历年高考数学真题精选25 等比数列
全国卷数列高考题汇总附答案
数列专题高考真题(2014·I) 17. (本小题满分12分) 已知数列{}的前项和为,=1,,,其中为常数.(Ⅰ)证明:;(Ⅱ)是否存在,使得{}为等差数列并说明理由.(2014·II) 17.(本小题满分12分) 已知数列满足=1,.(Ⅰ)证明是等比数列,并求的通项公式;(Ⅱ)证明: .(2015·I)(17)(本小题满分12分)为数列的前项和.已知,(Ⅰ)求的通项公式:(Ⅱ)设 ,求数列的前项和。
(2015·I I)(4)等比数列满足,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84(2015·I I)(16)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. (2016·I)(3)已知等差数列前9项的和为27,,则(A )100 (B )99 (C )98 (D )97(2016·I)(15)设等比数列满足的最大值为__________。
(2016·II)(17)(本题满分12分)S n 为等差数列的前项和,且=1 ,=28 记,其中表示不超过的最大整数,如.(I )求,,;(II )求数列的前1 000项和.(2016·III)(12)定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有 (A )18个(B )16个(C )14个(D )12个(2016·III)(17)(本小题满分12分)已知数列的前项和,其中(I )证明是等比数列,并求其通项公式;(II )若 ,求.(2017·I)4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8(2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。
【精品】云南省数列理科高考题目及答案
2001年—2010年云南省10年高考数列试题汇总2010年高考数学大纲(理)数列部分:等差数列及其通项公式.等差数列前n 项和公式.等比数列及其通项公式.等比数列前n 项和公式.考试要求:(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念.掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题.2010年(4)如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++==(A )14(B)21(C)28(D )35(18)(本小题满分12分)已知数列{}n a 的前n 项和2()3n n S n n =+.(Ⅰ)求limnn na S →∞;(Ⅱ)证明:12222312n n a a a n+++…>. 2009年14.设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S =。
19(本小题满分12分)设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+(I)设12n n n b a a +=-,证明数列{}n b 是等比数列(II )求数列{}n a 的通项公式.2008年20.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.2007年16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2lim nn S n ∞=→.21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =,证明1n n b b +<,其中n 为正整数.2006年(11)设n S 是等差数列{}n a 的前n 项和,若361,3S S =则612SS =() (A)310 (B )13 (C)18 (D )19(22)(本小题满分12分) 设数列{}n a 的前n 项和为n S ,且方程20n n x a x a --=有一根为1,1,2,3,...n S n -= (I )求12,;a a(II)求{}n a 的通项公式2005年11。
等比数列精选高考题
高二数学《等比数列》专题练习题 注意事项:1.考察内容:等比数列 2.题目难度:中等题型3.题型方面:10道选择,4道填空,4道解答。
4.参考答案:有详细答案5.资源类型:试题/课后练习/单元测试 一、选择题1.等比数列{}n a 的各项均为正数,且5647a a a a +=18,则3132310log log log a a a +++L =A .12B .10C .8D .2+3log 52.在等比数列{}n a 中,5,6144117=+=⋅a a a a ,则=1020a a ( )A.32 B.23 C. 32或23 D. -32或-233.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( )A .16B .24C .48D .1284.实数12345,,,,a a a a a 依次成等比数列,其中a 1=2,a 5=8,则a 3的值为( ) A. -4 B.4 C . ±4 D. 55.设等比数列{ n a }的前n 项和为n S ,若 63S S =3 ,则 69S S =A . 2 B.73C. 83D.36.等比数列{}n a 的前n 项和为n S ,若242S S =,则公比为( ) A.1 B.1或-1 C.21或21- D.2或-27.已知等比数列{a n }的公比为2,前4项的和是1,则前8项的和为 A .15 B .17 C .19 D .218.已知等比数列{}na 的首项为8,nS 是其前n 项的和,某同学经计算得S 2=20,S 3=36,S 4=65,后来该同学发现了其中一个数算错了,则该数为 ( ) A 、 S 1 B 、S 2 C 、 S 3 D 、 S 49.已知数列{}n a 的前n 项和n n S aq =(0a ≠,1q ≠,q 为非零常数),则数列{}n a 为( )A.等差数列B.等比数列C.既不是等比数列也不是等差数列D.既是等差数列又是等比数列10.某人为了观看2008年奥运会,从2001年起每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并且每年到期的存款及利息均自动转为新一年定期,到2008年将所有的存款和利息全部取回,则可取回的钱的总数(元)为( ).A a(1+p)7B a(1+p)8C )]1()1[(7p p pa +-+ D )1()1[(8p p pa +-+]二、填空题11.若各项均为正数的等比数列{}n a 满足23123a a a =-,则公比q = . 12.已知1, a 1, a 2, 4成等差数列,1, b 1, b 2, b 3, 4成等比数列,则=+221b a a ______.13.等比数列{n a }的公比0q >, 已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S = _____14.等比数列{}n a 的前n 项和n S =22-+⋅a a n ,则n a =_______. 三、解答题15.设二次方程2110()n n a x a x n N *+-+=∈有两个实根α和β,且满足6263ααββ-+=. (1)试用n a 表示1n a +; (2)求证:2{}3na -是等比数列; (3)当176a=时,求数列{}n a 的通项公式.16.已知数列{}n a 满足:111,1,22,n n n a n n a a a n n +⎧+⎪==⎨⎪-⎩为奇数为偶数,且*22,n n b a n N =-∈(Ⅰ)求234,,a a a ;(Ⅱ)求证数列{}n b 为等比数列并求其通项公式; (Ⅲ)求和2462n nT a a a a =+++L17.在等比数列{}n a 中,,11>a 公比0>q ,设n n a b 2log =,且.0,6531531==++b b b b b b(1)求证:数列{}n b 是等差数列;(2)求数列{}n b 的前n 项和n S 及数列{}n a 的通项公式; (3)试比较n a 与n S 的大小.18.等比数列{}n a 的前n 项和为n S ,已知231,,S S S 成等差数列. (1)求{}n a 的公比q ; (2)若331=-a a ,求n S .答案一、选择题 1.B 2.C 3.A 4.B 5.B 6.B 7.A 8.D 9.C 10.D二、填空题11.3212.25;解析:∵1, a 1, a 2, 4成等差数列,∴12145a a +=+=;∵1, b 1, b 2, b 3, 4成等比数列,∴22144b =⨯=,又2210b q =⨯>,∴22b =;∴=+221b a a 25;13.15214.12-n三、解答题15.(1)解析:11,n nna a a αβαβ++==,而6263ααββ-+=,得1623n n na a a +-=, 即1623n n a a +-=,得11123n n aa +=+; (2)证明:由(1)11123n n a a +=+,得1212()323n n a a +-=-,所以2{}3na -是等比数列;(3)解析:当176a =时,2{}3na -是以721632-=为首项,以12为公比的等比数列,1211()322n n a --=⨯,得21()()32n na n N *=+∈.16.解析:(Ⅰ)2335,,22aa ==-474a = (Ⅱ)当2(21)12112,22(21)22n n n n n ba a a n -+-≥=-=-=+--时 222(1)1111[2(22)](21)2[2]222n n n a n n a b ---=--+--=-= ∴12122b a =-=-又 ∴1111()()222n n nb -=-⋅=-(Ⅲ)∵22n n a b =+ ∴242n n T a a a =++L=12(2)n b b b n ++++L 11[1()]1222()2 1.1212n n n n -=-+=+-- 17.解析:(1)由已知q a a b b nn n n log log 121==-++为常数.故数列{}n b 为等差数列,且公差为.log 2q d = (先求q 也可) 4分 (2)因0log ,11211>=⇒>a b a ,又263531=⇒=++b b b b ,所以.05=b由.291,404,22211513⎩⎨⎧-=⇒-==⇒=+==+=n n S d b d b b d b b n 由*511212,221,164log 1log N n a q a a b q d n n ∈=⇒==⇒⎩⎨⎧==-==-. 8分(3)因,0>na 当9≥n 时,0≤n S ,所以9≥n 时,n n S a >;又可验证2,1=n 是时,n nS a >;8,7,6,5,4,3=n 时,n n S a <. 12分18.解析:(1)由题意有)(2)(2111111q a q a a q a a a ++=++ ,又0,01≠≠q a ,故.21-=q(2)由已知得.43)21(1211=⇒=--a a a从而].)21(1[38)21(1])21(1[4n n n S --=----=高二数学必修5《等比数列》练习卷知识点:1、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.2、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.3、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.4、通项公式的变形:1n m n m a a q -=;2()11n n a a q --=;311n n a q a -=;4n m n ma q a -=.5、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =⋅. 同步练习:1、在等比数列{}n a 中,如果66a =,99a =,那么3a 为( )A .4B .32C .169D .22、若公比为23的等比数列的首项为98,末项为13,则这个数列的项数是( )A .3B .4C .5D .63、若a 、b 、c 成等比数列,则函数2y ax bx c =++的图象与x 轴交点的个数为( ) A .0 B .1 C .2 D .不确定4、已知一个等比数列的各项为正数,且从第三项起的任意一项均等于前两项之和,则此等比数列的公比为( ) AB.(112±C.(112+D.(1125、设1a ,2a ,3a ,4a 成等比数列,其公比为2,则123422a a a a ++的值为( ) A .14B .12C .18D .16、如果1-,a ,b ,c ,9-成等比数列,那么( )A .3b =,9ac =B .3b =-,9ac =C .3b =,9ac =-D .3b =-,9ac =-7、在等比数列{}n a 中,11a =,103a =,则23456789a a a a a a a a 等于( ) A .81B.CD .2438、在等比数列{}n a 中,()9100a a a a +=≠,1920a a b +=,则99100a a +等于( ) A .98b a B .9b a ⎛⎫ ⎪⎝⎭C .109b aD .10b a ⎛⎫⎪⎝⎭9、在等比数列{}n a 中,3a 和5a 是二次方程250x kx ++=的两个根,则246a a a 的值为( ) A .25B.C.-D.±10,则它的第四项是( ) A .1 BCD.11、随着市场的变化与生产成本的降低,每隔5年计算机的价格降低13,2000年价格为8100元的计算机到2015年时的价格应为( ) A .900元B .2200元C .2400元D .3600元12、若数列{}n a 为等比数列,则下列数列中一定是等比数列的个数为( )1{}2n a ;21n a ⎧⎫⎨⎬⎩⎭;3{}n a ;4{}2log n a ;5{}1n n a a +⋅;6{}1n n a a ++A .3B .4C .5D .613、在等比数列{}n a 中,若39a =-,71a =-,则5a 的值为( ) A .3 B .3- C .3或3-D .不存在14、等比数列{}n a 中,236a a +=,238a a =,则q =( ) A .2B .12C .2或12D .12-或2-15、在等比数列{}n a 中,首项10a <,若{}n a 是递增数列,则公比q 满足( ) A .1q > B .1q < C .01q << D .0q <16、若{}n a 是等比数列,其公比是q ,且5a -,4a ,6a 成等差数列,则q 等于( ) A .1或2 B .1或2- C .1-或2- D .1-或217、已知等差数列{}n a 的公差为3,若2a ,4a ,8a 成等比数列,则4a 等于( ) A .8 B .10 C .12 D .1418、生物学中指出:生态系统中,在输入一个营养级的能量中,大约有10%~20%的能量能够流动到下一个营养级(称为能量传递率),在123456H →H →H →H →H →H 这条生物链中,若使6H 获得10kJ 的能量,则需要1H 最多提供的能量是( )A .410kJB .510kJC .610kJD .710kJ19、已知等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a =( ) A .4- B .6- C .8-D .10-20、数列{}n a 满足()1123n n a a n -=-≥,143a =,则4a =_________.21、若{}n a 是等比数列,且0n a >,若243546225a a a a a a ++=,那么35a a +的值等于________.22、若{}n a 为等比数列,且4652a a a =-,则公比q =________.23、首项为3的等比数列的第n 项是48,第23n -项是192,则n =________. 24、在数列{}n a 中,若11a =,()1231n n a a n +=+≥,则该数列的通项n a =______________.25、已知等比数列{}n a 中,33a =,10384a =,则该数列的通项n a =_________________.26、已知数列{}n a 为等比数列. 1若54a =,76a =,求12a ;2若4224a a -=,236a a +=,125n a =,求n .27、已知数列{}n a 为等比数列,32a =,24203a a +=,求{}n a 的通项公式.28、若数列{}n a 满足关系12a =,132n n a a +=+,求数列的通项公式.29、有四个实数,前3个数成等比数列,它们的积为216,后3个数成等差数列,它们的和为12,求这四个数.高一数学同步测试(12)—等比数列一、选择题:1.{a n }是等比数列,下面四个命题中真命题的个数为 ( ) ①{a n 2}也是等比数列 ②{ca n }(c ≠0)也是等比数列 ③{na 1}也是等比数列 ④{ln a n }也是等比数列A .4B .3C .2D .12.等比数列{a n }中,已知a 9 =-2,则此数列前17项之积为 ( ) A .216 B .-216 C .217 D .-217 3.等比数列{a n }中,a 3=7,前3项之和S 3=21, 则公比q 的值为 ( ) A .1 B .-21 C .1或-1 D .-1或214.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( )A .4B .23 C .916 D .25.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为 ( )A .x 2-6x +25=0B .x 2+12x +25=0C .x 2+6x -25=0D .x 2-12x +25=06.某工厂去年总产a ,计划今后5年内每一年比上一年增长10%,这5年的最后一年该厂的总产值是 ( ) A .1.1 4 a B .1.1 5 a C .1.1 6 a D . (1+1.1 5)a7.等比数列{a n }中,a 9+a 10=a (a ≠0),a 19+a 20=b ,则a 99+a 100等于 ( )A .89abB .(ab )9C .910abD .(ab )108.已知各项为正的等比数列的前5项之和为3,前15项之和为39,则该数列的前10项之和为 ( ) A .32 B .313 C .12 D .159.某厂2001年12月份产值计划为当年1月份产值的n 倍,则该厂2001年度产值的月平均增长率为 ( ) A .11n B .11n C .112-n D .111-n10.已知等比数列{}n a 中,公比2q =,且30123302a a a a ⋅⋅⋅⋅=L ,那么36930a a a a ⋅⋅⋅⋅L 等于 ( ) A .102 B .202 C .162 D .15211.等比数列的前n 项和S n =k ·3n +1,则k 的值为 ( ) A .全体实数 B .-1 C .1 D .312.某地每年消耗木材约20万3m ,每3m 价240元,为了减少木材消耗,决定按%t 征收木材税,这样每年的木材消耗量减少t 25万3m ,为了既减少木材消耗又保证税金收入每年不少于90万元,则t 的范围是 ( )A .[1,3]B .[2,4]C .[3,5]D .[4,6] 二、填空题:13.在等比数列{a n }中,已知a 1=23,a 4=12,则q =_____ ____,a n =________.14.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q =___ ___.15.在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比为整数,求a 10= .16.数列{n a }中,31=a 且n a a n n (21=+是正整数),则数列的通项公式=n a . 三、解答题:17.已知数列满足a 1=1,a n +1=2a n +1(n ∈N*) (1) 求证数列{a n +1}是等比数列; (2) 求{a n }的通项公式.18.在等比数列{a n }中,已知对n ∈N*,a 1+a 2+…+a n =2n -1,求a 12+a 22+…+a n 2.19.在等比数列{a n }中,已知S n =48,S 2n =60,求S 3n .20.求和:S n=1+3x+5x2+7x3+…+(2n-1)x n-1(x≠0).21.在等比数列{a n}中,a1+a n=66,a2·a n-1=128,且前n项和S n=126,求n及公比q.22.某城市1990年底人口为50万,人均住房面积为16 m 2,如果该市每年人口平均增长率为1%,每年平均新增住房面积为30万 m 2,求2000年底该市人均住房的面积数.(已知1.015≈1.05,精确到0.01 m 2)参考答案一、选择题: BDCAD BACDB BC 二、填空题:13.2, 3·2n -2.14.251+.15.512 .16.123-n .三、解答题:17.(1)证明: 由a n +1=2a n +1得a n +1+1=2(a n +1) 又a n +1≠0 ∴111+++n n a a =2即{a n +1}为等比数列.(2)解析: 由(1)知a n +1=(a 1+1)q n -1即a n =(a 1+1)q n -1-1=2·2n -1-1=2n -118.解析: 由a 1+a 2+…+a n =2n -1 ①n ∈N*知a 1=1且a 1+a 2+…+a n -1=2n -1-1 ②由①-②得a n =2n -1,n ≥2又a 1=1,∴a n =2n -1,n ∈N*212221)2()2(-+=n n nn a a =4即{a n 2}为公比为4的等比数列∴a 12+a 22+…+a n 2=)14(3141)41(21-=--nn a 19.解析一: ∵S 2n ≠2S n ,∴q ②÷①得:1+q n =45即q n =41③③代入①得qa -11=64④∴S 3n =qa -11(1-q 3n )=64(1-341)=63解析二: ∵{a n }为等比数列 ∴(S 2n -S n )2=S n (S 3n -S 2n )∴S 3n =48)4860()(22222-=+-n n n n S S S S +60=6320.解析:当x =1时,S n =1+3+5+…+(2n -1)=n 2当x ≠1时,∵S n =1+3x +5x 2+7x 3+…+(2n -1)x n -1, ① 等式两边同乘以x 得:xS n =x +3x 2+5x 3+7x 4+…+(2n -1)x n . ②①-②得:(1-x )S n =1+2x (1+x +x 2+…+x n -2)-(2n -1)x n =1-(2n -1)x n +根据已知条件⎪⎪⎩⎪⎪⎨⎧-=-=--q q a q q a n n 160)1(481)1(211① ②1)1(21---x x x n , ∴S n =21)1()1()12()12(-+++--+x x x n x n n n . 21.解析:∵a 1a n =a 2a n -1=128,又a 1+a n =66,∴a 1、a n 是方程x 2-66x +128=0的两根,解方程得x 1=2,x 2=64, ∴a 1=2,a n =64或a 1=64,a n =2,显然q ≠1. 若a 1=2,a n =64,由qqa a n --11=126得2-64q =126-126q ,∴q =2,由a n =a 1q n -1得2n -1=32, ∴n =6. 若a 1=64,a n =2,同理可求得q =21,n =6.综上所述,n 的值为6,公比q =2或21.22.解析:依题意,每年年底的人口数组成一个等比数列{a n }:a 1=50,q =1+1%=1.01,n =11 则a 11=50×1.0110=50×(1.015)2≈55.125(万),又每年年底的住房面积数组成一个等差数列{b n }:b 1=16×50=800,d =30,n =11∴b 11=800+10×30=1100(万米2)因此2000年底人均住房面积为:1100÷55.125≈19.95(m 2)1.3.1等比数列一、选择题1.如果-1,a ,b ,c ,-9成等比数列,那么( )A .b =3,ac =9B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-92.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( )A .16B .27C .36D .813.在由正数组成的等比数列{a n }中,若a 4a 5a 6=3,log 3a 1+log 3a 2+log 3a 8+log 3a 9的值为( )A. B. C .2 D .34.一个数分别加上20,50,100后得到的三数成等比数列,其公比为( )A. B. C. D.5.若正项等比数列{a n}的公比q≠1,且a3,a5,a6成等差数列,则等于( )A. B. C. D.不确定二、填空题6.在等比数列{a n}中,a1=1,a5=16,则a3=________.7.首项为3的等比数列的第n项是48,第2n-3项是192,则n=________.8.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________.三、解答题9.等比数列的前三项和为168,a2-a5=42,求a5,a7的等比中项.1.答案 B解析∵b2=(-1)×(-9)=9且b与首项-1同号,∴b=-3,且a,c 必同号.2.答案 B解析由已知a1+a2=1,a3+a4=9,∴q2=9.∴q=3(q=-3舍),∴a4+a5=(a3+a4)q=27.3.答案 A解析∵a4a6=a,∴a4a5a6=a=3,得a5=3.∵a1a9=a2a8=a,∴log3a1+log3a2+log3a8+log3a9=log3(a1a2a8a9)=log3a=log33=.4.答案 A解析设这个数为x,则(50+x)2=(20+x)·(100+x),解得x=25,∴这三个数为45,75,125,公比q为=.5.答案 A解析a3+a6=2a5,∴a1q2+a1q5=2a1q4,∴q3-2q2+1=0,∴(q-1)(q2-q -1)=0 (q≠1),∴q2-q-1=0,∴q= (q=<0舍去),∴==.6.答案 4解析q4==16,∴q2=4,a3=a1q2=4.7.答案 5解析设公比为q,则⇒⇒q2=4,得q=±2.由(±2)n-1=16,得n=5.9.解由题意可列关系式:②÷①得:q (1-q )==,∴q =,∴a 1===96.又∵a 6=a 1q 5=96×=3,∴a 5,a 7的等比中项为3.10.设{a n }、{b n }是公比不相等的两个等比数列,C n =a n +b n , 证明数列{C n }不是等比数列.证明 设{a n }、{b n }的公比分别为p 、q ,p ≠0,q ≠0,p ≠q ,C n =a n +b n . 要证{C n }不是等比数列,只需证C ≠C 1·C 3.8.答案解析 设三边为a ,aq ,aq 2 (q >1),则(aq 2)2=(aq )2+a 2,∴q 2=. 较小锐角记为θ,则sin θ==.高二数学必修5《等比数列的前n 项和》练习卷知识点:1、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩.2、等比数列的前n 项和的性质:1若项数为()*2n n ∈N ,则Sq S =偶奇.2n n m n m S S q S +=+⋅.3n S ,2n n S S -,32n n S S -成等比数列.同步练习:1、数列1,a ,2a ,…,1n a -,…的前n 项和是( )A .11na a--B .111n a a+--C .211n a a+-- D .以上均不正确2、若数列的前n 项和为()10n n S a a =-≠,则这个数列是( )A .等比数列B .等差数列C .等比或等差数列D .非等差数列3、等比数列{}n a 的首项为1,公比为q ,前n 项和为S ,由原数列各项的倒数组成一个新数列1n a ⎧⎫⎨⎬⎩⎭,则1n a ⎧⎫⎨⎬⎩⎭的前n 项之和是( )A .1SB .1n q SC .1n Sq -D .nq S4、已知数列{}n a 的前n 项的和是n S ,若12n n n S S a +-=,则{}n a 是( )A .递增的等比数列B .递减的等比数列C .摆动的等比数列D .常数列5、某工厂去年产值为a ,计划5年内每年比上一年产值增长10%,从今年起五年内这个工厂的总产值是( ) A .41.1a B .51.1a C .()5101.11a - D .()2111.11a -6、等比数列前n 项和为54,前2n 项和为60,则前3n 项和为( ) A .54B .64C .2663D .26037、在等比数列中,301013S S =,1030140S S +=,则20S =( ) A .90B .70C .40D .308、等比数列{}n a 中,29a =,5243a =,则{}n a 的前4项和为( )A .81B .120C .168D .192 9、一个等比数列的前7项和为48,前14项和为60,则前21项和为( ) A .180B .108C .75D .6310、在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数是( ) A .4 B .5 C .6 D .711、数列1,12+,2122++,…,(2122+++…12n -+),…的前n 项和等于( ) A .12n n +- B .122n n +--C .2n n -D .2n12、首项为a 的数列{}n a 既是等差数列,又是等比数列,则这个数列前n 项和为( ) A .1n a -B .naC .n aD .()1n a -13、设等比数列{}n a 的前n 项和为n S ,前n 项的倒数之和为n T ,则n nS T 的值为( )A .1n a aB .1na a C .1n n n a aD .1nn a a ⎛⎫ ⎪⎝⎭14、某林厂年初有森林木材存量S 3m ,木材以每年25%的增长率生长,而每年末要砍伐固定的木材量x 3m ,为实现经过两年砍伐后的木材的存量增加50%,则x 的值是( ) A .32S B .34S C .36S D .38S 15、已知数列{}n a 的前n 项和为()20,0n n S b a a b =⨯+≠≠.若数列{}n a 是等比数列,则a 、b 应满足的条件为()A .0a b -=B .0a b -≠C .0a b +=D .0a b +≠16、在正项等差比数列{}n a 中,若27S =,691S =,则4S 的值为( ) A .28 B .32 C .35 D .4917、等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132log log a a ++…310log a +=( ) A .12B .10C .8D .32log 5+18、等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( ) A .C A+B = B .2C B =AC .2C A +B -=BD .()22C A +B =A B+19、一个等比数列{}n a 共有21n +项,奇数项之积为100,偶数项之积为120,则1n a +为( )A .65B .56C .20D .11020、已知等比数列{}n a 的公比为13q =,且135a a a +++…9960a +=,则1234a a a a ++++…100a +=( )A .100B .80C .60D .40 21、若等比数列{}n a 的前n 项之和3n n S a =+,则a =( )A .3B .1C .0D .1-22、数列12,14,18,…的前10项和等于____________________.23、在等比数列{}n a 中,1220a a +=,3440a a +=,则6S =________.24、在等比数列{}n a 中,设11a =-,前n项和为nS ,若1053132S S =,则n S =_____________.25、若数列{}n a 满足:11a =,12n na a +=,1n =,2,3…,则12a a ++…n a +=________.26、在等比数列{}n a 中,332a =,392S =,则1a =___________.27、等比数列{}n a 中,若166n a a +=,21128n a a -⋅=,126n S =,则q =________. 28、一个等比数列的首项为1,项数是偶数,其奇数项的和为85,偶数项的和为170,求此数列的公比和项数.29、等比数列{}n a 中前n 项和为n S ,42S =,86S =,求17181920a a a a +++的值. 30、等比数列{}n a 的前n 项和为n S ,若510S =,1050S =,求15S .31、等比数列{}n a 的前n 项和为n S ,已知41S =,817S =,求{}n a 的通项公式. 高二数学必修5《等比数列》练习卷 知识点:1、如果一个数列从第 项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.2、在 与 中间插入一个数 ,使 , , 成等比数列,则 称为 与 的等比中项.若 ,则称 为 与 的等比中项.3、若等比数列 的首项是 ,公比是 ,则 .4、通项公式的变形:① ;② ;③ ;④ .5、若 是等比数列,且 ( 、 、 、 ),则 ;若 是等比数列,且 ( 、 、 ),则 . 同步练习:1、在等比数列 中,如果 , ,那么 为( )A .B .C .D . 2、若公比为 的等比数列的首项为 ,末项为 ,则这个数列的项数是( ) A . B . C . D .3、若 、 、 成等比数列,则函数 的图象与 轴交点的个数为( ) A . B . C . D .不确定4、已知一个等比数列的各项为正数,且从第三项起的任意一项均等于前两项之和,则此等比数列的公比为()A.B.C.D.5、设,,,成等比数列,其公比为,则的值为()A.B.C.D.6、如果,,,,成等比数列,那么()A., B.,C.,D.,7、在等比数列中,,,则等于()A.B.C.D.8、在等比数列中,,,则等于()A.B.C.D.9、在等比数列中,和是二次方程的两个根,则的值为()A.B.C.D.10、设等比数列的前三项依次为,,,则它的第四项是()A.B.C.D.11、随着市场的变化与生产成本的降低,每隔年计算机的价格降低,年价格为元的计算机到年时的价格应为()A.元B.元C.元D.元12、若数列为等比数列,则下列数列中一定是等比数列的个数为()⑴;⑵;⑶;⑷;⑸;⑹A.B.C.D.13、在等比数列中,若,,则的值为()A.B.C.或D.不存在14、等比数列中,,,则()A.B.C.或D.或15、在等比数列中,首项,若是递增数列,则公比满足()A.B.C.D.16、若是等比数列,其公比是,且,,成等差数列,则等于()A.或B.或C.或D.或17、已知等差数列的公差为,若,,成等比数列,则等于()A.B.C.D.18、生物学中指出:生态系统中,在输入一个营养级的能量中,大约有%~%的能量能够流动到下一个营养级(称为能量传递率),在这条生物链中,若使获得的能量,则需要最多提供的能量是()A.B.C.D.19、已知等差数列的公差为,若,,成等比数列,则()A.B.C.D.20、数列满足,,则_________.21、若是等比数列,且,若,那么的值等于________.22、若为等比数列,且,则公比________.23、首项为的等比数列的第项是,第项是,则________.24、在数列中,若,,则该数列的通项______________.25、已知等比数列中,,,则该数列的通项_________________.26、已知数列为等比数列.⑴若,,求;⑵若,,,求.27、已知数列为等比数列,,,求的通项公式.28、若数列满足关系,,求数列的通项公式.29、有四个实数,前个数成等比数列,它们的积为,后个数成等差数列,它们的和为,求这四个数.高二数学必修5《等差数列》练习卷知识点:1、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.2、由三个数,,组成的等差数列可以看成最简单的等差数列,则称为与的等差中项.若,则称为与的等差中项.3、若等差数列的首项是,公差是,则.4、通项公式的变形:①;②;③;④;⑤.5、若是等差数列,且(、、、),则;若是等差数列,且(、、),则.同步练习:1、等差数列,,,,…的一个通项公式是()A.B.C.D.2、下列四个命题:①数列,,,是公差为的等差数列;②数列,,,是公差为的等差数列;③等差数列的通项公式一定能写成的形式(、为常数);④数列是等差数列.其中正确命题的序号是()A.①②B.①③C.②③④D.③④3、中,三内角、、成等差数列,则()A.B.C. D.4、已知,,则、的等差中项是()A.B.C.D.5、已知等差数列,,,…,的公差为,则,,,…,(为常数,且)是()A.公差为的等差数列 B.公差为的等差数列C.非等差数列D.以上都不对6、在数列中,,,则的值为()A.B.C.D.7、是等差数列,,,…的()A.第项B.第项C.第项D.第项8、在等差数列中,已知,,则等于()A.B.C.D.9、在等差数列,,,…中第一个负数项是()A.第项B.第项C.第项D.第项10、在等差数列中,已知,,则等于()A.B.C.D.11、在和()两个数之间插入个数,使它们与、组成等差数列,则该数列的公差为()A.B.C.D.12、设是公差为正数的等差数列,若,,则()A.B.C.D.13、与的等差中项是()A.B.C.D.14、若,两个等差数列,,,与,,,,的公差分别为,,则()A.B.C.D.15、一个首项为,公差为整数的等差数列,如果前项均为正数,第7项起为负数,则它的公差是()A.B.C.D.16、在等差数列中,若,则的值等于()A .B .C .D .17、等差数列 中, , ,则 的值为( )A .B .C .D .18、设数列 是递增等差数列,前三项的和为 ,前三项的积为 ,则它的首项是( )A .B .C .D .19、高山上的温度从山脚起,每升高 米降低 ℃,已知山顶的温度是 ℃,山脚的温度是 ℃,则山脚到山顶的高度为( )A . 米B . 米C . 米D . 米20、等差数列 的公差是 , … ,则 … _________.21、定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.