医学统计学基本概念

合集下载

医学统计学的基本内容

医学统计学的基本内容

医学统计学的基本内容第一章医学统计学的基本内容第一节医学统计学的含义1、医学统计学定义医学统计学(statistics)作为一门学科的定义是:关于医学数据收集、表达和分析的普遍原理和方法。

2、医学统计学研究方法:通过大量重复观察,发现不确定的医学现象背后隐藏的统计学规律。

3、医学统计推论的基础:在一定条件下,不确定的医学现象发生可能性,即概率。

第二节、统计学的几个重要概念一(资料的类型1、计量资料(数值变量):对每一观察对象用定量的方法,测定某项指标所得的资料。

一般有度量衡单位,每个对象之间有量的区别。

2、计数资料(分类变量):对观察对象按属性或类型分组计数所得的资料。

每个对象之间没有量的差异,只有质的不同。

3、等级资料(有序分类变量):对观察对象按属性或类型分组计数,但各属性或类型之间又有程度的差别。

注意:不同类型的资料采用的统计分析方法不同;三类资料类型可以相互转化。

二、总体根据研究目的所确定的同质的所有观察对象某项变量值的集合1、有限总体:只包括在确定时间、空间范围内的有限个观察对象。

2、无限总体:没有时间、空间范围的限制,观察对象的数量是不确定的,无限的三、样本从总体中随机抽取部分观察对象,其某项变量值的集合。

从总体中随机抽取样本的目的是: 用样本信息来推断总体特征。

四、随机事件可以发生也可以不发生,可以这样发生也可以那样发生的事件。

亦称偶然事件。

五、概率描述随机事件发生可能性大小的数值,记作,,其取值范围0?P?1,一般用小数表示。

,,0,事件不可能发生必然事件(随机事件的特例);,,1,事件必然发生;,?0,事件发生的可能性愈小;,?1,事件发生的可能性愈大六、小概率事件习惯上将,?0.05或,?0.01 的随机事件称小概率事件。

表示某事件发生的可能性很小。

七、参数和统计量参数:总体指标,如总体均数、总体率,一般用希腊字母表示统计量:样本指标,如样本均数、样本率,一般用拉丁字母表示八、学习医学统计学的方法1、重点掌握“四基”:基本知识、基本概念、基本原理和基本方法;2、重视统计方法在实际中应用,重视实习和综合训练;注意学习每种统计方法的应用范围、应用条件,大多数公式只要求了解其意义和使用方法,不用记忆和探究数理推导。

医学统计学基本概念和步骤

医学统计学基本概念和步骤
1999年中国农村死亡原因构成 (%)
消化系病 4%
其它 14%
恶性肿瘤 18%
损伤中毒 11%
呼吸系病 23%
心脏病 12%
脑血管病 18%
资料仅供参考,不当之处,请联系改正。
二、医学统计学与流行病学的关系
相同点:研究工具学(研究方法学)
不同点:流行病学—“三间分布”、偏倚、专业 统计学——“抽样误差”、基础
例如:同性别、同年龄、同地区、同体重儿童 的血压有高有低——血压的变异。
同样的疾病、同样的治疗方案,但疗效可能不 同!
第二节
资料仅供参考,不当之处,请联系改正。
常用统计基本概念
二、总体和样本
总体(population)—根据研究目的所确定 的全部同质研究个体。确切地说,是性质 相同的所有观察对象某项变量值的集合。
方法研究数据的收集、整理、分析和推断的 一门学科。它在不同领域的应用,就形成不 同的统计学。
资料仅供参考,不当之处,请联系改正。
统计学
理论基础
研究对象
概率论 数理统计
有变异的 事物
资料仅供参考,不当之处,请联系改正。
一、医学统计学的定义和内容
2、统计学的任务
●进行统计设计、收集、整理资料 ●对所收集资料进行统计描述和处理 ●对统计处理的结果进行分析和解释
P=0,事件不可能发生; P=1,事件必然发生; P→0,事件发生的可能性愈小; P→1,事件发生的可能性愈大
资料仅供参考,不当之处,请联系改正。
随机事件(random event):可以发生也可 以不发生,可以这样发生也可以那样发 生的事件。亦称偶然事件。
其 0<P<1
资料仅供参考,不当之处,请联系改正。

