M 均在动,故直接做很难求解.联系到PM 是切线段,因此可利用222PM PC r =-将条件PM=PO 转化为只含有一个变量P 的式子即可求解.解:由题意,令(,)P x y ,∵222PM PC =-,∴222PC PO -=,即2222(1)(2)2x y x y ++--=+,化简得:2430x y -+=.∵PM=PO ,∴即求直线2430x y -+=到原点O (0,0)的最小距离.d==PMx类型二:利用圆的参数方程转化为三角函数求最值例3若实数x 、y 满足22240x y x y ++-=,求x-2y 的最大值.【分析】本题是典型的用圆的参数方程解决的题型,利用圆的参数方程将所求式转化为三角函数求最值,利用辅助角公式即得最大值.解:22(1)(2)5x y ++-=,令1()2x R y θθθ⎧=-+⎪∈⎨=+⎪⎩,则255cos()5x y θθθϕ-=-+-=+-(其中cos ϕϕ==) ∴当cos()1θϕ+=时,max (2)550x y -=-=,故x —2y 的最大值为0.【解题回顾】和圆有关的一次式的求解,利用圆的参数方程可以比较方便的求到最值.类型三:抓住所求式的几何意义转化为线性规划问题求最值若所求式子具有较明显的几何意义,值.比如例2,除了用圆的参数方程求解,这类题通常转化为直线方程的纵截距求解. 解法二:令2x y z -=,则1122y x z =-,由题意,当直线的纵截距最小时,z 最大,此时直线和圆相切,故圆心到直线的距离d ==故010z =-或,由题意,max 0z =,即x-2y 的最大值为0.除了转化为直线的截距求解,还有一些式子具有明显的几何意义,比如斜率、两点间距离、点到直线的距离等.比如在上例中,改为求12y x --,22(2)(1)x y -+-,1x y --的取值范围,则可以分别用如下方法求解: 对12y x --,转化为圆上任意一点P 到点(2,1)A 连线斜率的最大值,可设过点(2,1)A 的直线为1(2)y k x -=-,直线和圆相切时,即圆心到直线的距离d ==,可得122k =-或,故1[2,)(,2k ∈+∞⋃-∞-.对22(2)(1)x y -+-,转化为圆上任意一点P 到点(2,1)A 距离的平方的取值范围,由例1易得[PA CA CA ∈+,即222(2)(1)[50PA x y =-+-∈-+对1x y --,联想到点到直线的距离公式中有类似的元素.可将问题转化为圆上任意一点P 到直线10x y --=的距离的问题,易得,圆心到直线的距离为P (x ,y)到直线10x y--=,即1[4x y--∈.【解题回顾】当所求式子含有明显的几何意义时,注意联系线性规划,用线性规划的思路求解可将问题简单化和直观化.类型四:向函数问题转化平面解析几何的重要内容,教学重点是让学生从中感受运用代数方法处理几何问题的思想.有些问题,单纯利用圆的几何性质无法求解.此时应考虑如何利用代数思想将问题转化为函数问题.例4(2010年高考全国卷I理科11)已知圆O:221x y+=,P A、PB为该圆的两条切线,A、B为两切点,则PA PB⋅的最小值为【分析】本题中,由于A、B都是动点,故将PA PB⋅转化为坐标形式较难求解.此时考虑到向量数量积的定义,令2APBα∠=,cos2PA PB PA PBα⋅=,而切线段PA=PB也可用α表示,故所求式可转化为关于α的三角函数求解.解:令2((0,))2APBπαα∠=∈,cos2PA PB PA PBα⋅=,1tanPA PBα==,∴222222cos2cos cos2(1sin)(12sin)tan sin sinPA PBαααααααα⋅--⋅===,令2sin(0)t tα=>,则(1)(12)1233t tPA PB tt t--⋅==+-≥(当且仅当2t=2sin2α=时取等号)【解题回顾】本题以向量定义为载体,巧妙地利用了设角为变量,将与圆有关的问题转化为三角函数的问题求解.将几何问题代数化,利用函数思想求解.同时运用了换元思想,基本不等式思想等解题方法,是一道综合题.类型五:向基本不等式问题转化例5已知圆C:22+24x y+=(),过点(1,0)A-做两条互相垂直的直线12l l、,1l交圆C 与E、F两点,2l交圆C与G、H两点,(1)EF+GH的最大值.(2)求四边形EGFH面积的最大值.【分析】由于EF和GH都是圆的弦长,因此可利用222=+半径半弦长弦心距将EF+GH转化,用基本不等式的相关知识点.解:(1)令圆心C 到弦EF 的距离为1d ,到弦GH 的距离为2d ,则EF +GH =,又222121d d CA +==,2≤==(当且仅当122d d ==取等号)故EF +GH ≤=(2)∵EF GH ⊥,∴22128()12722d d S EF GH -+=⋅=≤⋅=四边形EFGH(当且仅当122d d ==取等号)【解题回顾】本题(1)是利用2a b +≤(2)2a b +.基本不等式是求最值的基本方法.在利用基本不等式求最值时应注意如何构造“定量”.由于圆的对称性,在与圆有关的最值问题中,应把握两个“思想":几何思想和代数思想.所谓几何思想,即利用圆心,将最值问题转化为与圆心有关的问题.所谓代数思想,即利用圆的参数方程.同时,由于最值问题从代数意义上讲和函数的最值联系紧密,因此在解题过程中灵活的应用函数、不等式等代数思想使问题代数化、简单化也是需要注意的.。
巧用圆的参数方程
![巧用圆的参数方程](https://img.taocdn.com/s3/m/b39aff95d5bbfd0a795673b7.png)
巧用圆的参数方程作者:周轶虹来源:《中学教学参考·理科版》2012年第04期圆的参数方程的应用比较广泛,它是解析几何中十分重要的内容,也是高中数学的一个难点.本文将以三个具体的例子阐述参数方程的巧用一、求二元方程最值【例1】已知点P(x,y)是圆上的动点(1)求x+2y的取值范围;(2)若x+y+a≥0恒成立,求实数a的取值范围分析:因为点P(x,y)在圆上运动,根据所给的式子,把圆的方程化为参数方程,然后用参数表示两个式子,再根据三角函数的有界性,解决相关问题解:把圆的方程化为标准方程(x-,故它的参数方程可设为,(θ是参数)(1)∵(其中),∴1-5≤x+y≤1+5,即x+2y的取值范围是[1-5,1+5](2)∵x+y+a≥0恒成立,即a≥-(x+y)恒成立,即a要大于或等于-(x+y)的最大值,∵,∴x+y≥1-2,-(x+y)≤2-1,∴a≥2-1,即a的取值范围是[2-1,+∞)评注:本题也可以根据所给式子的几何意义解题,利用线性规划解决,但比此法要麻烦,参数方程把待求式化为关于参数θ的函数,求解十分方便,这正是参数方程的优势二、求参数的值(范围)【例2】抛物线与圆有公共点,求实数t的取值范围分析:把圆化为参数方程,代入抛物线的普通方程,用α的三角函数表示出t,进而求其取值范围解:令,,代入,得---当=-12时,t取得最小值-54;当时,t取得最大值所以实数t的取值范围是[-54,1]评注:本题应用圆的参数方程,采用代入法把求实数t的取值范围问题转化为求函数的值域问题,使问题迅速获解,可谓转化巧妙三、求与圆有关的最值【例3】已知圆C的参数方程为,(θ为参数),则圆C上的点到点P(2,2)的最远距离是;圆C上的点到直线x-y+2=0的最近距离是分析:根据参数方程得出圆上的任意一点的坐标,然后用相应的距离公式表示出两个距离,再利用函数知识,求它们的最值解:设M()是圆C上的任意一点,则---=9--42=22-1.即圆C上的点到点P(2,2)的最远距离是22-1,点M到直线x-y+2=0的距离--θ)+2|2≥2-1,即圆C上的点到直线x-y+2=0的最近距离是2-评注:上述两个最值都可以把圆的方程化为普通方程后,利用圆中最值的有关结论来求解在求解多元坐标的几何或代数最值有困难时,我们不妨采用参数进行转化,化为求三角函数的最值来处理,这样能简捷地解决有关动点与实点的距离等有关问题(责任编辑金铃)。
(完整版)圆最值问题题型归纳
![(完整版)圆最值问题题型归纳](https://img.taocdn.com/s3/m/ffa0cb70910ef12d2af9e7b4.png)
x圆中最值问题类型一 圆上一点到直线距离的最值问题例1 已知P 为直线y=x +1上任一点,Q 为圆C :22(3)1x y -+=上任一点,则PQ 的最小值为 .变题1:已知A (0,1),B (2,3),Q 为圆C 22(3)1x y -+=上任一点,则QAB S 的最小值为 .变题2:由直线y=x +1上一点向圆C :22(3)1x y -+=引切线,则切线长的最小值为变题3:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则当PC= 时,APB ∠最大.变题4:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则四边形PACB 面积的最小值为 .例2已知圆C :222430x y x y ++-+=,从圆C 外一点11(,)P x y 向该圆引一条切线,切点为M ,O 为坐标原点,且有PM=PO ,求使得PM 取得最小值的点P 坐标.类型二 利用圆的参数方程求最值(或几何意义)例3若实数x 、y 满足22240x y x y ++-=,求x-2y 的最大值.如在上例中,改为求12y x --,22(2)(1)x y -+-,1x y --的取值范围,该怎么求解?类型三:转化成函数或不等式求最值例4已知圆O :221x y +=,PA 、PB 为该圆的两条切线,A 、B 为两切点,则PA PB ⋅的最小值为例5已知圆C :22+24x y +=(), 过点(1,0)A -做两条互相垂直的直线12l l 、,1l 交圆C 与E 、F 两点,2l 交圆C 与G 、H 两点,(1)EF +GH 的最大值.(2) 求四边形EGFH 面积的最大值.6、已知C 过点)1,1(P ,且与M :222(2)(2)(0)x y r r +++=>关于直线20x y ++=对称.(Ⅰ)求C 的方程;(Ⅱ)设Q 为C 上的一个动点,求PQ MQ ⋅的最小值;(Ⅲ)过点P作两条相异直线分别与C 相交于B A ,,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.7、如图,在矩形ABCD 中,3,1AB BC ==,以A 为圆心1为半径的圆与AB 交于E (圆弧DE 为圆在矩形内的部分)(Ⅰ)在圆弧DE 上确定P 点的位置,使过P 的切线l 平分矩形ABCD 的面积;(Ⅱ)若动圆M 与满足题(Ⅰ)的切线l 及边DC 都相切,试确定M 的位置,使圆M 为矩形内部面积最大的圆.l P E C M。
