数学实验作业
数学实验作业
6 x1 5 y1 61 10 x 20 y 150 1 1 约束条件: 。 x1 8 x1 , y1 0
然后将最大利润与不作此投资情况下的最大利润进行比较, 如果 z1 z , 则进行此投资, 如果 z1 z ,则不进行此投资。 对于问题(2),假设改变生产计划,则: 目标函数: max z2 10 x2 9 y2 ,
二、问题分析:
设需要生产 x 百箱甲饮料,y 百箱乙饮料,设最大利润为 z,则: 目标函数: max z 10 x 9 y ,
6 x 5 y 60 10 x 20 y 150 约束条件: 。 x 8 x, y 0
另外,注意到工人需要取整数,这里假设工人可以为除 10 和 20 之外的整数(如 5 名工 人可以用 3 千克的原料生产 0.5 百箱甲饮料) ,这样限制同样保证了生产的饮料的箱数为整 数。 类似地,对于问题(1),假设进行此项投资,则: 目标函数: max z1 10 x1 9 y1 0.8 ,
2
邢台
由数据103.55万元>102.8万元,所以应该作这项投资。 问题(2) 如果改变生产计划,则: max=11*x+9*y; 6*x+5*y<=60; 10*x+20*y<=150; x<=8; m=10*x; n=20*y; @gin(m); @gin(n); 运行得到
即:生产甲饮料8百箱,乙饮料2.4百箱,这样最大利润达到109.6万元>102.8万元, 所以应该改变生产计划。
3
max=10*x+9*y; 6*x+5*y<=60; 10*x+20*y<=150; x<=8; m=10*x; n=20*y; @gin(m); @gin(n);
数学实验作业1--答案
数学实验-作业1—及部分答案(要求:1. 每次上机课下课之前提交,文件名如:数学091朝鲁第一次作业.doc。
2. 交至邮箱:matlabzuoyetijiao@3.作业实行5分制,依次为A++,A+,A ,A-,A- -)4.作业中,需要编程实现的均要求列出你的代码,以及求解的结果)1.请上网或查阅各种资料并回答:MATLAB是什么?MATLAB能做什么?答:略2.请上网或查阅各种资料并回答:MATLAB语言突出的特点是什么?答:略3.在MATLAB软件中有几种获得帮助的途径?答:help函数,菜单栏help菜单。
4.请上网或查询MATLAB软件中inv函数的功能与特点。
答:用来求可逆矩阵的逆矩阵。
inv(A),即求已知矩阵A的逆矩阵。
5.请上网或查阅各种资料并回答:如何在MATLAB中建立向量和矩阵。
答:如在matlab中创建向量a=(2,-5,6,1);a=[2,-5,6,1];b= [2;-5;6;1];如在matlab中创建矩阵A=;A=[1,2,3;4,5,6;7,8,9];A =1 2 34 5 67 8 96.请上网或查阅各种资料并回答:在MATLAB中,向量和矩阵如何进行基本加减乘除四则运算,以及矩阵的乘法。
答:a=[2,-5,6,1];b= [1,2,3,4];求向量的和与差,直接输入a+b,a-b,即可,当然必须要求两个向量大小一致。
如:>> a=[2,-5,6,1];b= [1,2,3,4];>> a+bans =3 -3 9 5>> a-b1 -7 3 -3>> a.*bans =2 -10 18 4>> a./bans =2.0000 -2.5000 2.0000 0.2500>> a/b向量之间进行除法运算,使用不加点的矩阵除法“A/B”时,问题可以描述为:给定两个向量A、B,求一个常量x,使得A=x * B。
数学实验之学生实验题目
数学实验之学生实验题目 MATLAB 简介实验一:数组操作及运算练习1.设有分块矩阵⎥⎦⎤⎢⎣⎡=⨯⨯⨯⨯22322333S O R E A ,其中E,R,O,S 分别为单位阵、随机阵、零阵和对角阵,试通过数值计算验证⎥⎦⎤⎢⎣⎡+=22S 0RS R EA 。
2.求如下非齐次线性方程组的通解,⎪⎩⎪⎨⎧=--+=+-+=+-+.12,2224,12w z y x w z y x w z y x3.某零售店有9种商品的单件进价(元)、售价(元)及一周的销量下表,问哪种商品的利润最大,哪种商品的利润最小;按收入由小到大,列出所有商品及其收入;求这一周该10种商品的总收入和总利润。
实验二:作图练习1. 用两种方法在同一个坐标下作出y 1= x 2,y 2= x 3,y 3= x 4 y 4= x 5这四条曲线的图形,并要求用两种方法在图上加各种标注。
2.用subplot 分别在不同的坐标系下作出下列四条曲线,为每幅图形加上标题, 1)概率曲线 2exy -=;2)四叶玫瑰线 r =sin2q ;3)叶形线 ⎪⎪⎩⎪⎪⎨⎧+=+=;13,13323t ty t t x 4)曳物线 22111lnyyy x --±= 。
3.作出下列曲面的3维图形,1))sin(22y x z +=π;2)环面:⎪⎩⎪⎨⎧=+=+=,sin ,sin )cos 1(,cos )cos 1(u z v u y v u x )2,0()2,0(ππ∈∈v u 。
实验三:编写M-文件1.建立一个命令M-文件:求所有的“水仙花数”,所谓“水仙花数”是指一个三位数,其各位数字的立方和等于该数本身。
例如,153是一个水仙花数,因为153=13+53+33。
2.编写函数M-文件SQRT.m :用迭代法求a x =的值。
求平方根的迭代公式为迭代的终止条件为前后两次求出的x 的差的绝对值小于10-5。
〈返回〉方程求解实验一:油价与船速的优化问题油价的上涨,将影响大型海船确定合理的航行速度,以优化航行收入。
数学实验lingo作业
200.0 195.0 190.0 185.0
闲置的熟练飞行员报酬
7.0 6.9 6.8 6.7
训练组成员报酬
10.0 9.9 9.8 9.7
投入飞行的飞行员报酬
9.0 8.9 9.8 9.7
带薪休假的飞行员报酬
5.0 4.9 4.8 4.7
提示:这个问题看起来很复杂,但只要理解了题中所描述的事实,就不难建立其优化
机票的价格分头等舱和经济舱两类。经过市场调查,公司销售部得到了每天旅客的相关信息,
见下表。该公司应该在每条航线上分别分配多少张头等舱和经济舱的机票?