若数列 是等和数列,且 ,公和为 ,那么 的值为________,这个数列的通项公式 ____________________.22、在 和 之间插入 个数,使它们与 、 组成等差数列,则该数列的公差为________.23、已知数列 的公差 , ,则 ________.24、等差数列 中, , ,且从第 项开始每项都大于 ,则此等差数列公差 的取值范围是___________.25、等差数列 , , ,…的第 项的值为________.26、一个等差数列 , ,则 ___________.27、在数列 中,若 , ,则 __________________.28、 , , , , 是等差数列中的连续五项,则 __________, _________, ___________.29、在等差数列 中,已知 , ,求 , , , .30、在等差数列 中,若 … , … ,求 … .31、已知 个数成等差数列,它们的和为 ,平方和为 ,求这 个数.高二数学必修5《不等关系与不等式》练习卷知识点:1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.2、不等式的性质: 1a b b a >⇔<;2,a b b c a c >>⇒>;3a b a c b c >⇒+>+; 4,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;5,a b c d a c b d >>⇒+>+;60,0a b c d ac bd >>>>⇒>;7()0,1n n a b a b n n >>⇒>∈N >;8)0,1a b n n >>>∈N >.同步练习:1、已知a b >,c d >,且c 、d 不为0,那么下列不等式成立的是( )A .ad bc >B .ac bc >C .a c b d ->-D .a c b d +>+2、下列命题中正确的是( )A .若a b >,则22ac bc >B .若a b >,c d >,则a c b d ->-C .若0ab >,a b >,则11a b <D .若a b >,c d <,则a b c d> 3、下列命题中正确命题的个数是( )1若x y z >>,则xy yz >;2a b >,c d >,0abcd ≠,则a b c d >; 3若110a b <<,则2ab b <;4若a b >,则11b b a a ->-.A .1B .2C .3D .44、如果0a <,0b >,则下列不等式中正确的是( )A .11a b < B .< C .22a b < D .a b >5、下列各式中,对任何实数x 都成立的一个式子是( ) A .()2lg 1lg 2x x +≥ B .212x x +> C .2111x ≤+ D .12x x +≥ 6、若a 、b 是任意实数,且a b >,则( )A .22a b >B .1b a <C .()lg 0a b ->D .1122a b ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭7、如果a R ∈,且20a a +<,那么a ,2a ,a -,2a -的大小关系是( )A .22a a a a >>->-B .22a a a a ->>->C .22a a a a ->>>-D .22a a a a >->>- 8、若231x x M =-+,22x x N =+,则( ) A .M >N B .M <N C .M ≤ND .M ≥N9、若2x ≠或1y ≠-,2242x y x y M =+-+,5N =-,则M 与N 的大小关系是( )A .M >NB .M <NC .M =ND .M ≥N10、不等式1222a a +>,2()2221a b a b +≥--,322a b ab +>恒成立的个数是( )A .0B .1C .2D .3 11、已知0a b +>,0b <,那么a ,b ,a -,b -的大小关系是( ) A .a b b a >>->-B .a b a b >->->C .a b b a >->>-D .a b a b >>->-12、给出下列命题:122a b ac bc >⇒>;222a b a b >⇒>;333a b a b >⇒>;422a b a b >⇒>.其中正确的命题是( ) A .12 B .23 C .34 D .1413、已知实数a 和b 均为非负数,下面表达正确的是( )A .0a >且0b >B .0a >或0b >C .0a ≥或0b ≥D .0a ≥且0b ≥14、已知a ,b ,c ,d 均为实数,且0ab >,c d a b-<-,则下列不等式中成立的是( )A .bc ad <B .bc ad >C .a b c d >D .a b c d < 15、若()231f x x x =-+,()221g x x x =+-,则()f x ,()g x 的大小关系是( ) A .()()f x g x <B .()()f x g x =C .()()f x g x >D .随x 值的变化而变化16、某一天24小时内两艘船均须在某一码头停靠一次,为了卸货的方便,两艘船到达该码头的时间至少要相差两小时,设甲、乙两船到达码头的时间分别x ,y 小时,且两船互不影响,则x ,y 应满足的关系是( )A .20y x x y -≥⎧⎪≥⎨⎪≥⎩ B .200x y x y -≥⎧⎪≥⎨⎪≥⎩ C .200y x x y ->⎧⎪≥⎨⎪≥⎩ D .2024024y x x y ⎧-≥⎪≤≤⎨⎪≤≤⎩17、某商场对顾客实行优惠活动,规定一次购物付款总额:1200元以内(包括200元)不予优惠;2超过200元不超过500元,按标价9折优惠;3超过500元其中500元按2优惠,超过部分按7折优惠,某人两次购物分别付款168元和423元,若他一次购物,应付款_______________元.18、某高校录取新生对语、数、英三科的高考分数的要求是:语文不低于70分;数学应高于80分;语、数、英三科的成绩之和不少于230分.若张三被录取到该校,设该生的语、数、英的成绩分别为x ,y ,z ,则x ,y ,z 应满足的条件是____________________________.19、用“>”“<”号填空:如果0a b c >>>,那么c a ________c b. 20、某品牌酸奶的质量规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是____________________.21、某中学对高一美术生划定录取控制分数线,专业成绩x 不低于95分,文化课总分y 不低于380分,体育成绩z 不低于45分,写成不等式组就是____________________.22、若0a b <<,且12a b +=,则12,a ,2ab ,22a b +中最大的是_______________.23、a 克糖水中有b 克糖(0a b >>),若再添进m 克糖(0m >),则糖水就变甜了,试根据事实提炼一个不等式______________________.24、已知a 、b R +∈,且a b ≠,比较55a b +与3223a b a b +的大小.25、比较下列各组中两个数或代数式的大小: 12 ()()4422a b a b ++与()233a b +. 26、已知0a b >>,0c d <<,0e <,求证:e e a c b d >--.新课标数学必修5第2章数列单元试题(2)说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分)1.已知两数的等差中项为10,等比中项为8,则以两数为根的一元二次方程是( )A .x 2+10x +8=0B .x 2-10x +64=0C .x 2+20x +64=0D .x 2-20x +64=0考查等差中项,等比中项概念及方程思想.【解析】设两数为a 、b ,则有a +b =20,ab =64.由韦达定理,∴a 、b 为x 2-20x +64=0的两根.【答案】D2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时,这种细菌由1个可繁殖成( )A .511个B .512个C .1023个D .1024个考查等比数列的简单运用.【解析】a 1=1,公比q =2.经过3小时分裂9次,∴末项为a 10,则a 10=a 1·29=512.【答案】B3.等比数列{a n },a n >0,q ≠1,且a 2、21a 3、a 1成等差数列,则5443a a a a ++等于( )A .215+B .215-C .251-D .215± 考查等比数列性质及方程思想.【解析】依题意:a 3=a 1+a 2,则有a 1q 2=a 1+a 1q ,∵a 1>0,∴q 2=1+q ⇒q =251±.又∵a n >0.∴q >0,∴q =215+,5443a a a a ++=q 1=215-. 【答案】B4.已知数列2、6、10、14、32……那么72是这个数列的第( )项( )A .23B .24C .19D .25考查数列方法的灵活运用.【解析】由题意,根号里面是首项为2、公差为4的等差数列,得a n =2+(n -1)4=4n -2,而72=98,令98=4n -2⇒n =25.【答案】D5.等差数列{a n }中,S 9=-36,S 13=-104,等比数列{b n }中,b 5=a 5,b 7=a 7,则b 6等于( )A .42B .-42C .±42D .无法确定考查等比、等差的综合运用.【解析】S 9=-36⇒a 5=-4,S 13=-104⇒a 7=-8⇒b 6=±75a a =±42.【答案】C6.数列{a n }前n 项和是S n ,如果S n =3+2a n (n ∈N *),则这个数列是( )A .等比数列B .等差数列C .除去第一项是等比D .除去最后一项为等差考查数列求和及通项.【解析】S n +1-S n =(3+2a n +1)-(3+2a n )⇒a n +1=2a n (n ≥1).【答案】A7.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,则a 3·a 6·a 9·…·a 30等于( )A .210B .220C .26D .215考查等比数列性质的运用及转化能力.【解析】由a 1·a 30=a 2a 29=…=a 15a 16已知转化为(a 1a 30)15=230⇒a 1a 30=22又a 3·a 6·…·a 30=(a 3a 30)5=(a 1q 2·a 30)5=(a 1a 30)5·210=220.【答案】B8.若S n 是{a n }前n 项和且S n =n 2,则{a n }是( )A .等比但不是等差B .等差但不是等比C .等差也是等比D .既非等差也非等比考查数列概念.【解析】∵S n =n 2,S n -1=(n -1)2,S n +1=(n +1)2∴a n =S n -S n -1=2n -1,a n +1=S n +1-S n =2n +1∴a n +1-a n =2,但12121-+=+n n a a n n 不是常数. 【答案】B9.a 、b 、c 成等比数列,则f (x )=ax 2+bx +c 的图象与x 轴的交点个数是( )A .0B .1C .2D .不确定考查等比数列与二次函数知识的综合运用.【解析】由已知b 2=ac ,∴Δ=b 2-4ac =-3ac .又∵a 、b 、c 成等比,∴a 、c 同号,∴Δ<0.【答案】A10.一房地产开发商将他新建的20层商品房的房价按下列方法定价,先定一个基价a 元/m 2,再据楼层的不同上下浮动,一层价格为(a -d )元/m 2,二层价格a 元/m 2,三层价格为(a +d )元/m 2,第i 层(i ≥4)价格为[a +d (32)i-3]元/m 2.其中a >0,d >0,则该商品房的各层房价的平均值为( )A .a 元/m 2B .a +101[(1-(32)17)d 元/m 2 C .a +[1-(32)17]d 元/m 2D .a +101[1-(32)18]d 元/m 2 考查等比数列的应用.【解析】a 4+a 5+…+a 20=17a +d321)32(13217-⎥⎦⎤⎢⎣⎡- =17a +2d ·[1-(32)17] ∴a 1+a 2+…+a 20=20a +2d [1-(32)17]∴平均楼价为a +101d [1-(32)17]. 【答案】B第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分)11.一条信息,若一人得知后,一小时内将信息传给两人,这两人又在一小时内各传给未知信息的另外两人.如此下去,要传遍55人的班级所需时间大约为_______小时.考查等比数列求和的运用,化归迁移能力.【解析】由题意,n 小时后有2n 人得知,此时得知信息总人数为1+2+22+…+2n =2n +1-1≥55.即2n +1≥56⇒n +1≥6⇒n ≥5.【答案】512.已知a n =nn n 10)1(9+(n ∈N *),则数列{a n }的最大项为_______. 考查数列及不等式的运用. 【解析】设{a n }中第n 项最大,则有⎩⎨⎧≥≥-+11n n n n a a a a即⎪⎪⎩⎪⎪⎨⎧+≥+⋅≥+++--111110)1(910)1(910910)1(9n n nn n n n n n n nn ,∴8≤n ≤9 即a 8、a 9最大. 【答案】a 8和a 913.一个五边形的五个内角成等差数列,且最小角为46°,则最大角为_______.考查关于多边形内角和和等差数列的运用. 【解析】由S 5=5×46°+245⨯d =540°得d =31°∴a 5=46°+4×31°=170°. 【答案】170°14.在数列{a n }中,已知a 1=1,a n =a n -1+a n -2+…+a 2+a 1.(n ∈N *,n ≥2),这个数列的通项公式是_______. 考查数列的解题技巧.【解析】由a n =a n -1+a n -2+…+a 2+a 1=S n -1(n ≥2) 又a n =S n -S n -1=a n -1-a n∴nn a a 1+=2(n ≥2),由a 2=a 1=1∴a n =2n -2(n ≥2),∴a n =⎩⎨⎧≥=-)2( 2)1( 12n n n【答案】a n =⎩⎨⎧≥=-)2( 2)1( 12n n n三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分10分)数列3、9、…、2187,能否成等差数列或等比数列?若能.试求出前7项和.考查等差、等比数列概念、求和公式和运用知识的能力.【解】(1)若3,9,…,2187,能成等差数列,则a 1=3,a 2=9,即d =6.则a n =3+6(n -1),令3+6(n -1)=2187,解得n =365.可知该数列可构成等差数列,S 7=7×3+267⨯×6=147.(2)若3,9,…,2187能成等比数列,则a 1=3,q =3,则a n =3·3n -1=3n ,令3n=2187,得n =7∈N ,可知该数列可构成等比数列,S 7=31)31(37--=3279.16.(本小题满分10分)已知三个实数成等比数列,在这三个数中,如果最小的数除以2,最大的数减7,所得三个数依次成等差数列,且它们的积为103,求等差数列的公差.考查等差、等比数列的基本概念、方程思想及分类讨论的思想. 【解】设成等比数列的三个数为qa ,a ,aq ,由qa ·a ·aq =103,解得a =10,即等比数列q10,10,10q .(1)当q >1时,依题意,q5+(10q -7)=20.解得q 1=51(舍去),q 2=25.此时2,10,18成等差数列,公差d =8.(2)当0<q <1,由题设知(q10-7)+5q =20,求得成等差数列的三个数为18、10、2,公差为-8. 综上所述,d =±8.17.(本小题满分10分)已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15,求S n =f (1)+f (2)+…+f (n )的表达式. 考查用函数的观点认识数列的能力及等比数列的求和.【解】设y =f (x )=kx +b ,则f (2)=2k +b ,f (5)=5k +b ,f (4)=4k +b ,依题意:[f (5)]2=f (2)·f (4).即(5k +b )2=(2k +b )(4k +b )化简得k (17k +4b )=0. ∵k ≠0,∴b =-417k ①又∵f (8)=8k +b =15 ② 将①代入②得k =4,b =-17.∴S n =f (1)+f (2)+…+f (n )=(4×1-17)+(4×2-17)+…+(4n -17)=4(1+2+…+n )-17n =2n 2-15n .18.(本小题满分12分)设a n 是正数组成的数列,其前n 项和为S n ,且对所有自然数n ,a n 与2的等差中项等于S n 与2的等比中项,求数列{a n }的通项公式.考查已知前n 项和S n 求通项a n 方法及运用等差、等比数列知识解决问题的能力.【解】∵a n 与2的等差中项等于S n 与2的等比中项,∴21(a n +2)=nS 2,即S n =81(a n +2)2当n =1时,a 1=81(a 1+2)2 a 1=2.当n ≥2时,a n =S n -S n -1=81[(a n +2)2-(a n -1+2)2]即(a n +a n -1)(a n -a n -1-4)=0又∵a n +a n -1>0,∴a n =a n -1+4,即d =4. 故a n =2+(n -1)×4=4n -2.19.(本小题满分12分)是否存在互不相等的三个数,使它们同时满足三个条件①a +b +c =6,②a 、b 、c 成等差数列,③将a 、b 、c 适当排列后,能构成一个等比数列.考查等差、等比数列性质及分类讨论思想. 【解】假设存在这样的三个数 ∵a 、b 、c 成等差数列,∴2b =a +c 又a +b +c =6,∴b =2.设a =2-d ,b =2,c =2+d .①若2为等比中项,则22=(2+d )(2-d ) ∴d =0,则a =b =c ,不符合题意.②若2+d 为等比中项,则(2+d )2=2(2-d ),解得d =0(舍去)或d =-6.∴a =8,b =2,c =-4.③若2-d 为等比中项,则(2-d )2=2(2+d ),解得d =0(舍去)或d =6 ∴a =-4,b =2,c =8综上所述,存在这样的三个不相等数,同时满足3个条件,它们是8,2,-4或-4,2,8.新课标数学必修5第2章数列单元试题(3)说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分)1.设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,那么由a n +b n 所组成的数列的第37项值为( )。
2023高考数学复习专项训练《等比数列》(含答案)
2023高考数学复习专项训练《等比数列》一、单选题(本大题共12小题,共60分)1.(5分)等比数列{a n}满足a1+a2+a3=13,a2+a3+a4=133,则a5=()A. 1B. 13C. 427D. 192.(5分)给出以下命题:①存在两个不等实数α,β,使得等式sin(α+β)=sinα+sinβ成立;②若数列{a n}是等差数列,且a m+a n=a s+a t(m、n、s、t∈N∗),则m+n=s+t;③若S n是等比数列{a n}的前n项和,则S6,S12−S6,S18−S12成等比数列;④若S n是等比数列{a n}的前n项和,且S n=Aq n+B;(其中A、B是非零常数,n∈N∗),则A+B为零;⑤已知ΔABC的三个内角A,B,C所对的边分别为a,b,c,若a2+b2>c2,则ΔABC一定是锐角三角形.其中正确的命题的个数是()A. 1个B. 2个C. 3个D. 4个3.(5分)设T n为等比数列{a n}的前n项之积,且a1=−6,a4=−34,则当T n最大时,n的值为()A. 4B. 6C. 8D. 104.(5分)等比数列{a n},满足a1+a2+a3+a4+a5=3,a12+a22+a32+a42+a52= 15,则a1−a2+a3−a4+a5的值是()A. 3B. √5C. −√5D. 55.(5分)已知在等比数列{a n}中,公比q是整数,a1+a4=18,a2+a3=12,则此数列的前8项和为()A. 514B. 513C. 512D. 5106.(5分)已知正项数列{a n},{b n}分别为等差、等比数列,公差、公比分别为d,q(d,q∈N∗),且d=q,a1+b1=1,a3+b3=3.若a n+b n=2013(n>3),则n= ()A. 2013B. 2012C. 100D. 997.(5分)若a,b,c成等比数列,则关于x的方程a x2+bx+c=0( )A. 必有两个不等实根B. 必有两个相等实根C. 必无实根D. 以上三种情况均有可能8.(5分)公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则log2a10=()9.(5分)记Sn为等比数列{a n}的前n项和,已知S2=2,S3=−6.则{a n}的通项公式为()A. a n=(−2)nB. a n=−2nC. a n=(−3)nD. a n=−3n10.(5分)正项等比数列{a n}中,a3=2,a4.a6=64,则a5+a6a1+a2的值是()A. 4B. 8C. 16D. 6411.(5分)在等比数列{a n}中,a7,a11是方程x2+5x+2=0的二根,则a3.a9.a15a5.a13的值为()A. −2+√22B. −√2C. √2D. −√2或√212.(5分)已知等比数列{a n}的前n项和为S n,9S3=S6=63,则S10=A. 255B. 511C.1023 D. 2047二、填空题(本大题共5小题,共25分)13.(5分)已知等差数列{a n}的公差d≠0,且a3+a9=a10−a8.若a n=0,则n=__________14.(5分)若等比数列{an}的前n项和Sn满足:an+1=a1Sn+1(n∈N*),则a1=____.15.(5分)在等比数列{an}中,已知前n项和Sn=5n+1+a,则a的值为____________.16.(5分)若等比数列{a n}的首项为23,且a4=∫41(1+2x)dx,则公比q等于______.17.(5分)如图所示,将正整数排成三角形数阵,每排的数称为一个群,从上到下顺次为第1群,第2群,……,第n群,……,第n群恰好有n个数,则第n群中n个数的和是____________.123465812107162420149324840281811…三、解答题(本大题共6小题,共72分)18.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3−x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.19.(12分)如果等比数列{a n}中公比q>1,那么{a n}一定是递增数列吗?为什么?20.(12分)数列{a n}满足a1=1,a n=2a n−1-3n+6(n≥2,n∈N+).(1)设b n=a n-3n,求证:数列{b n}是等比数列;(2)求数列{a n}的通项公式.21.(12分)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=a n+12−4n−1,n∈N∗,且a2,a5,a14构成等比数列.(1)证明:a2=√4a1+5;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有1a1a2+1a2a3+…+1a n a n+1<12.22.(12分)已知数列{a n}是等差数列,其首项为2,且公差为2,若b n=2a n(n∈N∗).(Ⅰ)求证:数列{b n}是等比数列;(Ⅱ)设c n=a n+b n,求数列{c n right}的前n项和A n.23.(12分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+⋯+b2n−1.四、多选题(本大题共5小题,共25分)24.(5分)已知等差数列{a n}的公差和首项都不等于0,且a2,a4,a8成等比数列,则下列说法正确的是()A. a1+a5+a9a2+a3的值为3 B. a1+a5+a9a2+a3的值为2C. 数列{a n}的公差和首项相等D. 数列{a n}的公差和首项不相等25.(5分)设数列{a n},{b n}的前n项和分别为S n,T n,则下列命题正确的是()A. 若a n+1-a n=2(n∈N∗),则数列{a n}为等差数列B. 若b n+1=2b n(n∈N∗),则数列{b n}为等比数列C. 若数列{a n}是等差数列,则S n,S2n-S n,S3n-S2n⋯⋯(n∈N∗)成等差数列D. 若数列{b n}是等比数列,则T n,T2n-T n,T3n-T2n⋯⋯(n∈N∗)成等比数列26.(5分)在公比q为整数的等比数列{a n}中,S n是数列{a n}的前n项,若a1+a4= 18,a2+a3=12,则下列说法正确的是()A. q=2B. 数列{S n+2}是等比数列C. S8=510D. 数列\left{ lg a n}是公差为2的等差数列27.(5分)已知等差数列{a n}的首项为1,公差d=4,前n项和为S n,则下列结论成立的有()A. 数列{S nn}的前10项和为100B. 若a1,a3,a m成等比数列,则m=21C. 若∑n i=11a i a i+1>625,则n的最小值为6D. 若a m+a n=a2+a10,则1m +16n的最小值为251228.(5分)已知数列{a n}为等差数列,{b n}为等比数列,{a n}的前n项和为S n,若a1+ a6+a11=3π,b1b5b9=8,则()A. S11=11πB. sin a2+a10b4b6=12C. a3+a7+a8=3πD. b3+b7⩾4答案和解析1.【答案】D;【解析】解:设等比数列{a n }的公比为q ,由a 2+a 3+a 4=(a 1+a 2+a 3)q ,得133=13q ,解得q =13, 又a 1+a 2+a 3=a 1+13a 1+19a 1=139a 1=13,解得a 1=9,所以a 5=a 1q 4=9×(13)4=19, 故选:D.设等比数列{a n }的公比为q ,通过a 2+a 3+a 4=(a 1+a 2+a 3)q 可求出q 值,进一步根据a 1+a 2+a 3=a 1+a 1q +a 1q 2=13可求出a 1,最后利用a 5=a 1q 4进行求解即可. 此题主要考查等比数列的通项公式,考查学生逻辑推理和运算求解的能力,属于基础题.2.【答案】B; 【解析】该题考查命题真假的判断,考查学生灵活运用等差、等比数列的性质,三角函数以及三角形的判断,是一道综合题,属于中档题.利用特殊值判断①的正误;利用特殊数列即可推出命题②的正误;根据等比数列的性质,判断③的正误;根据等比数列的前n 项的和推出A ,B 判断④的正误.利用特殊三角形判断⑤的正误;解:对于①,实数α=0,β≠0,则sin (α+β)=sinβ,sinα+sinβ=sinβ,所以等式成立;故①正确;对于②,当公差d =0时,命题显然不正确,例如a 1+a 2=a 3+a 4,1+2≠3+4,故②不正确;对于③,设a n =(−1)n ,则S 6=0,S 12−S 6=0,S 18−S 12=0,∴此数列不是等比数列,故③不正确;对于④,S n 是等比数列{a n }的前n 项和,且S n =Aq n +B ;(其中A 、B 是非零常数,n ∈N ∗),所以此数列为首项是a 1,公比为q ≠1的等比数列, 则S n =a 1(1−q n )1−q ,所以A =−a11−q ,B =a11−q ,∴A +B =0,故④正确;对于⑤,如果三角形是直角三角形,a =5,b =3,c =4,满足a 2+b 2>c 2,故⑤不正确;故选:B .3.【答案】A;【解析】解:因为等比数列{a n }中,a 1=−6,a 4=−34,则由a 4=a 1q 3可得q =12. ∵T n 为等比数列{a n }的前n 项之积,∴T n =(−6)n .(12)n(n−1)2,因为求最大值,故只需考虑n 为偶数的情况, ∵T 2n +2T 2n =36×(12)4n +1,由T 2n +2T 2n⩾1可得n =1,∴T 2<T 4>T 6>T 8>⋯.则公比q =12,当T n 最大时,n 的值为4.故选:A .由已知可得q =12.只需考虑n 为偶数的情况,由T 2n +2T 2n⩾1可得n =1,即可求解.该题考查了等比数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.4.【答案】D;【解析】解:设数列{a n }的公比为q ,且q ≠1,则 a 1+a 2+a 3+a 4+a 5=a 1(1−q 5)1−q =3①, a 12+a 22+a 32+a 42+a 52=a 12(1−q 10)1−q 2=15②∴②÷①得a 12(1−q 10)1−q 2÷a 1(1−q 5)1−q=a 1(1+q 5)1+q=5,∴a 1−a 2+a 3−a 4+a 5=a 1(1+q 5)1+q=5.故选:D.先设等比数列{a n }公比为q ,分别用a 1和q 表示出a 12+a 22+a 32+a 42+a 52,a 1+a 2+a 3+a 4+a 5和a 1−a 2+a 3−a 4+a 5,发现a 12+a 22+a 32+a 42+a 52除以a 1+a 2+a 3+a 4+a 5正好与a 1−a 2+a 3−a 4+a 5相等,进而得到答案.此题主要考查了等比数列的性质.属基础题.解题时要认真审题,注意等比数列的性质的灵活运用.5.【答案】D;【解析】由已知得{a 1+a 1q 3=18a 1q +a 1q 2=12,解得:q =2或q =12.∵q 为整数,∴q =2.∴a 1=2.∴S 8=2(1−28)1−2=29−2=510.6.【答案】A;【解析】此题主要考查等差数列和等比数列的通项公式和性质的应用.计算时要认真仔细.解:∵{_1+b1=1a3+b3=3,∴{_1+b1=1a1+2d+b1q2=3,∵d=q,所以{_1+b1=1a1+2q+b1q2=3,解得d=q=1,∴a n+b n=a1+(n−1)d+b1q n−1=a1+n−1+b1=2013,∴n=2013.故选A.7.【答案】C;【解析】若a,b,c成等比数列,则b²=ac由题意得△=b²-4ac=b²-4b²=-3b²等比数列中没有为0的项,∴-3b²<0∴△小于0,即方程a x2+bx+c=0必无实根故选C。
高考数学经典例题集锦:数列(含答案)
数列题目精选精编【典型例题】(一)研究等差等比数列的有关性质 1. 研究通项的性质例题1. 已知数列}{n a 满足1111,3(2)n n n a a a n --==+≥. (1)求32,a a ;(2)证明:312n n a -=. 解:(1)21231,314,3413a a a =∴=+==+=.(2)证明:由已知113--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---1213133312n n n a ---+=++++=, 所以证得312n n a -=.例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥(Ⅰ)求{}n a 的通项公式;(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T .解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥,两式相减得:112,3(2)n n n n n a a a a a n ++-==≥,又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列∴13n n a -=(Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===,由题意可得2(51)(59)(53)d d -+++=+,解得122,10d d ==∵等差数列{}n b 的各项为正,∴0d > ∴2d =∴2(1)3222n n n T n n n -=+⨯=+例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++128n n a n -+=对任意的*N n ∈都成立,数列{}n n b b -+1是等差数列.⑴求数列{}n a 与{}n b 的通项公式;⑵是否存在N k *∈,使得(0,1)k k b a -∈,请说明理由.点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求na 的方法,当2n ≥时,1n n n S S a --=.(2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况.解:(1)已知212322a a a +++ (1)2n n a -+8n =(n ∈*N )①2n ≥时,212322a a a +++ (2)128(1)n n a n --+=-(n ∈*N )②①-②得,128n n a -=,求得42n n a -=,在①中令1n =,可得得41182a -==,所以42nn a -=(n ∈N*). 由题意18b =,24b =,32b =,所以214b b -=-,322b b -=-,∴数列}{1n n b b -+的公差为2)4(2=---, ∴1n nb b +-=2)1(4⨯-+-n 26n =-,121321()()()n n n b b b b b b b b -=+-+-++-(4)(2)(28)n =-+-++-2714n n =-+(n ∈*N ).(2)k k b a -=2714k k -+-42k-,当4k ≥时,277()()24f k k =-+-42k-单调递增,且(4)1f =, 所以4k ≥时,2()714f k k k =-+-421k-≥, 又(1)(2)(3)0f f f ===,所以,不存在k ∈*N ,使得(0,1)k k b a -∈.例题4. 设各项均为正数的数列{a n }和{b n }满足:a n 、b n 、a n+1成等差数列,b n 、a n+1、b n+1成等比数列,且a 1 = 1, b 1 = 2 , a 2 = 3 ,求通项a n ,b n 解: 依题意得:2b n+1 = a n+1 + a n+2 ① a 2n+1 = b n b n+1 ②∵ a n 、b n 为正数, 由②得21211,+++++==n n n n n n b b a b b a , 代入①并同除以1+n b 得:212+++=n n n b b b , ∴}{n b 为等差数列∵ b 1 = 2 , a 2 = 3 ,29,22122==b b b a 则 ,∴ 2)1(),1(22)229)(1(22+=∴+=--+=n b n n b n n ,∴当n ≥2时,2)1(1+==-n n b b a n n n , 又a 1 = 1,当n = 1时成立, ∴2)1(+=n n a n2. 研究前n 项和的性质例题5. 已知等比数列}{n a 的前n 项和为2nn S a b =⋅+,且13a =. (1)求a 、b 的值及数列}{n a 的通项公式;(2)设n n nb a =,求数列}{n b 的前n 项和n T .解:(1)2≥n 时,a S S a n n n n ⋅=-=--112.而}{n a 为等比数列,得a a a =⋅=-1112,又31=a ,得3=a ,从而123-⋅=n n a .又123,3a a b b =+=∴=-.(2)132n n n n n b a -==⋅, 21123(1)3222n n nT -=++++231111231(2322222n n n n n T --=+++++) ,得2111111(1)232222nn n n T -=++++-,111(1)2412[](1)13232212n n n n n n n T +⋅-=-=---.例题6. 数列{}n a 是首项为1000,公比为110的等比数列,数列{b }n 满足121(lg lg lg )k k b a a a k=+++*()N k ∈, (1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '. 解:(1)由题意:410nn a -=,∴lg 4n a n =-,∴数列{lg }n a 是首项为3,公差为1-的等差数列,∴12(1)lg lg lg 32k k k a a a k -+++=-,∴1(1)7[3]22n n n nb n n --=-=由100n n b b +≥⎧⎨≤⎩,得67n ≤≤,∴数列{b }n 的前n 项和的最大值为67212S S ==.(2)由(1)当7n ≤时,0n b ≥,当7n >时,0n b <,∴当7n ≤时,212731132()244n n n S b b b n n n -+'=+++==-+当7n >时,12789n n S b b b b b b '=+++----27121132()2144n S b b b n n =-+++=-+∴22113(7)4411321(7)44n n n n S n n n ⎧-+≤⎪⎪'=⎨⎪-+>⎪⎩.例题7. 已知递增的等比数列{n a }满足23428a a a ++=,且32a +是2a ,4a 的等差中项. (1)求{n a }的通项公式n a ;(2)若12log n n nb a a =,12n n S b b b =+++求使1230n n S n ++⋅>成立的n 的最小值.解:(1)设等比数列的公比为q (q >1),由a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2(a 1q 2+2),得:a 1=2,q =2或a 1=32,q =12(舍)∴a n =2·2(n -1)=2n(2) ∵12log 2nn n n b a a n ==-⋅,∴S n =-(1·2+2·22+3·23+…+n ·2n ) ∴2S n =-(1·22+2·23+…+n ·2n +1),∴S n =2+22+23+…+2n -n ·2n +1=-(n -1)·2n +1-2, 若S n +n ·2n +1>30成立,则2n +1>32,故n >4,∴n 的最小值为5.例题8. 已知数列}{n a 的前n 项和为S n ,且11,,n n S a +-成等差数列,*1,1N n a ∈=. 函数3()log f x x =.(I )求数列}{n a 的通项公式; (II )设数列{}n b 满足1(3)[()2]n n b n f a =++,记数列{}n b 的前n 项和为T n ,试比较52512312n n T +-与的大小. 