与圆有关的最值问题
![与圆有关的最值问题](https://img.taocdn.com/s3/m/ffd7370076a20029bc642d2d.png)
与圆有关的最值问题圆是自然界中优美的图形之一,也是数学中的重要研究对象.由于其图形的对称性和完美性,很多与圆有关的最值问题都可以运用圆的图形特点,利用数形结合来求解.当然,我们也会用到函数思想和基本不等式来处理与圆有关的最值问题.在处理与圆有关的最值问题时,应把握两个“思想”:几何思想和代数思想.所谓几何思想,即利用圆心,将最值问题转化为与圆心有关的问题.所谓代数思想,即利用圆的参数方程.【与圆有关的最值类型】①一定点与定圆上动点间距离的最大与最小值.处理方法:利用定点到圆心的距离加(减)圆的半径. ①定直线与定圆上动点间距离的最大与最小值. 处理方法:定点到圆心的距离加(减)圆的半径. ①分别在两定圆上的两动点间距离的最大与最小值. 处理方法:圆心距加(减)两圆的半径.例1.(1)圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是( ).A.6;3.B.6;4.C.5;3.D.5;4.(2)已知点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,则a 2+b 2的最小值是_____. 解:(1)法1.圆心O 到直线的距离为d=25√32+42=5,而圆的半径为1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是5+1=6和5-1=4.故应选B.法2.设圆x 2+y 2=1上的点P(cos θ,sinθ),点P 到直线l :3x +4y -25=0距离d ′, 则 d ′=|3cosθ+4sinθ−25|5=|sin (θ+φ)−5|,① −1≤sin (θ+φ)≤1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是6和4.故应选B.(2)法1. ① 圆x 2+y 2-2x +4y -20=0的圆心和半径分别为(1,-2),r=5.而圆心到原点的距离d=√5,① 5−√5≤√a 2+b 2≤5+√5,⇒30−10√5≤a 2+b 2≤30+10√5. 因此,a 2+b 2的最小值是30-10 5.法2. ① 点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,可设P(1+5cos θ,-2+5sin θ), ① a 2+b 2=(1+5cos θ)2+(-2+5sin θ)2=30+10√5sin (θ+φ),① −1≤sin (θ+φ)≤1, ① a 2+b 2的最小值是30-10 5.例2.在圆x 2+y 2=4上且与直线4x+3y -12=0距离最小的点的坐标是( ). A.(85,65). B.( 85,−65). C.( −85,65) D.( −85,−65). 解:法1.过原点且与直线4x+3y -12=0垂直的直线为3x -4y=0, 联立{x 2+y 2=4,3x −4y =0,⇒{x =85y =65或{x =−85y =−65.结合图4.7—1知选A. xyO 4x+3y -12=0CAE FGHxOM N y 图3.7—2法2.由圆的几何性质可知,所求点为与直线4x+3y -12=0平行且与圆x 2+y 2=4相切的切点.设切线方程为4x+3y+c=0,由|c|5=2,⇒c =∓10.结合图3.7—1 知,c=10.联立{4x +3y −10=0,x 2+y 2=4,⇒{x =85y =65, 故应选A. 法3.对于选择题,可结合图形知所求点应在第一象限内,再看选择支,极易确定选A.想一想①:1.圆x 2+y 2=1上与直线4x -3y -12=0距离最短的点坐标是 .2.已知A (0,1),B (2,3).Q 为圆C:(x -3)2+y 2=1上任一点,则S ΔOAB 的最小值为 .3.若实数x 、y 满足x 2+y 2+2x -4y=0,求x -2y 的最大值.例2.(1)已知a 、b 是单位向量且a ①b.若向量c 满足|c -a -b |=1,则|c |的取值范围是 .(2)已知点A(-1,1)和圆C :(x -5)2+(y -7)2=4.一束光线从A 点经过x 轴反射到圆周C 的最短路程是( ).A.10.B.2√6.C.4√6.D.8. 解:(1) ① a 、b 是单位向量且a ①b ,可设a=(1,0),b=(0,1),c=(x ,y),又① |c -a -b |=1,① (x -1)2+(y -1)2=1. ① 原点O 到圆心(1,1)的距离为√2.① |c | =√x 2+y 2∈[√2−1,√2+1].(2)由光学原理知,点A 关于x 轴的对称点A ′(-1,-1)在反射线上,① 光线从A 点经过x 轴反射到圆周C 的最短路程是过A ′且与圆相切的切线段长|A ′T|=√(−1−5)2+(−1−7)2−4= 4√6.应选C.例3.已知圆C :(x+2)2+y 2=4,过点A(-1,0)作两条互相垂直的直线l 1,l 2,l 1交圆C 与E 、F两点,l 2交圆C 与G 、H 两点.(1)EF+GH解:(1)令圆心C 到弦EF 的距离为d 1,到弦GH 则EF +GH =2(√4−d 12+√4−d 22),又d 12+d 22=CA 2=1由:√4−d 12+√4−d 222≤√8−(d 12+d 22)2=√8−12= √142,(当且仅当d 1=d 2= √22取等号).故EF +GH ≤√14. (2)① EF ⊥GH ,① S 四边形EFGH =12EF ×GH =2(√4−d 12√4−d 22 ≤2×8−(d 12+d 22)2=7.(当且仅当d 1=d 2= √22取等号).例4(1)如图3.7—3(1).点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan①BOC=m ,则m 的取值范围是_________.(2)如图3.7—3(2).在边长为1的等边①OAB 中,以边AB 为直径作①D , C 为半圆弧AB 上的一个动点(不与A 、B 两点重合).BC=a ,AC=b ,求a+b 的最大值.(3)如图3.7—3(3).线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边①ACD 和等边①BCE ,①O 外接于①CDE ,则①O 半径的最小值为( ). A.4. B. 2√33. C. √33. D.2._ B_y_ COED解:(1)由已知,点C 是第一象限内在圆(x -3)2+y 2=4点,结合图2.8—4(1)知,tan①AOC ∈(0,2√55],∵①AOC 与①BOC 互余,① m ≥√52. (2)① AC 2+BC 2=AB 2,即a 2+b 2=1 由柯西不等式得,(12+12)(a 2+b 2)≥(a+b)2, ① (a+b)≤√2,故 a +b 的最大值为√2.(3)设外接圆的半径为R ,由已知可得∠DOE =600.再由正弦定理知DE=2Rsin600,① R=√33DE .在∆DCE 内由余弦定理可得DE 2=DC 2+CE 2-DC ∙CE =(DC+CE)2-3DC ∙CE =16-3DC ∙CE ≥16-3(DC+CE 2)2=4,即DE ≥2. ① R=√33DE ≥2√33.应选B.想一想①:1.如图3.7—4.①M ,①N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为①M 上的任意一点,Q 为①N 上的任意一点,直线PQ 与连心线所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α的最大值为( ).A.√612B.43.C.√33.D.34.2.如图3.7—5.①BAC=600,半径长为1的圆O 与①BAC 的两边相切, P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ). A.3. B.6. C. .3√32.D. 3√3.例5.(1)过点M(−2,,0)的直线l 与曲线y=√4−x 2相交于A ,B 两点,当∆ABO (O 为坐标原点)的面积最大时,直线l 的斜率为 . (2)两个圆C 1:x 2+y 2+2ax+a 2-4=0(a ∈R )与圆C 2:x 2+y 2-2by+b 2-1=0(b ∈R )恰有三条公切线,则a+2b 的取值范围为 . 解:(1) ① 曲线y=√4−x 2的方程可变形为x 2+y 2=4(y ≥0),① 此曲线表示以原点为圆心,2为半径,在x 轴及其上方的半圆,如图3.7—6.① S ∆ABO =12OA ×OB ×sin∠AOB =2sin∠AOB , 当∆ABO 的面积最大时,∠AOB =900,此时∆ABO为等腰直角三角形,① 点O 到直线AB 的距离为√2. 设直线AB 的方程为 y=k(x+2√2),即kx -y+2√2k =0, ①2√2k √1+k 2=√2,解得k=±√33,又由已知k>0,① k= √33.(2) ① 圆C 1的圆心为C 1(-a ,0),半径为2;圆C 2的圆心为C 2(0,b),半径为1.l xy MABO 图3.7—6图3.7—4P QMNA D E BCP. . O图3.7—5由已知两圆外切,① | C 1 C 2|=2+1=3,即a 2+b 2=9.令a+2b=m ,则 √1+4≤3,解得 −3√5≤m ≤3√5,① a+2b 的取值范围为[−3√5,3√5].