出发地—目的地 头等舱 头等舱 经济舱 经济舱
需求/人 价格/人 需求/人 价格/人
AH
33
190
56
90
AB(经 H 转机)
24
244
43
193
AC(经 H 转机)
食品厂
面粉厂
1
2
3
面粉厂产值
1
3
10
2
20
2
4
11
8
30
3
8
11
4
20
销量
15
25
20
29、某公司有资金 4 万元,可向 A、B、C 三个项目投资,已知各项目的投资回报如下,求 最大回报。
项目 0
A
0
B
0
C
0
投资额及收益
1
2
3
4
41
48
60
66
42
50
60
66
64
68
78
76
30、某工厂生产三种产品,各种产品重量与利润关系如下表,现将此三种产品运往市场出售,
八年级上册数学实践作业
八年级上册数学实践作业
一、活动目标:
1. 通过实践活动,使学生更加深入地理解和掌握基础的数学知识,提高数学的应用能力。
2. 通过小组合作,培养学生的团队协作精神和沟通能力。
3. 培养学生的创新思维和实践能力,提高他们解决问题的能力。
二、活动内容:
1. 分组调查:学生自由分组,每组4-6人。
选择一个与数学相关的话题进行调查研究,如“生活中的数学”、“数学在科学中的应用”等。
2. 数据收集:根据选定的话题,收集相关数据和信息。
可以通过网络、图书馆、实地调查等方式获取数据。
3. 数据整理:对收集到的数据进行整理,分类,以便于分析和解读。
4. 数据分析:运用所学的数学知识对数据进行处理和分析,发现其中的规律和趋势。
5. 报告撰写:将调查结果和数据分析写成报告,要求语言简洁明了,逻辑清晰。
6. 汇报展示:每组选派一名代表,向全班汇报展示本组的调查结果和分析。
三、活动要求:
1. 小组分工明确,每个成员都要积极参与调查和讨论。
2. 调查和分析过程中要尊重事实,严谨认真。
3. 报告要条理清晰,数据准确,分析深入。
4. 汇报时要自信流畅,能够清晰地表达本组的观点和结论。
四、活动时间安排:
1. 分组和选定话题(1周)
2. 数据收集(2周)
3. 数据整理和分析(1周)
4. 报告撰写(1周)
5. 汇报展示(1周)
五、评价标准:
1. 数据的准确性和完整性。
2. 分析的深入性和逻辑性。
3. 报告的条理性和可读性。
4. 小组的协作和沟通能力。
八年级数学生活实践作业
八年级数学生活实践作业
在数学的学习过程中,我们不仅要掌握基本概念、定理和方法,还要学会将数学知识应用到生活中。
为此,我们要开展数学生活实践作业。
一、数学游戏
通过数学游戏,可以在轻松愉快的氛围中巩固数学知识。
比如,猜数字、消除方块、九宫格等游戏,都可以锻炼我们的数学思维能力。
二、数学调查
通过数学调查,可以让我们了解周围的数学现象。
比如,调查同学们喜欢的运动项目及其比例,可以学习比例的概念和应用。
三、数学实验
通过数学实验,可以让我们亲身体验数学知识。
比如,用球体积和直径的关系验证球体积公式,可以帮助我们理解和记忆公式。
四、数学应用
通过数学应用,可以让我们将数学知识应用到实际生活中。
比如,设计平面图、制作尺子、计算面积和周长等活动,都可以培养我们的数学应用能力。
五、数学探究
通过数学探究,可以让我们自主发现数学规律和性质。
比如,探究数列的规律、研究数学模型等活动,都可以培养我们的数学思维和创新能力。
六、数学竞赛
通过数学竞赛,可以让我们在比赛中巩固和提高数学知识。
比如,参加奥数、数学建模等比赛,可以锻炼我们的数学能力和竞赛意识。
总之,数学生活实践作业是数学学习的重要组成部分。
希望同学们能够积极参与,将数学知识与生活实践结合起来,提高自己的数学素养。
小学生数学实验100例
小学生数学实验100例第1篇:我的数学小实验的日记今天中午,为了能把筷子体积测得更准确,我叫爸爸从化学室拿了一个细长的量筒,刻度单位更小,每个单位只有1立方厘米。
此时,我似乎感觉到了胜利在向我招手,真可谓万事具备,只差动手实验了。
首先,我用铅笔在一次筷子上划了一道分界线,将筷子平均分成两段,并用水浸泡,以免筷子在测定过程中洗水。
随后,将筷子入量筒中,并用滴管将水滴入量筒中,让量筒内的水涨到筷子的分界线上,记下量筒内的水位刻度(38毫升)后,将筷子从量筒内取出,再记下量筒内的水位刻度(34.5毫升),前后两次水位刻度之差就是这一部分筷子的体积,即3.5立方厘米。
用同样的方法,我又测量了筷子另一部分的体积是5立方厘米,两次测定结果相加得到这双筷子的体积为8.5立方厘米。
当我得到这个结果时,我兴奋地叫了,此时的我是多么自豪、多么骄傲啊!接着,我又按每人一天使用3双计算出了我们学校(1500人)及全国(12亿)一年消耗的一次*筷子量,分别是13.96立方米和11169000立方米。
结果使我大吃一惊,每年竟有这么多的木料做成一次筷子被浪费了,真是太可惜!在此,我呼吁在校的同学,不!是全国,也不!应该是全世界的每个人都不要再使用一次筷子了,只有这样,才能保护好我们的森林资源,使我们共有的地球环境更加美好,让地球上的每一个人呼吸到干净、清新的空气。
第2篇:我的小实验数学日记下午放学时,班主任老师给我们布置了一道家庭作业,要求大家想办法测算一次筷子的体积,并用数学日记的形式将测算过程记录下来。
这道家庭作业,表面上是一次数学实践活动,实际可能寓意更深,因为一次筷子的使用与环保有关,一回到家,我就静静地坐在书桌前思考这个问题。
一次*筷子的形状是一个不规则的立体图形,怎样才能测算出它的体积呢?我思来想去,一会儿抓耳挠腮,一会儿摇,终于,有了一点眉目。
我可以将一次筷子放入装满水的容器中,这样容器中的水就会溢出来,溢出水的多少不就是筷子的体积吗?可是筷子比水轻,会浮在水面上,又该怎么办呢?可不可以用石头或胶布之类的东西将筷子固定住呢?我想应该是可以的,但这些办法测定起来又都太麻烦了,要是有更简便的方法该多好啊!经过冥思苦想,我终于自豪的笑了。
教学教研数学实践作业(3篇)
第1篇一、作业背景随着我国基础教育改革的不断深入,数学教学教研工作越来越受到重视。
为了提高数学教学质量,促进教师专业成长,我们学校开展了数学教学教研实践活动。
本次实践作业旨在通过教师间的合作、研讨和反思,提升数学教学水平,培养学生的数学素养。
二、作业目标1. 提高教师对数学教学的理解和认识,掌握数学教学的基本规律和教学方法。
2. 培养教师之间的合作意识,促进教师间的交流与学习。
3. 提升教师的教学设计能力,优化教学过程,提高教学质量。
4. 培养学生的数学思维能力、逻辑思维能力和创新能力。
三、作业内容1. 教学观摩与反思(1)观摩:选择一节数学课,进行全程观摩,记录下课堂中的亮点和不足。
(2)反思:结合观摩内容,从教学目标、教学内容、教学方法、教学评价等方面进行反思,总结经验教训。
2. 教学研讨与交流(1)主题研讨:围绕一个具体的教学问题,如“如何培养学生的数学思维能力”,组织教师进行研讨。
(2)经验分享:教师们分享自己在教学过程中的成功经验和做法,互相借鉴,共同提高。
3. 教学设计与实践(1)设计:根据教学目标和教学内容,设计一节数学课的教学方案。
(2)实践:在课堂上实施教学方案,观察学生的学习效果,并根据实际情况进行调整。
4. 教学评价与反馈(1)评价:对教学设计、教学过程和学生学习效果进行评价。
(2)反馈:根据评价结果,对教学方案进行改进,提高教学质量。
四、作业实施步骤1. 制定计划:根据学校教学教研计划,确定实践作业的具体内容和时间安排。
2. 组织实施:按照计划,组织教师开展各项实践活动。
3. 汇报交流:教师完成实践作业后,进行汇报交流,分享经验,互相学习。
4. 总结反思:对实践作业进行总结,分析存在的问题和不足,提出改进措施。
五、作业成果展示1. 教学案例集:收集教师在实践过程中积累的优秀教学案例,汇编成册。
2. 教学论文集:教师撰写教学论文,总结实践经验,提高教育教学理论水平。
3. 教学公开课:组织教师开展公开课活动,展示实践成果,促进教师间的交流与合作。
二年级数学创意实践作业
二年级数学创意实践作业
1. 数学游戏设计,让学生设计一个简单的数学游戏,例如数学拼图、数学迷宫等。
他们可以使用基本的加减法来设计游戏规则,并与同学们分享他们的游戏。
2. 数学手工制作,让学生使用纸板、彩纸等材料制作一些数学教具,例如数字卡片、几何图形模型等。
通过动手制作,学生可以更好地理解数学概念。
3. 数学故事创作,鼓励学生编写一个关于数学的小故事,可以是关于数字的奇妙故事,也可以是关于解决数学问题的故事。
这样的创作可以培养学生的想象力和逻辑思维能力。
4. 数学实地探索,组织学生到校园或社区进行数学实地探索,例如数数树上的鸟巢、测量操场的长度和宽度等。
通过实地探索,学生能够将抽象的数学概念与日常生活联系起来。
5. 数学竞赛活动,组织一个小型的数学竞赛,让学生在游戏中巩固所学的数学知识,激发他们的学习兴趣和竞争意识。
这些创意实践作业可以帮助学生在实践中感受到数学的乐趣,提高他们的动手能力和逻辑思维能力,同时巩固所学的数学知识。
希望这些建议能对你有所帮助。
二年级暑假数学实践作业的内容范文
一、作业目的通过本次暑假数学实践作业,帮助学生巩固和运用二年级上学期的数学知识,提高学生的数学思维能力、实践能力和创新能力。
同时,培养学生良好的学习习惯,激发学生对数学学习的兴趣。
二、作业内容1. 实践活动一:生活中的数学(1)观察和记录:请家长带领学生观察和记录生活中常见的数学现象,如:商品的标价、购物时的计算、家庭用电量等。
(2)分析:引导学生分析这些现象背后的数学原理,如:整数、小数的加减乘除运算。
(3)作业:请学生选择其中一个现象,用文字、图画或表格等形式记录下来,并简要说明其数学原理。
2. 实践活动二:数学游戏(1)制作数学游戏:学生可以和家长一起制作一些简单的数学游戏,如:数独、找规律等。
(2)游戏规则:制定游戏规则,确保游戏的公平性和趣味性。
(3)作业:请学生介绍自己制作的数学游戏,包括游戏名称、规则和玩法。
3. 实践活动三:数学日记(1)记录生活:学生每天记录生活中遇到的数学问题,如:购物、旅游、做家务等。
