花器官发育的“ABC”模型PPT

合集下载

花发育

花发育
第十一章植物的成花生理
增添了成花诱导的多因子途径、性别分化与基因表达的 相关知识、花器官发育的ABCDE模型。
第一节 第二节 第三节 第四节 春化作用 植物成花的光周期诱导 花器官发育和性别表现 成花诱导的多因子途径 茎尖分生组织进行花形态建成的示意图
拟南芥花器官发育的ABC模型
拟南芥花器官发育的ABCDE模型
13
1ห้องสมุดไป่ตู้ 15 16 17
花朵开放花瓣可见花药发生
长花药超过柱头 柱头超过长花药 花瓣花萼凋谢 所有器官从绿荚果上凋谢
8
9 10
长雄蕊出现房室
花瓣原基基部长出柄 花瓣与短雄蕊齐平
18
19 20
荚果变黄
瓣膜与干荚果分离 种子脱落
(A)新芽的分生组织和幼小花器官的俯视图。 在电子显微照片上,第1,第2,第 3阶段的花的器官已标上了数字符号。 在分生组织一侧,花开始形成突起标 志着第1阶段开始发生。 当花原基从分生组织中脱离出来,并开始向上生长, 标志着第2阶段开始进行。 第3阶段萼片组织发生。 近轴花瓣(AD),远轴花 瓣 (AB),横向(L),萼片组织在处于第三阶段的花上已经可以清楚地看到。 (B)花顶点的俯视图,上有第4,5阶段的标记。 在第4阶段,萼片的器官生长并 覆盖在分生组织上。 第5阶段花瓣和雄蕊开始出现。 长雄蕊(LS)和花瓣开 始出现。 (C)第5阶段的详细图(放大图)。两花萼片已经非常明显。 (D)第6阶段花的俯视图。 移开萼片可以看到雌蕊群(G)的发育情况,它的开 始伴随着花粉管两端开口的形成。 (E)第7阶段俯视图。 在中间平面上,雄蕊细丝的出现是这个阶段开始的标志。 长的雄蕊器官(P)已收缩,花瓣器官(P)呈圆形。
图11-18 拟南芥成花诱 导的多因子途径 至少有:光周期途径,自主(叶片 数量)和春化(低温)途径,碳水 化合物或蔗糖途径以及赤霉素途径。 光周期途径位于叶片中且包括可移 动成花刺激(FT蛋白)的产生。在 长日植物如拟南芥中,长日条件下 CO蛋白积累,导致韧皮部中合成FT mRNA。FT mRNA被翻译成FT蛋白后 经筛管转运到茎尖分生组织中。在 短日植物如水稻中,抑制物蛋白 Hd1在短日条件下不能积累,可移 动成花刺激物Hd3a蛋白合成。在拟 南芥中分生组织中,FT蛋白和另一 种蛋白FD相互作用。形成的FT/FD 复合物激活AP1和SOC1基因,进而 引发LFY基因表达。LFY和AP1然后 引发花同源异型基因的表达。自主 和春化途径通过在茎尖分生组织中 负调控FLC(SOC1的负抑制剂)起 作用。同样发生在分生组织中的蔗 糖和赤霉素途径促进的SOC1表达。

花器官发育的“ABC”模型PPT课件

花器官发育的“ABC”模型PPT课件

花器官中表达,B基因在第二、三轮花器官中表达。C基因被限制
.
在三、四轮花器官中表达。A基因本身足以决
定萼片(sepal),A和B基因共同决定
花瓣(petal),B与C基因共同决定
花蕊(stamen),C基因决定
心皮(carpel)。此外,A基因与
C基因相互颉抗。
ABC基因作为MADS—BOX家族成员
类基因。
6
.
花器官发育的“ABC”模型
在E类基因表达的前提下再表达B类和C类基因就足以 将叶片完全转化为花瓣。
7
类和C类基因,AGL2、AGL4在4轮花器官中均有表达,而AGL9
只在里面三轮花器官中表达。
Agl2/agl4/agl9的三重突变
体表型类似于B/C类突变体且有非常多的花萼,充分表明了
AGL2、AGL4、AGL9这类基因在花器官发育过程中的重要性。
现已将这三个基因重新命名为SEP1、SEP2、SEP3,将它们成为E
花器官发育的同源异型基因进行遗传和分子分析的 基础上先后提出的,此模型描绘了花器官不同部位发
2
生受不同基因决定的现象。
花器官发育的“ABC”模型
根据这个模型,正常花的4轮结构的形成是由3组基因共同
完成的。每一轮花器官
特征的决定分别依赖于A、B、C三
组基因中的一组,或两组基因的正常表达。A基因在第一、二轮
.
花器官发育的“ABC”模型 1 主讲人:贺小换
.
花器官发育的“ABC”模型
有关花发育中调控各类花器官形成的器官特征
基因的克隆及功能分析,是近年植物发育分子生物
学研究的重大突破之一,并且形成了较为成熟的实 验模型ABC模型指导有关的工作。ABC模型是 E.Myerowitz及Coen提出的。