习题3.71.已知A 、B 两点的坐标分别为(-2,0)、(0,1),①C 的圆心坐标为(0,-1),半径为1,D 是①C 上的一个动点,射线AD 与y 轴交于点E ,则①ABE 面积的最大值是( ).A.3.B. 103. C.103. D.4. 2.圆x 2+y 2-2x -2y+1=0上的点到直线2x y -=距离的最大值是( ).A.2.B.1+√2.C.2+√22. D.1+2√2.3.由直线y=x +1上一点向圆C :(x -3)2+y 2=1引切线,则切线长的最小值为 .4.已知P 为直线y=x +1上一动点,过P 作圆C :(x -3)2+y 2=1的切线PA ,PB(A 、B 为切点),则四边形PACB 面积的最小值为 .5.求过直线2x+y+4=0和圆x 2+y 2+2x -4y+1=0的交点,且满足下列条件之一的圆的方程.①过原点;①有最小面积.6.求圆(x -2)2+(y+3)2=4上的点到直线x -y +2=0最远和最近的距离.7.已知圆M 过两点C(1,-1),D(-1,1),且圆心M 在x+y -2=0上. (1)求圆M 的方程. (2)设P 是直线3x+4y+8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点.求四边形PAMB 面积的最小值.8.在平面直角坐标系中,M(3,4),P 是以M 为圆心,2为半径的①M 上一动点,A(-1,0)、B(1,0),连接PA 、PB ,求PA 2+PB 2最大值.9.过定点M 的直线l 1:ax+y -1=0与过定点N 的直线l 2:x - ay +2a -1=0交于点P.求|PM|∙|PN|的最大值.【参考答案】想一想①:1. (45,−35). 2.4+√2. 3.10.想一想①:1.D.考虑PQ 为两圆的内公切线时的情形.2.在△ADE 中,由正弦定理得|DE|=2Rsin600,其中R 为△ADE 的外接圆半径.如图2.8—4(3)知,AP 的最大值为|OP|+1=3,① |DE|max =3√3. 故应选D.习题3.71. A.2. B.3. √7.4. √7.5.(1)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① 所求圆过原点,得λ=−14. ①x 2+y 2+32x+74y =0为所求.(2)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① R 2=D 2+E 2−4F 4=5λ2−16λ+164,① 当 λ=85时R 2最小. ① x 2+y 2+265x −125y +375=0为所求6.7√2−42;7√2+42. 7.(1)设圆M 的方程为:(x -a)2+(y -b)2=r 2(r >0).根据题意得, {(1−a)2+(1+b)2=r 2,(−1−a)2+(1−b)2=r 2,a +b −2=0. 解得a=b=1,r=2.故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)① 四边形PAMB 的面积S=S ①PAM +S ①PBM =|AM|·|PA|+|BM|·|PB|,又|AM|=|BM|=2,|PA|=|PB|,① S=2|PA|,而|PA|=√|PM|2−|AM|2=√|PM|2−4, 即S=2√|PM|2−4.因此要求S 的最小值,只需求|PM|的最小值即可, 即在直线3x+4y+8=0上找一点P,使得|PM|的值最小, ① |PM|min =√32+42=3.因此,四边形PAMB 面积的最小值为S=2√|PM|2−4=2√5.8.设P(3+2cos θ,4+2sin θ),则PA 2+PB 2=60+24cos θ+32sin θ=60+40sin(θ+φ)≤100. ① PA 2+PB 2最大值为100.9. 1. 由已知有,直线l 1过定点M(0,1),直线l 2过定点N(1,2),且|MN|=√2,l 1⊥l 2.由平面几何的知识知,点P 在以MN 为直径的圆上运动.设点P 到MN 的距离为PD ,则有|PM|∙|PN|=|MN||∙|PD| =√2∙|PD|,∴ 当|PD|取最大值√22 时,(|PM|∙|PN|)max =√2∙√22=1.。
巧用三角函数求解与圆相关的最值问题
![巧用三角函数求解与圆相关的最值问题](https://img.taocdn.com/s3/m/858a60a9294ac850ad02de80d4d8d15abe230004.png)
2013-12课堂内外求解与圆相关的最值问题是平面几何中的常见问题,常常需要利用基本不等式线性规划等解决,这个时候基本上要面临两个变量的问题。
而圆又与角息息相关,如果找到合适的角,利用三角函数强大的变形力量有时会为我们带来意想不到的效果。
一、关于内接图形的面积最值问题1.圆的内接矩形问题例1.如图所示,半径为R 的☉O 的内接矩形为ABCD ,求矩形ABCD 面积的最大值。
分析:圆的内接矩形并不是固定的,但是其对角线一定经过圆心,所以可以用对角线与一边所成的角来刻画矩形的变动。
解:设∠ABD=φ,φ∈(0,π2)则AD =2R sin φ,AB =2R cos φ∴S ABCD =AB ·BD =2R 2sin2φ,φ∈(0,π2)∴φ=π4时,S ABCD 取到最大值为2R 22.推广至半圆的内接矩形问题变式1.如图所示,半径为R 的半圆O 的内接矩形为ABCD ,求矩形ABCD 面积的最大值。
分析:要使内接矩形面积最大,不妨以B 为原始动点,它从半圆的弧的右端点开始运动到弧的中点。
而B点的这个运动过程我们可以用OB 与OA 所成的角刻画,角度从0变到π2。
故设∠AOB=θ,且θ为锐角,半圆的半径为R ,则S 矩形ABCD =AB ·DA=R sin θ·2R cos θ=R 2sin2θ所以,当θ=45°时,矩形ABCD 的面积取得最大值R 2。
3.再推广至扇形的内接矩形例2.如图,求圆心角为60°,半径为1的扇形AOB 内接矩形PQMN 面积的最大值。
分析:如图所示,矩形PQMN 内接于扇形AOB ,把M 点作为原始动点,设∠MOA =θ,则MQ =sin θ,PQ =OQ -OP =cos θ-NP tan π3cos θ-3√3sin θ,所以S 矩形PQMN =MQ ·PQ =sin θ(cos θ-3√3sin θ)=12sin2θ-3√31-cos2θ2=3√3sin (2θ+π6)-3√6所以当θ=π6时,S 矩形P QMN 取到最大值3√6。
圆的方程参数方程
![圆的方程参数方程](https://img.taocdn.com/s3/m/5921bff3f90f76c661371af1.png)
xyP0P rθx1O(,)P x y 111(,)P x yy圆的参数方程1.圆的参数方程的推导设圆O 的圆心在原点,半径是r ,圆O 与x 轴的正半轴的交点 是0P ,设点在圆O 上从0P 开始按逆时针方向运动到达点P ,0P OP θ∠=,则点P 的位置与旋转角θ有密切的关系:当θ确定时,点P 在圆上的位置也随着确定; 当θ变化时,点P 在圆上的位置也随着变化. 这说明,点P 的坐标随着θ的变化而变化. 设点P 的坐标是(,)x y ,你能否将x 、y 分别 表示成以θ为自变量的函数? 根据三角函数的定义,c o ss i nx r y r θθ=⎧⎨=⎩, ① 显然,对于θ的每一个允许值,由方程组①所确定的点(,)P x y 都在圆O 上。
我们把方程组①叫做圆心为原点、半径为r 的圆的参数 方程,θ是参数.圆心为1(,)O a b ,半径为r 的圆的 参数方程是怎样的? 圆1O 可以看成由圆O 按向量(,)v a b =平移得到的(如图),由11O P OP = 可以得到圆心为1(,)O a b ,半径为r 的圆的参数方程是cos sin x a r y b r θθ=+⎧⎨=+⎩(θ为参数)②2.参数方程的概念在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即()()x f t y g t =⎧⎪⎨=⎪⎩ ③ 并且对于t 的每一个允许值,方程组③所确定的点(,)M x y 都 在这条曲线上,那么方程组③就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. 说明:参数方程中的参数可以是有物理、几何意义的变数, 也可以是没有明显意义的变数.3.参数方程和普通方程的互化相对于参数方程来说,前面学过的直接给出曲线上点的坐标 x 、y 关系的方程,叫做曲线的普通方程.将曲线的参数方程中的参数消去,可得到曲线的普通方程。