(2)思考与解答:针对记录的问题,引导学生运用所学数学知识进行思考和解答。
(3)作业:请学生选择一个具有代表性的数学问题,用文字、图画或表格等形式记录下来,并说明解题思路。
4. 实践活动四:数学实验(1)实验材料:准备一些简单的实验材料,如:水、杯子、橡皮筋等。
(2)实验过程:根据实验材料,设计一个有趣的数学实验,如:探究水杯容积、观察橡皮筋的弹性等。
(3)作业:请学生详细记录实验过程,包括实验步骤、实验现象和实验结论。
5. 实践活动五:数学故事(1)收集素材:引导学生收集关于数学家的故事,如:陈景润、华罗庚等。
(2)编写故事:根据收集到的素材,编写一个数学故事。
(3)作业:请学生讲述自己编写的数学故事,并简要介绍故事中的数学知识。
6. 实践活动六:数学绘画(1)主题选择:学生可以选择自己感兴趣的数学主题,如:几何图形、数学符号等。
(2)绘画创作:根据主题,进行绘画创作。
(3)作业:请学生展示自己的绘画作品,并简要介绍作品中的数学元素。
高等数学(第三版)各章实验作业题答案
1. 作出函数[]53()3123,2,2f x x x x x =+-+∈-的图像.第1题图2. 求下列各极限.(1)1lim 1nn n →∞⎛⎫- ⎪⎝⎭; (2)sin lim x x x →∞;(3)0sin lim x x x →; (4)10lim x x e +→.解(1)11lim 1enn n →∞⎛⎫-= ⎪⎝⎭; (2)sin lim 0x x x →∞=;(3)0sin lim 1x xx →=; (4)12lim e x x e →3. 求方程20.2 1.70x x --=的近似解(精确到0.0001). 解 1 1.2077x ≈-,2 1.4077x ≈. 4. 探究高级计算器的其他功能.(略)1. 求函数3(21)y x x =-的导数; 操作:在命令窗口中输入:>> syms xy=x^3*(2*x -1); dy=diff(y) 按Enter 键,显示:dy = 3*x^2*(2*x -1)+2*x^3 继续输入:>> simplify(dy) % 将导数化简 按Enter 键,显示: ans =8*x^3-3*x^2即 3283y x x '=-. 2. 求函数()ln 1y x x =-+的二阶导数; 操作:在命令窗口中输入: >> syms xy=1-log(1+x); dy=diff(y,x,2) 按Enter 键,显示: dy = 1/(1+x)^2即 21(1)y x ''=+. 3.函数4322341y x x x x =-+-+在区间[-3,2]上的最小值. 操作:在命令窗口中输入:>>x=fminbnd('x^4-2*x^3+3*x^2-4*x+1',-3,2) y=x^4-2*x^3+3*x^2-4*x+1 按Enter 键,显示: x =1 y =-11.求下列不定积分(1)在命令窗口中输入: >> syms xint(x/(sqrt(x^2+1)),x)按键Enter 键,显示结果: ans = (x^2+1)^(1/2)即c +.(2)在命令窗口中输入: >> syms xint(x^3*cos(x))按键Enter 键,显示结果:ans =x^3*sin(x)+3*x^2*cos(x)-6*cos(x)-6*x*sin(x) 即332cos =sin 3cos 6cos 6sin x xdx x x x x x x x c +--+⎰. 2.求下列定积分(1)在命令窗口中输入: >> int((-3*x+2)^10,x,0,1) 点击Enter 键,显示结果: ans = 683/11 即1100683(-3+2)d =11x x ⎰. (2)在命令窗口中输入: >> int(x*sin(x),x,0,pi/2)点击Enter 键,显示结果: ans = 1 即 π20sin d =1x x x ⎰.3.求广义积分0e d x x x -∞⎰.操作:在命令窗口中输入: >>int(x*exp(x),x,-inf,0)按Enter 键,显示结果: ans =-1 即e d =1xx x -∞-⎰.1. 230y y y '''++=.操作:在命令窗口中输入: >> syms x y;y=dsolve('D2y -4*Dy -5*y=0','x') 显示:y =C1*exp(5*x)+C2*exp(-x)即满足所给初始条件的特解为:512xx y c e c e -=-.2. 232sin xy y e x '''-=.操作:在命令窗口中输入: >> syms x y;y=dsolve('D2y -3*Dy=2*exp(3*x)*sin(x)','x') 显示:y = -3/5*exp(3*x)*cos(x)-1/5*exp(3*x)*sin(x)+1/3*exp(x)^3*C1+C2即满足所给初始条件的特解为:33312311cos sin 553xxxy e x e x c e c =--++. 整理得:33213cos +sin 5xxy e x x ce c =-++()(令113c c =)3. +cos x y y y e x '''+=+,00x y ==,032x y ='=.操作:在命令窗口中输入: >> syms x y;y=dsolve('D2y+Dy+y=exp(x)+cos(x)','y(0)=0', 'Dy(0)=3/2', 'x') 显示:y = -1/3*exp(-1/2*x)*cos(1/2*3^(1/2)*x)+1/3*exp(x)+sin(x)即满足所给初始条件的特解为:211cos()sin 323x xy e e x -=-++.1. 绘制平面曲线ln y x =. 操作:在命令窗口中输入: >> x=1:0.02: exp(2); y=log(x); plot(x,y);按Enter 键,显示下图:2. 绘制空间曲面2232z x y =-. 操作:在命令窗口输入 >>[x,y]=meshgrid(-4:0.5:4); z=-3*x.^2-2*y.^2; surf(x,y,z)按Enter 键,显示下图:3. 绘制空间曲线23,23.t t t x e y e z e ---⎧=⎪⎪=⎨⎪=⎪⎩操作:在命令窗口输入>>t=0:0.01:1;x=exp(-t);y=exp(-2*t)/4;z=3*exp(-3*t)/9;plot3(x,y,z)按Enter键,显示下图:实验6作业题1. 求函数cos z xy =的偏导数. 操作:在命令窗口中输入:>> dz_dx=diff('cos(x*y)', 'x ') 显示dz_dx = -sin(x*y)*y 继续输入:>> dz_dy=diff('cos(x*y)', 'y ') 显示:dz_dy =-sin(x*y)*x即sin zx xy x∂=-∂, sin z x xy y ∂=-∂2. 计算函数23y x y =-的极值.操作:在matlab 中依次选择“File\New\M -File ”,在弹出的M 文件编辑窗口中在命令窗口中输入:clear all;clc syms x y;z=x^3-6*x-y^3+3*y;dz_dx=diff(z,x); %计算z 对x 的偏导数 dz_dy=diff(z,y); %计算z 对y 的偏导数 [x0,y0]=solve(dz_dx,dz_dy); %求驻点x0,y0A_=diff(z,x,2); %计算z 对x 的二阶偏导数B_=diff(diff(z,x),y); %计算z 对x,y 的二阶混合偏导数 C_=diff(z,y,2); %计算z 对y 的二阶偏导数 x0=double(x0); %数据转换 y0=double(y0);n=length(x0); %计算x0中元素的个数 for i=1:nA_x=subs(A_, x,x0(i)); %把x=x0(i)(即x0的第i 个元素值)代入z 对x 的二阶偏导数A=subs(A_x, y,y0(i)); %继续把y=y0(i)(即y0的第i 个元素值)代入z 对x 的二阶偏导数,得到AB_x=subs(B_, x,x0(i)); %把x=x0(i)代入z 对x 、y 的二阶混合偏导数 B=subs(B_x, y,y0(i)); %继续把y=y0(i)代入二阶混合偏导数,得到B C_x=subs(C_, x,x0(i)); %把x=x0(i)代入z 对y 的二阶偏导数C=subs(C_x, y,y0(i)); %继续把y=y0(i)代入z 对y 的二阶偏导数,得到C D=A*C-B^2;text=['原函数在(',num2str(x0(i)), ', ',num2str(y0(i)), ')处' ]; if D>0fm=subs(x^3-6*x-y^3+3*y,{x,y},{x0(i),y0(i)}); %求函数值 if A>0disp([text, '有极小值',num2str(fm)]) %在命令窗口中输出 elsedisp([text, '有极大值',num2str(fm)])end end if D==0disp([text, '的极值情况还不确定,还需另作讨论' ]) end end保存后,选择M 文件编辑窗口中的“Debug\run ”,显示如下结果: 原函数在(1.4142,-1)处有极小值-7.6569 原函数在(-1.4142,1)处有极大值7.65693. 计算(2)d d Dx y x y -⎰⎰,D :顶点分别为(0,0),(1,1)和(0,1)的三角形闭区域;操作:在命令窗口中输入: >>syms x y;S=int(int(2*x-y,y,0,1-x),x,0,1) 显示: S=1/6即:二重积分1(2)d d =6Dx y x y -⎰⎰.实验7作业题1. 将函数xx f -=11)(展开为幂级数,写出展开至6次幂项. 操作:在命令窗口中输入: >> clear;clc syms x; f=1/(1-2*x); taylor(f,7,x) 显示:ans = 1+2*x+4*x^2+8*x^3+16*x^4+32*x^5+64*x^6即65432643216842111x x x x x x x ++++++=-. 2. 求函数2()tf t e =的拉氏变换.操作:在命令窗口中输入: >> clear;clc syms x;laplace(exp(2*t)) 显示: ans = 1/(s -2)即 21)(2-=s e L t. 3.求函数22()56s F s s s +=-+的拉氏逆变换.操作:在命令窗口中输入: >>syms silaplace((s+2)/(s^2-5*s+6)) 显示:ans =-4*exp(2*t)+5*exp(3*t)即 12256s L s s -+⎡⎤⎢⎥-+⎣⎦234e 5e t t =-+.。