被子植物花器官发育的分子模型

被子植物花器官发育的分子模型
被子植物花器官发育 的分子模型
------尹雪
段泽宇 李佳丽 梁铭 生物科学2012-02
简介
花是被子植物进化途径中最为变化多端的结构。
深入开展花部性状发育及其多样性的分子调控机 制的研究, 对于揭示被子植物花部式样的演化、 进而探讨被子植物的系统发育具有重要意义 。 所 以,近年来有关被子植物花器官发育的分子模型
导致花瓣状器官的分化, 使外轮器官与内层花瓣在形态上
具有一致性(如单子叶植物百合、郁金香; 轮花器官的分子模型又称为修饰的ABC 植物类群。 基部核心双子 模型(modified 叶植物毛茛、耧斗菜等), 这种B 功能基因功能延伸到外 ABC model) , 但此种分子模型并不适用于所有的单子叶
6.BC模型
何通过相互作用来调控花器官的发育,Theissen
等结合MADS蛋白多聚体的研究,提出了“四因子”模 型(quartet model),认为花器官是由4 种同源异型蛋白复合体通过结合在目标基因启动子区域来 调节基因开闭,进而调控花器官的发育。
4.边缘衰退模型
边缘衰减模型认为花器官的渐变现象是由于花组织形成时期花器官特 征属性基因的表达水平的梯度导致的, 花器官特征属性基因在边界处 表现为弱表达, 但会发生活性区域的重叠, 这种重叠表达模式导致所 形成的器官在形态上具有相邻两类花器官的特征, 这种形态上的渐进 与核心真子叶植物径向分明的花器官是不同的 , 睡莲B 功能基因的表 达模式是支持这一模型的有力证据。基部被子植物的器官决定是由表 达范围较广的相互重叠的花器官决定基因共同调控的 , 在活性重叠的
裸子植物中未发现A 和E 功能基因的存在, 但B 和C 功能 基因的表达模式与被子植物类似(图)。裸子植物C功能基 因在两性生殖器官内均有表达, B功能基因主要在雄性生

花器官发育的“ABC”模型

花器官发育的“ABC”模型
花器官发育的“ABC”模型
主讲人:贺小换
花器官发育的“ABC”模型
有关花发育中调控各类花器官形成的器官特征 基因的克隆及功能分析,是近年植物发育分子生物 学研究的重大突破之一,并且形成了较为成熟的实 验模型ABC模型指导有关的工作。ABC模型是 E.Myerowitz及Coen提出的。
ABC模型是对对模式植物拟南芥和金鱼草中影响 花器官发育的同源异型基因进行遗传和分子分析的 基础上先后提出的,此模型描绘了花器官不同部位发 生受不同基因决定的现象。
花瓣(petal),B与C基因共同决定
花蕊(stamen),C基因决定
心皮(carpel)。此外,A基因与
C基因相互颉抗。
ABC基因作为MADS—BOX家族成员
(AP2除外)均是以转录调控因子起作用。
A功能的基因有AP1和AP2,B功能的有
AP3和PI,C功能的有AG。
花器官发育的“ABC”模型
“ABC”模型的提出是近几年植物发育生物学研 究中的一个重要突破,可以解释多个基因在器 官发育中的作用。在A/B/C三类基因同时突变的 四重突变体ap1,ap2,ap3/pi,ag中,四轮花器 官都变成了类似叶片的结构,验证了Goethhe提 出的花器官是变态叶的假说。
花器官发育的“ABC”模型
2004年,通过对拟南芥的sepallata1,2,3三重突变体的描述,
研究者提出了ABCE模型。这一模型确定了E类基因对花部器官
发育的重要性,协助A/B/C三类基因将叶片转变成花瓣。
在研究MADS-BOX家族基因对花器官发育的影响时发现,被
称作AGAMOUS-LIKE(AGL)2、AGL4、AGL9基因的表达时间早于B
类基因。
花器官发育的“ABC”模型