参数方程和普通方程可以互化.如:将圆的参数方程②的参数θ消去,就得到圆的普通方程222()()x a y b r -+-=.(三)例题分析:例1.把下列参数方程化为普通方程:(1)23cos 32sin x y θθ=+⎧⎨=+⎩ (θ为参数) (2)222121x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩ (t 为参数)解:(1)2cos (1)33sin (2)2x y θθ-⎧=⎪⎪⎨-⎪=⎪⎩,,,由22(1)(2)+得22(2)(3)194x y --+=,这就是所求的普通方程. (2)由原方程组得y t x =,把yt x=代入221x t =+得y xθP221()x y x=+,化简得:2220x y x +-=(0x ≠), 这就是所求的普通方程.说明:将参数方程和普通方程的互化,要注意参数的取值范围 与x 、y 的取值范围之间的制约关系,保持等价性. 例2.如图,已知点P 是圆2216x y +=上的一个动点,定点A (12,0),当点P 在圆上运动时,线段PA 的中点M 的轨迹是什么?解:设点M (,)x y ,∵圆2216x y +=的参 数方程为4cos 4sin x y θθ=⎧⎨=⎩,∴设点P (4cos ,4sin )θθ,由线段中点坐标公式得4cos 1224sin 2x y θθ+⎧=⎪⎪⎨⎪=⎪⎩,即点M 轨迹的参数方程为2cos 62sin x y θθ=+⎧⎨=⎩,∴点M 的轨迹是以点(6,0)为圆心、2为半径的圆. 【思考】:这个问题不用参数方程怎么解? 又解:设(,)M x y ,00(,)P x y ,∵点M 是线段PA 的中点,∴001222x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴002122x x y y =-⎧⎨=⎩,∵点00(,)P x y 在圆上,∴220016x y +=,∴22(212)(2)16x y -+=, 即点M 的轨迹方程为22(6)4x y -+=,∴点M 的轨迹是以点(6,0)为圆心、2为半径的圆. 例3.已知实数x 、y满足2220x y x ++-=, (1)求22x y +的最大值;(2)求x y +的最小值.解:原方程配方得:22(1)(4x y ++=,它表示以(-为圆心,2为半径的圆,用参数方程可表示为12cos 2sin x y θθ=-+⎧⎪⎨=⎪⎩ (θ为参数,02θπ≤<), (1)22x y+22(12cos )2sin )cos )8θθθθ=-++=-+8sin()86πθ=-+,∴当62ππθ-=,即23πθ=时,22max ()16x y +=. (2)2(sin cos )1)14x y πθθθ+=++=+,∴当342ππθ+=,即54πθ=时,m a x ()21x y +=.说明:本题也可数形结合解.五.小结:1.圆心为原点、半径为r 的圆的参数方程cos sin x r y r θθ=⎧⎨=⎩,(θ为参数);2.圆心为1(,)O a b ,半径为r 的圆的参数方程cos sin x a r y b r θθ=+⎧⎨=+⎩(θ为参数);3.参数方程和普通方程的互化,要注意等价性.补充:已知曲线C 的参数方程为2cos sin x y θθ=-+⎧⎨=⎩(θ为参数),(,)P x y 是曲线C 上任意一点,yt x=,求t 的取值范围.。
专题09 圆中的范围与最值问题(知识梳理+专题过关)(解析版)
![专题09 圆中的范围与最值问题(知识梳理+专题过关)(解析版)](https://img.taocdn.com/s3/m/30dd222626d3240c844769eae009581b6bd9bdbd.png)
专题09圆中的范围与最值问题【知识梳理】涉及与圆有关的最值,可借助图形性质,利用数形结合求解.一般地:(1)形如ax by --=μ的最值问题,可转化为动直线斜率的最值问题.(2)形如by ax t +=的最值问题,可转化为动直线截距的最值问题.(3)形如22)()(b y a x m -+-=的最值问题,可转化为曲线上的点到点(a ,b )的距离平方的最值问题解决圆中的范围与最值问题常用的策略:(1)数形结合(2)多与圆心联系(3)参数方程(4)代数角度转化成函数值域问题【专题过关】【考点目录】考点1:斜率型考点2:直线型考点3:距离型考点4:周长面积型考点5:长度型【典型例题】考点1:斜率型1.(2021·江西·高二期中(理))已知圆22:(1)1C x y +-=,点(3,0)A 在直线l 上,过直线l 上的任一点P 引圆C 的两条切线,若切线长的最小值为2,则直线l 的斜率k =()A .2B .12C .2-或12D .2或12-【答案】C【解析】圆22:(1)1C x y +-=的圆心为(0,1)C ,半径为1,因为切线长的最小值为2,所以min ||PC =所以圆心C 到直线l :(3)l y k x =-,即30kx y k --=,所以圆心(0,1)C 到直线30kx y k --==,=22320k k +-=,解得12k =或2k =-.故选:C2.(2021·山东泰安·高二期中)设点(),P x y 是曲线y =上的任意一点,则24y x --的取值范围是()A .1205⎡⎤⎢⎥⎣⎦,B .21255⎡⎤⎢⎥⎣⎦,C .[]0,2D .2,25⎡⎤⎢⎥⎣⎦【答案】B【解析】曲线y =表示以()1,0为圆心,2为半径的下半圆,如图所示:24y x --可表示点(),P x y 与点()4,2Q 连线斜率k 当直线PQ 与圆相切时:设直线方程为()24y k x -=-,即420kx y k --+=圆心到直线距离2d ==,解得125k =或0k =,又0y ≤,所以125k =,当直线经过点()1,0A -时,2245y x -=-,综上21255k ⎡⎤∈⎢⎥⎣⎦,故选:B.3.(2021·上海市控江中学高二期中)若直线:3(1)l y k x -=-与曲线:C y =不同公共点,则实数k 的取值范围是()A .4,3⎛⎫+∞ ⎪⎝⎭B .43,32⎛⎤⎥⎝⎦C .40,3⎛⎫ ⎪⎝⎭D .43,32⎛⎫ ⎪⎝⎭【答案】B【解析】直线:3(1)l y k x -=-过定点(1,3),曲线:C y =(0,0)为圆心,1为半径,且位于y 轴上半部分的半圆,如图所示当直线l 过点(1,0)-时,直线l 与曲线有两个不同的交点,此时03k k =-+-,解得32k =.当直线l 和曲线C 相切时,直线和半圆有一个交点,圆心(0,0)到直线:3(1)l y k x -=-的距离1d ==,解得43k =结合图像可知,当4332k <≤时,直线l 和曲线C 恰有两个交点故选:B4.(多选题)(2021·湖北宜昌·高二期中)实数,x y ,满足22++20x y x =,则下列关于1yx -的判断正确的是()A .1yx -B .1yx -的最小值为C .1y x -的最大值为3D .1y x -的最小值为33-【答案】CD【解析】由题意可得方程22++20x y x =为圆心是()10C -,,半径为1的圆,则1yx -为圆上的点与定点()10P ,的斜率的值,设过()10P ,点的直线为()+1y k x =,即+0kx y k -=,则圆心到到直线+0kx y k -=的距离d r =1=,整理可得231k =,解得33k =±,所以1y x ⎡∈⎢-⎣⎦,即1y x -33-.故选:CD.5.(2021·广东·兴宁市叶塘中学高二期中)已知实数x ,y 满足方程22410x y x +-+=,求:(1)yx的最大值;(2)22x y +的最小值.【解析】(1)()222241023x y x x y +-+=⇒-+=,圆心()2,0,半径r =。
(完整版)圆参数方程及应用
![(完整版)圆参数方程及应用](https://img.taocdn.com/s3/m/b644364f284ac850ac024274.png)
圆的参数方程及应用关于圆的一般方程 (x a)2 ( y b)2R 2 来说,圆的方程还有此外一种表达x a Rcos 形式( 为参数),在解决有些问题时,合理的选择圆方程的表达y b Rsin形式,能给解决问题带来方便,本文浅谈圆的参数方程再解题中的应用。
一、求最值例 1 已知点( x ,y )在圆 x 2 y 2 1上,求 x 2 2xy 3y 2 的最大值和最小值。
【解】圆 x 2y 2 1的参数方程为:x cos 。
y sin则 x 2 2xy 3 y 2 = cos 2 2sin cos3sin 2= 1 cos2sin 2 31cos22 sin 2 cos2= 2 2 sin(22 2k3 (k ∈Z )时, x 22xy 3 y 2的最大值为: 22 ;k8时, x 2 2xy3y 2 的最小值为 22 。
【评论】解某些与圆的方程相关的条件制问y题,可应用圆的参数方程转变为三角函数问题的) ,则4( k ∈Z )8方法解决。
B二、求轨迹OAxC例 2 在圆 x 2y 24 上有定点 A (2,0),及图 1两个动点 B 、C ,且 A 、B 、C 按逆时针方向摆列,∠BAC= ,求△ABC 的重心 G (x , y )的轨迹方程。
3,得∠BOC= 2 4),则 B(2cos θ,2sin【解】由∠BAC= ,设∠ABO= θ( 0 3 3 3θ), C(2cos(θ+ 2 ),2sin(θ+ 2)),由重心坐标公式并化简,得:3 3x 22)cos(5,知 0≤x< 1,333,由y2sin()33333消去θ得:( x2) 2y24(0≤x<1=。
39【评论】用圆的几何性质,∠ BOC=2∠BAC=120 °,再以∠ABO= θ为参数,求出轨迹的参数方程,在消参后,要注意x 的范围的限制。
三、求范围例 3 已知点 P(x,y)是圆x2( y 1)21上随意一点,欲使不等式x+y+c≥0 恒建立,求 c 的取值范围。
圆的方程求解及圆最值问题
![圆的方程求解及圆最值问题](https://img.taocdn.com/s3/m/09996a7c69eae009581becd4.png)
(3)点在圆内:(x0-a)2+(y0-b)2<r2
.
1.圆x2+y2-6x+4y=0的周长是________.
答案 2 13π 解析 配方,得(x-3)2+(y+2)2=13. ∴r= 13,∴圆的周长 c=2π· 13=2 13π.
2.方程 x2+y2+4mx-2y+5m=0 表示圆的充要条件是
的距离为 55,求该圆的方程.
【解析】 (1)设圆方程为(x-a)2+(y-b)2=25, 如图,∵|AB|=10-2=8,
∴|AD|=4. ∵|AC|=5,∴|CD|=3. ∴a=6,b=±3. ∴所求圆的方程为(x-6)2+(y-3)2=25或(x-
6)2+(y+3)2=25.
∵点 A,B 在圆上,所以可得到方程组
1-a2+0-b2=5, 5-a2+0-b2=5,
解得 a=3,b=±1.
∴圆的标准方程是(x-3)2+(y-1)2=5 或(x-3)2+(y+
1)2=5.
方法二:由 A,B 两点在圆上,那么线段 AB 是圆的一条 弦,根据平面几何知识:这个圆的圆心在线段 AB 的垂直平 分线 x=3 上,于是可设圆心为 C(3,b),又|AC|= 5,即
答案 (x-2)2+y2=10
解析 依题意设所求圆的方程为(x-a)2+y2=r2,把所给
两点坐标代入方程,得51- -aa22+ +19= =rr22, ,
解得ar2==21,0, 所以所求圆的方程为(x-2)2+y2=10.