数学实验作业汇总
(1)产生一个5阶魔方矩阵M:M=magic(5)(2)将矩阵M的第3行4列元素赋值给变量t:t=M(3,4)(3)将由矩阵M第2,3,4行第2,5列构成的子矩阵赋给变N:N=M(2:4,2:3:5)(4)将由矩阵M的前3行赋给变量N:N=M(1:3,:)(5)将由矩阵M的后3列赋给变量N:N=M(:,end:-1:end-2)(6)提取M的主对角线元素,并以这些对角线元素构成对角矩阵N:N=diag(diag(M))或N=tril(triu(M)) (7)随机产生1000个100以内的整数赋值给变量t:t=round(rand(1,1000)*100)(8)随机产生100*5个100以内的实数赋值给变量M:M=rand(100,5)*100(1)删除矩阵M的第7个元素M(7)=[](2)将含有12个元素的向量t转换成3*4的矩阵:reshape(t,3,4)(3)产生和M同样大小的单位矩阵:eye(size(M))(4)寻找向量t中非零元素的下标:find(t)(5)逆序显示向量t中的元素:t(end:-1:1)(6)显示向量t偶数位置上的元素:t(2:2:end)(7)利用find函数,将向量t中小于10的整数置为0:t(find(t<10&rem(t,1)==0))=0(8)不用find函数,将向量t中小于10的整数置为0:t(t<10&rem(t,1)==0)=0(9)将向量t中的0元素用机器0(realmin)来代替:t(find(t=0))=realmin(10)将矩阵M中小于10的整数置为0:M(find(M<10)&rem(M,1)==0)=02、写出完成下列操作的命令及结果。
(1)将1~50这50个整数按行优先存放到5*10的矩阵中,求该矩阵四周元素的和;>> t=[1:10];>> M=[t;t+10;t+20;t+30;t+40]M =1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2 021 22 23 24 25 26 27 28 29 3 031 32 33 34 35 36 37 38 39 4 041 42 43 44 45 46 47 48 49 5 0>> N=M(2:4,2:9)N =12 13 14 15 16 17 18 1922 23 24 25 26 27 28 2932 33 34 35 36 37 38 39>> sum(sum(M))-sum(sum(n))ans =6632)n取100、1000、10000,求序列1、1/2、1/3……1/n的和。
四年级数学滴水实验练习题
四年级数学滴水实验练习题滴水实验是一种常见的数学实验,通过该实验可以帮助学生直观地理解数的增加和减少。
下面是一些关于滴水实验的练习题,帮助四年级学生巩固对数的概念和运算的理解。
1. 小明在滴水实验中,先往容器中滴入5滴水,接着又滴入3滴水。
请问容器里共有几滴水?2. 小红在滴水实验中,先往容器中滴入7滴水,接着又滴入2滴水,然后又滴入5滴水。
请问容器里共有几滴水?3. 小华在滴水实验中,先往容器中滴入4滴水,接着又滴入6滴水,然后再滴入3滴水。
请问容器里共有几滴水?4. 小明在滴水实验中,先往容器中滴入10滴水,接着每次都滴入2滴水,滴了5次。
请问容器里共有几滴水?5. 小红在滴水实验中,先往容器中滴入8滴水,接着每次都滴入3滴水,滴了4次。
请问容器里共有几滴水?解答:1. 小明一共滴入5滴水,再滴入3滴水,所以容器中共有5 + 3 = 8滴水。
2. 小红一共滴入7滴水,再滴入2滴水,最后滴入5滴水,所以容器中共有7 + 2 + 5 = 14滴水。
3. 小华一共滴入4滴水,再滴入6滴水,最后滴入3滴水,所以容器中共有4 + 6 + 3 = 13滴水。
4. 小明先滴入10滴水,然后每次都滴入2滴水,滴了5次,所以容器中共有10 + 2×5 = 10 + 10 = 20滴水。
5. 小红先滴入8滴水,然后每次都滴入3滴水,滴了4次,所以容器中共有8 + 3×4 = 8 + 12 = 20滴水。
通过这些练习题,我们可以观察到在滴水实验中,数的增加可以通过加法来表示,而数的减少可以通过减法来表示。
希望同学们通过这个实验,能够更好地理解和掌握数的增加和减少的概念,从而在数学学习中更加自信和熟练。
数学实验作业七
数学实验作业七题目:P200. 2);6) 日期:2003-4-9【实验目的】:1、掌握MATLAB 优化工具箱的基本用法,对不同算法进行初步分析、比较。
2、练习实际问题的非线性最小二乘拟合。
【实验内容】:二:求解()12212122min 42421x e x x x x x ++++,初值(-1,1),对不同算法的结果进行分析、比较。
【模型分析】:首先画出函数f=12212122(42421)x e x x x x x ++++的图像和等高线:可以看到:在[0.5,-1]附近为一个“凹地”,最小值应在该凹地中取得。
另外,从(-1,1)到此凹地为一与Rosenbrock 函数类似的狭长通道,不利于沿负梯度方向下降。
可以想象,该函数具有与Rosenbrock 函数类似的性质。
【MATLAB 源程序】比较程序如下:%数学实验作业二.1-dfunction f=ch72fun(x);%第7章第2题的函数f=exp(x(1)).*(4*x(1).^2+2*x(2).^2+4*x(1).*x(2)+2.*x(2)+1);%ch72.m%第7章第2题X0=[-1,1];%赋初值%BFGS,混合二三次插值opt1=optimset('TolX',1e-6,'TolFun',1e-6,'MaxIter',1000);[X1,FV AL,EXITFLAG,OUTPUT]=FMINUNC(@ch72fun,X0,opt1)%BFGS,三次插值opt2=optimset(opt1,'LineSearchType','cubicpoly');[X1,FV AL,EXITFLAG,OUTPUT]=FMINUNC(@ch72fun,X0,opt2)%DFP,混合二三次插值opt3=optimset(opt1,'HessUpdate','dfp');[X1,FV AL,EXITFLAG,OUTPUT]=FMINUNC(@ch72fun,X0,opt3)%DFP,三次插值opt4=optimset(opt3,'LineSearchType','cubicpoly');[X1,FV AL,EXITFLAG,OUTPUT]=FMINUNC(@ch72fun,X0,opt4)%最速下降,混合二三次插值opt5=optimset(opt1,'HessUpdate','steepdesc');[X1,FV AL,EXITFLAG,OUTPUT]=FMINUNC(@ch72fun,X0,opt5)【MATLAB 运行结果】:结果为:所以可以得到本题的解析解:x=(0.5,-1),f=0。
50个简单的数学小实验
50个简单的数学小实验1. 滚动骰子,记录每个点数的数量,进行统计分析。
2. 观察不同颜色的薯片在水中的沉浮情况,研究密度与沉浮关系。
3. 使用不同比例的液体混合,观察颜色的变化。
4. 抛掷硬币,记录正反面的次数,进行概率分析。
5. 用尺子测量不同物品的长度、宽度和高度,并计算体积。
6. 研究太阳光的折射现象,观察镜面反射和散射。
7. 测量水的密度,并探究不同温度下密度的变化。
8. 按照不同比例混合物质制作彩色火焰,观察颜色的变化。
9. 观察火柴棒在水中的漂浮情况,探究密度与沉浮关系。
10. 测量不同颜色纸张的吸光度,并研究颜色与吸光度的关系。
11. 投掷骰子,计算点数之和的概率分布。
12. 测量不同材质的物体上的摩擦系数,并计算摩擦力。
13. 研究声音的传播和反射,观察声波在不同介质中的特性。
14. 制作简易水银温度计,测量温度的变化。
15. 用万能表测量不同电器的电阻、电流和电压。
16. 研究气体的扩散速率,观察气体分子在不同温度下的运动状态。
17. 测量不同颜色光线的波长和频率,并探究颜色与波长频率的关系。
18. 使用不同硬度的铅笔在不同纸张上写字,观察痕迹的深浅和清晰度。
19. 用扫描电镜观察不同物质的微观结构,并比较不同物质之间的差异。
20. 研究磁场的强度和方向,探究电流与磁场的相互作用关系。
21. 设计和制作简易的电磁铁,测量其磁场强度和电阻。
22. 投掷飞镖,研究飞行轨迹和命中准确度。
23. 测量不同物体的密度,计算质量和体积的比值。
24. 制作水晶,观察不同溶液的晶体形态和颜色。
25. 研究不同材质之间的传热过程,探究热传导和热辐射的特性。
26. 测量不同物体的电荷量,研究电荷与电力的相互作用关系。
27. 观察不同金属的折射率和反射率,研究光的特性在金属中的表现。
28. 测量不同水平面上的液体压力和重力,探究液体压力和重力的关系。
29. 研究不同状态的气体压强,探究气体压强与体积的关系。
六年级数学实践作业
六年级数学实践作业
六年级数学实践作业示例:
题目:测量并计算家中常见物品的面积或体积
目标:通过实际操作,加深对面积和体积计算的理解,提高数学应用能力。
步骤:
1. 选择家中常见的物品,例如:餐桌、电视机、书柜、水桶等。
2. 使用测量工具(如卷尺)测量所选物品的长、宽、高。
3. 根据测量数据,使用面积和体积的计算公式(面积=长×宽,体积=长×宽×高),计算所选物品的面积和体积。