解:(I )11,,n n S a +-成等差数列,121n n S a +∴=-① 当2n ≥时,121n n S a -=-②. ①-②得:112()n n n n S S a a -+-=-,13+=∴n n a a ,13.n na a +∴=当n =1时,由①得112221S a a ∴==-, 又11,a =2213,3,a a a ∴=∴={}n a ∴是以1为首项3为公比的等比数列,13.n n a -∴=(II )∵()x log x f 3=,133()log log 31n n n f a a n -∴===-,11111()(3)[()2](1)(3)213n n b n f a n n n n ===-++++++,1111111111111()224354657213n T n n n n ∴=-+-+-+-++-+-+++11111()22323n n =+--++525,122(2)(3)n n n +=-++比较52512312n n T +-与的大小,只需比较2(2)(3)n n ++与312 的大小即可. 222(2)(3)3122(56156)2(5150)n n n n n n ++-=++-=+-又2(15)(10)n n =+-∵*,N n ∈∴当*19N n n ≤≤∈且时,5252(2)(3)312,;12312n n n n T +++<<-即 当10n =时,5252(2)(3)312,;12312n n n n T +++==-即 当*10N n n >∈且时,5252(2)(3)312,12312n n n n T +++>>-即.3. 研究生成数列的性质例题9. (I ) 已知数列{}n c ,其中nn n c 32+=,且数列{}n n pc c -+1为等比数列,求常数p ;(II ) 设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是等比数列.解:(Ⅰ)因为{c n +1-pc n }是等比数列,故有 (c n +1-pc n )2=( c n +2-pc n+1)(c n -pc n -1), 将c n =2n +3n 代入上式,得 [2n +1+3n +1-p (2n +3n )]2=[2n +2+3n +2-p (2n +1+3n +1)]·[2n +3n -p (2n -1+3n -1)], 即[(2-p )2n +(3-p )3n ]2=[(2-p )2n+1+(3-p )3n+1][ (2-p )2n -1+(3-p )3n -1],整理得61(2-p )(3-p )·2n ·3n =0,解得p =2或p =3. (Ⅱ)设{a n }、{b n }的公比分别为p 、q ,p ≠q ,c n =a n +b n .为证{c n }不是等比数列只需证22c ≠c 1·c 3.事实上,22c =(a 1p +b 1q )2=21a p 2+21b q 2+2a 1b 1pq ,c 1·c 3=(a 1+b 1)(a 1 p 2+b 1q 2)= 21a p 2+21b q 2+a 1b 1(p 2+q 2).由于p ≠q ,p 2+q 2>2pq ,又a 1、b 1不为零,因此≠22c c 1·c 3,故{c n }不是等比数列.例题10. n 2( n ≥4)个正数排成n 行n 列:其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等已知a 24=1,163,814342==a a 求S=a 11 + a 22 + a 33 + … + a nn解: 设数列{1k a }的公差为d , 数列{ik a }(i=1,2,3,…,n )的公比为q则1k a = a 11 + (k -1)d , a kk = [a 11 + (k -1)d]q k -1依题意得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+==+==+=163)2(81)(1)3(31143311421124q d a a q d a a q d a a ,解得:a 11 = d = q = ±21 又n 2个数都是正数,∴a 11 = d = q = 21 , ∴a kk = kk2n n S 212132122132⨯++⨯+⨯+=,1432212132122121+⨯++⨯+⨯+=n n S ,两式相减得:n n nS 22121--=-例题11. 已知函数3()log ()f x ax b =+的图象经过点)1,2(A 和)2,5(B ,记()*3,.f n n a n N =∈ (1)求数列}{n a 的通项公式;(2)设n n n nn b b b T a b +++==21,2,若)(Z m m T n ∈<,求m 的最小值;(3)求使不等式12)11()11)(11(21+≥+++n p a a a n对一切*N n ∈均成立的最大实数p .解:(1)由题意得⎩⎨⎧=+=+2)5(log 1)2(log 33b a b a ,解得⎩⎨⎧-==12b a ,)12(log )(3-=∴x x f *)12(log ,1233N n n a n n ∈-==-(2)由(1)得n n n b 212-=, n n n n n T 2122322523211321-+-++++=∴- ① 1132212232252232121+--+-+-+++=n n n n n n n T ② ①-②得)21212121(2121n 22222222221T 211n 2n 2111n n 1n 321n --+-+++++=--+++++= 1n 1n 1n 21n 2212321n 2+-+---=--.n n 2n n 23n 2321n 2213T +-=---=∴-, 设*,232)(N n n n f n ∈+=,则由 1512132121)32(252232252)()1(1<+≤++=++=++=++n n n n n n f n f n n 得*,232)(Nn n n f n ∈+=随n 的增大而减小+∞→∴n 当时,3→n T 又)(Z m m T n ∈<恒成立,3min =∴m(3)由题意得*21)11()11)(11(121N n a a a n p n ∈++++≤对 恒成立记)11()11)(11(121)(21n a a a n n F ++++=,则 ()()11n 21n 2)1n ()1n (4)1n (2)3n 2)(1n 2(2n 2)a 11()a 11)(a 11(1n 21)a 11)(a 11()a 11)(a 11(3n 21)n (F )1n (F 2n 211n n 21=++>+-++=+++=+++++++++=++)(),()1(,0)(n F n F n F n F 即>+∴> 是随n 的增大而增大)(n F 的最小值为332)1(=F ,332≤∴p ,即332max =p .(二)证明等差与等比数列 1. 转化为等差等比数列.例题12. 数列{}n a 中,2,841==a a 且满足n n n a a a -=++122,*N n ∈.⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;⑶设n b =1(12)n n a -**12(),()N N n n n T b b b n ∈=+++∈,是否存在最大的整数m ,使得对任意*N n ∈,均有>n T 32m成立?若存在,求出m 的值;若不存在,请说明理由.解:(1)由题意,n n n n a a a a -=-+++112,}{n a ∴为等差数列,设公差为d , 由题意得2832d d =+⇒=-,82(1)102n a n n ∴=--=-.(2)若50210≤≥-n n 则,||||||,521n n a a a S n +++=≤ 时21281029,2n na a a n n n +-=+++=⨯=-6n ≥时,n n a a a a a a S ---+++= 765212555()2940n n S S S S S n n =--=-=-+故⎪⎩⎪⎨⎧+--=40n 9n n n 9S 22n 56n n ≤≥ (3)11111()(12)2(1)21n n b n a n n n n ===--++, ∴n T 1111111111[(1)()()()()]22233411n n n n =-+-+-++-+--+.2(1)n n =+ 若32n m T >对任意*N n ∈成立,即116n m n >+对任意*N n ∈成立, *()1N n n n ∈+的最小值是21,1,162m ∴<m ∴的最大整数值是7.即存在最大整数,7=m 使对任意*N n ∈,均有.32n m T >例题13. 已知等比数列{}n b 与数列{}n a 满足3,n an b n =∈N *. (1)判断{}n a 是何种数列,并给出证明;(2)若8131220,a a m b b b +=求.解:(1)设{}n b 的公比为q ,∵3n an b =,∴()q log 1n a a 3q 331n a 1n a n 1-+=⇒=⋅-。
高考数学《数列》大题训练50题含答案解析整理版
高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。
)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。
历年高考数学真题(全国卷整理版)
参考公式:如果事件A 、B 互斥,则球的外表积公式如果事件A 、B 相互独立,则其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,则334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径普通高等学校招生全国统一考试一、选择题1、 复数131ii-++= A 2+I B 2-I C 1+2i D 1- 2i 2、集合A ={1.3. m },B ={1,m} ,AB =A, 则m=A 0或3B 0或3C 1或3D 1或3 3 椭圆的中心在原点,焦距为4 一条准线为*=-4 ,则该椭圆的方程为A 216x +212y =1B 212x +28y =1C 28x +24y =1D 212x +24y =1 4 正四棱柱ABCD- A 1B 1C 1D 1中,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为A 2B 3C 2D 1〔5〕等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为(A)100101 (B) 99101 (C) 99100 (D) 101100〔6〕△ABC 中,AB 边的高为CD ,假设a ·b=0,|a|=1,|b|=2,则(A)〔B 〕 (C) (D)〔7〕α为第二象限角,sin α+sin β=33,则cos2α=(A)5-3〔B 〕5-9 (C)59 (D)53〔8〕F1、F2为双曲线C:*²-y²=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos∠F1PF2=(A)14〔B〕35 (C)34 (D)45〔9〕*=lnπ,y=log52,12z=e,则(A)*<y<z 〔B〕z<*<y (C)z<y<* (D)y<z<*(10) 函数y=*²-3*+c的图像与*恰有两个公共点,则c=〔A〕-2或2 〔B〕-9或3 〔C〕-1或1 〔D〕-3或1〔11〕将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不一样,梅列的字母也互不一样,则不同的排列方法共有〔A〕12种〔B〕18种〔C〕24种〔D〕36种〔12〕正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。
2021届新高考数学总复习:等比数列的通项及其性质(附答案解析)
10.在等比数列{an}中,若a5=2a4,a2=2,则a6=( )
A.64B.16C.8D.32
11.若等比数列{an}满足:a1=1,a1+a2+a3=7,则a4=( )
A.8B.﹣27C.8或﹣27D.﹣8或﹣27
12.已知各项均为正数的等比数列{an}中,a2=2,a3a4a5=29,则a3=( )
【解答】解:设等比数列{an}的公比为q,则a1a3a5= •a2q•a2q3=(a2q)3=8,则a2q=a3=2.
又a2a4= •a3q=a32=22=4.
故选:B.
4.在等比数列{an}中,a3=2,a7=18,则a3与a7的等比中项为( )
A.4B.6C.±6D.±4
【解答】解:∵等比数列{an}中,a3=2,a7=18,
A. B.2C.±2D.
7.等比数列{an}中,an∈R+,a5•a6=32,则log2a1+log2a2+…+log2a10的值为( )
A.10B.20C.25D.160
8.已知各项均为正数的等比数列{an}中,a2=2,a5=2a4+3a3,则a6=( )
A.2B.54C.162D.243
9.设{an}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=( )
A.16B.32C.64D.256
16.在正项等比数列{an}中,若a3a7=4,则 =( )
A.16B.8C.4D.2
17.在等比数列{an}中,已知a1a3=4,a9=256,则a8=( )
A.128或﹣128B.128C.64或﹣64D.64
高考数学真题 等比数列
6.3 等比数列考点一 等比数列及其前n 项和1.(2020课标Ⅱ文,6,5分)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n=( ) A.2n-1 B.2-21-nC.2-2n-1D.21-n-1答案 B 设等比数列{a n }的公比为q,则a 6-a 4a 5-a 3=a 5·q -a 3·q a 5-a 3=q=2412=2,∴S n a n =a 1(1-2n )1-2a 1×2n -1=2-21-n.故选B.2.(2020课标Ⅰ文,10,5分)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=( ) A.12 B.24 C.30 D.32 答案 D 设等比数列{a n }的公比为q, 故a 2+a 3+a 4=q(a 1+a 2+a 3), 又a 2+a 3+a 4=2,a 1+a 2+a 3=1,∴q=2, ∴a 6+a 7+a 8=q 5(a 1+a 2+a 3)=25=32,故选D.3.(2013课标Ⅰ文,6,5分)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ) A.S n =2a n -1 B.S n =3a n -2 C.S n =4-3a n D.S n =3-2a n答案 D 因为a 1=1,公比q=23,所以a n =(23)n -1,S n =a 1(1-q n )1-q =31-(23)n =3-2(23)n -1=3-2a n ,故选D. 4.(2013课标Ⅱ理,3,5分)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B.-13 C.19 D.-19答案 C 由已知条件及S 3=a 1+a 2+a 3得a 3=9a 1,设数列{a n }的公比为q,则q 2=9.所以a 5=9=a 1·q 4=81a 1,得a 1=19,故选C.5.(2019课标Ⅰ文,14,5分)记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= . 答案58解析 本题主要考查等比数列的有关概念;考查学生的运算求解能力;考查的核心素养是数学运算. 设公比为q(q ≠0), 则S 3=a 1+a 2+a 3=1+q+q 2=34,解得q=-12, ∴a 4=a 1q 3=-18, ∴S 4=S 3+a 4=34-18=58.6.(2019课标Ⅰ理,14,5分)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5= .答案1213解析 本题主要考查等比数列基本量的计算;考查学生的运算求解能力;考查的核心素养是数学运算.设{a n }的公比为q,由a 42=a 6,得a 42=a 4·q 2,∴a 4=q 2.又∵a 4=a 1·q 3,∴a 1·q 3=q 2,又a 1=13,∴q=3.由等比数列求和公式可知S 5=13×(1-35)1-3=1213.解题关键 由a n =a 1·q n-1=a m ·q n-m求出公比q 是关键.7.(2015课标Ⅰ文,13,5分)在数列{a n }中,a 1=2,a n+1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n= . 答案 6解析 由已知得{a n }为等比数列,公比q=2,由首项a 1=2,S n =126得2(1-2n)1-2=126,解得2n+1=128,∴n=6.评析 本题主要考查等比数列的定义及前n 项和公式,属容易题,注意运算要准确哦! 8.(2015湖南理,14,5分)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n = . 答案 3n-1解析 设等比数列{a n }的公比为q(q ≠0),依题意得a 2=a 1·q=q,a 3=a 1q 2=q 2,S 1=a 1=1,S 2=1+q,S 3=1+q+q 2.又3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(1+q)=3+1+q+q 2,所以q=3(q=0舍去).所以a n =a 1q n-1=3n-1. 9.(2013辽宁理,14,5分)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x+4=0的两个根,则S 6= . 答案 63解析 a 1,a 3是方程x 2-5x+4=0的两个根且{a n }是递增数列,故a 3=4,a 1=1,故公比q=2,S 6=a 1(1-q 6)1-q=63. 评析 本题考查了等比数列的求和公式.数列{a n }递增是解题的关键,没考虑到q>0是失分的主因. 10.(2012课标文,14,5分)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q= .答案 -2解析 由S 3+3S 2=0得4a 1+4a 2+a 3=0,有4+4q+q 2=0,解得q=-2.评析 本题考查了等比数列的运算,直接利用定义求解可达到事半功倍的效果. 11.(2014课标Ⅱ理,17,12分)已知数列{a n }满足a 1=1,a n+1=3a n +1. (1)证明{a n +12}是等比数列,并求{a n }的通项公式; (2)证明1a 1+1a 2+…+1a n <32.解析 (1)由a n+1=3a n +1得a n+1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.a n +12=3n2,因此{a n }的通项公式为a n =3n-12. (2)由(1)知1a n =23n -1.因为当n ≥1时,3n-1≥2×3n-1,所以13n-1≤12×3n -1. 于是1a 1+1a 2+…+1a n≤1+13+…+13n -1=32(1-13n )<32.所以1a 1+1a 2+…+1a n <32.评析 本题考查了等比数列的定义、数列求和等问题,放缩求和是本题的难点. 12.(2011课标文,17,12分)已知等比数列{a n }中,a 1=13,公比q=13. (1)S n 为{a n }的前n 项和,证明:S n =1-a n2; (2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.解析 (1)因为a n =13×(13)n -1=13n ,S n =13(1-13n )1-13=1-13n 2, 所以S n =1-a n2. (2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n)=-n(n+1)2. 所以{b n }的通项公式为b n =-n(n+1)2. 评析 本题考查等差数列、等比数列的基础知识,对数运算性质,要求考生有较清晰的推理思路和运算目标,但难度并不大.属中档题.13.(2016课标Ⅲ,17,12分)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ. 解析 (1)由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n+1=1+λa n+1得a n+1=λa n+1-λa n ,即a n+1(λ-1)=λa n . 由a 1≠0,λ≠0得a n ≠0,所以a n+1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ·(λλ-1)n -1. (2)由(1)得S n =1-(λλ-1)n. 由S 5=3132得1-(λλ-1)5=3132,即(λλ-1)5=132.解得λ=-1.思路分析 (1)先由题设利用a n+1=S n+1-S n 得到a n+1与a n 的关系式,要证数列是等比数列,关键是看a n+1与a n 之比是不是非零常数,其中说明a n ≠0是非常重要的.(2)利用第(1)问的结论解方程求出λ.考点二 等比数列的性质1.(2018浙江,10,4分)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则( ) A.a 1<a 3,a 2<a 4 B.a 1>a 3,a 2<a 4 C.a 1<a 3,a 2>a 4 D.a 1>a 3,a 2>a 4答案 B 本题考查等比数列的概念和性质,利用导数求函数的单调性和最值,不等式的性质和分类讨论思想.设f(x)=ln x-x(x>0),则f '(x)=1x-1=1-x x, 令f '(x)>0,得0<x<1,令f '(x)<0,得x>1, ∴f(x)在(0,1)上为增函数,在(1,+∞)上为减函数, ∴f(x)≤f(1)=-1,即有ln x ≤x-1. 从而a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)≤a 1+a 2+a 3-1, ∴a 4<0,又a 1>1,∴公比q<0.若q=-1,则a 1+a 2+a 3+a 4=0,ln(a 1+a 2+a 3)=ln a 1>0,矛盾.若q<-1,则a 1+a 2+a 3+a 4=a 1(1+q+q 2+q 3)=a 1(1+q)(1+q 2)<0,而a 2+a 3=a 2(1+q)=a 1q(1+q)>0,∴ln(a 1+a 2+a 3)>ln a 1>0,也矛盾.∴-1<q<0.从而a 3a 1=q 2<1,∵a 1>0,∴a 1>a 3.同理,∵a 4a 2=q 2<1,a 2<0,∴a 4>a 2.选B.思路分析 (1)由题中的选项可知要判断0<q 2<1,还是q 2>1.(2)由条件可知要利用不等式ln x ≤x-1(x>0),得a 4<0,进而得q<0.(3)直接求q 的取值范围较难,转化为判断q=-1和q<-1时,等式a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)左、右两边的正负,进而得出矛盾,从而得-1<q<0.(4)注意a 1>0,而a 2<0,利用-1<q<0得结论.2.(2015课标Ⅱ理,4,5分)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A.21 B.42 C.63 D.84答案 B 设{a n }的公比为q,由a 1=3,a 1+a 3+a 5=21得1+q 2+q 4=7,解得q 2=2(负值舍去).∴a 3+a 5+a 7=a 1q 2+a 3q 2+a 5q 2=(a 1+a 3+a 5)q 2=21×2=42.3.(2015课标Ⅱ文,9,5分)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( ) A.2 B.1 C.12 D.18答案 C 设{a n }的公比为q,由等比数列的性质可知a 3a 5=a 42,∴a 42=4(a 4-1),即(a 4-2)2=0,得a 4=2,则q 3=a 4a 1=214=8,得q=2,则a 2=a 1q=14×2=12,故选C.4.(2014大纲全国文,8,5分)设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A.31 B.32 C.63 D.64答案 C 由等比数列的性质得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C.5.(2012课标理,5,5分)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A.7 B.5 C.-5 D.-7答案 D 由a 5a 6=a 4a 7,得a 4a 7=-8,又a 4+a 7=2,∴a 4=4,a 7=-2或a 4=-2,a 7=4,∴q 3=-12或q 3=-2.当q 3=-12时,a 1+a 10=a 4q 3+a 4q 6=4-12+4×(-12)2=-7,当q 3=-2时,a 1+a 10=a 4q 3+a 4q 6=-2-2+(-2)·(-2)2=-7,故选D.评析 本题考查了等比数列的基本运算,运用等比数列的性质可简化计算.6.(2014江苏理,7,5分)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是 . 答案 4解析 由a 8=a 6+2a 4,两边都除以a 4,得q 4=q 2+2,即q 4-q 2-2=0⇔(q 2-2)(q 2+1)=0,∴q 2=2.∵a2=1,∴a6=a2q4=1×22=4.7.(2014广东文,13,5分)等比数列{a n}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=.答案 5解析由等比数列的性质知a1a5=a2a4=a32=4⇒a3=2,所以log2a1+log2a2+log2a3+log2a4+log2a5=log2(a1a2a3a4a5)=log2a35=5log22=5.。
高考数学压轴专题2020-2021备战高考《数列》真题汇编附答案解析
新高中数学《数列》专题解析一、选择题1.设{a n }为等比数列,{b n }为等差数列,且S n 为数列{b n }的前n 项和.若a 2=1,a 10=16且a 6=b 6,则S 11=( ) A .20 B .30 C .44 D .88【答案】C 【解析】 【分析】设等比数列{a n }的公比为q ,由a 2=1,a 10=16列式求得q 2,进一步求出a 6,可得b 6,再由等差数列的前n 项和公式求解S 11. 【详解】设等比数列{a n }的公比为q ,由a 2=1,a 10=16,得810216a q a ==,得q 2=2. ∴4624a a q ==,即a 6=b 6=4,又S n 为等差数列{b n }的前n 项和, ∴()1111161111442b b S b+⨯===.故选:C. 【点睛】本题考查等差数列与等比数列的通项公式及性质,训练了等差数列前n 项和的求法,是中档题.2.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】 因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.3.已知数列{}n a 为等比数列,前n 项和为n S ,且12a =,1n n b a =+,若数列{}n b 也是等比数列,则n S =( ) A .2n B .31n - C .2n D .31n -【答案】C 【解析】 【分析】设等比数列{}n a 的公比为q ,写出,n n a b .由数列{}n b 是等比数列,得2213b b b =,求出q ,即求n S . 【详解】设等比数列{}n a 的公比为q ,112,2n n a a q -=∴=Q ,121n n b q -∴=+,13b ∴=,221b q =+,2321b q =+,{}n b Q 也是等比数列, 2213b b b ∴=,即()()2221321q q +=+解得1q =,2,2n n a S n ∴=∴=. 故选:C . 【点睛】本题考查等比数列的性质,属于基础题.4.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.5.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( ) AB.CD.3-【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】 ∵()11111611221123a a S a π+===,∴623a π=,()62tan tan 3a π⎛⎫== ⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.6.等差数列{}n a 的前n 项和为n S ,已知2611203a a a a --+=,则21S 的值为( ) A .63 B .21C .63-D .21【答案】C 【解析】 【分析】根据等差数列性质,原式可变为()220616113()a a a a a +-+-=,即可求得21112163S a ==-.【详解】∵261116203a a a a a ---+=, ∴()220616113()a a a a a +-+-=, ∴113a =-,∴21112163S a ==-, 故选:C . 【点睛】此题考查等差数列性质和求和公式,需要熟练掌握等差数列基本性质,根据性质求和.7.等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( ) A .(0,)+∞ B .8,75⎛⎫+∞⎪⎝⎭C .83,7525⎛⎫⎪⎝⎭D .83,7525⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】根据题意可知101a >,91a ≤,把1a 的值代入列不等式解得即可. 【详解】由题意,设数列{}n a 的公差为d ,首项1125a =,则10911a a >⎧⎨≤⎩,即101919181a a d a a d =+>⎧⎨=+≤⎩,解得837525d <≤. 故选:D. 【点睛】本题主要考查了等差数列的通项公式的应用,要熟练记忆等差数列的通项公式.8.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可. 【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.9.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.10.等比数列{}n a 的前n 项和为n S ,若32S =,618S =,则106S S 等于( ) A .-3 B .5C .-31D .33【答案】D 【解析】 【分析】先由题设条件结合等比数列的前n 项和公式,求得公比q ,再利用等比数列的前n 项和公式,即可求解106S S 的值,得到答案. 【详解】由题意,等比数列{}n a 中32S =,618S =,可得313366316(1)1121(1)11181a q S q q a q S q q q ---====--+-,解得2q =, 所以101105105516(1)11133(1)11a q S q q q a q S q q---===+=---. 故选:D . 【点睛】本题主要考查了等比数列的前n 项和公式的应用,其中解答中熟记等比数列的前n 项和公式,准确计算是解答的关键,着重考查了推理与计算能力.11.在等差数列{}n a 中,2436a a +=,则数列{}n a 的前5项之和5S 的值为( ) A .108B .90C .72D .24【解析】由于152436a a a a +=+=,所以1555()5369022a a S +⨯===,应选答案A . 点睛:解答本题的简捷思路是巧妙运用等差数列的性质152436a a a a +=+=,然后整体代换前5项和中的15=36a a +,从而使得问题的解答过程简捷、巧妙.当然也可以直接依据题设条件建立方程组进行求解,但是解答过程稍微繁琐一点.12.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=, 解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.13.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值.由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.14.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.15.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1CD .2【答案】B 【解析】 【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得. 【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a 是正项等比数列,所以2020a =∴20201a ==.故选:B 【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.16.等差数列{}n a 中,1599a a a ++=,它的前21项的平均值是15,现从中抽走1项,余下的20项的平均值仍然是15,则抽走的项是( ) A .11a B .12aC .13aD .14a【答案】A 【解析】 【分析】由等差数列的性质可知5113,15a a ==,再根据前21项的均值和抽取一项后的均值可知抽取的一项的大小为15,故可确定抽走的是哪一项. 【详解】因为1952a a a +=,所以539a =即53a =. 有211521S =得1115a =, 设抽去一项后余下的项的和为S ,则2015300S =⨯=,故抽取的一项的大小为11, 所以抽走的项为11a ,故选A. 【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质: (1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+; (2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ;(3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列; (4)232,,,n n n n n S S S S S --L 为等差数列.17.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为( ) A .23岁 B .32岁C .35岁D .38岁【答案】C 【解析】 【分析】根据题意,得到数列{}n a 是等差数列,由9207S =,求得数列的首项1a ,即可得到答案. 【详解】设这位公公的第n 个儿子的年龄为n a ,由题可知{}n a 是等差数列,设公差为d ,则3d =-,又由9207S =,即91989(3)2072S a ⨯=+⨯-=,解得135a =, 即这位公公的长儿的年龄为35岁. 故选C . 【点睛】本题主要考查了等差数列前n 项和公式的应用,其中解答中认真审题,熟练应用等差数列的前n 项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.18.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( )A .20,3⎛⎤ ⎥⎝⎦B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,, 所以f (x )在(0,23π)上存在零点, 即223ππω<,得到ω34>. 故答案为 33,42⎛⎤⎥⎝⎦故选D 【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.19.《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.43钱B.73钱C.83钱D.103钱【答案】C【解析】【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,由题意求得a =﹣6d,结合a﹣2d+a﹣d+a+a+d+a+2d=5a=10求得a=2,则答案可求.【详解】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=10,∴a=2,则a﹣2d=a48 333aa+==.故选:C.【点睛】本题考查等差数列的通项公式,考查实际应用,正确设出等差数列是计算关键,是基础的计算题.20.执行如图所示的程序框图,若输入,则输出的S的值是A.B.C.D.【答案】B【解析】【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果.【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,;第三次运算:,;第四次运算:,;第五次运算:,;第六次运算:,;第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。
十年(2014-2023)高考数学真题分项汇编文科专题5 数列小题(文科)(解析版)
n 项和
Sn,公差
d≠0, a1 d
1 .记
b1=S2,
bn+1=Sn+2–S2n, n N ,下列等式不可能成立的是
( )
A.2a4=a2+a6
B.2b4=b2+b6
C. a42 a2a8
D. b42 b2b8
【答案】D
解析:对于 A,因为数列an 为等差数列,所以根据等差数列的下标和性质,由 4 4 2 6 可得,
由 an
a1
n
1 d
0
可得 n
1
a1 d
,取
N0
1
a1 d
1 ,则当 n
N0
时, an
0,
所以,“an 是递增数列” “存在正整数 N0 ,当 n N0 时, an 0 ”;
若存在正整数 N0 ,当 n N0 时, an 0 ,取 k N 且 k N0 , ak 0 ,
假设 d
0 ,令 an
Sn =
1 2
An An+1 ×tan q Bn Bn+1 ,都为定值,所以 Sn+1 - Sn 为定值.故选 A.