授人以渔
题型一 方程与圆
例1 已知方程x2+y2-2(m+3)x+2(1- 4m2)y+16m4+9=0表示一个圆.
程.
5.点与圆的位置关系
圆y0)的与标圆准的方关程系(有x-三a种)2+.(y-b)2=r2,点M(x0, (1)点在圆上:(x0-__a_)2_+_(_y0_-_b_)_2=__r2_______.
圆的参数方程学案
![圆的参数方程学案](https://img.taocdn.com/s3/m/1df73db8c77da26925c5b03d.png)
圆的参数方程学案【学习目标】1、分析圆的几何性质,选择适当的参数写出它的参数方程。
2、能选取适当的参数,求圆的参数方程3、利用圆的几何性质求最值。
【学习重点】能选取适当的参数,求圆的参数方程 【学习难点】圆的参数方程的应用 一、【新知探究】 1、 圆心为(0,0),半径为r 的圆的参数方程 (1)根据右图如何建立圆的参数方程? (2)若取∠MOY=θ,如何建立圆的参数方程?2、圆心为(a,b),半径为r 的圆的参数方程是什么?3、你能总结求曲线参数方程的步骤吗?(1)建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(2) ;(3)根据已知条件和图形的几何性质,物理意义,建立 ;(4)证明这个参数方程就是所由于的曲线的方程。
二、【典型例题】【例1】指出参数方程2cos 5()32sin x y ααα=-⎧⎨=+⎩为参数所表示的圆的圆心坐标、半径,并化为普通方程。
【例2】已知两条曲线的参数方程125cos 4cos 45:(:(5sin 3sin 45x x t C C t y y t θθθ⎧==+⎧⎪⎨⎨==+⎪⎩⎩ 为参数)和为参数) (1)判断这两条曲线的形状;(2)求这两条曲线的交点坐标。
最值问题:利用圆的几何性质和圆的参数方程求最值(数形结合)【例3】已知点P (x ,y )是圆x 2+y 2- 6x- 4y+12=0上动点,求:(1) x 2+y 2 的最值,(2)x+y 的最值,(3)P 到直线x+ y - 1=0的距离d 的最值。
【变式1】若实数x,y 满足x 2+y 2-2x+4y=0,求x-2y 的最大值。
三、【当堂检测】1、参数方程⎩⎨⎧==θθsin 3cos 3y x (-22πθπ≤≤)表示的图形是以原点为圆心,半径为3的 ( ) A .左半圆 B.上半圆 C. 下半圆 D.右半圆2、点(1,2)在圆⎩⎨⎧=+-=θθsin 8cos 81y x 的 ( ) A.内部 B.外部 C.圆上 D.与θ值有关3、圆为参数)θθθ(sin 2cos 2⎩⎨⎧==y x 上的点到(3,4)的最小距离为 .4、若点(x ,y )在圆为参数)θθθ(sin 24cos 23⎩⎨⎧+=+=y x 上,则x 2+y 2+3x 的最小值为 .5、已知圆的参数方程是5cos 5sin x y θθ=⎧⎨=⎩(1)圆心坐标为________ ,半径为_______,圆的标准方程为__________________。
与圆有关的最值问题
![与圆有关的最值问题](https://img.taocdn.com/s3/m/509049f028ea81c758f5783f.png)
1 AC BD 1 2 3 1 2 3 30
2
2
2
2. 【湖北省黄石市 2017 届高三年级九月份调研,10】圆 x2 y2 2ax a2 4 0 和圆
x2
y2
4by 1 4b2
0
恰有三条公切线,若
a
R,
b
R
,且
ab
0
,则
1 a2
1 b2
1 [5 9
a2 b2
4b2 a2
]
1 [5 2 9
a2 b2
4b2 a2
]1
,当且仅当
a2 b2
=
4b2 a2
时取等
号,所以最小值为 1.[来源:Z#xx#]
考点:两圆位置关系,基本不等式求最值
【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正
2.2 建立函数关系求最值 根据题目条件列出关于所求目标函数的关系式,然后根据关系的特点选用参数法、配方法、判别式法等
进行求解.
例 7 设 P, Q 分 别 为 x2 y 62 2 和 椭 圆 x2 y2 1 上 的 点 , 则 P, Q 两 点 间 的 最 大 距 离 是
10
一、与圆相关的最值问题的联系点
k
O
1.1 与直线的倾斜角或斜率的最值问题
利用公式 k = tan ( ≠90°)将直线的斜率与倾斜角紧密联系到一起,通过正切函数的图象可以解决已知
斜率的范围探求倾斜角的最值,或者已经倾斜角的范围探求斜率的最值.
处理方法:利用在正切函数
圆中最值问题的常见解法
![圆中最值问题的常见解法](https://img.taocdn.com/s3/m/87f4faebd4bbfd0a79563c1ec5da50e2524dd10b.png)
分析:由于 都不是定值,加之平方式,所以直接用函数、均值不等式、几何法求解,都无能为力.于是考虑先设点 的坐标,先代数化,再看有没有几何意义.
解:设点 ,则
, 表示点 到定点 距离的平方,而
, 的最大
值是 ,此时点 的坐标满足 .
一.利用三角形性质求最值
众所皆知:三角形中任意两边之和大于第三边,任意两边之差小于第三边,极端情况下,当三点共线时,两边之和等于第三边,两边之差等于第三边,这正是取得最值的时刻,这就是圆中解决最值问题的常用方法之一.主要模型是:求一定点与圆上动点之间距离的最大值与最小值.即有:设圆心为C,圆的半径为 ,定点为A,圆上动点为P,则 =
的最小值是 ,此时点 的坐标满足
.
评析:在几何方法受阻的情况下,可以先做代数化处理,在构造几何意义,本题的解决,得
益于构造圆外一点到圆上动点距离的最值模ቤተ መጻሕፍቲ ባይዱ.
相关问题:(1)已知圆 ,圆 , 分别是圆 上的动点, 为 轴上的动点,则 的最小值为( )A
A. B. C. D.
(2)P为双曲线 的右支上一点,M、N分别是圆 ,
解决圆中最值问题的常见方法
圆问题是高中解析几何中的重点问题,在这类问题中的最值问题又是常见题型,由于在解决过程中所需要的数学素养层次比较高,特别是对学生的直观想象素养、抽象素养、运算素养、逻辑推理素养有较高要求,所以学生在学习中常常感到比较困难.基于此,非常有必要对这类问题的常见解法做一些总结,以供参考.
.
例1.点 在椭圆 上运动,点 在圆 上运动,求 .
分析:由于有两个动点,所以需要分步完成,可以先固定点 ,这样就可以利用三角形性质求得 ,然后再利用函数法求得最终结果.