园艺植物育种学:5 观赏植物主要性状的遗传

园艺植物育种学:5 观赏植物主要性状的遗传
苯丙氨酸 Phenylalanin
4-香豆酸盐 4-Coumarete
柚配质(黄酮 Naringenin
图1 花色素苷合成途径
3 花色遗传受一系列基因的作用和控制
花色素基因、花色素量的基因、花色素的分布基因、助色素基因和控制花瓣内部酸度的基因等;易变基因和基因的转座:常常造成花序或花朵上形成异质条纹、斑块(彩斑);不同花色杂交的显隐性(质量性状基因、基因互作)一般,带色花显性,白色花隐性;紫色花显性,红色花隐性;蓝色花显性,紫色花隐性。亦有例外。
毛华菊花朵直径大小的遗传变异
(三)增加花径的途径
改进栽培条件;倍性育种;增加花朵重瓣性;定向选择。
二、花重瓣性的遗传
1 重瓣花的形态起源
(一)概念:花朵重瓣性指观赏植物花瓣数量的多少。(二)重瓣花的遗传积累起源 雌雄蕊起源
花序起源重复起源(套筒起源)突变起源台阁起源
木槿
芙蓉
雌雄蕊起源
山茶雌雄蕊起源
观赏植物主要性状的遗传
花色彩斑花径与重瓣性
观赏植物主要性状

株型抗性
第一节花的发育
花是观赏植物的主要观赏器官,千奇百怪、万紫千红!植物学:植物的完全花是由花萼、花瓣、雄蕊、雌蕊等四轮构成的生殖器官。植物生理学:成年植物花的诱导需要一定的光、温周期,如二年生花卉大多需要经过低温的春化作用才能开花,多数菊花需要短日照处理才能开花。
仙客来
裂叶牵牛
百合
虞美人(罂粟科罂粟属)的美丽花边
花肋:沿中脉方向具放射性彩色条纹
紫脉吊钟
(二)不规则彩斑的遗传
花嵌合体、彩斑
叶部彩斑(“花叶”),变色叶
果实彩斑
2遗传机制
1常见类型
核内
核外

花器官发育的“ABC”模型

花器官发育的“ABC”模型

花器官发育的“ABC”模型
根据这个模型,正常花的4轮结构的形成是由3组基因共同
完成的。每一轮花器官
特征的决定分别依赖于A、B、C三
组基因中的一组,或两组基因的正常表达。A基因在第一、二轮
花器官中表达,B基因在第二、三轮花器官中表达。C基因被限制
.
在三、四轮花器官中表达。A基因本身足以决
定萼片(sepal),A和B基因共同决定
花器官发育的“ABC”模型
.
2004年,通过对拟南芥的sepallata1,2,3三重突变体的描述,
研究者提出了ABCE模型。这一模型确定了E类基因对花部器官
发育的重要性,协助A/B/C三类基因将叶片转变成花瓣。
在研究MADS-BOX家族基因对花器官发育的影响时发现,被
称作AGAMOUS-LIKE(AGL)2、AGL4、AGL9基因的表达时间早于B
花瓣(petal),B与C基因共同决定
花蕊(stamen),C基因决定
心皮(carpel)。此外,A基因与
C基因相互颉抗。
ABC基因作为MADS—BOX家族成员
(AP2除外)均是以转录调控因子起作用。
A功能的基因有AP1和AP2,B功能的有
AP3和PI,C功能的有AG。
花器官发育的“ABC”模型
“ABC”模型的提出是近几年植物发育生物学研 究中的一个重要突破,可以解释多个基因在器 官发育中的作用。在A/B/C三类基因同时突变的 四重突变体ap1,ap2,ap3/pi,ag中,四轮花器 官都变成了类似叶片的结构,验证了Goethhe提 出的花器官是变态叶的假说。
.
花器官发育的“ABC”模型
主讲人:贺小换
.
花器官发育的“ABC”模型