3.(2022 高考北京卷·第 15 题)己知数列an 各项均为正数,其前 n 项和 Sn 满足 an Sn 9(n 1, 2,) .给
出下列四个结论:
①an 的第 2 项小于 3; ②an 为等比数列;
2a4 a2 a6 ,A 正确;
对于 B,由题意可知, bn1 S2n2 S2n a2n1 a2n2 , b1 S2 a1 a2 ,
∴ b2 a3 a4 , b4 a7 a8 , b6 a11 a12 , b8 a15 a16 .
∴ 2b4 2 a7 a8 , b2 b6 a3 a4 a11 a12 .
高考数学等比数列习题及答案 百度文库
一、等比数列选择题1.已知单调递增数列{}n a 的前n 项和n S 满足()()*21n n n S a a n =+∈N,且0nS>,记数列{}2nn a ⋅的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( )A .7B .8C .10D .112.等比数列{}n a 中11a =,且14a ,22a ,3a 成等差数列,则()*na n N n∈的最小值为( ) A .1625B .49C .12D .13.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>04.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-B .3-C .3D .85.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a =( ) A .2B .4C .8D .166.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 7.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )A .15B .10C .5D .38.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑.其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”.注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为( )A .3B .12C .24D .489.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .210.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( ) A .9 B .10C .11D .1211.题目文件丢失!12.已知{}n a 是各项均为正数的等比数列,121a a +=,344a a +=,则5678a a a a +++=( )A .80B .20C .32D .255313.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009 B .1010 C .1011 D .2020 14.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( ) A .4B .-4C .±4D .不确定15.已知{}n a 为等比数列.下面结论中正确的是( ) A .1322a a a +≥B .若13a a =,则12a a =C .2221322a a a +≥D .若31a a >,则42a a >16.已知正项等比数列{}n a 满足112a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( ) A .312或112B .312 C .15D .617.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的中间一层共有灯( ) A .3盏B .9盏C .27盏D .81盏18.已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,则k =( ) A .2B .3C .4D .519.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .8B .7C .6D .420.已知等比数列{}n a 的前5项积为32,112a <<,则35124a a a ++的取值范围为( ) A .73,2⎡⎫⎪⎢⎣⎭B .()3,+∞C .73,2⎛⎫ ⎪⎝⎭D .[)3,+∞二、多选题21.题目文件丢失! 22.题目文件丢失!23.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列24.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1425.计算机病毒危害很大,一直是计算机学家研究的对象.当计算机内某文件被病毒感染后,该病毒文件就不断地感染其他未被感染文件.计算机学家们研究的一个数字为计算机病毒传染指数0,C 即一个病毒文件在一分钟内平均所传染的文件数,某计算机病毒的传染指数02,C =若一台计算机有510个可能被感染的文件,如果该台计算机有一半以上文件被感染,则该计算机将处于瘫疾状态.该计算机现只有一个病毒文件,如果未经防毒和杀毒处理,则下列说法中正确的是( )A .在第3分钟内,该计算机新感染了18个文件B .经过5分钟,该计算机共有243个病毒文件C .10分钟后,该计算机处于瘫痪状态D .该计算机瘫痪前,每分钟内新被感染的文件数成公比为2的等比数列26.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-= B .12n n aC .21nn S =-D .121n n S -=-27.已知数列是{}n a是正项等比数列,且3723a a +=,则5a 的值可能是( ) A .2B .4C .85D .8328.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中正确的是( )A .1n S ⎧⎫⎨⎬⎩⎭是等差数列B .13n S n=C .13(1)n a n n =--D .{}3n S 是等比数列29.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a ⋅>,87101a a -<-,则下列结论正确的是( ) A .01q << B .791a a ⋅> C .n S 的最大值为9SD .n T 的最大值为7T30.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍31.已知数列{}n a 前n 项和为n S .且1a p =,122(2)n n S S p n --=≥(p 为非零常数)测下列结论中正确的是( ) A .数列{}n a 为等比数列 B .1p =时,41516S =C .当12p =时,()*,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+ 32.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( )A .此人第二天走了九十六里路B .此人第三天走的路程站全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了42里路33.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )A .等差数列不可能是收敛数列B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-C .若数列{}n x 满足sin cos 22n x n n ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,则{}n x 是收敛数列 D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫⎨⎬⎩⎭一定是收敛数列34.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .954S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 35.对于数列{}n a ,若存在数列{}nb 满足1n n nb a a =-(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;B .若31n a n =-,则其“倒差数列”有最大值;C .若31n a n =-,则其“倒差数列”有最小值;D .若112nn a ⎛⎫=-- ⎪⎝⎭,则其“倒差数列”有最大值.【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.B 【分析】由数列n a 与n S 的关系转化条件可得11n n a a -=+,结合等差数列的性质可得n a n =,再由错位相减法可得()1122n n T n +=-⋅+,即可得解.【详解】由题意,()()*21n n n S a a n N=+∈,当2n ≥时,()11121n n n S a a ---=+,所以()()11122211n n n n n n n a S S a a a a ---=-=+-+, 整理得()()1110n n n n a a a a --+--=,因为数列{}n a 单调递增且0n S >,所以110,10n n n n a a a a --+≠--=,即11n n a a -=+, 当1n =时,()11121S a a =+,所以11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列, 所以n a n =,所以1231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅,所以()()234111212222222212212n n n n n n T n n n +++--=++++⋅⋅⋅+-⋅=-⋅=-⋅--,所以()1122n n T n +=-⋅+,所以876221538T =⨯+=,987223586T =⨯+=,所以2020n T >成立的n 的最小值为8. 故选:B. 【点睛】关键点点睛:解决本题的关键是数列n a 与n S 关系的应用及错位相减法的应用. 2.D 【分析】首先设等比数列{}n a 的公比为(0)q q ≠,根据14a ,22a ,3a 成等差数列,列出等量关系式,求得2q ,比较()*na n N n∈相邻两项的大小,求得其最小值. 【详解】在等比数列{}n a 中,设公比(0)q q ≠, 当11a =时,有14a ,22a ,3a 成等差数列,所以21344a a a =+,即244q q =+,解得2q,所以12n na ,所以12n n a n n-=,12111n n a n n a n n++=≥+,当且仅当1n =时取等号, 所以当1n =或2n =时,()*n a n N n∈取得最小值1,故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的通项公式,三个数成等差数列的条件,求数列的最小项,属于简单题目. 3.A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 4.A 【分析】根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 5.C 【分析】根据等比数列的通项公式将53134a a a =+化为用基本量1,a q 来表示,解出q ,然后再由前4项和为30求出1a ,再根据通项公式即可求出3a . 【详解】设正数的等比数列{}n a 的公比为()0q q >,因为53134a a a =+,所以4211134a q a q a =+,则42340q q --=,解得24q =或21q =-(舍),所以2q,又等比数列{}n a 的前4项和为30,所以23111130a a q a q a q +++=,解得12a =, ∴2318a a q ==.故选:C . 6.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅,又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 7.A 【分析】根据等比数列的性质,由对数的运算,即可得出结果. 【详解】 因为478a a ⋅=, 则()()52212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+⋅++=()2475log 15a a =⋅=.故选:A. 8.C 【分析】题意说明从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,由系数前n 项和公式求得1a ,再由通项公式计算出中间项. 【详解】根据题意,可知从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,则有()7171238112a S ⋅-==-,解得13a =,中间层灯盏数34124a a q ==, 故选:C. 9.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 10.C 【分析】根据递推关系可得数列{}1n a -是以1为首项,2为公比的等比数列,利用等比数列的通项公式可得121n n a -=+,即求.【详解】因为121n n a a +=-,所以()1121n n a a +-=-,即1121n n a a +-=-, 所以数列{}1n a -是以1为首项,2为公比的等比数列.则112n n a --=,即121n n a -=+.因为513n a >,所以121513n -+>,所以12512n ->,所以10n >. 故选:C11.无12.A 【分析】由条件求出公比q ,再利用前4项和和公比求5678a a a a +++的值. 【详解】根据题意,由于{}n a 是各项均为正数的等比数列,121a a +=,()234124a a q a a +==+,∴24q =,0q >,2q则()()456781234161480a a a a q a a a a +++=+++=+=.故选:A 13.C 【分析】根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到210111a =,再利用11,01a q ><<求解即可.【详解】根据题意:2022122022...a a a a =, 所以122021...1a a a =,因为{a n }等比数列,设公比为q ,则0q >,所以212021220201011...1a a a a a ====,因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C. 【点睛】关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关键是根据定义和等比数列性质得出210111a =以及11,01a q ><<进行判断.14.A 【分析】根据等比中项的性质有216x =,而由等比通项公式知2x q =,即可求得x 的值. 【详解】由题意知:216x =,且若令公比为q 时有20x q =>,∴4x =, 故选:A 15.C 【分析】取特殊值可排除A ,根据等比数列性质与基本不等式即可得C 正确,B ,D 错误. 【详解】解:设等比数列的公比为q ,对于A 选项,设1231,2,4a a a =-==-,不满足1322a a a +≥,故错误;对于B 选项,若13a a =,则211a a q =,则1q =±,所以12a a =或12a a =-,故错误;对于C 选项,由均值不等式可得2221313222a a a a a +≥⋅=,故正确;对于D 选项,若31a a >,则()2110a q ->,所以()14221a a a q q -=-,其正负由q 的符号确定,故D 不确定. 故选:C. 16.B 【分析】首先利用等比数列的性质求3a 和公比q ,再根据公式求5S . 【详解】正项等比数列{}n a 中,2432a a a =+∴,2332a a =+∴,解得32a =或31a =-(舍去) 又112a =, 2314a q a ==, 解得2q,5151(132)(1)312112a q S q --∴===--,故选:B 17.C 【分析】根据题意,设塔的底层共有x 盏灯,分析可得每层灯的数目构成以x 为首项,13为公比的等比数列,由等比数列的前n 项和公式可得x 的值,即可得答案. 【详解】根据题意,设塔的底层共有x 盏灯,则每层灯的数目构成以x 为首项,13为公比的等比数列,则有51(1)3363113x S ⨯-==-, 解可得:243x =,所以中间一层共有灯21243()273⨯=盏. 故选:C 【点睛】思路点睛:要求中间一层的灯的数量,只需求等比数列的首项,根据等比数列的和求出数列的首项即可. 18.B 【分析】本题首先可设公比为q ,然后根据132185k a a a ++++=得出()2284k q a a ++=,再然后根据24242k a a a +++=求出2q,最后根据等比数列前n 项和公式即可得出结果. 【详解】设等比数列{}n a 的公比为q , 则132112285k k a a a a a a q q +++++++==,即()2285184k q a a ++=-=,因为24242k a a a +++=,所以2q,则()21123221112854212712k k k a a a a a ++⨯-+++++=+==-,即211282k +=,解得3k =, 故选:B. 【点睛】关键点点睛:本题考查根据等比数列前n 项和求参数,能否根据等比数列项与项之间的关系求出公比是解决本题的关键,考查计算能力,是中档题. 19.A 【分析】利用已知条件化简,转化求解即可. 【详解】已知{}n a 为等比数列,1322a a a ∴=,且22a =,满足13123321231322111124a a a a a S a a a a a a a +++++=+===,则S 3=8. 故选:A . 【点睛】 思路点睛:(1)先利用等比数列的性质,得1322a a a ∴=,(2)通分化简312311124S a a a ++==. 20.C 【分析】由等比数列性质求得3a ,把35124a a a ++表示为1a 的函数,由函数单调性得取值范围. 【详解】因为等比数列{}n a 的前5项积为32,所以5332a =,解得32a =,则235114a a a a ==,35124a a a ++ 1111a a =++,易知函数()1f x x x=+在()1,2上单调递增,所以35173,242a a a ⎛⎫++∈ ⎪⎝⎭, 故选:C . 【点睛】关键点点睛:本题考查等比数列的性质,解题关键是选定一个参数作为变量,把待求值的表示为变量的函数,然后由函数的性质求解.本题蝇利用等比数列性质求得32a =,选1a 为参数.二、多选题 21.无 22.无23.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错;选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 24.BD 【分析】设设等比数列{}n a 的公比为q ,则0q >,由已知得1112114a a ++=,解方程计算即可得答案. 【详解】解:设等比数列{}n a 的公比为q ,则0q >,因为21531a a a ==,2311a a q == , 所以51115135151511111112111114a a a a a a a a a a a a a ++=++=++=+=+++=, 解得1412a q =⎧⎪⎨=⎪⎩或1142.a q ⎧=⎪⎨⎪=⎩, 当14a =,12q =时,551413121412S ⎛⎫- ⎪⎝⎭==-,数列{}n a 是递减数列;当114a =,2q 时,5314S =,数列{}n a 是递增数列; 综上,5314S =. 故选:BD. 【点睛】本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为1112114a a ++=,进而解方程计算. 25.ABC 【分析】设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则()121n n a S +=+,且12a =,可得123n n a -=⨯,即可判断四个选项的正误.【详解】设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则()121n n a S +=+,且12a =,由()121n n a S +=+可得()121n n a S -=+,两式相减得:12n n n a a a +=-,所以13n n a a +=,所以每分钟内新感染的病毒构成以12a =为首项,3为公比的等比数列,所以123n n a -=⨯,在第3分钟内,该计算机新感染了3132318a -=⨯=个文件,故选项A 正确;经过5分钟,该计算机共有()551234521311324313a a a a a ⨯-+++++=+==-个病毒文件,故选项B 正确;10分钟后,计算机感染病毒的总数为()101051210213111310132a a a ⨯-++++=+=>⨯-,所以计算机处于瘫痪状态,故选项C 正确; 该计算机瘫痪前,每分钟内新被感染的文件数成公比为3的等比数列,故选项D 不正确; 故选:ABC 【点睛】关键点点睛:解决本题的关键是读懂题意,得出第1n +分钟之内新感染的文件数为1n a +与 前n 分钟内新感染的病毒文件数之和为n S 之间的递推关系为()121n n a S +=+,从而求得n a .26.BC 【分析】根据数列的增减性由所给等式求出1a d 、,写出数列的通项公式及前n 项和公式,即可进行判断. 【详解】数列{a n }为单调递增的等比数列,且24100a a +=>,0n a ∴>23464a a a =,2364a ∴=,解得34a =,2410a a +=,4410q q∴+=即22520q q -+=,解得2q或12, 又数列{a n }为单调递增的等比数列,取2q,312414a a q ===, 12n na ,212121n n n S -==--,()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列通项公式基本量的求解、等比数列的增减性、等比数列求和公式,属于基础题. 27.ABD 【分析】根据基本不等式的相关知识,结合等比数列中等比中项的性质,求出5a 的范围,即可得到所求. 【详解】解:依题意,数列是{}n a 是正项等比数列,30a ∴>,70a >,50a >,∴2373752323262a a a a a +=, 因为50a >,所以上式可化为52a ,当且仅当3a =,7a = 故选:ABD . 【点睛】本题考查了等比数列的性质,考查了基本不等式,考查分析和解决问题的能力,逻辑思维能力.属于中档题. 28.ABD 【分析】由1(2)n n n a S S n -=-≥代入已知式,可得{}n S 的递推式,变形后可证1n S ⎧⎫⎨⎬⎩⎭是等差数列,从而可求得n S ,利用n S 求出n a ,并确定3n S 的表达式,判断D . 【详解】因为1(2)n n n a S S n -=-≥,1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确;公差为3,又11113S a ==,所以133(1)3n n n S =+-=,13n S n =.B 正确; 2n ≥时,由1n n n a S S -=-求得13(1)n a n n =-,但13a =不适合此表达式,因此C 错;由13n S n =得1311333n n n S +==⨯,∴{}3n S 是等比数列,D 正确. 故选:ABD . 【点睛】本题考查等差数列的证明与通项公式,考查等比数列的判断,解题关键由1(2)n n n a S S n -=-≥,化已知等式为{}n S 的递推关系,变形后根据定义证明等差数列.【分析】根据题意71a >,81a <,再利用等比数列的定义以及性质逐一判断即可. 【详解】因为11a >,781a a ⋅>,87101a a -<-, 所以71a >,81a <,所以01q <<,故A 正确.27981a a a =<⋅,故B 错误;因为11a >,01q <<,所以数列{}n a 为递减数列,所以n S 无最大值,故C 错误; 又71a >,81a <,所以n T 的最大值为7T ,故D 正确. 故选:AD 【点睛】本题考查了等比数列的性质、定义,考查了基本知识的掌握情况,属于基础题. 30.BCD 【分析】设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q = 的等比数列,由6=378S 求得首项,然后逐一分析四个选项得答案. 【详解】解:根据题意此人每天行走的路程成等比数列, 设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列. 所以661161[1()](1)2=3781112a a q S q --==--,解得1192a =. 选项A:5561119262a a q ⎛⎫==⨯= ⎪⎝⎭,故A 错误, 选项B:由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确. 选项C:211192962a a q ==⨯=,而6194.54S =,9694.5 1.5-=,故C 正确.选项D:2123111(1)192(1)33624a a a a q q ++=++=⨯++=, 则后3天走的路程为378336=42-, 而且336428÷=,故D 正确. 故选:BCD 【点睛】本题考查等比数列的性质,考查等比数列的前n 项和,是基础题.【分析】由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 错误;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】由122(2)n n S S p n --=≥,得22p a =. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确; 由A 可得1p =时,44111521812S -==-,故B 错误; 由A 可得m n m n a a a +⋅=等价为2121122m n m n p p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭, 则3856a a a a +>+,即D 不正确; 故选:AC. 【点睛】本题考查等比数列的通项公式和求和公式,考查数列的递推关系式,考查学生的计算能力,属于中档题. 32.ACD 【分析】若设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列,由6378S =求得首项,然后分析4个选项可得答案.【详解】解:设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列, 因为6378S =,所以1661(1)2=378112a S -=-,解得1192a =,对于A ,由于21192962a =⨯=,所以此人第二天走了九十六里路,所以A 正确; 对于B ,由于 3148119248,43788a =⨯=>,所以B 不正确;对于C ,由于378192186,1921866-=-=,所以此人第一天走的路程比后五天走的路程多六里,所以C 正确; 对于D ,由于4561111924281632a a a ⎛⎫++=⨯++= ⎪⎝⎭,所以D 正确, 故选:ACD 【点睛】此题考查等比数的性质,等比数数的前项n 的和,属于基础题. 33.BCD 【分析】根据等差数列前n 和公式以及收敛数列的定义可判断A ;根据等比数列的通项公式以及收敛的定义可判断B ;根据收敛的定义可判断C ;根据等差数列前n 和公式以及收敛数列的定义可判断D. 【详解】当0n S >时,取2111222222n d d dd d d S n a n n n a n a ⎛⎫⎛⎫=+-=+-≥+- ⎪ ⎪⎝⎭⎝⎭, 为使得1n S r >,所以只需要1122d d n a r+->1112222da ra dr rn N d dr -+-+⇒>==. 对于A ,令1n x =,则存在1a =,使0n x a r -=<,故A 错; 对于B ,11n n x x q -=,若1q >,则对任意正数r ,当11log 1q r n x ⎛⎫+>+ ⎪⎪⎝⎭时, 1n x r >+,所以不存在正整数N 使得定义式成立, 若1q =,显然符合;若1q =-为摆动数列()111n n x x -=-,只有1x ±两个值,不会收敛于一个值,所以舍去;若()1,1q ∈-,取0a =,1log 11q rN x ⎡⎤=++⎢⎥⎣⎦, 当n N >时,11110n n rx x q x r x --=<=,故B 正确; 对于C ,()1sin cos sin 0222n x n n n πππ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,符合; 对于D ,()11n x x n d =+-,2122n d d S n x n ⎛⎫=+- ⎪⎝⎭, 当0d >时,n S 单调递增并且可以取到比1r更大的正数,当n N>=时,110n n r S S -=<,同理0d <,所以D 正确. 故选:BCD 【点睛】关键点点睛:解题的关键是理解收敛数列的定义,借助等差数列前n 和公式以及等比数列的通项公式求解,属于中档题. 34.ACD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=,故C正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-,可得22212201920202019201920202019a a a a a a a a+++==,故D 正确;故选:ACD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题. 35.ACD 【分析】根据新定义进行判断. 【详解】A .若数列{}n a 是单增数列,则11111111()(1)n n n n n n n n n n b b a a a a a a a a ------=--+=-+, 虽然有1n n a a ->,但当1110n n a a -+<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确;B .31n a n =-,则13131n b n n =---,易知{}n b 是递增数列,无最大值,B 错; C .31n a n =-,则13131n b n n =---,易知{}n b 是递增数列,有最小值,最小值为1b ,C 正确; D .若112n n a ⎛⎫=-- ⎪⎝⎭,则111()121()2n n n b =-----, 首先函数1y x x=-在(0,)+∞上是增函数, 当n 为偶数时,11()(0,1)2n n a =-∈,∴10n n nb a a =-<, 当n 为奇数时,11()2n n a =+1>,显然n a 是递减的,因此1n n n b a a =-也是递减的, 即135b b b >>>,∴{}n b 的奇数项中有最大值为13250236b =-=>, ∴156b =是数列{}(*)n b n N ∈中的最大值.D 正确. 故选:ACD .【点睛】本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值.。
2024年高考真题汇总 数列(解析版)