15-16版:1 参数方程的概念-2 圆的参数方程 (1)
![15-16版:1 参数方程的概念-2 圆的参数方程 (1)](https://img.taocdn.com/s3/m/8158fdc676a20029bd642deb.png)
一 曲线的参数方程 1 参数方程的概念 2 圆的参数方程[学习目标] 1.理解曲线参数方程的有关概念.2.掌握圆的参数方程.3.能够根据圆的参数方程解决最值问题.[知识链接]1.如图,一架救援飞机在离灾区地面500m 高处以100m/s 的速度作水平直线飞行.为使投放的救援物资准确落于灾区指定的地面(不计空气阻力),飞行员应如何确定投放时机呢?答案 物资出舱后,设在时刻t ,水平位移为x ,垂直高度为y , 所以⎩⎪⎨⎪⎧x =100t ,y =500-12gt 2.(g =9.8m/s 2) 令y =0,得t ≈10.10s. 代入x =100t ,得x ≈1010m.所以,飞行员在离救援点的水平距离约为1010m 时投放物资,可以使其准确落在指定地点. 2.请说出方程⎩⎪⎨⎪⎧x =100t ,y =500-12gt 2.(g =9.8m/s 2)的特征. 答案 (1)三个变量;(2)x ,y 都用变量t 表示;(3)给定t 的一个值,由方程可以惟一确定x ,y 的值.[预习导引] 1.参数方程的概念(1)一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),(*)并且对于t 的每一个允许值,由方程组(*)所确定的点M (x ,y )都在这条曲线上,那么方程(*)就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(2)参数是联系变数x ,y 的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数. 2.圆的参数方程(1)如图所示,设圆O 的半径为r ,点M 从初始位置M 0出发,按逆时针方向在圆O 上作匀速圆周运动,设M (x ,y ),则⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数).这就是圆心在原点O ,半径为r 的圆的参数方程,其中θ的几何意义是OM 0绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.(2)圆心为C (a ,b ),半径为r 的圆的普通方程与参数方程要点一 参数方程的概念例1 已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2,(其中t 是参数,a ∈R ),点M (5,4)在该曲线上. (1)求常数a ;(2)求曲线C 的普通方程.解 (1)由题意可知有⎩⎪⎨⎪⎧ 1+2t =5,at 2=4,故⎩⎪⎨⎪⎧t =2,a =1.∴a =1.(2)由已知及(1)可得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t ,y =t 2.由第一个方程得t =x -12代入第二个方程,得y =⎝⎛⎭⎫x -122,即(x -1)2=4y 为所求.规律方法 将曲线的参数方程化为普通方程主要是消去参数,简称为“消参”.消参的常用方法是代入消元法和利用三角恒等式消参法两种.跟踪演练1 设质点沿以原点为圆心,半径为2的圆作匀速圆周运动,角速度为π60rad/s.试以时间t 为参数,建立质点运动轨迹的参数方程.解 如图所示,运动开始时质点位于点A 处,此时t =0,设动点M (x ,y )对应时刻t ,由图可知⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,又θ=π60t (t 的单位:s),故参数方程为⎩⎨⎧x =2cos π60t ,y =2sin π60t .要点二 圆的参数方程及其应用例2 已知圆的直径AB 上有两点C 、D ,且|AB |=10,|AC |=|BD |=4,P 为圆上一点,求|PC |+|PD |的最大值.解 以AB 所在直线为x 轴,以线段AB 的中点为原点建立平面直角坐标系.因为|AB |=10,所以圆的参数方程为⎩⎪⎨⎪⎧x =5cos θ,y =5sin θ(θ为参数).因为|AC |=|BD |=4,所以C ,D 两点的坐标为C (-1,0),D (1,0).因为点P 在圆上,所以可设点P 的坐标为(5cos θ,5sin θ). 所以|PC |+|PD |=(5cos θ+1)2+(5sin θ)2 +(5cos θ-1)2+(5sin θ)2 =26+10cos θ+26-10cos θ =(26+10cos θ+26-10cos θ)2 =52+2262-100cos 2θ.当cos θ=0时,(|PC |+|PD |)max =52+52=226. ∴|PC |+|PD |的最大值为226.规律方法 如果取半径绕原点O 逆时针旋转转过的角度θ为参数,圆x 2+y 2=r 2对应的参数方程为⎩⎪⎨⎪⎧ x =r cos θ,y =r sin θ.同理,圆(x -x 0)2+(y -y 0)2=r 2对应的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).圆的参数方程对于需要将圆上点的两个坐标分别表示,并代入计算的问题比较方便. 跟踪演练2 已知实数x ,y 满足(x -1)2+(y -1)2=9,求x 2+y 2的最大值和最小值.解 由已知,可把点(x ,y )视为圆(x -1)2+(y -1)2=9上的点,设⎩⎪⎨⎪⎧x =1+3cos θ,y =1+3sin θ (θ为参数).则x 2+y 2=(1+3cos θ)2+(1+3sin θ)2 =11+6(sin θ+cos θ)=11+62sin ⎝⎛⎭⎫θ+π4. ∵-1≤sin ⎝⎛⎭⎫θ+π4≤1, ∴11-62≤x 2+y 2≤11+6 2.∴x 2+y 2的最大值为11+62,最小值为11-6 2. 要点三 参数方程的实际应用例3 某飞机进行投弹演习,已知飞机离地面高度为H =2000m ,水平飞行速度为v 1=100m/s ,如图所示.(1)求飞机投弹t s 后炸弹的水平位移和离地面的高度;(2)如果飞机追击一辆速度为v 2=20m /s 同向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?(g =10 m/s 2)解 (1)如图所示,建立平面直角坐标系,设炸弹投出机舱的时刻为0s ,在时刻t s 时其坐标为M (x ,y ),由于炸弹作平抛运动,依题意,得 ⎩⎪⎨⎪⎧x =100t ,y =2000-12gt 2, 即⎩⎪⎨⎪⎧x =100t ,y =2000-5t 2, 令y =2000-5t 2=0,得t =20(s),所以飞机投弹t s 后炸弹的水平位移为100t m ,离地面的高度为(2000-5t 2)m ,其中,0≤t ≤20. (2)由于炸弹水平分运动和汽车的运动均为匀速直线运动,以汽车为参考系.水平方向s 相对=v相对t ,所以飞机应距离汽车投弹的水平距离为s =(v 1-v 2)t =(100-20)×20=1600(m).规律方法 本题通过点的坐标的参数方程利用运动学知识使问题得解.由于水平抛出的炸弹做平抛运动,可以分解为在水平方向上的匀速直线运动和竖直方向上的自由落体运动,炸弹飞行的时间也就是它作自由落体运动所用的时间. 跟踪演练3 如果本例条件不变,求:(1)炸弹投出机舱10s 后这一时刻的水平位移和高度各是多少m?(2)如果飞机迎击一辆速度为v 2=20m/s 相向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?解 (1)将t =10代入⎩⎪⎨⎪⎧ x =100t ,y =2000-5t 2,得⎩⎪⎨⎪⎧x =1000,y =1500, 所以炸弹投出机舱10s 后这一时刻的水平位移和高度分别是1000m 和1500m. (2)由于炸弹水平分运动和汽车的运动均为匀速直线运动,以汽车为参考系.水平方向s 相对=v 相对t ,所以飞机应距离汽车投弹的水平距离为s =(v 1+v 2)t =(100+20)×20=2400(m).1.当参数θ变化时,由点P (2cos θ,3sin θ)所确定的曲线过点( ) A.(2,3) B.(1,5) C.⎝⎛⎭⎫0,π2 D.(2,0)答案 D解析 当2cos θ=2,即cos θ=1时,3sin θ=0. ∴过点(2,0).2.方程⎩⎪⎨⎪⎧x =t +1t ,y =2(t 为参数)表示的曲线是( )A.一条直线B.两条射线C.一条线段D.抛物线的一部分答案 B解析 t >0时x =t +1t≥2,当t <0,x =t +1t =-(-t +1-t )≤-2.即曲线方程为y =2(|x |≥2),表示两条射线.3.若直线3x +4y +m =0与圆⎩⎪⎨⎪⎧x =1+cos θ,y =-2+sin θ(θ为参数)没有公共点,则实数m 的取值范围是________.答案 (-∞,0)∪(10,+∞)解析 把圆的参数方程化成普通方程为(x -1)2+(y +2)2=1,由已知直线与圆相离,∴|3×1+4×(-2)+m |5>1,解得m <0或m >10,故填(-∞,0)∪(10,+∞).4.已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ+2(θ为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ+ρcos θ=1,求直线l 截圆C 所得的弦长.解 圆C 的方程为x 2+(y -2)2=1;直线l 的方程为x +y =1.圆心(0,2)到直线的距离为d =||0+2-12=22,故所求弦长为21-(22)2= 2.1.曲线的普通方程直接地反映了一条曲线上点的横、纵坐标之间的联系,而参数方程是通过参数反映坐标变量x 、y 间的间接联系.在具体问题中的参数可能有相应的几何意义,也可能没有什么明显的几何意义.曲线的参数方程常常是方程组的形式,任意给定一个参数的允许取值就可得到曲线上的一个对应点,反过来,对于曲线上的任一点也必然对应着参数相应的允许取值.2.求曲线参数方程的主要步骤第一步,画出轨迹草图,设M (x ,y )是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数惟一确定.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.。
圆的参数方程
![圆的参数方程](https://img.taocdn.com/s3/m/c5045829453610661ed9f42b.png)
圆的参数方程在求两类三角函数最值(值域)中的运用一、知识回顾:圆的参数方程。
①:{θθrCos x rSin y r y x==→=+222[ P (x ,y )为圆O (0,0)上任意一点,∠POX=θ。
] ②: 222)()(r b y a x =-+-{θθrCos a x rSin b y +=+=→[ P (x ,y )为圆'O (a ,b )上 任意点,∠θ=''X PO 。
]由于曲线的参数方程因参数选择的不同而发生形式上的差异,上述圆的参数方程又可分别表示为:{{ααααrSin a x rCos b y rSin x rCos y +=+===;。
注意到这里θα≠,而θππα-+=22k (Z k ∈),上述圆的参数方程还可写成别的与之对应的形式,如:{{ααααrCos a x rSin b y rCos x rSin y -=+=-==;[ )(2Z k k ∈-+=θππα ]。
由圆的参数方程的不同表现形式,深化对参数方程实质的理解。
二、问题的切入:圆的参数方程形式与三角函数问题紧密联系起来了。
因此三角函数中的某些问题是否可以借鉴解几中圆的相关知识求解,以下从解几的角度分析两类三角函数最值(值域)问题。
例1:求αααα22cos 3cos sin 6sin-+的最值。
解析:容易化为12co s 22s i n 3--αα,令{αα2c o s 2s i n ==x y ,关键在于求x y 232cos 22sin 3-=-αα的最值。
注意到{αα2cos 2sin ==x y 为圆122=+y x 的参数方程。
取3,332,23t t x y x y t +=-=表示一族平行于直线x y 32=的直线在y 轴上的截距(0≠t )。
由圆心到直线的距离小于等于半径显然易得,1313≤≤-t 故所求最大值为113-,最小值为113--,从而问题获解。
提问:若用方程思想,该作何求解?(由122=+y x ,,23x y t-=即1)332(22=++t x x 有解,由判别式大于等于零易得,1313≤≤-t 得之。
圆的最值问题求解四法
![圆的最值问题求解四法](https://img.taocdn.com/s3/m/4a287dfefc0a79563c1ec5da50e2524de418d060.png)