花器官发育的ABC模型

花器官发育的ABC模型
2 ABC 模型对单子叶植物花器官发育的调 控
单子叶植物花和花序的发育与双子叶植物差 别很大, 特别对于禾本科植物, 许多种类的花上带 有高度衍生的结构. 虽然它们的生殖器官( 心皮和 雄蕊) 是保守的, 但它们的不育花器官( 外稃、内稃 和浆片) 与双子叶植物花上的萼片 和花瓣明显不 同. ABC 模型 能控制这些高度衍生的花器官的发 育过程 吗? Bossinger 等认为, 浆片代表 内轮的花 被, 相当于双子叶植物的花瓣, 而通常外稃和内稃
云南 大学 学报 ( 自然 科学 版) Journal of Yunnan University
2001, 23 ( 植物学专辑) : 102~ 105
CN 53- 1045/ N ISSN 0258- 7971
花器官发育的 ABC 模型
张伟媚, 陈善娜
( 云南大学 生物系, 云南 昆明 650091)
基因
表 1 ABC 功能基因的主要功能及其突变体的表型性状 T ab. 1 Functions of ABC genes and pheno type of their mutants
主要功 能
突变体的表型
突变体的遗传变化
决定花分生组织
强烈突变体第 轮器官不发育或仅 形
强烈 突变导致器官原基不发
AP1
their g enes specify flower org ans
收稿日期: 2001- 05- 22 作者简介: 张伟媚( 1972- ) , 女, 广东人, 硕士生, 主要从事植物生理与分子生物学的研究.
植物学专辑
张伟媚等: 花器官发育的 ABC 模型
1 03
1 ABC 模型对双子叶植物花器官发育的调 控

PI

植物学--生殖器官——花 ppt课件全

植物学--生殖器官——花  ppt课件全

ppt课件
27
花萼(calyx)类型
油菜花的离萼
ppt课件
28
花萼(calyx)类型
合萼的萼筒和萼裂片
ppt课件
29
花萼 副萼
一般花萼为一轮,若具两轮,外轮的
花萼叫副萼。
ppt课件
30
花萼(calyx)类型
棉 花 的 副 萼
ppt课件
31
Aconitum sanyoense
萼片大而鲜艳呈花瓣状——瓣状萼。
十字形、蝶形、唇形、管状、舌状、 漏斗状、高脚碟状、钟状、辐(轮)状
ppt课件
44
花冠
ppt课件
45
花冠的类型
ppt课件
46
十字形花冠
ppt课件
47
扁豆(蝶形花冠)
ppt课件
48
丹 参 ( 唇 形 花 )
ppt课件
49
管状花
ppt课件
50
黄鹌菜(舌状花)
ppt课件
51
曼陀罗(漏斗状花冠)
花托类型及子房位置
上位子房下位花
上位子房周位花 半下位子房周位花
上位子房下位花 下位pp子t课房件 上位花
壶状
杯状 壶状
23
花托类型
圆锥形花托
ppt课件
壶状花托
24
环状花托
花盘状花托
ppt课件
25








桃 花 花 托
ppt课件
26
(二)花萼
概念:花的最外轮变态叶,由若干萼片(sepal)组 成,常呈绿色,不同植物的花萼形态大小、颜色不 同,构成花萼的萼片数目及其相互关系亦不同,是 植物种分类的依据之一,其结构与叶相似。

花器官的ABC模型共22页

花器官的ABC模型共22页
花器官的ABC模型
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
Байду номын сангаас
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭

《植物的成花与生殖》PPT课件

《植物的成花与生殖》PPT课件

精选课件ppt
41
二、植物感受光周期的时期和部位
光周期诱导:植物只要得到足够天数的适合光周期, 以后再放置于不适合的光周期条件下仍可开花的 现象。
精选课件ppt
42
二、植物感受光周期的时期和部位
精选课件ppt
43
二、植物感受光周期的时期和部位
◆ 不同植物开始对光周期表现敏感的年龄不同。大豆 在子叶伸展期、水稻在七叶期前后。
氧:植物在缺氧时不能完成春化。 水分:干燥种子不能通过春化,而吸涨的小麦种子
可以感受低温而通过春化。 糖分:春化时还需要有充足的糖分。 光照:一般在春化前有充足的光照可以促进二年生
和多年生植物通过春化。
精选课件ppt
29
二、植物感受低温的时期和部位
1.植物感受低温的部位
植物在春化作用中感受低温的部位是分生 组织和能进行细胞分裂的组织。 ◆ 绿体春化:茎尖生长点。 ◆ 种子春化:胚
◆ 叶片对光周期的敏感性与叶片发育程度有关。一般 是叶达到完全大小后最敏感,幼小或衰老叶较不敏 感。
◆ 叶接受光周期的能力与它们在茎上的位置有关,节 位高的叶感受能力强。
精选课件ppt
44
三、影响植物光周期诱导的因素
1.暗期在光周期诱导中的作用
长 日 植 物 在 短 日 开 花
精选课件ppt
45
四、光周期诱导的机理
近年来,提出ABCDE模型
精选课件ppt
15
花器官形成的ABC模型: 此模型假设有A、B、
C三组基因,控制着四轮 不同的花器官(第一轮萼 片,第二轮为花瓣,第三 轮为雄蕊,第四轮为心 皮)。
精选课件ppt
16
基于对拟南芥和金鱼草突
变体的研究,提出:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
花器官发育的“ABC”模型
2004年,通过对拟南芥的sepallata1,2,3三重突变体的描述,
研究者提出了ABCE模型。这一模型确定了E类基因对花部器官
发育的重要性,协助A/B/C三类基因将叶片转变成花瓣。
在研究MADS-BOX家族基因对花器官发育的影响时发现,被
称作AGAMOUS-LIKE(AGL)2、AGL4、AGL9基因的表达时间早于B
3
花器官发育的“ABC”模型
“ABC”模型的提出是近几年植物发育生物学研 究中的一个重要突破,可以解释多个基因在器 官发育中的作用。在A/B/C三类基因同时突变的 四重突变体ap1,ap2,ap3/pi,ag中,四轮花器 官都变成了类似叶片的结构,验证了Goethhe提 出的花器官是变态叶的假说。
4
花器官发育的“ABC”模型
对ABC模型的质疑 1、在ABC模型中不同类型器官的划分是很严格的,但在许多开 花突变体中,不同类型器官之间常常出现嵌合体。 2、ag突变体在理论上应使第三、四轮组织发育成为相同数目的 花瓣和花萼,事实上往往出现增殖现象,暗示AG可能不是一个 单独的基因而是多个同源基因,并且也在其他生命过程中起作 用。 3、AP2不具备器官的特异性,所有花器官中都存在该基因表达 的产物。 4、SUPERMAN基因能抑制AP3基因的表达,从而抑制花器官的形 成。 5、ABC模型将一个复杂的问题简单、抽象化,虽然利于人们理 解花器官的发育过程,却忽略了不同花器官发生在时间上的先 后顺序。
类和C类基因,AGL2、AGL4在4轮花器官中均有表达,而AGL9
只在里面三轮花器官中表达。
Agl2/agl4/agl9的三重突变
体表型类似于B/C类突变体且有非常多的花萼,充分表明了
AGL2、AGL4、AGL9这类基因在花器官发育过程中的重要性。
现已将这三个基因重新命名为SEP1、SEP2、SEP3,将它们成为E
定萼片(sepal),A和B基因共同决定
花瓣(petal),B与C基因共同决定
花蕊(stamen),C基因决定
心皮(carpel)。此外,A基因与
C基因相互颉抗。
ABC基因作为MADS—BOX家族成员
(AP2除外)均是以转录调控因子起作用。
A功能的基因有AP1和AP2,B功能的有
AP3和PI,C功能的有AG。
2
受不同基因决定的现象。
花器官发育的“ABC”模型
根据这个模型,正常花的4轮结构的形成是由3组基因共同
完成的。每一轮花器官
特征的决定分别依赖于A、B、C三
组基因中的一组,或两组基因的正常表达。A基因在第一、二轮
花器官中表达,B基因在第二、三轮花器官中表达。C基因被限制
在三、四轮花器官中表达。A基因本身足以决类基因。6源自花器官发育的“ABC”模型
在E类基因表达的前提下再表达B类和C类基因就足以 将叶片完全转化为花瓣。
7
花器官发育的“ABC”模型 1 主讲人:贺小换
花器官发育的“ABC”模型
有关花发育中调控各类花器官形成的器官特征基 因的克隆及功能分析,是近年植物发育分子生物学研 究的重大突破之一,并且形成了较为成熟的实验模型 ABC模型指导有关的工作。ABC模型是E.Myerowitz及 Coen提出的。
ABC模型是对对模式植物拟南芥和金鱼草中影响 花器官发育的同源异型基因进行遗传和分子分析的基 础上先后提出的,此模型描绘了花器官不同部位发生
相关文档
最新文档