专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成a 1和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由S 9=1,根据等差数列的求和公式,S 9=9a 1+9×82d =1⇔9a 1+36d =1,又a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =29(9a 1+36d )=29.故选:D 方法二:利用等差数列的性质根据等差数列的性质,a 1+a 9=a 3+a 7,由S 9=1,根据等差数列的求和公式,S 9=9(a 1+a 9)2=9(a 3+a 7)2=1,故a 3+a 7=29.故选:D 方法三:特殊值法不妨取等差数列公差d =0,则S 9=1=9a 1⇒a 1=19,则a 3+a 7=2a 1=29.故选:D2(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.2【答案】B【分析】由S 5=S 10结合等差中项的性质可得a 8=0,即可计算出公差,即可得a 1的值.【详解】由S 10-S 5=a 6+a 7+a 8+a 9+a 10=5a 8=0,则a 8=0,则等差数列a n 的公差d =a 8-a 53=-13,故a 1=a 5-4d =1-4×-13 =73.故选:B .3(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1=2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;【答案】C2024年高考真题【分析】根据题意分析可得n 1=eS -12.1n 2=eS -12.2,讨论S 与1的大小关系,结合指数函数单调性分析判断.【详解】由题意可得d 1=S -1ln n 1=2.1d 2=S -1ln n 2=2.2 ,解得n 1=e S -12.1n 2=e S -12.2,若S >1,则S -12.1>S -12.2,可得e S -12.1>e S -12.2,即n 1>n 2;若S =1,则S -12.1=S -12.2=0,可得n 1=n 2=1;若S <1,则S -12.1<S -12.2,可得e S -1 2.1<e S -12.2,即n 1<n 2;结合选项可知C 正确,ABD 错误;故选:C .二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.【答案】95【分析】利用等差数列通项公式得到方程组,解出a 1,d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列a n 为等差数列,则由题意得a 1+2d +a 1+3d =73a 1+d +a 1+4d =5,解得a 1=-4d =3 ,则S 10=10a 1+10×92d =10×-4 +45×3=95.故答案为:95.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1q n -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1q n -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m +2 .下面证明,对1≤i <j ≤4m +2,如果下面两个命题同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列:命题1:i ∈A ,j ∈B 或i ∈B ,j ∈A ;命题2:j -i ≠3.我们分两种情况证明这个结论.第一种情况:如果i ∈A ,j ∈B ,且j -i ≠3.此时设i =4k 1+1,j =4k 2+2,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+1<4k 2+2,即k 2-k 1>-14,故k 2≥k 1.此时,由于从数列1,2,...,4m +2中取出i =4k 1+1和j =4k 2+2后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+2,4k 1+3,4k 1+4,4k 1+5 ,4k 1+6,4k 1+7,4k 1+8,4k 1+9 ,...,4k 2-2,4k 2-1,4k 2,4k 2+1 ,共k 2-k 1组;③4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m +2是i ,j -可分数列.第二种情况:如果i ∈B ,j ∈A ,且j -i ≠3.此时设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+2<4k 2+1,即k 2-k 1>14,故k 2>k 1.由于j -i ≠3,故4k 2+1 -4k 1+2 ≠3,从而k 2-k 1≠1,这就意味着k 2-k 1≥2.此时,由于从数列1,2,...,4m +2中取出i =4k 1+2和j =4k 2+1后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+1,3k 1+k 2+1,2k 1+2k 2+1,k 1+3k 2+1 ,3k 1+k 2+2,2k 1+2k 2+2,k 1+3k 2+2,4k 2+2 ,共2组;③全体4k 1+p ,3k 1+k 2+p ,2k 1+2k 2+p ,k 1+3k 2+p ,其中p =3,4,...,k 2-k 1,共k 2-k 1-2组;④4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k 2-k 1-2个行,4个列的数表以后,4个列分别是下面这些数:4k 1+3,4k 1+4,...,3k 1+k 2 ,3k 1+k 2+3,3k 1+k 2+4,...,2k 1+2k 2 ,2k 1+2k 2+3,2k 1+2k 2+3,...,k 1+3k 2 ,k 1+3k 2+3,k 1+3k 2+4,...,4k 2 .可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k 1+1,4k 1+2,...,4k 2+2 中除开五个集合4k 1+1,4k 1+2 ,3k 1+k 2+1,3k 1+k 2+2 ,2k 1+2k 2+1,2k 1+2k 2+2 ,k 1+3k 2+1,k 1+3k 2+2 ,4k 2+1,4k 2+2 中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k 1+2和4k 2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m +2是i ,j -可分数列.至此,我们证明了:对1≤i <j ≤4m +2,如果前述命题1和命题2同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列.然后我们来考虑这样的i ,j 的个数.首先,由于A ∩B =∅,A 和B 各有m +1个元素,故满足命题1的i ,j 总共有m +1 2个;而如果j -i =3,假设i ∈A ,j ∈B ,则可设i =4k 1+1,j =4k 2+2,代入得4k 2+2 -4k 1+1 =3.但这导致k 2-k 1=12,矛盾,所以i ∈B ,j ∈A .设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m ,则4k 2+1 -4k 1+2 =3,即k 2-k 1=1.所以可能的k 1,k 2 恰好就是0,1 ,1,2 ,...,m -1,m ,对应的i ,j 分别是2,5 ,6,9 ,...,4m -2,4m +1 ,总共m 个.所以这m +1 2个满足命题1的i ,j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的i ,j 的个数为m +1 2-m .当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n 2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV ⋅UW 1-UV ⋅UW UV ⋅UW2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2 c 2+d 2 -ac +bd 2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc 2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m.而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1=12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1=12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2 .这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n -121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k =x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.(1)求a n 的通项公式;(2)求数列S n 的通项公式.【答案】(1)a n =53n -1(2)3253 n -32【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求S n .【详解】(1)因为2S n =3a n +1-3,故2S n -1=3a n -3,所以2a n =3a n +1-3a n n ≥2 即5a n =3a n +1故等比数列的公比为q =53,故2a 1=3a 2-3=3a 1×53-3=5a 1-3,故a 1=1,故a n =53n -1.(2)由等比数列求和公式得S n =1×1-53 n1-53=3253 n -32.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .【答案】(1)a n =4⋅(-3)n -1(2)T n =(2n -1)⋅3n +1【分析】(1)利用退位法可求a n 的通项公式.(2)利用错位相减法可求T n .【详解】(1)当n =1时,4S 1=4a 1=3a 1+4,解得a 1=4.当n ≥2时,4S n -1=3a n -1+4,所以4S n -4S n -1=4a n =3a n -3a n -1即a n =-3a n -1,而a 1=4≠0,故a n ≠0,故an a n -1=-3,∴数列a n 是以4为首项,-3为公比的等比数列,所以a n =4⋅-3 n -1.(2)b n =(-1)n -1⋅n ⋅4⋅(-3)n -1=4n ⋅3n -1,所以T n =b 1+b 2+b 3+⋯+b n =4⋅30+8⋅31+12⋅32+⋯+4n ⋅3n -1故3T n =4⋅31+8⋅32+12⋅33+⋯+4n ⋅3n所以-2T n =4+4⋅31+4⋅32+⋯+4⋅3n -1-4n ⋅3n=4+4⋅31-3n -11-3-4n ⋅3n =4+2⋅3⋅3n -1-1 -4n ⋅3n=(2-4n )⋅3n -2,∴T n =(2n -1)⋅3n +1.10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .【答案】(1)S n =2n -1(2)①证明见详解;②S ni =1b i =3n -1 4n+19【分析】(1)设等比数列a n 的公比为q >0,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知a k =2k -1,b n =k +1,b n -1=k 2k -1 ,利用作差法分析证明;②根据题意结合等差数列求和公式可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1,再结合裂项相消法分析求解.【详解】(1)设等比数列a n 的公比为q >0,因为a 1=1,S 2=a 3-1,即a 1+a 2=a 3-1,可得1+q =q 2-1,整理得q 2-q -2=0,解得q =2或q =-1(舍去),所以S n =1-2n1-2=2n -1.(2)(i )由(1)可知a n =2n -1,且k ∈N *,k ≥2,当n =a k +1=2k≥4时,则a k =2k -1<2k -1=n -1n -1=a k +1-1<a k +1 ,即a k <n -1<a k +1可知a k =2k -1,b n =k +1,b n -1=b a k+a k +1-a k -1 ⋅2k =k +2k 2k -1-1 =k 2k -1 ,可得b n -1-a k ⋅b n =k 2k -1 -k +1 2k -1=k -1 2k -1-k ≥2k -1 -k =k -2≥0,当且仅当k =2时,等号成立,所以b n -1≥a k ⋅b n ;(ii )由(1)可知:S n =2n -1=a n +1-1,若n =1,则S 1=1,b 1=1;若n ≥2,则a k +1-a k =2k -1,当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列,可得∑2k -1i =2k -1b i =k ⋅2k -1+2k 2k -12k -1-1 2=k ⋅4k -1=193k -1 4k -3k -4 4k -1 ,所以∑S ni =1b i =1+195×42-2×4+8×43-5×42+⋅⋅⋅+3n -1 4n -3n -4 4n -1=3n -1 4n+19,且n =1,符合上式,综上所述:∑Sni =1b i =3n -1 4n +19.【点睛】关键点点睛:1.分析可知当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列;2.根据等差数列求和分析可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1.12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.【答案】(1)x |1<x <2 (2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【详解】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.266【答案】A【分析】令n =1得S 2=1,当n ≥2时,结合题干作差得S n +1-S n -1=2n -1,从而利用累加法求解S 24=即可.【详解】∵a 1=S 1=1,又∵S n +S n +1=n 2+1,当n =1时,S 1+S 2=12+1=2,解得S 2=1;当n ≥2时,S n -1+S n =(n -1)2+1,作差得S n +1-S n -1=2n -1,∴S 24=S 24-S 22 +S 22-S 20 +⋯+S 4-S 2 +S 2=223+21+⋯+3 -11+1=276.故选:A2(2024·河北张家口·三模)已知数列a n的前n项和为S n,且满足a1=1,a n+1=a n+1,n为奇数2a n,n为偶数,则S100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-103【答案】A【分析】分奇数项和偶数项求递推关系,然后记b n=a2n+a2n-1,n≥1,利用构造法求得b n=6×2n-1-3,然后分组求和可得.【详解】因为a1=1,a n+1=a n+1,n为奇数2a n,n为偶数 ,所以a2k+2=a2k+1+1=2a2k+1,a2k+1=2a2k=2a2k-1+2,k∈N*,且a2=2,所以a2k+2+a2k+1=2a2k+a2k-1+3,记b n=a2n+a2n-1,n≥1,则b n+1=2b n+3,所以b n+1+3=2b n+3,所以b n+3是以b1+3=a1+a2+3=6为首项,2为公比的等比数列,所以b n+3=6×2n-1,b n=6×2n-1-3,记b n的前n项和为T n,则S100=T50=6×20+6×21+6×22+⋅⋅⋅+6×249-3×50=3×251-156.故选:A【点睛】关键点点睛:本题解题关键在于先分奇数项和偶数项求递推公式,然后再并项得b n的递推公式,利用构造法求通项,将问题转化为求b n的前50项和.3(2024·山东日照·三模)设等差数列b n的前n项和为S n,若b3=2,b7=6,则S9=()A.-36B.36C.-18D.18【答案】B【分析】利用等差数列的前n项和公式,结合等差数列的性质求解.【详解】解:S9=b1+b9×92=b3+b7×92=36,故选:B.4(2024·湖北武汉·二模)已知等差数列a n的前n项和为S n,若S3=9,S9=81,则S12=() A.288 B.144 C.96 D.25【答案】B【分析】利用等差数列的前n项和列方程组求出a1,d,进而即可求解S12.【详解】由题意S3=3a1+3×22d=9S9=9a1+9×82d=81,即a1+d=3a1+4d=9,解得a1=1d=2.于是S12=12×1+12×112×2=144.故选:B.5(2024·江西赣州·二模)在等差数列a n中,a2,a5是方程x2-8x+m=0的两根,则a n的前6项和为()A.48B.24C.12D.8【答案】B【分析】利用韦达定理确定a2+a5=8,根据等差数列性质有a2+a5=a1+a6=8,在应用等差数列前n项和公式即可求解.【详解】因为a 2,a 5是方程x 2-8x +m =0的两根,所以a 2+a 5=8,又因为a n 是等差数列,根据等差数列的性质有:a 2+a 5=a 1+a 6=8,设a n 的前6项和为S 6,则S 6=a 1+a 6 ×62=3×8=24.故选:B6(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.64【答案】D【分析】根据题意,由条件可得a n +1=4a n ,再由等比数列的定义即可得到结果.【详解】由2n a n +1-2n +2a n =0可得a n +1=4a n ,则a 2024a 2021=4×4×4a 2021a 2021=64.故选:D7(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <100【答案】C【分析】由题意可得H (3)=7,判断A ;归纳得到H n =2n -1,结合等差数列以及等比数列的概念可判断B ,C ;求出H 7 ,判断D .【详解】由题意知若有1个圆盘,则需移动一次:若有2个圆盘,则移动情况为:A →C ,A →B ,C →B ,需移动3次;若有3个圆盘,则移动情况如下:A →B ,A →C ,B →C ,A →B ,C →A ,C →B ,A →B ,共7次,故H (3)=7,A 错误;由此可知若有n 个圆盘,设至少移动a n 次,则a n =2a n -1+1,所以a n +1=2a n -1+1 ,而a 1+1=1+1=2≠0,故a n +1 为等比数列,故a n =2n -1即H n =2n -1,该式不是n 的一次函数,则H (n ) 不为等差数列,B 错误;又H n =2n -1,则H n +1=2n ,H n +1 +1H n +1=2,则H (n )+1 为等比数列,C 正确,H 7 =27-1=127>100,D 错误,故选:C8(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.12【答案】A【分析】分别利用等比数列的通项公式和前n 项和公式,解方程组可得q =1或q =-12.【详解】设等比数列a n 的首项为a 1,公比为q ,依题意得a 3=a 1q 2=3S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=9 ,解得q =1或q =-12.故选:A .9(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.88【答案】B【分析】将a 1,a 4,a 9用a 1和d 表示,计算出a 6的值,再由S 11=11a 6得S 11的值.【详解】依题意,a n 是等差数列,设其公差为d ,由a 1+2a 4+3a 9=24,所以a 1+2a 1+3d +3a 1+8d =6a 1+30d =6a 6=24,即a 6=4,S 11=11a 1+10×112d =11a 1+5d =11a 6=11×4=44,故选:B .10(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列【答案】C【分析】对于ABD :举反例说明即可;对于C :根据题意分析可得a m 2>a m 1,结合单调性可得m 2>m 1,即可得结果.【详解】对于选项AB :例题a n =1,可知a n 即为等差数列也为等比数列,则a 1+a 2=2,但不存在m ∈N *,使得a m =2,所以a n 不为内和数列,故AB 错误;对于选项C :因为a n >0,对任意n 1,n 2∈N *,n 1<n 2,可知存在m 1,m 2∈N *,使得a m 1=a 1+a 2+a 3+⋯+a n 1,a m 2=a 1+a 2+a 3+⋯+a n 2,则a m 2-a m 1=a n 1+1+a n 1+2+⋯+a n 2>0,即a m 2>a m 1,且内和数列a n 为递增数列,可知m 2>m 1,所以其伴随数列b n 为递增数列,故C 正确;对于选项D :例如2,1,3,4,5,⋅⋅⋅,显然a n 是所有正整数的排列,可知a n 为内和数列,且a n 的伴随数列为递增数列,但an 不是递增数列,故D 错误;故选:C.【点睛】方法点睛:对于新定义问题,要充分理解定义,把定义转化为已经学过的内容,简化理解和运算.11(2024·广东茂名·一模)已知T n为正项数列a n的前n项的乘积,且a1=2,T2n=a n+1n,则a5=() A.16 B.32 C.64 D.128【答案】B【分析】利用给定的递推公式,结合对数运算变形,再构造常数列求出通项即可得解.【详解】由T2n=a n+1n,得T2n+1=a n+2n+1,于是a2n+1=T2n+1T2n=a n+2n+1a n+1n,则a n n+1=a n+1n,两边取对数得n lg a n+1=(n+1)lg a n,因此lg a n+1n+1=lg a nn,数列lg a nn是常数列,则lg a nn=lg a11=lg2,即lg a n=n lg2=lg2n,所以a n=2n,a5=32.故选:B12(2024·湖南常德·一模)已知等比数列a n中,a3⋅a10=1,a6=2,则公比q为()A.12B.2 C.14D.4【答案】C【分析】直接使用已知条件及公比的性质得到结论.【详解】q=1q3⋅q4=a3a6⋅a10a6=a3⋅a10a26=122=14.故选:C.二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p【答案】BCD【分析】根据题意,得到a k+2<0,a k+1>0,a k+1+a k+2>0且a n是递减数列,结合等差数列的性质以及等差数列的求和公式,逐项判定,即可求解.【详解】由S k+1>S k+2>S k,可得a k+2=S k+2-S k+1<0,a k+1=S k+1-S k>0,且a k+1+a k+2=S k+2-S k>0,即a k+2<0,a k+1>0,a k+1+a k+2>0又由a n+a n+2=2a n+1,可得数列a n是等差数列,公差d=a k+2-a k+1<0,所以a n是递减数列,所以a1是最大项,且随着n的增加,a n无限减小,即a n≤a1,所以A错误、D正确;因为当n≤k+1时,a n>0;当n≥k+2时,a n<0,所以S n的最大值为S k+1,所以B正确;因为S2k+1=(2k+1)(a1+a2k+1)2=(2k+1)a k+1>0,S2k+3=(2k+3)a k+2<0,且S 2k +2=a 1+a 2k +22×2k +2 =k +1 ⋅a k +1+a k +2 >0,所以当n ≤2k +2时,S n >0;当n ≥2k +3时,S n <0,所以C 正确.故选:BCD .14(2024·山东泰安·模拟预测)已知数列a n 的通项公式为a n =92n -7n ∈N *,前n 项和为S n ,则下列说法正确的是()A.数列a n 有最大项a 4B.使a n ∈Z 的项共有4项C.满足a n a n +1a n +2<0的n 值共有2个D.使S n 取得最小值的n 值为4【答案】AC【分析】根据数列的通项公式,作差判断函数的单调性及项的正负判断A ,根据通项公式由整除可判断B ,根据项的正负及不等式判断C ,根据数列项的符号判断D .【详解】对于A :因为a n =92n -7n ∈N *,所以a n +1-a n =92n -5-92n -7=-182n -5 2n -7,令a n +1-a n >0,即2n -5 2n -7 <0,解得52<n <72,又n ∈N *,所以当n =3时a n +1-a n >0,则当1≤n ≤2或n ≥4时,a n +1-a n <0,令a n =92n -7>0,解得n >72,所以a 1=-95>a 2=-3>a 3=-9,a 4>a 5>a 6>⋯>0,所以数列a n 有最大项a 4=9,故A 正确;对于B :由a n ∈Z ,则92n -7∈Z 又n ∈N *,所以n =2或n =3或n =4或n =5或n =8,所以使a n ∈Z 的项共有5项.故B 不正确;对于C :要使a n a n +1a n +2<0,又a n ≠0,所以a n 、a n +1、a n +2中有1个为负值或3个为负值,所以n =1或n =3,故满足a n a n +1a n +2<0的n 的值共有2个,故C 正确;对于D :因为n ≤3时a n <0,n ≥4时a n >0,所以当n =3时S n 取得最小值,故D 不正确.故选:AC .15(2024·山东临沂·二模)已知a n 是等差数列,S n 是其前n 项和,则下列命题为真命题的是()A.若a 3+a 4=9,a 7+a 8=18,则a 1+a 2=5B.若a 2+a 13=4,则S 14=28C.若S 15<0,则S 7>S 8D.若a n 和a n ⋅a n +1 都为递增数列,则a n >0【答案】BC【分析】根据题意,求得d =98,结合a 1+a 2=a 3+a 4 -4d ,可判定A 错误;根据数列的求和公式和等差数列的性质,可判定B 正确;由S 15<0,求得a 8<0,可判定C 正确;根据题意,求得任意的n ≥2,a n >0,结合a 1的正负不确定,可判定D 错误.【详解】对于A 中,由a 3+a 4=9,a 7+a 8=18,可得a 7+a 8 -a 3+a 4 =8d =9,所以d =98,又由a 1+a 2=a 3+a 4 -4d =9-4×98=92,所以A 错误;对于B 中,由S 14=14a 1+a 14 2=14a 2+a 132=28,所以B 正确;对于C 中,由S 15=15(a 1+a 15)2=15a 8<0,所以a 8<0,又因为S 8-S 7=a 8<0,则S 7>S 8,所以C 正确;对于D 中,因为a n 为递增数列,可得公差d >0,因为a n a n +1 为递增数列,可得a n +2a n +1-a n a n +1=a n +1⋅2d >0,所以对任意的n ≥2,a n >0,但a 1的正负不确定,所以D 错误.故选:BC .16(2024·山东泰安·二模)已知等差数列a n 的前n 项和为S n ,a 2=4,S 7=42,则下列说法正确的是()A.a 5=4B.S n =12n 2+52n C.a nn为递减数列 D.1a n a n +1 的前5项和为421【答案】BC【分析】根据给定条件,利用等差数列的性质求出公差d ,再逐项求解判断即可.【详解】等差数列a n 中,S 7=7(a 1+a 7)2=7a 4=42,解得a 4=6,而a 2=4,因此公差d =a 4-a 24-2=1,通项a n =a 2+(n -2)d =n +2,对于A ,a 5=7,A 错误;对于B ,S n =n (3+n +2)2=12n 2+52n ,B 正确;对于C ,a n n =1+2n ,a n n 为递减数列,C 正确;对于D ,1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,所以1a n a n +1 的前5项和为13-14+14-15+⋯+17-18=13-18=524,D 错误.故选:BC17(2024·江西·三模)已知数列a n 满足a 1=1,a n +1=2a n +1,则()A.数列a n 是等比数列B.数列log 2a n +1 是等差数列C.数列a n 的前n 项和为2n +1-n -2D.a 20能被3整除【答案】BCD【分析】利用构造法得到数列a n +1 是等比数列,从而求得通项,就可以判断选项,对于数列求和,可以用分组求和法,等比数列公式求和完成,对于幂的整除性问题可以转化为用二项式定理展开后,再加以证明.【详解】由a n +1=2a n +1可得:a n +1+1=2a n +1 ,所以数列a n +1 是等比数列,即a n =2n -1,则a 1=1,a 2=3,a 3=7,显然有a 1⋅a 3≠a 22,所以a 1,a 2,a 3不成等比数列,故选项A 是错误的;由数列a n +1 是等比数列可得:a n +1=2n ,即log 2a n +1 =log 22n =n ,故选项B 是正确的;由a n =2n -1可得:前n 项和S n =21-1+22-1+23-1+⋅⋅⋅+2n-1=21-2n 1-2-n =2n +1-n -2,故选项C是正确的;由a 20=220-1=3-1 20-1=C 020320+C 120319⋅-1 +C 220318⋅-1 2+⋅⋅⋅+C 19203⋅-1 19+C 2020-1 20-1=3×C 020319+C 120318⋅-1 +C 220317⋅-1 2+⋅⋅⋅+C 1920-1 19 ,故选项D 是正确的;方法二:由210=1024,1024除以3余数是1,所以10242除以3的余数还是1,从而可得220-1能补3整除,故选项D 是正确的;故选:BCD .18(2024·湖北·二模)无穷等比数列a n 的首项为a 1公比为q ,下列条件能使a n 既有最大值,又有最小值的有()A.a 1>0,0<q <1B.a 1>0,-1<q <0C.a 1<0,q =-1D.a 1<0,q <-1【答案】BC【分析】结合选项,利用等比数列单调性分析判断即可.【详解】a 1>0,0<q <1时,等比数列a n 单调递减,故a n 只有最大值a 1,没有最小值;a 1>0,-1<q <0时,等比数列a n 为摆动数列,此时a 1为大值,a 2为最小值;a 1<0,q =-1时,奇数项都相等且小于零,偶数项都相等且大于零,所以等比数列a n 有最大值,也有最小值;a 1<0,q <-1时,因为q >1,所以a n 无最大值,奇数项为负无最小值,偶数项为正无最大值.故选:BC 三、填空题19(2024·山东济南·三模)数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则数列a n 的前20项的和为.【答案】210【分析】数列a n 的奇数项、偶数项都是等差数列,结合等差数列求和公式、分组求和法即可得解.【详解】数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则a 2=a 4-2=4-2=2,所以数列a n 的奇数项、偶数项分别构成以1,2为首项,公差均为2的等差数列所以数列a n 的前20项的和为a 1+a 2+⋯+a 20=a 1+a 3+⋯+a 19 +a 2+a 4+⋯+a 20=10×1+10×92×2+10×2+10×92×2=210.故答案为:210.20(2024·云南·二模)记数列a n 的前n 项和为S n ,若a 1=2,2a n +1-3a n =2n ,则a 82+S 8=.【答案】12/0.5【分析】构造得a n +12n -1-4=34a n2n -2-4,从而得到a n 2n -2=4,则a n =2n ,再利用等比数列求和公式代入计算即可.【详解】由2a n +1-3a n =2n ,得a n +12n -1=34×a n 2n -2+1,则a n +12n -1-4=34a n2n -2-4,又a 12-1-4=0,则a n 2n -2=4,则a n =2n ,a 8=28,S 8=21-28 1-2=29-2,a 82+S 8=2829=12,故答案为:12.21(2024·上海·三模)数列a n 满足a n +1=2a n (n 为正整数),且a 2与a 4的等差中项是5,则首项a 1=。
上海高考数学真题专题- 数列专题