4. 将测量数据、计算过程和结果记录在实践作业表格中。
5. 分析测量和计算过程中的误差来源,讨论如何减小误差。
6. 将实践作业表格贴在数学实践作业本上,供老师检查。
注意事项:
1. 测量时要小心谨慎,避免损坏物品。
2. 记录数据时要准确无误,保证计算结果的准确性。
3. 在计算过程中,要注意单位的统一(如:长度单位为米或厘米,面积单位为平方米或平方厘米,体积单位为立方米或立方厘米)。
4. 分析误差时,可以从测量工具、测量方法、计算过程等方面进行考虑。
通过这样的实践作业,学生可以在实际操作中加深对面积和体积计算的理解,提高数学应用能力,同时也可以培养细心、耐心和观察力等素质。
数学实验作业
例题(2):假设某地区人口数量N(t)随时间t 连续增长,即dN(t)/dt=λN(t),其中λ是人口增长率.易得其解 N(t)=N o e λt ,N O 是该地区的初始人口。
如果考虑到移民以速度V 进入该地区,则dN(t )/dt=λN(t)+v微分方程的解为N(t)=N o e λt +v (e λt -1)/λ问题提出:假设该地区的初始人口有100万。
第一年内有43.5万移民迁入,第一年末总计人口156.4万,则43.5156.4100(1)λλλ=+-e e求该地区的人口增长率λ(一元方程求根)。
编程练习题1:对带有迁移的人口模型,试用几种非线性方程求根方法,确定模型公式中的人口增长率λ。
其满足:43.5156.4100(1)λλλ=+-e e设人口数量随着时间以固定的相对增长率变化。
领N(t)为t 食客的人口数量。
λ 为人口出生率。
1)人口数量的微分方程模型:dN(t)/dt=λN(t)2)指数模型: N(t)=N oe λt N O :初始时刻人口数量。
如果允许移民移入且移入速率v 为固定常数dN(t )/dt=λN(t)+v3)有移民移入的指数模型:N(t)=N o e λt +v (e λt -1)/λ假设:N o =1000000 (人) ,v=435000(人/年) ,N(t)=1564000(人) 通过求解方程:43.5156.4100(1)λλλ=+-e e 的该地区人口的出生率λ=0.1。
设方程f(λ)=0在区间[0,1]内有根,二分法就是逐步收缩有根区间,最后得出所求的根。
具体过程如下区有根区间[0,1]得重点,将它分为两半,分点λo =0+1/2=0.5 这样就可以缩少有根区间。
有三种情可以出现:1)若f(λ)f(0)﹤0,则f(λ)在区间[0,0.5)内有零点;2)若f(λ)f(1)﹤0,则f(λ)在区间(0.5,1]内有零点;3)若f(λo)=0,则λo 再区间[0,1]内的零点。
小学生数学实验100例
小学生数学实验100例实验一:糖果计数Obj:培养小学生的计数能力Materials:糖果Procedure:1. 给每个小学生发放相同数量的糖果。
2. 让小学生一边将手中的糖果一个一个取出,一边用口数数。
3. 让他们将自己数的结果告诉老师,老师确认无误后,鼓励他们继续进行下一轮的计数。
4. 重复以上步骤,直到小学生们计数无误。
实验二:数字拼图Obj:提高小学生的数字认知和逻辑思维能力Materials:数字卡片、拼图板Procedure:1. 将数字卡片打乱顺序放在桌上。
2. 让小学生们按照数字的顺序将卡片拼在拼图板上。
3. 鼓励小学生们在完成之后互相检查答案,找出错误并及时修改。
实验三:趣味运算Obj:强化小学生的运算能力Materials:纸、铅笔Procedure:1. 给每个小学生发放纸和铅笔。
2. 出题者可以随机给出一道加法、减法或乘法的算式。
3. 小学生们写下自己的答案,并在完成后把纸张交给出题者。
4. 出题者检查答案,将答对的小学生召集起来并鼓励他们。
实验四:图形分类Obj:提高小学生的图形识别和分类能力Materials:各种图形卡片(正方形、长方形、圆形、三角形等)Procedure:1. 将各种图形卡片打乱顺序放在桌上。
2. 让小学生们按照图形的特征将卡片分类。
3. 鼓励小学生们在完成之后互相检查分类结果,并讨论不同分类方式的合理性和差异。
实验五:分数比较Obj:加深小学生对分数大小关系的理解Materials:纸、铅笔Procedure:1. 准备一些简单的分数题目,例如1/2、1/4、1/8等。
2. 让小学生们通过比较分子和分母的大小,判断分数的大小关系。
3. 引导小学生们用纸和铅笔练习绘制简单的分数图形,加深对分数大小关系的理解。
实验六:时钟读表Obj:提高小学生的时间概念和读表能力Materials:模拟时钟、题目卡片Procedure:1. 准备一些时钟读表题目卡片,包括小时和分钟的各种组合。
数学实验作业8月10日第五组
实验七T7:取不同的初值计算下列平方和形式的非线性规划,尽可能求出所有局部极小点,进而找出全局极小点,并对不同算法(搜索方向、搜索步长、数值梯度与分析梯度等)的结果进行分析、比较。
2)min 22222121212(1211)(4949812324681)x x x x x x +-++++-4)min 100θ2221/222312123{[χ-10(χ,χ)]+[(χ+χ)-1]}+χ 其中1(), >0 2(,)11(), <0 22arctg arctg πθπ21112211⎧χχχ⎪⎪χχ=⎨⎪χχ+χ⎪⎩ 解:2)在matlab 中输入程序(exam0705grad.m ,exam0705grad_run.m ): function [f,g]=exam0705grad(x)f=(x(1)^2+12*x(2)-11)^2+(49*x(1)^2+49*x(2)^2+81*x(1)+2324*x(2)-681)^2;% compute the function value at xif nargout > 1 % fun called with 2 output argumentsg(1)=2*(98*x(1) + 81)*(49*x(1)^2 + 81*x(1) + 49*x(2)^2 + 2324*x(2) - 681) + 4*x(1)*(x(1)^2 + 12*x(2) - 11); % compute the gradient evaluated at xg(2)=288*x(2) + 2*(98*x(2) + 2324)*(49*x(1)^2 + 81*x(1) + 49*x(2)^2 + 2324*x(2) - 681) + 24*x(1)^2 - 264;endclear all ;clc;% comparing different algorithms: using gradient vectorformat short ex0=[-1.9,2];'---case1: bfgs, hybrid 2,3 poly-------'opt1=optimset('LargeScale','off', 'MaxFunEvals',1000,'GradObj','on');[x1,v1,exit1,out1]=fminunc(@exam0705grad,x0,opt1)pause'---case2: dfp, hybrid 2,3 poly-------'fopt=optimset(opt1,'HessUpdate','dfp');[x2,v2,exit2,out2]=fminunc(@exam0705grad,x0,fopt) pause'---case3: bfgs, hybrid 2,3 poly-------'fopt=optimset(opt1,'HessUpdate','bfgs');[x3,v3,exit3,out3]=fminunc(@exam0705grad,x0,fopt) pause'---case4: steep, hybrid 2,3 poly-------'fopt=optimset(opt1,'HessUpdate','steepdesc');[x4,v4,exit4,out4]=fminunc(@exam0705grad,x0,fopt) pause'---case5: bfgs, 3rd poly-------'opt2=optimset(opt1,'LineSearchType','cubicpoly'); [x5,v5,exit5,out5]=fminunc(@exam0705grad,x0,opt2) pause'---case6: dfp, 3rd poly-------'fopt=optimset(opt2,'HessUpdate','dfp');[x6,v6,exit6,out6]=fminunc(@exam0705grad,x0,fopt) pause'---case7:bfgs , 3rd poly-------'fopt=optimset(opt2,'HessUpdate','bfgs');[x7,v7,exit7,out7]=fminunc(@exam0705grad,x0,fopt) pause'---case8: steep, 3rd poly-------'fopt=optimset(opt2,'HessUpdate','steepdesc');[x8,v8,exit8,out8]=fminunc(@exam0705grad,x0,fopt)pause'++++ results of solutions ++++++'solutions=[x1;x2;x3;x4;x5;x6;x7;x8];funvalues=[v1;v2;v3;v4;v5;v6;v7;v8];iterations=[out1.funcCount;out2.funcCount;out3.funcCount;out4.funcCou nt;out5.funcCount;out6.funcCount;out7.funcCount;out8.funcCount]; [solutions,funvalues,iterations]则输出:x1 =-2.8997e+000 2.1583e-001v1 =3.2329e-006exit1 =1out1 =iterations: 32funcCount: 41stepsize: 1firstorderopt: 2.3873e+000algorithm: 'medium-scale: Quasi-Newton line search' message: [1x438 char]x2 =-2.3709e+000 2.5629e-001v2 =6.8300e+000exit2 =out2 =iterations: 401funcCount: 422stepsize: 1firstorderopt: 5.7455e+003algorithm: 'medium-scale: Quasi-Newton line search' message: [1x128 char]x3 =-2.8997e+000 2.1583e-001v3 =3.2329e-006exit3 =1out3 =iterations: 32funcCount: 41stepsize: 1firstorderopt: 2.3873e+000algorithm: 'medium-scale: Quasi-Newton line search' message: [1x438 char]x4 =-2.0594e+000 2.7379e-001v4 =1.2063e+001exit4 =out4 =iterations: 118funcCount: 1000stepsize: 4.7397e-006firstorderopt: 1.7291e+002algorithm: 'medium-scale: Quasi-Newton line search' message: [1x144 char]x5 =-2.8997e+000 2.1583e-001v5 =3.2329e-006exit5 =1out5 =iterations: 32funcCount: 41stepsize: 1firstorderopt: 2.3873e+000algorithm: 'medium-scale: Quasi-Newton line search' message: [1x438 char]x6 =-2.3709e+000 2.5629e-001v6 =6.8300e+000exit6 =out6 =iterations: 401funcCount: 422stepsize: 1firstorderopt: 5.7455e+003algorithm: 'medium-scale: Quasi-Newton line search'message: [1x128 char]x7 =-2.8997e+000 2.1583e-001v7 =3.2329e-006exit7 =1out7 =iterations: 32funcCount: 41stepsize: 1firstorderopt: 2.3873e+000algorithm: 'medium-scale: Quasi-Newton line search' message: [1x438 char]x8 =-2.0594e+000 2.7379e-001v8 =1.2063e+001exit8 =out8 =iterations: 118funcCount: 1000stepsize: 4.7397e-006firstorderopt: 1.7291e+002algorithm: 'medium-scale: Quasi-Newton line search' message: [1x144 char]ans =++++ results of solutions ++++++ans =-2.8997e+000 2.1583e-001 3.2329e-006 4.1000e+001-2.3709e+000 2.5629e-001 6.8300e+000 4.2200e+002-2.8997e+000 2.1583e-001 3.2329e-006 4.1000e+001-2.0594e+000 2.7379e-001 1.2063e+001 1.0000e+003-2.8997e+000 2.1583e-001 3.2329e-006 4.1000e+001-2.3709e+000 2.5629e-001 6.8300e+000 4.2200e+002-2.8997e+000 2.1583e-001 3.2329e-006 4.1000e+001-2.0594e+000 2.7379e-001 1.2063e+001 1.0000e+003改变x0,程序见附序(di1tix0.m),因太过繁琐,只输出最后x的值,输出:ans =-2.8956e+000 2.1618e-001 4.6001e-004 4.9000e+001-2.9377e+000 2.1295e-001 1.0877e+000 4.6600e+002-2.8956e+000 2.1618e-001 4.6001e-004 4.9000e+001-1.4106e+000 2.9837e-001 2.9482e+001 1.0000e+003-2.8956e+000 2.1618e-001 4.6001e-004 4.9000e+001-2.9377e+000 2.1295e-001 1.0877e+000 4.6600e+002-2.8956e+000 2.1618e-001 4.6001e-004 4.9000e+001-1.4106e+000 2.9837e-001 2.9482e+001 1.0000e+0034)程序见(exam07052grad.m, Untitled.m),输出结果:-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001改变初值x0后程序见Untitled1.m,输出结果:-1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001-1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001-1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001-1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001-1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001 -1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001 -1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001 -1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001 结论:从2)4)输出观察和比较数据可以看出改变x0,最优解随之改变,而bfgs 公式,混合2,3次插值,求得的局部最优解最接近全局最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习2﹒1画出下列常见曲线的图形(其中a=1,b=2,c=3)。
1.立方抛物线y =解: x=-4:0.1:4; y=x.^(1/3);plot(x,y)-4-3-2-1012340.20.40.60.811.21.41.62.高斯曲线2xy e -=解:fplot('exp(-x^2)',[-4,4])-4-3-2-1123400.10.20.30.40.50.60.70.80.913、笛卡儿曲线2332233,(3)11at at x y x y axy tt==+=++解:ezplot('x^3+y^3-3*x*y',[-4,4])-4-3-2-101234-4-3-2-101234xyx 3+y 3-3 x y = 0或:t=-4:0.1:4; x=3*t./(1+t.^2); y=3*t.^2./(1+t.^2); plot(x,y)-1.5-1-0.500.51 1.500.511.522.534、蔓叶线233222,()11atatxx y y tta x===++-解:t=-4:0.1:4; x=t.^2./(1+t.^2); y=t.^3,/(1+t.^2); y=t.^3./(1+t.^2); plot(x,y)00.10.20.30.40.50.60.70.80.91-4-3-2-101234或:ezplot('y .^2-x.^3/(1-x)',[-4,4])-4-3-2-101234-4-3-2-101234xyy.2-x.3/(1-x) = 05、摆线(sin ),(1cos )x a t t y b t =-=-解:t=-4:0.1:4; x=t-sin(t); y=2-2*cos(t); plot(x,y)-5-4-3-2-101234500.511.522.533.546、星形线22233333(cos ),(sin )()x a t y a t x y a ==+=解:t=0:0.1:2*pi; x=cos(t).^3; y=sin(t).^3; plot(x,y)-1-0.8-0.6-0.4-0.20.20.40.60.81-1-0.8-0.6-0.4-0.200.20.40.60.81或: ezplot('x.^(2/3)+y .^(2/3)-1',[-4,4])-4-3-2-101234-4-3-2-101234xyx.2/3+y.2/3-1 = 07、螺旋线cos ,sin ,x a t y b t z ct ===解:t=0:0.1:2*pi; x=cos(t); y=2*sin(t); z=3*t; plot3(x,y ,z)-118、阿基米德螺线r a θ=解:θ=0:0.1:2*pi; r=;θ polar(θ,r)902709、对数螺线ar eθ=θ=0:0.1:2*pi;r=exp(θ);polar(θ,r)90270180010、双纽线22222222cos 2(()())r a x y a x y θ=+=-解:θ=0:0.1:2*pi;r=sqrt(cos(2*θ));90270或:ezplot('(x.^2+y.^2).^2-(x.^2-y.^2)',[-4,4])hold on;gridon-4-3-2-101234-4-3-2-101234xy(x.2+y.2).2-(x.2-y.2) = 011、双纽线222222sin 2(()2)r a x y a xy θ=+=解:t=0:0.1:2*pi; r=sqrt(sin(2*t)); polar(t,r)902701800或:ezplot('(x.^2+y^2).^2-2*x*y',[-4,4])-4-3-2-101234-4-3-2-101234xy(x.2+y 2).2-2 x y = 012、心形线(1cos )r a θ=+解:t=0:0.1:2*pi; >> r=1+cos(t); >> polar(t,r)90270180练习2.21、求出下列极限值。