2023年9月上半月㊀解法探究㊀㊀㊀㊀圆的最值问题求解四法◉云南省普洱市孟连县第一中学㊀孙宝恩㊀㊀摘要:与圆有关的最值问题是近年来高考数学的热点之一,它着重考查数形结合与转化思想.求圆的最值问题 四化法 的基本思路是,利用平面几何知识,或利用圆的参数方程,或设圆上点的坐标,将其转化为函数的最值问题.关键词:化为斜率法;化为截距法;化为距离法;化为三角函数法㊀㊀与圆有关的最值问题,因为其代数式具有明显的几何意义,所以应优先考虑数形结合法.运用数形结合法求最值,既可以借助图形直观获得简捷解法,又可避免因对限制条件考虑不周造成的失误,还有利于沟通数学各个分支,深化思维,全面提高学生数学综合素质[1].涉及与圆有关的最值问题,可借助圆的几何性质,并根据代数式的几何意义,利用数形结合思想来求解.一般情况下,求形如t =y -bx -a的最值问题,可转化为动直线的斜率问题;求形如t =a x +b y +c 的最值问题,可转化为动直线的截距问题;求形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离问题.另外,还可以通过建立目标函数求最值.与圆有关的最值问题,既是高中数学中的难点问题,又是近年来高考中的热点题型,因此有必要熟悉和掌握其常用的解题思路与方法.1化为斜率法例1㊀已知实数x ,y 满足方程x 2+y 2-4x +1=0,求yx的最大值和最小值.解:原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆.yx 的几何意义是该圆上一点与原点连线的斜率,所以设yx=k ,即y =k x .图1当直线y =k x 与圆相切时,如图1,斜率k 取最大值或最小值,此时2k -0k 2+1=3,解得k =ʃ3所以yx的最大值为3,最小值为-3.思路与方法:本题中yx 的几何意义是圆上的点与原点连线的斜率,两切线的斜率为其最值,可由2k -0k 2+1=3求切线的斜率,也可将y =k x 代入圆的方程,由Δȡ0,求解k 的范围.例2㊀求y =1+s i n x2+c o s x 的最值.图2解:将原函数式变形为y =s i n x -(-1)c o s x -(-2),其几何意义是在直角坐标系中,动点(c o s x ,s i n x )与定点P (-2,-1)连线的斜率.动点P 的轨迹为单位圆(如图2),由图可知,k P B 最小,k P C 最大.显然,k P B =0.由t a n θ=O B P B =12,得t a n øB P C =t a n2θ=2t a n θ1-t a n 2θ=43,即k P C =43.故y 的最小值为0,最大值为43.思路与方法:从本题的解题思路可以归纳 形如f (x )-ag (x )-b 的函数式,可以将其看作点(g (x ),f (x ))与点(b ,a )连线的斜率,这也是最常见的解题方法.2化为截距法例3㊀在圆O :x 2+y 2=1上求一点P ,使得过点P 的切线与两条坐标轴所围成的三角形面积最小.解法1:设P (x 1,y 1),则切线l 为x 1x +y 1y =1,即x 1x 1+y 1y 1=1,截距a =1x 1,b =1y 1.所以,过点P 的切线与两坐标轴所围成的三角形面积为S =12a97Copyright ©博看网. All Rights Reserved.解法探究2023年9月上半月㊀㊀㊀b =121x 1 1y 1=12x 1y 1ȡ1x 21+y 21=11=1,当且仅当x 1=y 1=22时,取等号,S 的最小值为1.故所求点P 的坐标为(22,22),(22,-22),(-22,-22),(-22,22).解法2:因为点P 在圆x 2+y 2=1上,可设P (c o s φ,s i n φ),所以切线l :x c o s φ+y s i n φ=1,其截距a =1c o s φ,b =1s i n φ.因此,过点P 的切线与两坐标轴所围成的三角形面积为S =12a b =121c o s φ 1s i n φ=1s i n 2φȡ1.当s i n 2φ=ʃ1,即φ=ʃπ4,ʃ34π时,S 取最小值,且最小值为1.故所求点P 的坐标为(22,22),(22,-22),(-22,-22),(-22,22).思路与方法:本题的两种解法都是将与圆有关的求三角形的最值问题转化为直线与圆相切的截距型问题.通过设点P 的坐标,先求出截距,然后再根据三角形面积公式推出S әȡ1,最后确定点P 的位置.例4㊀设x ,y 满足y =-x 2-2x ,求S =x +y 的最大值和最小值.图3解:y =-x 2-2x =1-(x +1)2,其图象为如图3所示的半圆O ᶄ,S 的最大值与最小值分别是直线y =-x +S 和半圆O ᶄ有公共点时截距的最大值与最小值.由A (-2,0),k A D =-1,得D (0,-2),即S m i n =-2.又O ᶄB =B C =1,所以O ᶄC =2,得O C =2-1=O D ᶄ,则点D ᶄ的坐标为(0,2-1),即S m a x =2-1.故S 的最大值与最小值分别为2-1,-2.思路与方法:本题是将其转化㊁变形为截距型最值问题,并对半圆㊁直线截距的几何意义进行了由 隐 到 显 的挖掘,其中紧扣 S 的最大值与最小值分别是直线y =-x +S 和半圆O ᶄ有公共点时截距S的最大值与最小值 是关键.3化为距离法例5㊀在әA B C 中,øA ,øB ,øC 所对的边分别为a ,b ,c ,且c =10,c o s A c o s B =b a =43,P 为әA B C的内切圆上的动点,求点P 到顶点A ,B ,C 的距离的平方和的最大值与最小值.解法1:由c o s A c o s B =b a ,得c o s A c o s B =s i n Bs i n A ,即s i n 2A =s i n2B .在әA B C 中,因为A ʂB ,所以2A +2B =π,则A +B =π2,故әA B C 为直角三角形.图4由c =10,b a =43,可得a =6,b =8.建立如图4所示的平面直角坐标系,设әA B C 的内切圆圆心为O ᶄ,切点分别为D ,E ,F ,则|A D |+|D B |+|E C |=12(10+8+6)=12,内切圆的半径r =|E C |=12-10=2,则内切圆O ᶄ方程为(x -2)2+(y -2)2=4.设圆O ᶄ上动点P 的坐标为(x ,y ),则点P 到顶点A ,B ,C 的距离的平方和为S =P A 2+P B 2+P C 2=(x -8)2+y 2+x 2+(y -6)2+x 2+y 2=3[(x -2)2+(y -2)2]-4x +76=88-4x .由点P 在圆上,可知,0ɤx ɤ4,于是S 的最大值为88,最小值为88-4ˑ4=72.解法2:同解法1,得әA B C 是直角三角形,其内切圆半径r =2.设圆上动点P 的坐标为(2+2c o s α,2+2s i n α)(0ɤαɤ2π),则点P 到顶点A ,B ,C 的距离的平方和为S =P A 2+P B 2+P C 2=(2c o s α-6)2+(2+2s i n α)2+(2+2c o s α)2+(2s i n α-4)2+(2+2c o s α)2+(2+2s i n α)2=80-8c o s α.因为0ɤαɤ2π,所以S 的最大值为=80+8=88,最小值为=80-8=72.思路与方法:本题可转化为点到直线的距离型最值问题.解法1是由三角形的边㊁角关系推证出әA B C 为直角三角形,然后建立平角直角坐标系,通过设三角形内切圆,求三角形三边的长度获解;解法2在已知әA B C 为直角三角形的基础上,通过设动点坐标,利用三角函数求出最值.08Copyright ©博看网. All Rights Reserved.2023年9月上半月㊀解法探究㊀㊀㊀㊀例6㊀已知实数x ,y 满足方程x 2+y 2-4x +1=0,求x 2+y 2的最大值和最小值.图5解:x 2+y 2-4x +1=0可化为(x -2)2+y 2=3,它表示以C (2,0)为圆心,3为半径的圆.如图5所示,x 2+y 2表示圆上的一点与坐标原点距离的平方.由平面几何知识可知,在坐标原点和圆心连线与圆的两个交点处取得最大值和最小值.又因为圆心C 到原点的距离为2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-43.思路与方法:本题中的x 2+y 2可看作是圆上的点与原点距离的平方,所以可以借助平面几何知识,利用数形结合法快速求解.4化为三角函数法例7㊀已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得øA P B =90ʎ,则m 的最大值为(㊀㊀).A.7㊀㊀㊀㊀B .6㊀㊀㊀㊀C .5㊀㊀㊀㊀D.4解:设点P (x 0,y 0),则x 0=3+c o s θ,y 0=4+s i n θ{(θ为参数).由øA P B =90ʎ,得A P ң B P ң=0,即(x 0+m )(x 0-m )+y 20=0,则m 2=x 20+y 20=26+6c o s θ+8s i n θ=26+10s i n (θ+φ)ɤ36(其中t a n φ=34).所以0<m ɤ6,即m 的最大值为6.故选答案:B .思路与方法:本题是通过建立目标函数来求最值.由于øA P B =90ʎ,则点P 也在以A B 为直径的圆上,因此问题还可转化为两圆有公共点,求m 的最大值,即两圆内切时,m 有最大值6.例8㊀半圆O 的直径为2,A 为直径延长线上一点,O A =2,B 为半圆上任意一点,以A B 为一边作等边三角形A B C .问点B 在什么位置时,四边形O A C B的面积最大,并求这个最大值.图6解:如图6,设øA O B =α(0<α<π),在әA O B 中,又O B =1,O A =2,由余弦定理,得A B 2=O A 2+O B 2-2O A O B c o s α=5-4c o s α.设四边形O A C B 的面积为S ,则㊀㊀㊀S =12O A O B s i n α+34A B 2=s i n α+34(5-4c o s α)=534+(s i n α-3c o s α)=534+2s i n (α-π3),当且仅当s i n (α-π3)=1,即α=5π6时,四边形O A C B的面积最大,且最大值为534+2.思路与方法:本题通过运用余弦定理,将与圆有关的四边形面积的最值问题,转化为三角函数问题来求解.从解题过程不难看出,对y =a s i n x +b c o s x (a ,b ʂ0)引入辅角θ,则y =a 2+b 2s i n (x +θ)(其中t a n θ=ba),其最值一目了然.根据以上典例及 四化法 的运用情况,可以把与圆有关的最值问题大致归纳总结为以下几种类型:①定点与圆上的点的距离的最值题型,可将其转化为定点到圆心的距离ʃ半径 ;②定直线与圆上点的距离的最值题型,可将其转化为 圆心到直线的距离ʃ半径 ;③形如t =y -bx -a 的最值题型,可将其转化为动直线的斜率问题(切线处取得最值);④形如t =a x +b y +c 的最值题型,可将其转化为动直线的截距问题(切线处取得最值);⑤形如(x -a )2+(y -b )2的最值问题,可将其转化为定点到圆上动点的最值问题.圆是一种很规则的图形,解答与圆有关的最值问题很适合采用数形结合法.运用 四化法 解题的关键,是在准确理解题意的基础上进行合理联想和类比,将代数式通过转化㊁变形㊁给予几何解释[2].上述典型例题的解析可以帮助学生学会从 形 中觅 数 的思路与方法,掌握如何根据图形去寻求数量关系的技巧,能够娴熟地将几何问题代数化,通过不断加强这类题型的解题训练,最终达到触类旁通㊁举一反三㊁开阔思路㊁运用自如㊁综合提高的目的.参考文献:[1]杜超.例谈与圆有关的最值问题[J ].理科考试研究,2021(9):16G18.[2]程会海.与圆有关的最值问题的解题策略例说[J ].中学数学,2022(5):64G65.Z 18Copyright ©博看网. All Rights Reserved.。
圆的方程及应用
![圆的方程及应用](https://img.taocdn.com/s3/m/6622c810a21614791711281b.png)
的距离为
解(Ⅰ)b 1, 1, 2 b 2 a r
解(Ⅱ) 1, 1, 2 b 2 b a r
综上所述:所求圆的方 程为 (x 1 2 y 1 2 2 )( ) 或(x 1 2 y 1 2 2 )( )
(二)、求最值问题
例4、在圆x2+y2=4上,与直线4x+3y-12=0的距离最小 的点的坐标是( A ) (A)(8/5,6/5) (C)(-8/5,6/5 ) (B)(8/5,-6/5) (D)(-8/5,-6/5)
归纳总结:
一、求圆的方程
二、求与圆有关的最值问题
巩固练习
1 .已知圆的半径为 ,圆心在直线y=2x上,圆被直线x-y=0截得的弦长 为 ,求圆的方程.