第四部 数列专题【考点1】等差数列与等比数列1. 等差数列等差数列{}n a 的通项公式:1(1)n a a n d *()n N . 等差数列{}n a 的递推公式:1n n a a d (2)n . 等差数列{}n a 的前n 项和公式:11()(1)22n n n a a n n S na d na 中. 等差数列{}n a 的性质: ① ()n m a a n m d .② 若m n p q ,则m n p q a a a a .③ k a 、k m a 、2k m a 、 成等差数列,公差为md .④ n S 、2n n S S 、32n n S S 、43n n S S 、 成等差数列,公差为2n d .⑤ 数列{}n a 成等差数列n a pn q ,112n n n a a a ,2n S An Bn .⑥ 若数列{}n a 是等差数列,则{}n ac 为等比数列,0c .⑦ n S 是前n 项和,S 奇表示奇数项的和,S 偶表示偶数项的和,则n S S S 奇偶. 当n 为偶数时,2n S S d偶奇. 当n 为奇数时,S S a 奇偶中,11S n S n 奇偶,S S n S S 奇偶奇偶. ⑧ 设n S 和n T 分别表示等差数列{}n a 、{}n b 的前n 项和,则2121n n n n a S b T. ⑨ 若p a q ,q a p ,p q ,则0p q a ,1d . 若p S q ,q S p ,p q ,则()p q S p q . 若p q S S ,p q ,则0p q S .1.(2018年6)记等差数列{}n a 的前n 项和为n S ,若30a ,6714a a ,则7S2.(2014春7)已知等差数列{}n a 的首项为1,公差为2,则该数列的前n 项和n S3.(2013春11)若等差数列的前6项和为23,前9项和为57,则数列的前n 项和n S4.(2018春5)已知{}n a 是等差数列,若2810a a ,则357a a a5.(2017春6)若等差数列{}n a 的前5项的和为25,则15a a6.(2013文2)在等差数列{}n a 中,若123430a a a a ,则23a a7.(2012春13)已知等差数列{}n a 的首项及公差均为正数,令n b (*n N ,2012n ),当k b 是数列{}n b 的最大项时,k8.(2017年15)已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c ,*n N , 则“存在*k N ,使得100k x 、200k x 、300k x 成等差数列”的一个必要条件是( ) A. 0a B. 0b C. 0c D. 20a b c9.(2015春附3)已知数列{}n a 满足413n n n n a a a a ()n *N ,那么( )A. {}n a 是等差数列B. 21{}n a 是等差数列C. 2{}n a 是等差数列D. 3{}n a 是等差数列10.(2015春21)若无穷等差数列{}n a 的首项10a ,公差0d ,{}n a 的前n 项和为n S , 则( )A. n S 单调递减B. n S 单调递增C. n S 有最大值D. n S 有最小值 2. 等比数列等比数列{}n a 的通项公式:11n n a a q*()n N .等比数列{}n a 的递推公式:1n n a a q (2)n .等比数列{}n a 的前n 项和公式:11(1)11n n n a a qa q S qq (1)q ,1n S na (1)q .等比数列{}n a 的性质: ① n mn m a a q.② 若m n p q ,则m n p q a a a a .③ k a 、k m a 、2k m a 、 成等比数列,公比为mq .④ n S 、2n n S S 、32n n S S 、43n n S S 、 成等比数列,公比为nq . ⑤ 数列{}n a 成等比数列211n n n a a a ,n n a p q ,(1)n n S A q .⑥ 若数列{}n a 是等比数列,则{log }c n a 为等差数列,0n a .⑦ n S 是前n 项和,S 奇表示奇数项的和,S 偶表示偶数项的和,则n S S S 奇偶. 当n 为偶数时,S q S 偶奇. 当n 为奇数时,1S a q S 奇偶. ⑧ 设n T 是前n 项积,T 奇表示奇数项的积,T 偶表示偶数项的积,则n T T T 奇偶. 当n 为偶数时,2n T q T 偶奇. 当n 为奇数时,T a T 奇中偶. 11.(2011春8)若n S 为等比数列{}n a 的前n 项和,2580a a ,则63S S12.(2014春22)已知数列{}n a 是以q 为公比的等比数列,若2n n b a ,则数列{}n b 是 ( )A. 以q 为公比的等比数列B. 以q 为公比的等比数列C. 以2q 为公比的等比数列D. 以2q 为公比的等比数列13.(2011理18)设{}n a 是各项为正数的无穷数列,i A 是边长为i a 、1i a 的矩形面积 (1,2,i ),则{}n A 为等比数列的充要条件是( ) A. {}n a 是等比数列B. 1321,,,,n a a a 或242,,,n a a a 是等比数列C. 1321,,,,n a a a 和242,,,n a a a 均是等比数列D. 1321,,,,n a a a 和242,,,n a a a 均是等比数列,且公比相同14.(2015理17)记方程①:2110x a x ;方程②:2210x a x ;方程③: 2310x a x ;其中1a 、2a 、3a 是正实数,当1a 、2a 、3a 成等比数列时,下列选项中, 能推出方程③无实数根的是( )A. 方程①有实根,且②有实根B. 方程①有实根,且②无实根C. 方程①无实根,且②有实根D. 方程①无实根,且②无实根15.(2014文23)已知数列{}n a 满足1133n n n a a a ,*n N ,11a .(1)若22a ,3a x ,49a ,求x 的取值范围;(2)设{}n a 是等比数列,且11000m a ,求正整数m 的最小值,以及m 取最小值时相 应{}n a 的公比;(3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.16.(2014理23)已知数列{}n a 满足1133n n n a a a ,*n N ,11a .(1)若22a ,3a x ,49a ,求x 的取值范围;(2)设{}n a 是公比为q 的等比数列,12n n S a a a ,若1133n n n S S S ,*n N ,求q 的取值范围;(3)若12,,,k a a a 成等差数列,且121000k a a a ,求正整数k 的最大值, 以及k 取最大值时相应数列12,,,k a a a 的公差.17.(2013文22)已知函数()2||f x x ,无穷数列{}n a 满足1()n n a f a ,*n N . (1)若10a ,求2a 、3a 、4a ;(2)若10a ,且1a 、2a 、3a 成等比数列,求1a 的值;(3)是否存在1a ,使得12,,,,n a a a 成等差数列?若存在,求出所有这样的1a ; 若不存在,说明理由.【考点2】数列通项与数列求和1. 求数列通项方法(1)公式法:等差数列通项1(1)n a a n d ,等比数列通项11n n a a q .(2)累加法(累乘法):1()n n a a f n ,1()nn a f n a ,2n . (3)作差法(作商法):若123n n S a a a a ,则1n n n a S S ,2n . 若123n n T a a a a ,则1nn n T a T,2n . (4)构造法:1n n a Aa B ,1n n a Aa Bn C ,1nn n a Aa B .1q n n a pa ,11n n n a a ka b,11n n n a pa qa ,其他类型.(5)数学归纳法:对数列通项进行归纳猜想,然后按数学归纳法步骤进行证明. 2. 数列求和方法(1)求和公式法:等差数列前n 项和公式:11()(1)22n n n a a n n S na d na中. 等比数列前n 项和公式:11(1)11n n n a a qa q S qq (1)q .22221123(1)(21)6n n n n (3333221)123(1)4n n n ….(2)倒序相加法:首尾距离相等的两项有共性或数列的通项与组合数相关联. (3)错位相减法:数列通项由等差数列与等比数列相乘构成.(4)裂项相消法:将数列中的每项进行分解,然后重新组合,达到消项的目的.111(1)1n n n n ,1111()()n n k k n n k, 1111[](1)(2)2(1)(1)(2)n n n n n n n ,1k,11(1)!!(1)!n n n n ,sin1tan(1)tan cos cos(1)n n n n.(5)分组求和法:将通项中有共同规律的部分进行分组,分别求和.(6)数学归纳法:对数列前n 项和进行归纳猜想,然后按数学归纳法步骤进行证明. 18.(2019年8)已知数列{}n a 前n 项和为n S ,且满足2n n S a ,则5S 19.(2017年10)已知数列{}n a 和{}n b ,其中2n a n ,*n N ,{}n b 的项是互不相等的正 整数,若对于任意*n N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b20.(2016理11)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和,若对任意*N ,{2,3}n S ,则k 的最大值为21.(2013春12)36的所有正约数之和可按如下方法得到:∵223623 ,∴36所有正约 数之和22222222(133)(22323)(22323)(122)133)91 (, 参照上述方法,可求得2000的所有正约数之和为 22.(2012文14)已知函数1()1f x x,各项均为正数的数列{}n a 满足11a , 2()n n a f a ,若20102012a a ,则2011a a 的值是23.(2013理17)在数列{}n a 中,21n n a .若一个7行12列的矩阵的第i 行第j 列 的元素,i j c i j i j a a a a (1,2,,7i ;1,2,,12j ),则该矩阵元素能取到的不同 数值的个数为( )A. 18B. 28C. 48D. 6324.(2016春19)用数学归纳法证明等式2123...22n n n ()n *N 的第(ii )步中,假设n k 时原等式成立,那么在1n k 时,需要证明的等式为( ) A. 22123...22(1)22(1)(1)k k k k k k B. 2123...22(1)2(1)(1)k k k kC. 22123...2(21)2(1)22(1)(1)k k k k k k kD. 2123...2(21)2(1)2(1)(1)k k k k k 25.(2016春28)已知数列{}n a 是公差为2的等差数列. (1)若1a 、3a 、4a 成等比数列,求1a 的值;(2)设119a ,数列{}n a 的前n 项和为n S ,数列{}n b 满足11b ,11(2n n n b b ,记12n n n n c S b ()n *N ,求数列{}n c 的最小值0n c .(即0n n c c 对任意n *N 成立)26.(2012春22)已知数列{}n a 、{}n b 、{}n c 满足11()()n n n n n a a b b c (*n N ). (1)设36n c n ,{}n a 是公差为3的等差数列,当11b 时,求2b 、3b 的值; (2)设3n c n ,28n a n n ,求正整数k ,使得一切*n N 均有n k b b ;(3)设2nn c n ,1(1)2nn a,当11b 时,求数列{}n b 的通项公式.27.(2011文23)已知数列{}n a 和{}n b 的通项公式分别为36n a n ,27n b n (*n N ),将集合**{|,}{|,}n n x x a n x x b n N N 中的元素从小到大依次排列, 构成数列1c ,2c ,3c , ,n c , .(1)求三个最小的数,使它们既是数列{}n a 中的项,又是数列{}n b 中的项; (2)数列1c ,2c ,3c , ,40c 中有多少项不是数列{}n b 中的项?请说明理由; (3)求数列{}n c 的前4n 项和4n S (*n N ).28.(2011理22)已知数列{}n a 和{}n b 的通项公式分别为36n a n ,27n b n (*n N ),将集合**{|,}{|,}n n x x a n x x b n N N 中的元素从小到大依次排列, 构成数列1c ,2c ,3c , ,n c , . (1)求1c ,2c ,3c ,4c ;(2)求证:在数列{}n c 中,但不在数列{}n b 中的项恰为2a ,4a , ,2n a , ; (3)求数列{}n c 的通项公式.【考点3】数列单调性常结合函数性质分析数列单调性,或根据1n n a a 的大小分析数列单调性29.(2018春15)设n S 为数列{}n a 的前n 项和,“{}n a 是递增数列”是“{}n S 是递增数列” 的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【考点4】数列极限三个常用极限:① lim n C C(C 为常数). ② 1lim0n n. ③ 当||1q ,lim 0n n q .我们把||1q 的无穷等比数列的前n 项和n S 当n 时的极限叫做无穷等比数列各项的 和,并用符号S 表示,即11a S q(||1)q . 30.(2019春2)计算:22231lim 41n n n n n31.(2015春4)计算:223lim 2n n n n32.(2018春2)计算:31lim 2n n n33.(2013理1)计算:20lim313n n n34.(2011文2)计算3lim(13n nn35.(2017春8)已知数列{}n a 的通项公式为3nn a ,则123lim nn na a a a a36.(2016春9)无穷等比数列{}n a 的首项为2,公比为13,则{}n a 的各项和为 37.(2012理6)有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,,,n V V V ,则12lim()n n V V V38.(2014理8)设无穷等比数列{}n a 的公比为q ,若134lim()n n a a a a,则q39.(2018年10)设等比数列{}n a 的通项公式为1n n a q (n *N ),前n 项和为n S , 若11lim 2n n n S a ,则q40.(2011理14)已知点(0,0)O 、0(0,1)Q 和点0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10PR 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR ,记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0OQ OR 依次下去,得到12,,,,n P P P ,则0lim ||n n Q P41.(2017年14)在数列{}n a 中,1()2n n a ,*n N ,则lim n n a( )A. 等于12B. 等于0C. 等于12D. 不存在42.(2015年18)设(,)n n n P x y 是直线21nx y n ()n *N 与圆222x y 在第一象限 的交点,则极限1lim1n n n y x( ) A. 1 B. 12C. 1D. 243.(2013文18)记椭圆221441x ny n围成的区域(含边界)为(1,2,)n n ,当点 (,)x y 分别在1 、2 、 上时,x y 的最大值分别是1M 、2M 、 ,则lim n n M( )A. 0B. 14C. 2D.44.(2016理17)已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且lim n n S S,下列条件中,使得2n S S (n *N )恒成立的是( )A. 10a ,0.60.7qB. 10a ,0.70.6qC. 10a ,0.70.8qD. 10a ,0.80.7q45.(2013春27)已知数列{}n a 的前n 项和为2n S n n ,数列{}n b 满足2n an b ,求12limn n b b b().46.(2019春18)已知数列{}n a 中,13a ,前n 项和为n S . (1)若{}n a 为等差数列,且415a ,求n S ;(2)若{}n a 为等比数列,且lim 12n n S,求公比q 的取值范围.【考点5】数列应用题47.(2016春附6)小明用数列{}n a 记录某地区2015年12月份31天中每天是否下过雨, 方法为:当第k 天下过雨时,记1k a ,当第k 天没下过雨时,记1k a (131)k ; 他用数列{}n b 记录该地区该月每天气象台预报是否有雨,方法为:当预报第k 天有雨时, 记1k b ,当预报第k 天没有雨时,记1k b (131)k ;记录完毕后,小明计算出1122333131...a b a b a b a b 25 ,那么该月气象台预报准确的总天数为48.(2017年19)根据预测,某地第n *()n N 个月共享单车的投放量和损失量分别为n a和n b (单位:辆),其中4515,1310470,4n n n a n n ,5n b n ,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n (单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【考点6】数列新定义题型49.(2019年21)数列{}n a ()n *N 有100项,1a a ,对任意[2,100]n ,存在n i a a d ,[1,1]i n ()n *N ,若k a 与前n 项中某一项相等,则称k a 具有性质P .(1)若11a ,2d ,求4a 所有可能的值;(2)若{}n a 不是等差数列,求证:数列{}n a 中存在某些项具有性质P ;(3)若{}n a 中恰有三项具有性质P ,这三项和为c ,请用a 、d 、c 表示12100a a a .50.(2018春21)若{}n c 是递增数列,数列{}n a 满足:对任意n *N ,存在m *N ,使 得10m nm n a c a c ,则称{}n a 是{}n c 的“分隔数列”.(1)设2n c n ,1n a n ,证明:数列{}n a 是{}n c 的分隔数列;(2)设4n c n ,n S 是{}n c 的前n 项和,32n n d c ,判断数列{}n S 是否是数列{}n d 的分隔数列,并说明理由;(3)设1n n c aq ,n T 是{}n c 的前n 项和,若数列{}n T 是{}n c 的分隔数列,求实数a 、q 的取值范围.51.(2018年21)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意n *N ,都有||1n n b a ,则称{}n b 与{}n a “接近”.(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a ,n *N ,判断数列{}n b 是 否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:11a ,22a ,34a ,48a ,{}n b 是一个与{}n a 接近的数列,记集合{|,1,2,3,4}i M x x b i ,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在21b b ,32b b , ,201200b b 中至少有100个为正数,求d 的取值范围.52.(2016理23)无穷数列{}n a 满足:只要p q a a (,p q *N ),必有11p q a a , 则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且11a ,22a ,43a ,52a ,67821a a a ,求3a ; (2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ,5181b c ,n n n a b c ,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知1sin n n n a b a (n *N ),求证:“对任意1a ,{}n a 都具 有性质P ”的充要条件为“{}n b 是常数列”.53.(2016文22)对于无穷数列{}n a 与{}n b ,记{|,}n A x x a n *N ,{|,}n B x x b n *N ,若同时满足条件:① {}n a ,{}n b 均单调递增;②A B 且A B *N ,则称{}n a 与{}n b 是无穷互补数列.(1)若21n a n ,42n b n ,判断{}n a 与{}n b 是否为无穷互补数列,并说明理由; (2)若2nn a 且{}n a 与{}n b 是无穷互补数列,求数列{}n b 的前16项的和;(3)若{}n a 与{}n b 是无穷互补数列,{}n a 为等差数列,且1636a ,求{}n a 与{}n b 的通 项公式.54.(2016春附7)对于数列{}n a 与{}n b ,若对数列{}n c 的每一项k c ,均有k k c a 或k k c b ,则称数列{}n c 是{}n a 与{}n b 的一个“并数列”.(1)设数列{}n a 与{}n b 的前三项分别为11a ,23a ,35a ,11b ,22b ,33b , 若数列{}n c 是{}n a 与{}n b 的一个“并数列”,求所有可能的有序数组123(,,)c c c ; (2)已知数列{}n a 、{}n c 均为等差数列,{}n a 的公差为1,首项为正整数t ,{}n c 的前 10项和为30 ,前20项和为260 ,若存在唯一的数列{}n b ,使得{}n c 是{}n a 与{}n b 的 一个“并数列”,求t 的值所构成的集合.55.(2015理23)对于定义域为R 的函数()g x ,若存在正常数T ,使得cos ()g x 是以T 、为周期的函数,则称()g x 为余弦周期函数,且称T 为其余弦周期;已知()f x 是以T 为余 弦周期的余弦周期函数,其值域为R ,设()f x 单调递增,(0)0f ,()4f T . (1)验证()sin3xh x x 是以6 为余弦周期的余弦周期函数; (2)设a b ,证明对任意[(),()]c f a f b ,存在0[,]x a b ,使得0()f x c ; (3)证明:“0u 为方程cos ()1f x 在[0,]T 上的解”的充要条件是“0u T 为方程cos ()1f x 在[,2]T T 上的解”,并证明对任意[0,]x T 都有()()()f x T f x f T .56.(2012文23)对于项数为m 的有穷数列{}n a ,记12max{,,...,}k k b a a a(1,2,...,k m ),即k b 为12,,...,k a a a 中的最大值,并称数列{}n b 是{}n a 的控制数列, 如1、3、2、5、5的控制数列是1、3、3、5、5.(1)若各项均为正整数的数列{}n a 的控制数列为2、3、4、5、5,写出所有的{}n a ; (2)设{}n b 是{}n a 的控制数列,满足1k m k a b C (C 为常数,1,2,...,k m ), 求证:k k b a (1,2,...,k m ); (3)设100m ,常数1(,1)2a ,若(1)22(1)n n n a an n ,{}n b 是{}n a 的控制数列,求1122100100()()()b a b a b a .57.(2012理23)对于数集12{1,,,,}n X x x x ,其中120n x x x ,2n ,定义向量集{|(,),,}Y a a s t s X t X,若对任意1a Y ,存在2a Y ,使得120a a ,则称X 具有性质P ,例如{1,1,2} 具有性质P .(1)若2x ,且{1,1,2,}x 具有性质P ,求x 的值;(2)若X 具有性质P ,求证:1X ,且当1n x 时,11x ;(3)若X 具有性质P ,且11x 、2x q (q 为常数),求有穷数列12,,,n x x x 的 通项公式.【考点7】数列综合题型58.(2015春29)已知函数2()|22|x f x ()x R . (1)解不等式()2f x ;(2)数列{}n a 满足()n a f n ()n *N ,n S 为{}n a 的前n 项和,对任意的4n ,不等式12n n S ka恒成立,求实数k 的取值范围.59.(2019春21)若{}n a 是等差数列,公差(0,]d ,数列{}n b 满足:sin()n n b a ,n *N ,记{|,}n S x x b n *N .(1)设10a ,23d ,求集合S ; (2)设12a,试求d 的值,使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,且n T n b b ,其中T 为不超过7的正整数,求T 所有可能值.60.(2017春21)已知函数21()log 1xf x x. (1)解方程()1f x ;(2)设(1,1)x ,(1,)a ,证明:1(1,1)ax a x ,且11(()()ax f f x f a xa ; (3)设数列{}n x 中,1(1,1)x ,1131(1)3n nn nx x x ,n *N ,求1x 的取值范围, 使得3n x x 对任意n *N 成立.61.(2011春23)对于给定首项0x 0a ),由递推式11(2n n x x (*n N )得到数列{}n x ,且对于任意的*n N,都有n x,用数列{}n x的近似值.(1)取05x ,100a ,计算1x 、2x 、3x 的值(精确到0.01), 并且归纳出n x 、1n x 的大小关系; (2)当1n 时,证明:111()2n n n n x x x x; (3)当0[5,10]x 时,用数列{}n x41||10n n x x , 请你估计n ,并说明理由.62.(2013理23)给定常数0c ,定义函数()2|4|||f x x c x c ,数列123,,,a a a ,满足1()n n a f a ,*n N .(1)若12a c ,求2a 及3a ;(2)求证:对任意*n N ,1n n a a c ;(3)是否存在1a ,使得12,,,,n a a a 成等差数列?若存在,求出所有这样的1a ; 若不存在,说明理由.63.(2015年22)已知数列{}n a 与{}n b 满足112()n n n n a a b b ,n *N .(1)若35n b n ,且11a ,求{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0n n a a ()n *N ,求证{}n b 的第0n 项是最大项;(3)(文)设130a ,n n b ()n *N ,求 的取值范围,使得对任意m 、n *N ,0n a ,且1(,6)6m na a . (3)(理)设10a ,nn b ()n *N ,求 的取值范围,使得{}n a 有最大值M 与最小值m ,且(2,2)Mm.。
全国卷历年高考数列真题归类分析(含答案)
全国卷历年高考数列真题归类分析(含答案)1.(2016年1卷3)已知等差数列{an}前9项的和为27,a10=8,则求a100.解析:由已知,9a1+36d=27,a1+9d=8,解得a1=-1,d=1,a100=a1+99d=-1+99=98,选C。
2.(2017年1卷4)记Sn为等差数列{an}的前n项和,若a4+a5=24,S6=48,则{an}的公差为多少?解析:S6=48,即a1+a6=16,a4+a5=24,代入公差d的通项公式an=a1+(n-1)d,得到a8-a6=8=2d,故d=4,选C。
3.(2017年3卷9)等差数列{an}的首项为1,公差不为0.若a2、a3、a6成等比数列,则{an}前6项的和为多少?解析:设公差为d,则a3(a1+2d)=(a1+d)(a1+5d),代入a1=1解得d=-2,故a6=a1+5d=-9,前6项和为S6=6a1+15d=-24,选A。
4.(2017年2卷15)等差数列{an}的前项和为Sn,则1=∑k=1nSk,求an。
解析:设a1=1,d=2,Sn=n(2a1+(n-1)d)/2=n(n+1),代入an=a1+(n-1)d=2n-1,故1=∑k=1nSk=∑k=1n(k+1)-(k-1)=2n,故n=1/2,代入an=2n-1=-1,选D。
5.(2016年2卷17)Sn为等差数列{an}的前n项和,且a1=1,S7=28.记bn=[lga1+2Sn-1]/[lga1+2],求b7.解析:由等差数列前n项和的通项公式Sn=n(2a1+(n-1)d)/2=n(2+(n-1)d)/2,代入a1=1,S7=28,得到d=4,an=1+4(n-1)=4n-3,代入bn=[lga1+2Sn-1]/[lga1+2],得到b7=[XXX(2×28-1)]/[lg3]=2,选B。
题目一:求等比数列中的数值要求:改写成完整的句子,避免使用符号表示1.求b1,b11,b101;2.求数列{bn}的前1000项和。
高考数学真题汇编数列有答案