(1)limn →∞解:syms nlimit((n^3+3^n)^(1/n),n,inf) ans =3(2)lim n →∞解:syms x>> limit(sqrt(x+2)-2*(sqrt(x+1))+sqrt(x),x,inf)ans =0(3)0lim cot 2n x x → 解:syms xlimit(x*cot(2*x),x,0) ans =1/2(4)lim (cos)xn m x→∞解:syms x mlimit((cos(m/x))^x,x,inf) ans =1(5)111lim ()1xn xe →--解:syms xlimit((1/x)-1/(exp(x)-1),x,1) ans =(exp(1)-2)/(exp(1)-1)(6)lim)n x →∞解:syms xlimit(sqrt(x^2+x)-x,x,inf) ans =1/22、有个客户看中某套面积为1802m ,每平方米7500元。
他计划首付30%,其余70%用20年按揭贷款(贷款年利率5.04%),按揭贷款中还有10万元为公积金贷款(贷款年利率4.05%),请问他的房屋总价、首付款额和月付还款额分别为多少?解:(1)房屋总价:18075001350000S=⨯= (元)(2)首付款额:13500000.3405000N =⨯= (元)(3)房屋未付钱:945000M S N =-=(元)设揭贷款的年利率为x ,则20(1)240a x y ⨯+=其中a 为本金,y 为每月所付的钱。
解:当a =945000-100000=845000, 5.04%x =时, syms x yy=845000*(1+x)^20/240; x=0.0504; eval(y)ans = 9.4133e+003当a =100000, 4.05%x =时; syms x yy=100000*(1+x)^20/240; x=0.0405; eval(y) ans =921.7867 即每月付还款额为9413.3921.786710335.0867Z=+= (元)3、作出下列函数及其导函数的图形,观察极值点、最值点的位置点的位置并求出,求出所有驻点以及对应的二阶导函数,求出函数的单调区间。
(1)22()sin(2),[2,2];f x x x x =---解:函数图象:fplot('x.^2*sin(x.^2-x-2)',[-2,2])-2-1.5-1-0.500.51 1.52-4-3-2-1123原函数在-1附近的极小值:[x,f]=fminsearch('x.^2*sin(x.^2-x-2)',-1) x = -0.7315 f =-0.3582原函数在1.5附近的极小值: [x,f]=fminsearch('x.^2*sin(x.^2-x-2)',1.5) x =1.5951 f =-2.2080原函数在-1.5附近的极大值:[x,f]=fminsearch('-x.^2*sin(x.^2-x-2)',-1.5)x =-1.5326f =2.2364原函数在0附近的极大值:[x,f]=fminsearch('-x.^2*sin(x.^2-x-2)',0) x =0f =0原函数在[-2,2]上的最小值:x=-2:0.1:2;y=x.^2.*sin(x.^2-x-2);[m,k]=min(y)m =-3.0272k =1原函数在[-2,2]上的最大值:x=-2:0.1:2;y=x.^2.*sin(x.^2-x-2);[m,k]=max(y)m =2.2140k =6原函数的导函数图像:syms xy=x^2*sin(x^2-x-2);diff(y,x)ans =2*x*sin(x^2-x-2)+x^2*cos(x^2-x-2)*(2*x-1)导函数在-1.5附近的极小值:[x,f]=fminsearch('2*x*sin(x^2-x-2)+x^2*cos(x^2-x-2)*(2*x-1)',-1.5) x =-1.2650f =-5.5890导函数在1.5附近的极小值:[x,f]=fminsearch('2*x*sin(x^2-x-2)+x^2*cos(x^2-x-2)*(2*x-1)',1.5)x =1.2404f =-2.7572导函数在-2附近的极大值:[x,f]=fminsearch('-(2*x*sin(x^2-x-2)+x^2*cos(x^2-x-2)*(2*x-1))',-2) x =-1.9240f =17.6746导函数在-0.5附近的极大值:[x,f]=fminsearch('-(2*x*sin(x^2-x-2)+x^2*cos(x^2-x-2)*(2*x-1))',-0.5) x =-0.4742f =0.7973导函数在[-2,2]上的最大值:x=-2:0.1:2;y=2*x.*sin(x.^2-x-2)+x.^2.*cos(x.^2-x-2).*(2*x-1);[m,k]=max(y)m =17.5338k =2导函数在[-2,2]上的最小值:x=-2:0.1:2;y=2*x.*sin(x.^2-x-2)+x.^2.*cos(x.^2-x-2).*(2*x-1);[m,k]=min(y)m =-5.5119k =8求二阶导数的程序:syms x;diff('x^2*sin(x^2-x-2)',x,2)ans=2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x^2-x-2)*(2*x-1)^2 +2*x^2*cos(x^2-x-2)二阶导数的程序及图像:fplot('2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x^2-x-2)*(2*x-1)^2+2*x^2*cos(x^2-x-2)',[-2,2])二阶导函数在-1.5附近的极小值:[x,f]=fminsearch('2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x^ 2-x-2)*(2*x-1)^2+2*x^2*cos(x^2-x-2)',-1.5)x = -1.6847f =-58.8770二阶导函数在1附近的极小值:[x,f]=fminsearch('2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x^ 2-x-2)*(2*x-1)^2+2*x^2*cos(x^2-x-2)',1)x = 0.9282f =-3.5360二阶导函数在-0.5附近的极小值:[x,f]=fminsearch('2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x^ 2-x-2)*(2*x-1)^2+2*x^2*cos(x^2-x-2)',-0.5)x =-0.1798f =-2.1192二阶导函数在0附近的极大值:[x,f]=fminsearch('-(2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x ^2-x-2)*(2*x-1)^2+2*x^2*cos(x^2-x-2))',0)x =0.2594f =1.4013二阶导函数在-1附近的极大值:[x,f]=fminsearch('-(2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x ^2-x-2)*(2*x-1)^2+2*x^2*cos(x^2-x-2))',-1)x = -1.0098f =14.0148二阶导函数在2附近的极大值:[x,f]=fminsearch('-(2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x ^2-x-2)*(2*x-1)^2+2*x^2*cos(x^2-x-2))',2)x =1.9084f =34.8519二阶导函数的增区间:【-1.6847,-1.0098】,【-0.1798,0.2594】【0.9282,1.9084】二阶导函数的减区间:【-2,-1.6847】,【-1.0098,-0.1798】,【0.2594,0.9282】,【1.9084,2】(2)53=-+-()32010,[3,3];f x x x解:函数图像程序及图像:fplot('3*x^5-20*x^3+10',[-3,3])-3-2-10123原函数在2附近的极小值:[x,f]=fminsearch('3*x^5-20*x^3+10',2)x =2f =-54原函数在-2附近的极大值:[x,f]=fminsearch('-(3*x^5-20*x^3+10)',-2) x =-2f =74原函数在[-3,3]上的最小值:x=-3:0.1:3;y=3*x.^5-20*x.^3+10;[m,k]=min(y)m =-179k =1原函数在[-3,3]上的最大值:x=-3:0.1:3;y=3*x.^5-20*x.