2.若实数x,y满足方程x2+y2-2x+4y=0,试求x-2y的最大值 和最小值.
3.
已知与曲线 C: 2 y 2 2 x 2 y 1 0 相切的直线 l x 练习 分别交x 轴、y轴于 A、B 两点,O 为坐标原点, y | OA | a ,OB | b (a 2,b 2) . | B
黄杏芳2006年10月直线与直线方程直线与圆圆与圆的位置关系圆与圆方程直线的倾斜角和斜率直线的方程两直线的位置关系线性规划及应用圆的标准方程圆的一般方程圆的参数方程一知识框架eydx圆的标准方程圆的一般方程圆的参数方程1圆的方程为参数2直线与圆的位置关系相交相切相离方程组两解方程组一解无解eydxa
所以,线段PA的中点M的轨迹是以点(6,0)为 圆心,2为半径的圆.
x 6 2 cos y 2 sin
例4、若实数x、y满足x2+y2-2x+4y+2=0, 求x-y的最大值和最小值。
圆和椭圆的参数方程
![圆和椭圆的参数方程](https://img.taocdn.com/s3/m/f1378f5af4335a8102d276a20029bd64783e6205.png)
圆和椭圆的参数方程概述圆和椭圆是数学中常见的几何图形,它们都可以通过参数方程来表示。
本文将详细探讨圆和椭圆的参数方程,包括如何推导参数方程、参数的含义以及参数方程的应用。
圆的参数方程推导圆是一个具有等距离的点构成的闭合曲线,可以通过一个参数方程来表示。
假设圆心为(0, 0),半径为r,则圆上任意一点的坐标可以表示为(x, y)。
根据勾股定理,有: 1.为了求解参数方程,我们引入一个参数θ(取值范围为0到2π),并使用三角函数来表示x和y。
具体推导过程如下: 1. x = r * cosθ 2. y = r * sinθ给定不同的θ,就可以得到对应的圆上的点坐标。
圆的参数方程的含义圆的参数方程中,参数θ表示角度。
通过不同的θ取值,可以得到圆上不同位置的点坐标。
当θ等于0时,点坐标为(1, 0),即圆上最右边的点;当θ等于π/2时,点坐标为(0, 1),即圆上最上边的点;当θ等于π时,点坐标为(-1, 0),即圆上最左边的点;当θ等于3π/2时,点坐标为(0, -1),即圆上最下边的点。
圆的参数方程的应用圆的参数方程在几何学和物理学中有广泛的应用。
下面列举了一些常见的应用场景:1. 编程中的绘图:通过参数方程,可以在计算机屏幕上绘制出一个圆。
2. 物理运动的描述:例如,一个物体以圆形轨道运动,可以通过参数方程描述物体在不同时间的位置。
3. 数学建模:通过参数方程,可以将圆形曲线用于解决一些数学问题,如曲线的长度计算、曲线与其他曲线的交点等。
椭圆的参数方程推导椭圆是一个具有两个焦点的闭合曲线,可以通过一个参数方程来表示。
假设椭圆的两个焦点为F1和F2,焦点之间的距离为2a,离心率为e,则椭圆上任意一点的坐标可以表示为(x, y)。
根据焦点定义,有: 1.其中P为椭圆上的任意一点。
为求解参数方程,我们引入一个参数θ(取值范围为0到2π),并使用三角函数来表示x和y。
具体推导过程如下: 1. x = a * cosθ 2. y = b * sinθ其中b为椭圆的短半轴长度,根据离心率计算公式e = √(1 - (b2/a2))可求得短半轴b的值。
圆上一动点到两定点距离之差的最大值
![圆上一动点到两定点距离之差的最大值](https://img.taocdn.com/s3/m/f781e53626d3240c844769eae009581b6ad9bd19.png)
圆上一动点到两定点距离之差的最大值下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!引言圆是几何学中的重要概念,它在数学、物理学、工程学等领域都有重要的应用。
圆的参数方程的应用---求最值问题
![圆的参数方程的应用---求最值问题](https://img.taocdn.com/s3/m/bad601c36c175f0e7dd13728.png)
教材 人教版高中(理科选修 4-4 ) 教学目标 1、知识与技能目标1)复习圆的参数方程,能根据参数方程确定圆的圆心和半径,在解题中灵活运用.熟练地将圆的参数方程与普通方程进行互化。
2)通过对圆的参数方程的研究,了解某些参数的几何意义。
3)能利用圆的参数方程来求解最值问题。
2、德育渗透目标1)培养学生了解由简单到复杂,由特殊到一般的转化与化归思想。
2)培养学生在问题解决的过程中,形成数学抽象思维能力,渗透参数思想,树立数形结合思想。
3)培养学生“学数学、用数学”的意识, “大众数学观”的渗透。
3、情感态度与价值观培养学生勇于探索的精神与合作意识。
教学重点应用圆的参数方程去求最值问题。
教学难点用圆的参数方程求最值问题时转化与化归思想、数形结合思想的应用。
教学方法与手段教学方法与原则:探究与讲练结合法;在课堂教学中,以老师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。
教学程序圆的参数方程的应用 求最值问题以问题为载体, 以学生活动为主线1、 2、 学习方法: 自主探究,观察发现,合作交流,归纳总结。
3、 教学手段: 多媒体课件。
教师活动学生活动设计意图1、圆心在原点,半径为r的圆标准方程及其参数方程。
2、圆心在C(a,b),半径为r的圆的标准方程及其参数方程。
3、圆的参数方程与普通方程的互化。
1、涉及曲线中的最值问题。
圆的标准方程:X2+ y2 = r2.参数方程是I X二rcosI y =rsin(0为参数)圆的标准方程:(X-a)2+(y-b)2参数方程是0为参数)关键是利用r cos 6r sin 9COS2£ =1复习上节课的知识点,能熟练地把圆的参数方程与普通方程进行转化,为圆的参数方程的应用研究作必要的准备。
意义。
例2 :求函数的最大值和最小值。
变式题:求函数的最大值和最小 值。
上sin 0 -1f(0 )= cos 0 - 2 g( 0 ) = 2sin 日 -2cos 日-2 2、涉及函数的最值问题(或值 域)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的参数方程的应用---求最值问题
教材人教版高中二年级(理科必修)第七章第六节
教学目标
1、知识与技能目标
(1)复习圆的参数方程,能根据参数方程确定圆的圆心和半径,在解题中灵活运用.熟练地将圆的参数方程与普通方程进行互化。
(2)通过对圆的参数方程的研究,了解某些参数的几何意义。
(3)能利用圆的参数方程来求解最值问题。
2、德育渗透目标
(1)培养学生了解由简单到复杂,由特殊到一般的转化与化归思想。
(2)培养学生在问题解决的过程中,形成数学抽象思维能力,渗透参数思想,树立数形结合思想。
(3)培养学生“学数学、用数学”的意识,“大众数学观”的渗透。
3、情感态度与价值观
培养学生勇于探索的精神与合作意识。
教学重点
应用圆的参数方程去求最值问题。
教学难点
用圆的参数方程求最值问题时转化与化归思想、数形结合思想的应用。
教学方法与手段
1、教学方法与原则:探究与讲练结合法;在课堂教学中,以老师为主导,学生
为主体,思维训练为主线,能力培养为主攻的原则。
2、学习方法:自主探究,观察发现,合作交流,归纳总结。
3、教学手段:多媒体课件。
教学程序
以问题为载体,以学生活动为主线
板书设计
圆的参数方程的应用—求最值问题
1、复习回顾
2、例题讲解及练习
3、课堂小结
4、布置作业。