高考数学真题汇编---数列学校:___________姓名:___________班级:___________考号:___________一.选择题〔共9小题〕1.〔2021•新课标Ⅰ〕记S n为等差数列{a n}前n项和.假设a4+a5=24,S6=48,那么{a n}公差为〔〕A.1 B.2 C.4 D.82.〔2021•新课标Ⅱ〕在明朝程大位?算法统宗?中有这样一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?〞这首古诗描绘这个宝塔〔古称浮屠〕,此题说它一共有7层,每层悬挂红灯数是上一层2倍,共有381盏灯,问塔顶有几盏灯?你算出结果是〔〕A.6 B.5 C.4 D.33.〔2021•新课标Ⅲ〕等差数列{a n}首项为1,公差不为0.假设a2,a3,a6成等比数列,那么{a n}前6项和为〔〕A.﹣24 B.﹣3 C.3 D.84.〔2021•新课标Ⅰ〕几位高校生响应国家创业号召,开发了一款应用软件.为激发大家学习数学爱好,他们推出了“解数学题获得软件激活码〞活动.这款软件激活码为下面数学问题答案:数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项为哪一项20,接下来两项是20,21,再接下来三项是20,21,22,依此类推.求满意如下条件最小整数N:N>100且该数列前N项和为2整数幂.那么该款软件激活码是〔〕A.440 B.330 C.220 D.1105.〔2021•上海〕无穷等比数列{a n}公比为q,前n项和为S n,且=S,以下条件中,使得2S n<S〔n∈N*〕恒成立是〔〕A.a1><q<0.7 B.a1<<q<C.a1><q<D.a1<<q<6.〔2021•新课标Ⅰ〕等差数列{a n}前9项和为27,a10=8,那么a100=〔〕A.100 B.99 C.98 D.977.〔2021•四川〕某公司为激励创新,方案逐年加大研发资金投入.假设该公司2021 年全年投入研发资金130万元,在此根底上,每年投入研发资金比上一年增长12%,那么该公司全年投入研发资金开始超过200万元年份是〔〕〔参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30〕A.2021年B.2021年C.2021年D.2021年8.〔2021•浙江〕如图,点列{A n}、{B n}分别在某锐角两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,〔P≠Q表示点P与Q不重合〕假设d n=|A n B n|,S n为△A n B n B n+1面积,那么〔〕A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列9.〔2021•新课标Ⅲ〕定义“标准01数列〞{a n}如下:{a n}共有2m项,其中m 项为0,m项为1,且对随意k≤2m,a1,a2,…,a k中0个数不少于1个数,假设m=4,那么不同“标准01数列〞共有〔〕A.18个B.16个C.14个D.12个二.填空题〔共9小题〕10.〔2021•北京〕假设等差数列{a n}和等比数列{b n}满意a1=b1=﹣1,a4=b4=8,那么=.11.〔2021•江苏〕等比数列{a n}各项均为实数,其前n项和为S n,S3=,S6=,那么a8=.12.〔2021•新课标Ⅱ〕等差数列{a n}前n项和为S n,a3=3,S4=10,那么=.13.〔2021•新课标Ⅲ〕设等比数列{a n}满意a1+a2=﹣1,a1﹣a3=﹣3,那么a4=.14.〔2021•江苏〕{a n}是等差数列,S n是其前n项和,假设a1+a22=﹣3,S5=10,那么a9值是.15.〔2021•北京〕{a n}为等差数列,S n为其前n项和.假设a1=6,a3+a5=0,那么S6=.16.〔2021•上海〕无穷数列{a n}由k个不同数组成,S n为{a n}前n项和,假设对随意n∈N*,S n∈{2,3},那么k最大值为.17.〔2021•新课标Ⅰ〕设等比数列{a n}满意a1+a3=10,a2+a4=5,那么a1a2…a n最大值为.18.〔2021•浙江〕设数列{a n}前n项和为S n,假设S2=4,a n+1=2S n+1,n∈N*,那么a1=,S5=.三.解答题〔共22小题〕19.〔2021•新课标Ⅱ〕等差数列{a n}前n项和为S n,等比数列{b n}前n项和为T n,a1=﹣1,b1=1,a2+b2=2.〔1〕假设a3+b3=5,求{b n}通项公式;〔2〕假设T3=21,求S3.20.〔2021•山东〕{x n}是各项均为正数等比数列,且x1+x2=3,x3﹣x2=2.〔Ⅰ〕求数列{x n}通项公式;〔Ⅱ〕如图,在平面直角坐标系xOy中,依次连接点P1〔x1,1〕,P2〔x2,2〕…P n+1〔x n,n+1〕得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成+1区域面积T n.21.〔2021•山东〕{a n}是各项均为正数等比数列,且a1+a2=6,a1a2=a3.〔1〕求数列{a n}通项公式;〔2〕{b n}为各项非零等差数列,其前n项和为S n,S2n+1=b n b n+1,求数列前n项和T n.22.〔2021•天津〕{a n}为等差数列,前n项和为S n〔n∈N*〕,{b n}是首项为2等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.〔Ⅰ〕求{a n}和{b n}通项公式;〔Ⅱ〕求数列{a2n b n}前n项和〔n∈N*〕.23.〔2021•天津〕{a n}为等差数列,前n项和为S n〔n∈N+〕,{b n}是首项为2等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.〔Ⅰ〕求{a n}和{b n}通项公式;〔Ⅱ〕求数列{a2n b2n﹣1}前n项和〔n∈N+〕.24.〔2021•新课标Ⅲ〕设数列{a n}满意a1+3a2+…+〔2n﹣1〕a n=2n.〔1〕求{a n}通项公式;〔2〕求数列{}前n项和.25.〔2021•新课标Ⅰ〕记S n为等比数列{a n}前n项和.S2=2,S3=﹣6.〔1〕求{a n}通项公式;〔2〕求S n,并推断S n+1,S n,S n+2是否成等差数列.26.〔2021•江苏〕对于给定正整数k,假设数列{a n}满意:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对随意正整数n〔n>k〕总成立,那么称数列{a n}是“P 〔k〕数列〞.〔1〕证明:等差数列{a n}是“P〔3〕数列〞;〔2〕假设数列{a n}既是“P〔2〕数列〞,又是“P〔3〕数列〞,证明:{a n}是等差数列.27.〔2021•北京〕等差数列{a n}和等比数列{b n}满意a1=b1=1,a2+a4=10,b2b4=a5.〔Ⅰ〕求{a n}通项公式;〔Ⅱ〕求和:b1+b3+b5+…+b2n﹣1.28.〔2021•北京〕设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}〔n=1,2,3,…〕,其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大数.〔1〕假设a n=n,b n=2n﹣1,求c1,c2,c3值,并证明{c n}是等差数列;〔2〕证明:或者对随意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.29.〔2021•浙江〕数列{x n}满意:x1=1,x n=x n+1+ln〔1+x n+1〕〔n∈N*〕,证明:当n∈N*时,<x n;〔Ⅰ〕0<x n+1﹣x n≤;〔Ⅱ〕2x n+1〔Ⅲ〕≤x n≤.30.〔2021•北京〕{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.〔1〕求{a n}通项公式;〔2〕设c n=a n+b n,求数列{c n}前n项和.31.〔2021•北京〕设数列A:a1,a2,…,a N〔N≥2〕.假如对小于n〔2≤n≤N〕每个正整数k都有a k<a n,那么称n是数列A一个“G时刻〞,记G〔A〕是数列A全部“G时刻〞组成集合.〔Ⅰ〕对数列A:﹣2,2,﹣1,1,3,写出G〔A〕全部元素;〔Ⅱ〕证明:假设数列A中存在a n使得a n>a1,那么G〔A〕≠∅;〔Ⅲ〕证明:假设数列A满意a n﹣a n﹣1≤1〔n=2,3,…,N〕,那么G〔A〕元素个数不小于a N﹣a1.32.〔2021•新课标Ⅱ〕等差数列{a n}中,a3+a4=4,a5+a7=6.〔Ⅰ〕求{a n}通项公式;〔Ⅱ〕设b n=[a n],求数列{b n}前10项和,其中[x]表示不超过x最大整数,如[]=0,[]=2.33.〔2021•天津〕{a n}是等比数列,前n项和为S n〔n∈N*〕,且﹣=,S6=63.〔1〕求{a n}通项公式;〔2〕假设对随意n∈N*,b n是log2a n和log2a n+1等差中项,求数列{〔﹣1〕n b}前2n项和.34.〔2021•上海〕对于无穷数列{a n}与{b n},记A={x|x=a n,n∈N*},B={x|x=b n,n∈N*},假设同时满意条件:①{a n},{b n}均单调递增;②A∩B=∅且A∪B=N*,那么称{a n}与{b n}是无穷互补数列.〔1〕假设a n=2n﹣1,b n=4n﹣2,推断{a n}与{b n}是否为无穷互补数列,并说明理由;〔2〕假设a n=2n且{a n}与{b n}是无穷互补数列,求数量{b n}前16项和;〔3〕假设{a n}与{b n}是无穷互补数列,{a n}为等差数列且a16=36,求{a n}与{b n}通项公式.35.〔2021•新课标Ⅲ〕数列{a n}前n项和S n=1+λa n,其中λ≠0.〔1〕证明{a n}是等比数列,并求其通项公式;〔2〕假设S5=,求λ.36.〔2021•浙江〕设数列{a n}前n项和为S n,S2=4,a n+1=2S n+1,n∈N*.〔Ⅰ〕求通项公式a n;〔Ⅱ〕求数列{|a n﹣n﹣2|}前n项和.37.〔2021•新课标Ⅱ〕S n为等差数列{a n}前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x最大整数,如[]=0,[lg99]=1.〔Ⅰ〕求b1,b11,b101;〔Ⅱ〕求数列{b n}前1000项和.38.〔2021•四川〕数列{a n}首项为1,S n为数列{a n}前n项和,S n+1=qS n+1,其中q>0,n∈N+〔Ⅰ〕假设a2,a3,a2+a3成等差数列,求数列{a n}通项公式;〔Ⅱ〕设双曲线x2﹣=1离心率为e n,且e2=2,求e12+e22+…+e n2.39.〔2021•新课标Ⅰ〕{a n}是公差为3等差数列,数列{b n}满意b1=1,b2=,a nb n+1+b n+1=nb n.〔Ⅰ〕求{a n}通项公式;〔Ⅱ〕求{b n}前n项和.40.〔2021•江苏〕记U={1,2,…,100},对数列{a n}〔n∈N*〕和U子集T,假设T=∅,定义S T=0;假设T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}〔n∈N*〕是公比为3等比数列,且当T={2,4}时,S T=30.〔1〕求数列{a n}通项公式;〔2〕对随意正整数k〔1≤k≤100〕,假设T⊆{1,2,…,k},求证:S T<a k+1;〔3〕设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.41、〔2021•山东〕数列{a n}前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.〔Ⅰ〕求数列{b n}通项公式;〔Ⅱ〕令c n=,求数列{c n}前n项和T n.42、〔2021•新课标Ⅲ〕各项都为正数数列{a n}满意a1=1,a n2﹣〔2a n+1﹣1〕a n﹣2a n+1=0.〔1〕求a2,a3;〔2〕求{a n}通项公式高考数学真题汇编---数列参考答案与试题解析一.选择题〔共9小题〕1.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}公差.【解答】解:∵S n为等差数列{a n}前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}公差为4.应选:C.2.【分析】设塔顶a1盏灯,由题意{a n}是公比为2等比数列,利用等比数列前n 项和公式列出方程,能求出结果.【解答】解:设塔顶a1盏灯,由题意{a n}是公比为2等比数列,∴S7==381,解得a1=3.应选:D.3.【分析】利用等差数列通项公式、等比数列性质列出方程,求出公差,由此能求出{a n}前6项和.【解答】解:∵等差数列{a n}首项为1,公差不为0.a2,a3,a6成等比数列,∴,∴〔a1+2d〕2=〔a1+d〕〔a1+5d〕,且a1=1,d≠0,解得d=﹣2,∴{a n}前6项和为==﹣24.应选:A.4.【分析】方法一:由数列性质,求得数列{b n}通项公式及前n项和,可知当N为〕,数列{a n}前N项和为数列{b n}前n项和,即为2n+1﹣n﹣2,时〔n∈N+简单得到N>100时,n≥14,分别推断,即可求得该款软件激活码;方法二:由题意求得数列每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2整数幂.只需将﹣2﹣n消去即可,分别即可求得N值.【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,〔n∈N+〕,那么=a i,由题意可设数列{a n}前N项和为S N,数列{b n}前n项和为T n,那么T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时〔n∈N〕,数列{a n}前N项和为数列{b n}前n项和,即为+2n+1﹣n﹣2,简单得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,明显不为2整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,明显不为2整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,明显不为2整数幂,故D项不符合题意.应选A.方法二:由题意可知:,,,…,依据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有项数为:1,2,3,…,n,总共项数为N=1+2+3+…+n=,全部项数和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=〔21+22+23+…+2n〕﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2整数幂.只需将﹣2﹣n消去即可,那么①1+2+〔﹣2﹣n〕=0,解得:n=1,总共有+2=3,不满意N>100,②1+2+4+〔﹣2﹣n〕=0,解得:n=5,总共有+3=18,不满意N>100,③1+2+4+8+〔﹣2﹣n〕=0,解得:n=13,总共有+4=95,不满意N>100,④1+2+4+8+16+〔﹣2﹣n〕=0,解得:n=29,总共有+5=440,满意N >100,∴该款软件激活码440.应选:A.5.【分析】由推导出,由此利用解除法能求出结果.【解答】解:∵,S==,﹣1<q<1,2S n<S,∴,假设a1>0,那么,故A与C不行能成立;假设a1<0,那么q n,在B中,a1<<q<﹣0.6故B成立;在D中,a1<<q<﹣0.7,此时q2>,D不成立.应选:B.6.【分析】依据可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,应选:C.7.【分析】设第n年开始超过200万元,可得130×〔1+12%〕n﹣2021 >200,两边取对数即可得出.【解答】解:设第n年开始超过200万元,那么130×〔1+12%〕n﹣2021 >200,>lg2﹣lg1.3,n﹣2021 >=3.8.取n=2021.因此开始超过200万元年份是2021年.应选:B.8.【分析】设锐角顶点为O,再设|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,推断C,D不正确,设△A n B n B n+1底边B n B n+1上高为h n,运用三角形相像学问,h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,进而得到数列{S n}为等差数列.【解答】解:设锐角顶点为O,|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,那么{d n}不肯定是等差数列,{d n2}不肯定是等差数列,设△A n B n B n+1底边B n B n+1上高为h n,由三角形相像可得==,==,两式相加可得,==2,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n﹣S n+1=S n+1﹣S n,+2那么数列{S n}为等差数列.另解:可设△A1B1B2,△A2B2B3,…,A n B n B n+1为直角三角形,且A1B1,A2B2,…,A n B n为直角边,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n﹣S n+1=S n+1﹣S n,+2那么数列{S n}为等差数列.应选:A.9.【分析】由新定义可得,“标准01数列〞有偶数项2m项,且所含0与1个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.【解答】解:由题意可知,“标准01数列〞有偶数项2m项,且所含0与1个数相等,首项为0,末项为1,假设m=4,说明数列有8项,满意条件数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.应选:C.二.填空题〔共9小题〕10.【分析】利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果.【解答】解:等差数列{a n}和等比数列{b n}满意a1=b1=﹣1,a4=b4=8,设等差数列公差为d,等比数列公比为q.可得:8=﹣1+3d,d=3,a2=2;8=﹣q3,解得q=﹣2,∴b2=2.可得=1.故答案为:1.11.【分析】设等比数列{a n}公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.那么a8==32.故答案为:32.12.【分析】利用条件求出等差数列前n项和,然后化简所求表达式,求解即可.【解答】解:等差数列{a n}前n项和为S n,a3=3,S4=10,S4=2〔a2+a3〕=10,可得a2=2,数列首项为1,公差为1,S n=,=,那么=2[1﹣++…+]=2〔1﹣〕=.故答案为:.13.【分析】设等比数列{a n}公比为q,由a1+a2=﹣1,a1﹣a3=﹣3,可得:a1〔1+q〕=﹣1,a1〔1﹣q2〕=﹣3,解出即可得出.【解答】解:设等比数列{a n}公比为q,∵a1+a2=﹣1,a1﹣a3=﹣3,∴a1〔1+q〕=﹣1,a1〔1﹣q2〕=﹣3,解得a1=1,q=﹣2.那么a4=〔﹣2〕3=﹣8.故答案为:﹣8.14.【分析】利用等差数列通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出a9值.【解答】解:∵{a n}是等差数列,S n是其前n项和,a1+a22=﹣3,S5=10,∴,解得a1=﹣4,d=3,∴a9=﹣4+8×3=20.故答案为:20.15.【分析】由条件利用等差数列性质求出公差,由此利用等差数列前n项和公式能求出S6.【解答】解:∵{a n}为等差数列,S n为其前n项和.a1=6,a3+a5=0,∴a1+2d+a1+4d=0,∴12+6d=0,解得d=﹣2,∴S6==36﹣30=6.故答案为:6.16.【分析】对随意n∈N*,S n∈{2,3},列举出n=1,2,3,4状况,归纳可得n >4后都为0或1或﹣1,那么k最大个数为4.【解答】解:对随意n∈N*,S n∈{2,3},可得当n=1时,a1=S1=2或3;假设n=2,由S2∈{2,3},可得数列前两项为2,0;或2,1;或3,0;或3,﹣1;假设n=3,由S3∈{2,3},可得数列前三项为2,0,0;或2,0,1;或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1;假设n=4,由S3∈{2,3},可得数列前四项为2,0,0,0;或2,0,0,1;或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1;或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1;或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1;或3,﹣1,1,0;或3,﹣1,1,﹣1;…即有n>4后一项都为0或1或﹣1,那么k最大个数为4,不同四个数均为2,0,1,﹣1,或3,0,1,﹣1.故答案为:4.17.【分析】求出数列等比与首项,化简a1a2…a n,然后求解最值.【解答】解:等比数列{a n}满意a1+a3=10,a2+a4=5,可得q〔a1+a3〕=5,解得q=.a1+q2a1=10,解得a1=8.那么a1a2…a n=a1n•q1+2+3+…+〔n﹣1〕=8n•==,当n=3或4时,表达式获得最大值:=26=64.故答案为:64.18.【分析】运用n=1时,a1=S1,代入条件,结合S2=4,解方程可得首项;再由n>1时,a n=S n+1﹣S n,结合条件,计算即可得到所求和.+1【解答】解:由n=1时,a1=S1,可得a2=2S1+1=2a1+1,又S2=4,即a1+a2=4,即有3a1+1=4,解得a1=1;=S n+1﹣S n,可得由a n+1S n+1=3S n+1,由S2=4,可得S3=3×4+1=13,S4=3×13+1=40,S5=3×40+1=121.故答案为:1,121.三.解答题〔共22小题〕19.【分析】〔1〕设等差数列{a n}公差为d,等比数列{b n}公比为q,运用等差数列和等比数列通项公式,列方程解方程可得d,q,即可得到所求通项公式;〔2〕运用等比数列求和公式,解方程可得公比,再由等差数列通项公式和求和,计算即可得到所求和.【解答】解:〔1〕设等差数列{a n}公差为d,等比数列{b n}公比为q,a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,解得d=1,q=2或d=3,q=0〔舍去〕,那么{b n}通项公式为b n=2n﹣1,n∈N*;〔2〕b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,当q=4时,b2=4,a2=2﹣4=﹣2,d=﹣2﹣〔﹣1〕=﹣1,S3=﹣1﹣2﹣3=﹣6;当q=﹣5时,b2=﹣5,a2=2﹣〔﹣5〕=7,d=7﹣〔﹣1〕=8,S3=﹣1+7+15=21.20.【分析】〔I〕列方程组求出首项和公比即可得出通项公式;〔II〕从各点向x轴作垂线,求出梯形面积通项公式,利用错位相减法求和即可.【解答】解:〔I〕设数列{x n}公比为q,那么q>0,由题意得,两式相比得:,解得q=2或q=﹣〔舍〕,∴x1=1,∴x n=2n﹣1.〔II〕过P1,P2,P3,…,P n向x轴作垂线,垂足为Q1,Q2,Q3,…,Q n,记梯形P n P n+1Q n+1Q n面积为b n,那么b n==〔2n+1〕×2n﹣2,∴T n=3×2﹣1+5×20+7×21+…+〔2n+1〕×2n﹣2,①∴2T n=3×20+5×21+7×22+…+〔2n+1〕×2n﹣1,②①﹣②得:﹣T n=+〔2+22+…+2n﹣1〕﹣〔2n+1〕×2n﹣1=+﹣〔2n+1〕×2n﹣1=﹣+〔1﹣2n〕×2n﹣1.∴T n=.21.【分析】〔1〕通过首项和公比,联立a1+a2=6、a1a2=a3,可求出a1=q=2,进而利用等比数列通项公式可得结论;=〔2n+1〕b n+1,结合S2n+1=b n b n+1可知b n=2n+1,〔2〕利用等差数列性质可知S2n+1进而可知=,利用错位相减法计算即得结论.【解答】解:〔1〕记正项等比数列{a n}公比为q,因为a1+a2=6,a1a2=a3,所以〔1+q〕a1=6,q=q2a1,解得:a1=q=2,所以a n=2n;〔2〕因为{b n}为各项非零等差数列,=〔2n+1〕b n+1,所以S2n+1=b n b n+1,又因为S2n+1所以b n=2n+1,=,所以T n=3•+5•+…+〔2n+1〕•,T n=3•+5•+…+〔2n﹣1〕•+〔2n+1〕•,两式相减得:T n=3•+2〔++…+〕﹣〔2n+1〕•,即T n=3•+〔+++…+〕﹣〔2n+1〕•,即T n=3+1++++…+〕﹣〔2n+1〕•=3+﹣〔2n+1〕•=5﹣.22.【分析】〔Ⅰ〕设等差数列{a n}公差为d,等比数列{b n}公比为q.通过b2+b3=12,求出q,得到.然后求出公差d,推出a n=3n﹣2.〔Ⅱ〕设数列{a2n b n}前n项和为T n,利用错位相减法,转化求解数列{a2n b n}前n 项和即可.【解答】〔Ⅰ〕解:设等差数列{a n}公差为d,等比数列{b n}公比为q.由b2+b3=12,得,而b1=2,所以q2+q﹣6=0.又因为q>0,解得q=2.所以,.由b3=a4﹣2a1,可得3d﹣a1=8.由S11=11b4,可得a1+5d=16,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,{a n}通项公式为a n=3n﹣2,{b n}通项公式为.〔Ⅱ〕解:设数列{a2n b n}前n项和为T n,由a2n=6n﹣2,有,,上述两式相减,得=.得.所以,数列{a2n b n}前n项和为〔3n﹣4〕2n+2+16.23.【分析】〔Ⅰ〕设出公差与公比,利用条件求出公差与公比,然后求解{a n}和{b n}通项公式;〔Ⅱ〕化简数列通项公式,利用错位相减法求解数列和即可.【解答】解:〔I〕设等差数列{a n}公差为d,等比数列{b n}公比为q.由b2+b3=12,得b1〔q+q2〕=12,而b1=2,所以q+q2﹣6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4﹣2a1,可得3d﹣a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,数列{a n}通项公式为a n=3n﹣2,数列{b n}通项公式为b n=2n.〔II〕设数列{a2n b2n﹣1}前n项和为T n,由a2n=6n﹣2,b2n﹣1=4n,有a2n b2n﹣1=〔3n﹣1〕4n,故T n=2×4+5×42+8×43+…+〔3n﹣1〕4n,4T n=2×42+5×43+8×44+…+〔3n﹣1〕4n+1,上述两式相减,得﹣3T n=2×4+3×42+3×43+…+3×4n﹣〔3n﹣1〕4n+1==﹣〔3n﹣2〕4n+1﹣8得T n=.所以,数列{a2n b2n﹣1}前n项和为.24.【分析】〔1〕利用数列递推关系即可得出.〔2〕==﹣.利用裂项求和方法即可得出.【解答】解:〔1〕数列{a n}满意a1+3a2+…+〔2n﹣1〕a n=2n.n≥2时,a1+3a2+…+〔2n﹣3〕a n﹣1=2〔n﹣1〕.∴〔2n﹣1〕a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.〔2〕==﹣.∴数列{}前n项和=++…+=1﹣=.25.【分析】〔1〕由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,依据等比数列通项公式,即可求得{a n}通项公式;〔2〕由〔1〕可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,明显S n+1+S n+2=2S n,那么S n+1,S n,S n+2成等差数列.【解答】解:〔1〕设等比数列{a n}首项为a1,公比为q,那么a3=S3﹣S2=﹣6﹣2=﹣8,那么a1==,a2==,由a1+a2=2,+=2,整理得:q2+4q+4=0,解得:q=﹣2,那么a1=﹣2,a n=〔﹣2〕〔﹣2〕n﹣1=〔﹣2〕n,∴{a n}通项公式a n=〔﹣2〕n;〔2〕由〔1〕可知:S n===﹣[2+〔﹣2〕n+1],=﹣[2+〔﹣2〕n+2],S n+2=﹣[2+〔﹣2〕n+3],那么S n+1+S n+2=﹣[2+〔﹣2〕n+2]﹣[2+〔﹣2〕n+3],由S n+1=﹣[4+〔﹣2〕×〔﹣2〕n+1+〔﹣2〕2×〔﹣2〕n+1],=﹣[4+2〔﹣2〕n+1]=2×[﹣〔2+〔﹣2〕n+1〕],=2S n,+S n+2=2S n,即S n+1,S n,S n+2成等差数列.∴S n+126.+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=〔a n﹣【分析】〔1〕由题意可知依据等差数列性质,a n﹣33+a n+3〕+〔a n﹣2+a n+2〕+〔a n﹣1+a n+1〕═2×3a n,依据“P〔k〕数列〞定义,可得数列{a n}是“P〔3〕数列〞;〔2〕由条件结合〔1〕中结论,可得到{a n}从第3项起为等差数列,再通过推断a2与a3关系和a1与a2关系,可知{a n}为等差数列.【解答】解:〔1〕证明:设等差数列{a n}首项为a1,公差为d,那么a n=a1+〔n ﹣1〕d,+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,那么a n﹣3=〔a n﹣3+a n+3〕+〔a n﹣2+a n+2〕+〔a n﹣1+a n+1〕,=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P〔3〕数列〞;〔2〕证明:当n≥4时,因为数列{a n}是P〔3〕数列,那么a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,①因为数列{a n}是“P〔2〕数列〞,所以a n﹣2+a n﹣1+a n+1+a n+2=4a n,②+a n+a n+2+a n+3=4a n+1,③,那么a n﹣1②+③﹣①,得2a n=4a n﹣1+4a n+1﹣6a n,即2a n=a n﹣1+a n+1,〔n≥4〕,因此n≥4从第3项起为等差数列,设公差为d,留意到a2+a3+a5+a6=4a4,所以a2=4a4﹣a3﹣a5﹣a6=4〔a3+d〕﹣a3﹣〔a3+2d〕﹣〔a3+3d〕=a3﹣d,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4〔a2+d〕﹣a2﹣〔a2+2d〕﹣〔a2+3d〕=a2﹣d,也即前3项满意等差数列通项公式,所以{a n}为等差数列.27.【分析】〔Ⅰ〕利用条件求出等差数列公差,然后求{a n}通项公式;〔Ⅱ〕利用条件求出公比,然后求解数列和即可.【解答】解:〔Ⅰ〕等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}通项公式:a n=1+〔n﹣1〕×2=2n﹣1.〔Ⅱ〕由〔Ⅰ〕可得a5=a1+4d=9,等比数列{b n}满意b1=1,b2b4=9.可得b3=3,或﹣3〔舍去〕〔等比数列奇数项符号一样〕.∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.28.【分析】〔1〕分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由〔b k﹣na k〕﹣〔b1﹣na1〕≤0,那么b1﹣na1≥b k﹣na k,那么c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1对∀n∈N*均成立;〔2〕由b i﹣a i n=[b1+〔i﹣1〕d1]﹣[a1+〔i﹣1〕d2]×n=〔b1﹣a1n〕+〔i﹣1〕〔d2﹣d1×n〕,分类探讨d1=0,d1>0,d1<0三种状况进展探讨依据等差数列性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对随意正整数M,存在正整数m,使得n≥m,>M,分类探讨,采纳放缩法即可求得因此对随意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:〔1〕a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,那么〔b k﹣na k〕﹣〔b1﹣na1〕,=[〔2k﹣1〕﹣nk]﹣1+n,=〔2k﹣2〕﹣n〔k﹣1〕,=〔k﹣1〕〔2﹣n〕,由k﹣1>0,且2﹣n≤0,那么〔b k﹣na k〕﹣〔b1﹣na1〕≤0,那么b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,﹣c n=﹣1对∀n∈N*均成立,∴c n+1∴数列{c n}是等差数列;〔2〕证明:设数列{a n}和{b n}公差分别为d1,d2,下面考虑c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中随意b i﹣a i n,〔i∈N*,且1≤i≤n〕,那么b i﹣a i n=[b1+〔i﹣1〕d1]﹣[a1+〔i﹣1〕d2]×n,=〔b1﹣a1n〕+〔i﹣1〕〔d2﹣d1×n〕,下面分d1=0,d1>0,d1<0三种状况进展探讨,①假设d1=0,那么b i﹣a i n═〔b1﹣a1n〕+〔i﹣1〕d2,当假设d2≤0,那么〔b i﹣a i n〕﹣〔b1﹣a1n〕=〔i﹣1〕d2≤0,那么对于给定正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,〔b i﹣a i n〕﹣〔b n﹣a n n〕=〔i﹣n〕d2>0,那么对于给定正整数n而言,c n=b n﹣a n n=b n﹣a1n,此时c n﹣c n=d2﹣a1,+1∴数列{c n}是等差数列;此时取m=1,那么c1,c2,…,是等差数列,命题成立;②假设d1>0,那么此时﹣d1n+d2为一个关于n一次项系数为负数一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,那么当n≥m时,〔b i﹣a i n〕﹣〔b1﹣a1n〕=〔i﹣1〕〔﹣d1n+d2〕≤0,〔i∈N*,1≤i≤n〕,因此当n≥m时,c n=b1﹣a1n,﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;此时c n+1③假设d1<0,此时﹣d1n+d2为一个关于n一次项系数为正数一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,那么当n≥s时,〔b i﹣a i n〕﹣〔b n﹣a n n〕=〔i﹣1〕〔﹣d1n+d2〕≤0,〔i∈N*,1≤i≤n〕,因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+〔d1﹣a1+d2〕+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对随意正整数M,存在正整数m,使得n≥m,>M,假设C≥0,取m=[+1],[x]表示不大于x最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;假设C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对随意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种状况,命题得证.29.