^3+10;[m,k]=max(y)m =199k =61求导函数程序:syms x;y=3*x.^5-20*x.^3+10;diff(y,x)ans =15*x^4-60*x^2导函数的程序及图像:fplot('15*x^4-60*x^2',[-3,3])-3-2-10123导函数在-1附近的极小值:[x,f]=fminsearch('15*x^4-60*x^2',-1)x =-1.4143f =-60.0000导函数在1附近的极小值:[x,f]=fminsearch('15*x^4-60*x^2',1) x =1.4143f =-60.0000导函数在0附近的极大值:[x,f]=fminsearch('-(15*x^4-60*x^2)',0) x =0f =0导函数在[-3,3]上的最大值:x=-3:0.1:3;y=15*x.^4-60*x.^2;[m,k]=max(y)m =675k =1导函数在[-3,3]上的最小值:x=-3:0.1:3;y=15*x.^4-60*x.^2;[m,k]=min(y)m =-59.9760k =17求二阶导数的程序:syms x;y=3*x^5-20*x^3+10;diff(y,x,2)ans =60*x^3-120*x二阶导数的程序及图像:fplot('60*x^3-120*x',[-3,3])-3-2-10123二阶导函数在1附近的极小值:[x,f]=fminsearch('60*x^3-120*x',1)x =0.8165f =-65.3197二阶导函数在-1附近的极大值:[x,f]=fminsearch('-(60*x^3-120*x)',-1)x =-0.8165f =65.3197二阶导函数的增区间:【-3,-0.8165】,【0.8165,3】二阶导函数的减区间:【-0.8165,0.8165】(3)32=----f x x x x()|2|,[3,3];解:函数图像程序及图像:fplot('abs(x^3-x^2-x-2)',[-3,3])原函数在0附近的极小值:[m,k]=fminsearch('abs(x^3-x^2-x-2)',0) m =-0.3333k =1.8148原函数在1附近的极大值:[m,k]=fminsearch('-abs(x^3-x^2-x-2)',1) m =1k =3原函数在[-3,3]上的最大值:x=-3:0.1:3;y=abs(x.^3-x.^2-x-2);[m,k]=max(y)m =35k =1原函数在[-3,3]上的最小值:x=-3:0.1:3;y=abs(x.^3-x.^2-x-2);[m,k]=min(y)m =0k =51原函数可化简为:32322[2,3](1)2[3,2](2)x x x x x x ⎧---⎪⎨⎪-+++-⎩对(1)求导函数程序:syms x;y=x^3-x^2-x-2;diff(y,x)ans =3*x^2-2*x-1导函数(1)的程序及图像:fplot('3*x^2-2*x-1',[2,3])2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.93在区间【2,3】上导函数最小值:x=2:0.1:3;y=3*x.^2-2*x-1;[m,k]=min(y)m =7k =1在区间【2,3】上导函数最大值:x=2:0.1:3;y=3*x.^2-2*x-1;[m,k]=max(y)m =20k =11对(2)求导函数程序:syms x;y=-x^3+x^2+x+2;diff(y,x)ans =-3*x^2+2*x+1导函数(2)的程序及图像:fplot('-3*x^2+2*x+1',[-3,2])-3-2.5-2-1.5-1-0.500.51 1.52导函数(2)的极大值:[m,k]=fminsearch('-(-3*x^2+2*x+1)',0)m =0.3333k =1.3333在区间【-3,2】上导函数最大值:x=-3:0.1:2;y=-3*x.^2+2*x+1;[m,k]=max(y)m =1.3300k =34在区间【-3,2】上导函数最小值:x=-3:0.1:2;y=-3*x.^2+2*x+1;[m,k]=min(y)m =-32k =1对(1)求二阶导函数:syms x;y=x^3-x^2-x-2;diff(y,x,2)ans =6*x-2对(1)求二阶导函数的图像及程序:ezplot('6*x-2',[2,3])6 x-2x对(1),二阶导函数的增区间为:[2,3]对(2)求二阶导函数:syms x;y=-x^3+x^2+x+2;diff(y,x,2)ans =-6*x+2对(2)求二阶导函数的图像及程序:ezplot('-6*x+2',[-3,2])-6 x+2x对(2),二阶导函数的减区间为:[-3,2]练习2.31、求下列方程在限制条件下的根:(1)42x x =, 22x -<<解:解:fplot('x^4-2^x',[-2,2])grid on[x,f,h]=fsolve('x^4-2^x',-1)x =-0.8613f =3.6580e-012h =1[x,f,h]=fsolve('x^4-2^x',1.1)x =1.2396f =2.3298e-010h =1(2))0.5,1x x x x =>解:solve('x*log(sqrt(x^2-1)+x)-sqrt(x^2-1)-0.5*x','x',[1,inf])ans =2.11552288439786708008040478395542、农夫老李有一个半径为10m 的圆形牛栏,里面长满了草,老李要将家里的一头牛拴在牛栏边界的一根栏桩上,要求只让牛吃到圆形牛栏中一半的草,请问栓牛鼻的绳子应为多长?解:3、求解下列非线性方程组在原点附近的根:222223229364362200162160x y z x y z x x y z ⎧++=⎪--=⎨⎪---=⎩ 解:fun=@(t)[9*t(1)^2+36*t(2)^2+4*t(3)^2-36,t(1)^2-2*t(2)^2-20*t(3),16*t(1)-t(1)^3-2*t(2)^2-16*t(3)^2];t0=[0,0,0];[t,f,h]=fsolve(fun,t0)t =0.1342 0.9972 -0.0985f =1.0e-008 *0.7690 -0.0418 -0.1054h =14、画出下面两个椭圆的图形,并求出它们所有的交点坐标: 2222(2)(23)5,18(3)36x y x x y -++-=-+= 解:ezplot('(x-2)^2+(y+2*x-3)^2-5',[-10,10])hold onezplot('18*(x-3)^2+y^2-36',[-10,10])-10-8-6-4-20246810-10-8-6-4-2246810x y 18 (x-3)2+y 2-36 = 0fun=@(t)[(t(1)-2)^2+(t(2)+2*t(1)-3)^2-5,18*(t(1)-3)^2+t(2)^2-36]; t0=[2,-2];[t,f,h]=fsolve(fun,t0)t =1.7362 -2.6929f =1.0e-008 *0.6598 0.6430h =1fun=@(t)[(t(1)-2)^2+(t(2)+2*t(1)-3)^2-5,18*(t(1)-3)^2+t(2)^2-36];[t,f,h]=fsolve(fun,t3)t =1.6581 1.8936f =1.0e-010 *0.0778 0.1889h =1fun=@(t)[(t(1)-2)^2+(t(2)+2*t(1)-3)^2-5,18*(t(1)-3)^2+t(2)^2-36]; t4=[4,-4];[t,f,h]=fsolve(fun,t4)t =4.0287 -4.1171f =1.0e-012 *0.1252 0.8882h = 1fun=@(t)[(t(1)-2)^2+(t(2)+2*t(1)-3)^2-5,18*(t(1)-3)^2+t(2)^2-36]; t5=[4,-6];[t,f,h]=fsolve(fun,t5)t =3.4829 -5.6394f =1.0e-014 *-0.3553 -0.7105h =1练习2.41、求下列不定积分,并用diff 验证:23,,sin ,sec 1cos 1x dx dx x x dx xdx xe ++⎰⎰⎰⎰ 解:1cos dxx+⎰ int('1/(1+cos(x))','x')ans =tan(1/2*x)验证:diff('tan(1/2*x)','x') ans =1/2+1/2*tan(1/2*x)^21x dxe +⎰ int('1/(1+exp(x))','x')ans =log(exp(x))-log(1+exp(x))验证:diff('log(exp(x))-log(1+exp(x))','x')ans =1-exp(x)/(1+exp(x))simple(ans)ans =1/(1+exp(x))2sin x x dx ⎰int('x*sin(x)^2','x')ans =x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2diff('x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2','x')ans =x*(1/2*sin(x)^2-1/2*cos(x)^2+1/2)simple(ans)ans =x*sin(x)^23sec xdx⎰int('sec(x)^3','x')ans =1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x))diff('1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x))','x')ans =1/cos(x)^3*sin(x)^2+1/2/cos(x)+1/2*(sec(x)*tan(x)+1+tan(x)^2)/(sec(x)+ tan(x))simple(ans)ans =1/cos(x)^32、求下列积分的数值解。