【分析】〔Ⅰ〕用数学归纳法即可证明,〔Ⅱ〕构造函数,利用导数推断函数单调性,把数列问题转化为函数问题,即可证明,〔Ⅲ〕由≥2x n+1﹣x n得﹣≥2〔﹣〕>0,接着放缩即可证明【解答】解:〔Ⅰ〕用数学归纳法证明:x n>0,当n=1时,x1=1>0,成立,假设当n=k时成立,那么x k>0,那么n=k+1时,假设x k+1<0,那么0<x k=x k+1+ln〔1+x k+1〕<0,冲突,故x n+1>0,因此x n>0,〔n∈N*〕∴x n=x n+1+ln〔1+x n+1〕>x n+1,因此0<x n+1<x n〔n∈N*〕,〔Ⅱ〕由x n=x n+1+ln〔1+x n+1〕得x n x n+1﹣4x n+1+2x n=x n+12﹣2x n+1+〔x n+1+2〕ln〔1+x n+1〕,记函数f〔x〕=x2﹣2x+〔x+2〕ln〔1+x〕,x≥0∴f′〔x〕=+ln〔1+x〕>0,∴f〔x〕在〔0,+∞〕上单调递增,∴f〔x〕≥f〔0〕=0,因此x n+12﹣2x n+1+〔x n+1+2〕ln〔1+x n+1〕≥0,故2x n+1﹣x n≤;〔Ⅲ〕∵x n=x n+1+ln〔1+x n+1〕≤x n+1+x n+1=2x n+1,∴x n≥,由≥2x n+1﹣x n得﹣≥2〔﹣〕>0,∴﹣≥2〔﹣〕≥…≥2n﹣1〔﹣〕=2n﹣2,∴x n≤,综上所述≤x n≤.30.【分析】〔1〕设{a n}是公差为d等差数列,{b n}是公比为q等比数列,运用通项公式可得q=3,d=2,进而得到所求通项公式;〔2〕求得c n=a n+b n=2n﹣1+3n﹣1,再由数列求和方法:分组求和,运用等差数列和等比数列求和公式,计算即可得到所求和.【解答】解:〔1〕设{a n}是公差为d等差数列,{b n}是公比为q等比数列,由b2=3,b3=9,可得q==3,b n=b2q n﹣2=3•3n﹣2=3n﹣1;即有a1=b1=1,a14=b4=27,那么d==2,那么a n=a1+〔n﹣1〕d=1+2〔n﹣1〕=2n﹣1;〔2〕c n=a n+b n=2n﹣1+3n﹣1,那么数列{c n}前n项和为〔1+3+…+〔2n﹣1〕〕+〔1+3+9+…+3n﹣1〕=n•2n+=n2+.31.【分析】〔Ⅰ〕结合“G时刻〞定义进展分析;〔Ⅱ〕可以采纳假设法和递推法进展分析;〔Ⅲ〕可以采纳假设法和列举法进展分析.【解答】解:〔Ⅰ〕依据题干可得,a1=﹣2,a2=2,a3=﹣1,a4=1,a5=3,a1<a2满意条件,2满意条件,a2>a3不满意条件,3不满意条件,a2>a4不满意条件,4不满意条件,a1,a2,a3,a4,均小于a5,因此5满意条件,因此G〔A〕={2,5}.〔Ⅱ〕因为存在a n>a1,设数列A中第一个大于a1项为a k,那么a k>a1≥a i,其中2≤i≤k﹣1,所以k∈G〔A〕,G〔A〕≠∅;〔Ⅲ〕设A数列全部“G时刻〞为i1<i2<…<i k,对于第一个“G时刻〞i1,有>a1≥a i〔i=2,3,…,i1﹣1〕,那么﹣a1≤﹣≤1.对于第二个“G时刻〞i1,有>≥a i〔i=2,3,…,i1﹣1〕,那么﹣≤﹣≤1.类似﹣≤1,…,﹣≤1.于是,k≥〔﹣〕+〔﹣〕+…+〔﹣〕+〔﹣a1〕=﹣a1.对于a N,假设N∈G〔A〕,那么=a N.假设N∉G〔A〕,那么a N≤,否那么由〔2〕知,,…,a N,中存在“G 时刻〞与只有k个“G时刻〞冲突.从而k≥﹣a1≥a N﹣a1.32.【分析】〔Ⅰ〕设等差数列{a n}公差为d,依据构造关于首项和公差方程组,解得答案;〔Ⅱ〕依据b n=[a n],列出数列{b n}前10项,相加可得答案.【解答】解:〔Ⅰ〕设等差数列{a n}公差为d,∵a3+a4=4,a5+a7=6.∴,解得:,∴a n=;〔Ⅱ〕∵b n=[a n],∴b1=b2=b3=1,b4=b5=2,b6=b7=b8=3,b9=b10=4.故数列{b n}前10项和S10=3×1+2×2+3×3+2×4=24.33.【分析】〔1〕依据等比数列通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;〔2〕利用对数运算性质求出b n,运用分项求和法和平方差公式计算.【解答】解:〔1〕设{a n}公比为q,那么﹣=,即1﹣=,解得q=2或q=﹣1.假设q=﹣1,那么S6=0,与S6=63冲突,不符合题意.∴q=2,∴S6==63,∴a1=1.∴a n=2n﹣1.〔2〕∵b n是log2a n和log2a n+1等差中项,∴b n=〔log2a n+log2a n+1〕=〔log22n﹣1+log22n〕=n﹣.﹣b n=1.∴b n+1∴{b n}是以为首项,以1为公差等差数列.设{〔﹣1〕n b n2}前2n项和为T n,那么T n=〔﹣b12+b22〕+〔﹣b32+b42〕+…+〔﹣b2n﹣12+b2n2〕=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.34.【分析】〔1〕{a n}与{b n}不是无穷互补数列.由4∉A,4∉B,4∉A∪B=N*,即可推断;〔2〕由a n=2n,可得a4=16,a5=32,再由新定义可得b16=16+4=20,运用等差数列求和公式,计算即可得到所求和;〔3〕运用等差数列通项公式,结合首项大于等于1,可得d=1或2,探讨d=1,2求得通项公式,结合新定义,即可得到所求数列通项公式.【解答】解:〔1〕{a n}与{b n}不是无穷互补数列.理由:由a n=2n﹣1,b n=4n﹣2,可得4∉A,4∉B,即有4∉A∪B=N*,即有{a n}与{b n}不是无穷互补数列;〔2〕由a n=2n,可得a4=16,a5=32,由{a n}与{b n}是无穷互补数列,可得b16=16+4=20,即有数列{b n}前16项和为〔1+2+3+…+20〕﹣〔2+4+8+16〕=×20﹣30=180;〔3〕设{a n}为公差为d〔d为正整数〕等差数列且a16=36,那么a1+15d=36,由a1=36﹣15d≥1,可得d=1或2,假设d=1,那么a1=21,a n=n+20,b n=n〔1≤n≤20〕,与{a n}与{b n}是无穷互补数列冲突,舍去;假设d=2,那么a1=6,a n=2n+4,b n=.综上可得,a n=2n+4,b n=.35.【分析】〔1〕依据数列通项公式与前n项和公式之间关系进展递推,结合等比数列定义进展证明求解即可.〔2〕依据条件建立方程关系进展求解就可.【解答】解:〔1〕∵S n=1+λa n,λ≠0.∴a n≠0.当n≥2时,a n=S n﹣S n﹣1=1+λa n﹣1﹣λa n﹣1=λa n﹣λa n﹣1,即〔λ﹣1〕a n=λa n﹣1,∵λ≠0,a n≠0.∴λ﹣1≠0.即λ≠1,即=,〔n≥2〕,∴{a n}是等比数列,公比q=,当n=1时,S1=1+λa1=a1,即a1=,∴a n=•〔〕n﹣1.〔2〕假设S5=,那么假设S5=1+λ[•〔〕4]=,即〔〕5=﹣1=﹣,那么=﹣,得λ=﹣1.36.【分析】〔Ⅰ〕依据条件建立方程组关系,求出首项,利用数列递推关系证明数列{a n}是公比q=3等比数列,即可求通项公式a n;〔Ⅱ〕探讨n取值,利用分组法将数列转化为等比数列和等差数列即可求数列{|a n ﹣n﹣2|}前n项和.【解答】解:〔Ⅰ〕∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,=2S n+1,a n=2S n﹣1+1,当n≥2时,a n+1两式相减得a n﹣a n=2〔S n﹣S n﹣1〕=2a n,+1=3a n,当n=1时,a1=1,a2=3,即a n+1满意a n=3a n,+1∴=3,那么数列{a n}是公比q=3等比数列,那么通项公式a n=3n﹣1.〔Ⅱ〕a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,那么b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,那么b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}前n项和T n=3+﹣=,那么T n==.37.【分析】〔Ⅰ〕利用条件求出等差数列公差,求出通项公式,然后求解b1,b11,b101;〔Ⅱ〕找出数列规律,然后求数列{b n}前1000项和.【解答】解:〔Ⅰ〕S n为等差数列{a n}前n项和,且a1=1,S7=28,7a4=28.可得a4=4,那么公差d=1.a n=n,b n=[lgn],那么b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2.〔Ⅱ〕由〔Ⅰ〕可知:b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1.b100=b101=b102=b103=…=b999=2,b10,00=3.数列{b n}前1000项和为:9×0+90×1+900×2+3=1893.38.【分析】〔Ⅰ〕依据题意,由数列递推公式可得a2与a3值,又由a2,a3,a2+a3成等差数列,可得2a3=a2+〔a2+a3〕,代入a2与a3值可得q2=2q,解可得q值,进而可得S n=2S n+1,进而可得S n=2S n﹣1+1,将两式相减可得a n=2a n﹣1,即可得数+1列{a n}是以1为首项,公比为2等比数列,由等比数列通项公式计算可得答案;〔Ⅱ〕依据题意S n=qS n+1,同理有S n=qS n﹣1+1,将两式相减可得a n=qa n﹣1,分析+1可得a n=q n﹣1;又由双曲线x2﹣=1离心率为e n,且e2=2,分析可得e2==2,解可得a2值,由a n=q n﹣1可得q值,进而可得数列{a n}通项公式,再次由双曲线几何性质可得e n2=1+a n2=1+3n﹣1,运用分组求和法计算可得答案.【解答】解:〔Ⅰ〕依据题意,数列{a n}首项为1,即a1=1,=qS n+1,那么S2=qa1+1,那么a2=q,又由S n+1又有S3=qS2+1,那么有a3=q2,假设a2,a3,a2+a3成等差数列,即2a3=a2+〔a2+a3〕,那么可得q2=2q,〔q>0〕,解可得q=2,=2S n+1,①那么有S n+1进而有S n=2S n﹣1+1,②①﹣②可得a n=2a n﹣1,那么数列{a n}是以1为首项,公比为2等比数列,那么a n=1×2n﹣1=2n﹣1;=qS n+1,③〔Ⅱ〕依据题意,有S n+1同理可得S n=qS n﹣1+1,④③﹣④可得:a n=qa n﹣1,又由q>0,那么数列{a n}是以1为首项,公比为q等比数列,那么a n=1×q n﹣1=q n﹣1;假设e2=2,那么e2==2,解可得a2=,那么a2=q=,即q=,a n=1×q n﹣1=q n﹣1=〔〕n﹣1,那么e n2=1+a n2=1+3n﹣1,故e12+e22+…+e n2=n+〔1+3+32+…+3n﹣1〕=n+.39.【分析】〔Ⅰ〕令n=1,可得a1=2,结合{a n}是公差为3等差数列,可得{a n}通项公式;〔Ⅱ〕由〔1〕可得:数列{b n}是以1为首项,以为公比等比数列,进而可得:{b n}前n项和.【解答】解:〔Ⅰ〕∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3等差数列,∴a n=3n﹣1,+b n+1=nb n.〔Ⅱ〕由〔I〕知:〔3n﹣1〕b n+1=b n.即3b n+1即数列{b n}是以1为首项,以为公比等比数列,∴{b n}前n项和S n==〔1﹣3﹣n〕=﹣.40.【分析】〔1〕依据题意,由S T定义,分析可得S T=a2+a4=a2+9a2=30,计算可得a2=3,进而可得a1值,由等比数列通项公式即可得答案;〔2〕依据题意,由S T定义,分析可得S T≤a1+a2+…a k=1+3+32+…+3k﹣1,由等比数列前n项和公式计算可得证明;〔3〕设A=∁C〔C∩D〕,B=∁D〔C∩D〕,那么A∩B=∅,进而分析可以将原命题转化为证明S C≥2S B,分2种状况进展探讨:①、假设B=∅,②、假设B≠∅,可以证明得到S A≥2S B,即可得证明.【解答】解:〔1〕等比数列{a n}中,a4=3a3=9a2,当T={2,4}时,S T=a2+a4=a2+9a2=30,因此a2=3,从而a1==1,故a n=3n﹣1,〔2〕S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1,〔3〕设A=∁C〔C∩D〕,B=∁D〔C∩D〕,那么A∩B=∅,分析可得S C=S A+S C∩D,S D=S B+S C∩D,那么S C+S C∩D﹣2S D=S A﹣2S B,因此原命题等价于证明S C≥2S B,由条件S C≥S D,可得S A≥S B,①、假设B=∅,那么S B=0,故S A≥2S B,②、假设B≠∅,由S A≥S B可得A≠∅,设A中最大元素为l,B中最大元素为m,假设m≥l+1,那么其与S A<a i+1≤a m≤S B相冲突,因为A∩B=∅,所以l≠m,那么l≥m+1,S B≤a1+a2+…a m=1+3+32+…+3m﹣1=≤=,即S A≥2S B,综上所述,S A≥2S B,故S C+S C∩D≥2S D.41、【分析】〔Ⅰ〕求出数列{a n}通项公式,再求数列{b n}通项公式;〔Ⅱ〕求出数列{c n}通项,利用错位相减法求数列{c n}前n项和T n.【解答】解:〔Ⅰ〕S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,∴a n=b n﹣1+b n,﹣1∴a n﹣a n﹣1=b n+1﹣b n﹣1.∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3〔n﹣1〕=3n+1;〔Ⅱ〕c n========6〔n+1〕•2n,∴T n=6[2•2+3•22+…+〔n+1〕•2n]①,∴2T n=6[2•22+3•23+…+n•2n+〔n+1〕•2n+1]②,①﹣②可得﹣T n=6[2•2+22+23+…+2n﹣〔n+1〕•2n+1]=12+6×﹣6〔n+1〕•2n+1=〔﹣6n〕•2n+1=﹣3n•2n+2,∴T n=3n•2n+2.42、【分析】〔1〕依据题意,由数列递推公式,令n=1可得a12﹣〔2a2﹣1〕a1﹣2a2=0,将a1=1代入可得a2值,进而令n=2可得a22﹣〔2a3﹣1〕a2﹣2a3=0,将a2=代入计算可得a3值,即可得答案;﹣1〕a n﹣2a n+1=0变形可得〔a n﹣2a n+1〕〔a n+a n+1〕〔2〕依据题意,将a n2﹣〔2a n+1=0,进而分析可得a n=2a n+1或a n=﹣a n+1,结合数列各项为正可得a n=2a n+1,结合等比数列性质可得{a n}是首项为a1=1,公比为等比数列,由等比数列通项公式计算可得答案.【解答】解:〔1〕依据题意,a n2﹣〔2a n﹣1〕a n﹣2a n+1=0,+1当n=1时,有a12﹣〔2a2﹣1〕a1﹣2a2=0,而a1=1,那么有1﹣〔2a2﹣1〕﹣2a2=0,解可得a2=,当n=2时,有a22﹣〔2a3﹣1〕a2﹣2a3=0,又由a2=,解可得a3=,故a2=,a3=;﹣1〕a n﹣2a n+1=0,〔2〕依据题意,a n2﹣〔2a n+1变形可得〔a n﹣2a n+1〕〔a n+1〕=0,即有a n=2a n+1或a n=﹣1,又由数列{a n}各项都为正数,那么有a n=2a n+1,故数列{a n}是首项为a1=1,公比为等比数列,那么a n=1×〔〕n﹣1=〔〕n﹣1,故a n=〔〕n﹣1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历年高考数学真题精选(按考点分类)专题25 等比数列(学生版)一.选择题(共6小题)1.(2014•全国)等比数列4x +,10x +,20x +的公比为( ) A .12B .43C .32 D .532.(2014•大纲版)设等比数列{}n a 的前n 项和为n S .若23S =,415S =,则6(S = ) A .31B .32C .63D .643.(2014•重庆)对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,9a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列D .3a ,6a ,9a 成等比数列4.(2014•上海)如果数列{}n a 是一个以q 为公比的等比数列,*2()n n b a n N =-∈,那么数列{}n b 是( )A .以q 为公比的等比数列B .以q -为公比的等比数列C .以2q 为公比的等比数列D .以2q -为公比的等比数列5.(2013•福建)已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)n m n m n m n m b a a a -+-+-+=++⋯+,(1)1(1)2(1)n m n m n m n m a a a -+-+-+=⋯g g g ð,*(,)m n N ∈,则以下结论一定正确的是( )A .数列{}n b 为等差数列,公差为m qB .数列{}n b 为等比数列,公比为2m qC .数列{}n ð为等比数列,公比为2m q D .数列{}n ð为等比数列,公比为m m q6.(2012•北京)已知{}n a 为等比数列,下面结论中正确的是( ) A .1322a a a +… B .2221322a a a +…C .若13a a =,则12a a =D .若31a a >,则42a a >二.填空题(共7小题)7.(2015•安徽)已知数列{}n a 是递增的等比数列,149a a +=,238a a =,则数列{}n a 的前n 项和等于 .8.(2014•广东)等比数列{}n a 的各项均为正数,且154a a =,则2122232425log log log log log a a a a a ++++= .9.(2012•辽宁)已知等比数列{}n a 为递增数列.若10a >,且212()5n n n a a a +++=,则数列{}n a 的公比q = .10.(2012•江苏)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .11.(2012•江西)等比数列{}n a 的前n 项和为n S ,公比不为1.若11a =,且对任意的n N +∈都有2120n n n a a a +++-=,则5S = .12.(2011•上海)若n S 为等比数列{}n a 的前n 项的和,2580a a +=,则63S S = . 13.(2011•北京)在等比数列{}n a 中,112a =,44a =-,则公比q = ;12||||||n a a a ++⋯+= .三.解答题(共2小题)14.(2015•江苏)设1a ,2a ,3a .4a 是各项为正数且公差为(0)d d ≠的等差数列. (1)证明:12a ,22a ,32a ,42a 依次构成等比数列;(2)是否存在1a ,d ,使得1a ,22a ,33a ,44a 依次构成等比数列?并说明理由;(3)是否存在1a ,d 及正整数n ,k ,使得1n a ,2n k a +,23n k a +,34n k a +依次构成等比数列?并说明理由.15.(2014•江西)已知数列{}n a 的前n 项和232n n n S -=,*n N ∈.(1)求数列{}n a 的通项公式;(2)证明:对任意的1n >,都存在*m N ∈,使得1a ,n a ,m a 成等比数列.历年高考数学真题精选(按考点分类)专题25 等比数列(教师版)一.选择题(共6小题)1.(2014•全国)等比数列4x +,10x +,20x +的公比为( ) A .12B .43C .32 D .53【答案】D【解析】Q 等比数列4x +,10x +,20x +,2(10)(4)(20)x x x ∴+=++,解得5x =,∴等比数列4x +,10x +,20x +的公比为1055453q +==+.故选:D . 2.(2014•大纲版)设等比数列{}n a 的前n 项和为n S .若23S =,415S =,则6(S = ) A .31 B .32C .63D .64【答案】C【解析】212S a a =+,2423412()S S a a a a q -=+=+,4645612()S S a a a a q -=+=+, 所以2S ,42S S -,64S S -成等比数列,即3,12,615S -成等比数列, 可得26123(15)S =-,解得663S = 故选:C .3.(2014•重庆)对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,9a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列 D .3a ,6a ,9a 成等比数列【答案】D【解析】A 项中231a a q =g ,28191a a a q =g g ,2319()a a a ≠g ,故A 项说法错误,B 项中2222631261()()a a q a a a q =≠=g g g ,故B 项说法错误,C 项中2322841281()()a a q a a a q =≠=g g g ,故C 项说法错误,D 项中25221061391()()a a q a a a q ===g g g ,故D 项说法正确,故选:D .4.(2014•上海)如果数列{}n a 是一个以q 为公比的等比数列,*2()n n b a n N =-∈,那么数列{}n b 是( )A .以q 为公比的等比数列B .以q -为公比的等比数列C .以2q 为公比的等比数列D .以2q -为公比的等比数列【答案】A 【解析】1n n a q a +=,∴11122n n n n n nb a a q b a a +++-===-,所以,数列{}n b 是以q 为公比的等比数列. 5.(2013•福建)已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)n m n m n m n m b a a a -+-+-+=++⋯+,(1)1(1)2(1)n m n m n m n m a a a -+-+-+=⋯g g g ð,*(,)m n N ∈,则以下结论一定正确的是( )A .数列{}n b 为等差数列,公差为m qB .数列{}n b 为等比数列,公比为2m qC .数列{}n ð为等比数列,公比为2m q D .数列{}n ð为等比数列,公比为m m q 【答案】C【解析】①2(1)()m n m n b a q q q -=++⋯+,当1q =时,(1)n m n b ma -=,1(1)(1)n m n m m n n b ma ma b +-+-===,此时是常数列,选项A 不正确,选项B 正确;当1q ≠时,(1)(1)1m n m n q q b a q --=⨯-,1(1)(1)(1)(1)11m mm n m n m m n q q q q b a a q q q +-+---==--g g,此时1m n nb q b +=,选项B 不正确,又1(1)(1)(1)1m mn n m n q q b b a q q +---=⨯--,不是常数,故选项A 不正确,②Q 等比数列{}n a 的公比为q ,∴(11)(1)(1)m m n m n m m n a a a q +--+-==g ,∴(1)122(1)(1)m m m m mn m n m n c aq aq+++⋯+--==g ,∴2(1)2(11)(1)1(1)(1)()(1)2m m mm m m n m n m n mm n m n m n a q a q c q m m c a a q++--+--===+g ,故C 正确D 不正确. 综上可知:只有C 正确.6.(2012•北京)已知{}n a 为等比数列,下面结论中正确的是( ) A .1322a a a +… B .2221322a a a +…C .若13a a =,则12a a =D .若31a a >,则42a a >【答案】B【解析】设等比数列的公比为q ,则2132a a a a q q+=+,当且仅当2a ,q 同为正时,1322a a a +…成立,故A 不正确;2222221322()()2a a a a q a q+=+…,∴2221322a a a +…,故B 正确; 若13a a =,则211a a q =,21q ∴=,1q ∴=±,12a a ∴=或12a a =-,故C 不正确; 若31a a >,则211a q a >,2421(1)a a a q q ∴-=-,其正负由q 的符号确定,故D 不正确 二.填空题(共7小题)7.(2015•安徽)已知数列{}n a 是递增的等比数列,149a a +=,238a a =,则数列{}n a 的前n 项和等于 . 【答案】21n -【解析】数列{}n a 是递增的等比数列,149a a +=,238a a =, 可得148a a =,解得11a =,48a =,381q ∴=⨯,2q =,数列{}n a 的前n 项和为:122112n n -=--.8.(2014•广东)等比数列{}n a 的各项均为正数,且154a a =,则2122232425log log log log log a a a a a ++++= .【答案】5【解析】521222324252123452323log log log log log log log 5log a a a a a a a a a a a a ++++===. 又等比数列{}n a 中,154a a =,即32a =.故2325log 5log 25a ==.故答案为:5. 9.(2012•辽宁)已知等比数列{}n a 为递增数列.若10a >,且212()5n n n a a a +++=,则数列{}n a 的公比q = . 【答案】2【解析】{}n a Q 为递增数列且10a > 1q ∴>212()5n n n a a a +++=Q ,22()5n n n a a q a q ∴+= 2225q q ∴+= 2q ∴=10.(2012•江苏)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 . 【答案】35【解析】由题意成等比数列的10个数为:1,3-,2(3)-,39(3)(3)-⋯- 其中小于8的项有:1,3-,3(3)-,5(3)-,7(3)-,9(3)-共6个数 这10个数中随机抽取一个数,则它小于8的概率是63105P == 11.(2012•江西)等比数列{}n a 的前n 项和为n S ,公比不为1.若11a =,且对任意的n N +∈都有2120n n n a a a +++-=,则5S = . 【答案】11【解析】Q 等比数列{}n a 的前n 项和为n S ,11a =,且对任意的n N +∈都有2120n n n a a a +++-=,22n n n a q a q a ∴+=,即22q q +=,解得2q =-,或1q =(舍去).551[1(2)]1112S ⨯--∴==+,故答案为 11.12.(2011•上海)若n S 为等比数列{}n a 的前n 项的和,2580a a +=,则63S S = . 【答案】7-【解析】由2580a a +=,得到3528a q a ==- 61663313(1)117(1)11a q S q q a q S q q---===---- 13.(2011•北京)在等比数列{}n a 中,112a =,44a =-,则公比q = 2- ;12||||||n a a a ++⋯+= .【答案】2-,1122n --【解析】2q ===-,1121(12)12||||||2122n n n a a a --++⋯+==-- 三.解答题(共2小题)14.(2015•江苏)设1a ,2a ,3a .4a 是各项为正数且公差为(0)d d ≠的等差数列. (1)证明:12a ,22a ,32a ,42a 依次构成等比数列;(2)是否存在1a ,d ,使得1a ,22a ,33a ,44a 依次构成等比数列?并说明理由;(3)是否存在1a ,d 及正整数n ,k ,使得1n a ,2n k a +,23n k a +,34n k a +依次构成等比数列?并说明理由.解:(1)证明:Q 112222n n n n a a a d a ++-==,(1n =,2,3,)是同一个常数,∴12a ,22a ,32a ,42a 依次构成等比数列(0i a ≠,1i =,2,3,4);(2)令1a d a +=,则1a ,2a ,3a ,4a 分别为a d -,a ,a d +,2(a d a d +>,2a d >-,0)d ≠假设存在1a ,d 使得1a ,22a ,33a ,44a 依次构成等比数列,则43()()a a d a d =-+,且624()(2)a d a a d +=+, 令dt a=,则31(1)(1)t t =-+,且64(1)(12)t t +=+,1(12t -<<,0)t ≠,化简得32220(*)t t +-=,且21t t =+,将21t t =+代入(*)式, 2(1)2(1)2313410t t t t t t t t +++-=+=++=+=,则14t =-,显然14t =-不是上面方程的解,矛盾,所以假设不成立,因此不存在1a ,d ,使得1a ,22a ,33a ,44a 依次构成等比数列.(3)假设存在1a ,d 及正整数n ,k ,使得1n a ,2n k a +,23n k a +,34n k a +依次构成等比数列,则22()111(2)()n n k n k a a d a d +++=+,且32(2)111()(3)(2)n k n k n k a d a d a d +++++=+, 分别在两个等式的两边同除以2()1n k a +,2(2)1n k a +,并令1d t a =,1(3t >-,0)t ≠, 则22()(12)(1)n k n k t t +++=+,且32(2)(1)(13)(12)n k n k n k t t t +++++=+,将上述两个等式取对数,得(2)(12)2()(1)n k ln t n k ln t ++=++, 且()(1)(3)(13)2(2)(12)n k ln t n k ln t n k ln t +++++=++, 化简得,2[(12)(1)][2(1)(12)]k ln t ln t n ln t ln t +-+=+-+, 且3[(13)(1)][3(1)(13)]k ln t ln t n ln t ln t +-+=+-+, 再将这两式相除,化简得,(13)(12)3(12)(1)4(13)(1)ln t ln t ln t ln t ln t ln t +++++=++,(**)令()4(13)(1)(13)(12)3(12)(1)g t ln t ln t ln t ln t ln t ln t =++-+++++, 则2222()[(13)(13)3(12)(12)3(1)(1)](1)(12)(13)g t t ln t t ln t t ln t t t t '=++-++++++++,令222()(13)(13)3(12)(12)3(1)(1)t t ln t t ln t t ln t ϕ=++-+++++, 则()6[(13)(13)2(12)(12)3(1)(1)]t t ln t t ln t t ln t ϕ'=++-+++++, 令1()()t t ϕϕ=',则1()6[3(13)4(12)(1)]t ln t ln t ln t ϕ'=+-+++, 令21()()t t ϕϕ=',则212()0(1)(12)(13)t t t t ϕ'=>+++,由12(0)(0)(0)(0)0g ϕϕϕ====,2()0t ϕ'>,知()g t ,()t ϕ,1()t ϕ,2()t ϕ在1(3-,0)和(0,)+∞上均单调,故()g t 只有唯一的零点0t =,即方程(**)只有唯一解0t =,故假设不成立,所以不存在1a ,d 及正整数n ,k ,使得1n a ,2n k a +,23n k a +,34n ka +依次构成等比数列.15.(2014•江西)已知数列{}n a 的前n 项和232n n n S -=,*n N ∈.(1)求数列{}n a 的通项公式;(2)证明:对任意的1n >,都存在*m N ∈,使得1a ,n a ,m a 成等比数列.(1)解:232n n nS -=Q ,*n N ∈.∴当2n …时,22133(1)(1)3222n n n n n n n a S S n -----=-=-=-,(*)当1n =时,21131112a S ⨯-===.因此当1n =时,(*)也成立.∴数列{}n a 的通项公式32n a n =-.(2)证明:对任意的1n >,假设都存在*m N ∈,使得1a ,n a ,m a 成等比数列.则21nm a a a =, 2(32)1(32)n m ∴-=⨯-, 化为2342m n n =-+, 1n >Q ,22223423()133m n n n ∴=-+=-+>,因此对任意的1n >,都存在2*342m n n N =-+∈,使得1a ,n a ,m a 成等比数列.。