医学统计学的基本概念和分析方法

医学统计学的基本概念和分析方法

医学统计学的基本概念和分析方法医学统计学是一门综合性学科,通过对医学数据的收集、整理、分析和解释,为医学研究和临床实践提供科学依据。

本文将介绍医学统计学的基本概念和分析方法,帮助读者更好地理解和应用医学统计学。

第一部分:基本概念1.1 医学统计学的定义医学统计学是研究统计方法在医学领域中的应用,以获取、分析和解释医学数据并从中得出结论的学科。

它包括描述性统计学、推断性统计学和相关计量学方法。

1.2 医学统计学的重要性医学统计学的应用可以帮助医生和研究人员对疾病进行全面的评估和分析,从而提供指导临床决策的依据。

通过统计分析,可以揭示患者的疾病风险、疗效评估、生存分析等重要指标。

1.3 医学统计学的数据类型医学研究数据主要包括定量数据和定性数据。

定量数据是能够进行数值计算和比较的数据,如年龄、体重等。

定性数据是描述性的数据,如性别、人种等。

第二部分:分析方法2.1 描述性统计学描述性统计学是对收集到的医学数据进行整理和总结的方法。

常用的描述性统计学方法有频率分布、均值、中位数、标准差等。

2.2 推断性统计学推断性统计学是通过对样本数据进行分析,推断总体参数,并对推断结果进行判断的方法。

常见的推断性统计学方法有假设检验、置信区间估计等。

2.3 回归分析回归分析是通过建立数学模型,研究变量之间的因果关系。

它可以用于预测和解释变量之间的关系,广泛应用于医学数据的分析。

2.4 生存分析生存分析是研究患者存活时间或事件发生时间的方法。

常用的生存分析方法有生存曲线、生存率、风险比等,可以帮助评估患者的生存状况和预后。

2.5 因果推断因果推断是通过观察数据和基于统计模型的分析,研究某一因素对结果的影响程度。

因果推断可以帮助确定治疗方案的有效性,评估干预措施的效果。

第三部分:案例分析为了更好地说明医学统计学的应用,我们以实际案例进行分析。

3.1 随机对照试验随机对照试验是评估治疗措施疗效的重要方法。

通过将患者随机分为实验组和对照组,并进行干预措施和对照措施的比较,可以得出治疗效果的结论。

课堂笔记——医学统计学

课堂笔记——医学统计学

第一章医学统计中的基本概念一、医学统计工作的内容:实验设计(experiment design)、收集资料(collecting data)、整理资料(sorting data)和分析资料(analyzing data)二、变异:医学研究的对象是有机的生命体,其功能十分复杂,不同的个体在相同的条件下,对外界环境因素可以发生不同的反应,这种现象称为个体差异或称为变异三、总体(population)和样本(sample):总体是同质的个体所构成的全体。

从总体中抽取部分个体的过程称为抽样,所抽的部分称为样本,在一个样本里含有的个体数可以不同,样本包含的个体数目称为样本容量。

四、样本的特性:代表性(representation)——要求样本能够充分反应总体的特征;随机性(randomization)——需要保证总体中的每个个体都有相同的几率被抽做样本;可靠性(reliability)——实验的结果要具有可重复性,即由科研课题的样本得出的结果所推测总体的结论有较大的可信度;可比性(comparability)——指处理组(临床设计中称为治疗组)与对照组之间,除处理因素不同外,其他可能影响实验结果的因素要求基本齐同,也称为齐同对比原则。

五、误差:①系统误差(system error)②③六、概率(probability):是描述某一件事发生的可能性大小的一个量度。

习惯将P≤0.05或P≤0.01的事件称为小概率事件第二章集中趋势的统计描述一、频数表(frequency table):①概念:一种格式的统计表,即同时列出观察指标的可能取值区间及其在各区间内出现的频数。

由于这种资料的表达方式较完整地体现了观察值的分布规律,所以也称为频数分布表。

②制作图标的步骤:确定组数、确定组距、确定组段、对各组段计数及手工编制划记表。

二、直方图(histogram):①概念:直方图是以垂直条段代表频数分布的一种图形,条段的高度代表各组的频数,由纵轴标度;各组的组限由横轴标度,条段的宽度表示组距。

医学统计学方法

医学统计学方法

医学统计学方法1. 引言医学统计学是医学研究中不可或缺的一门学科,它通过应用统计学的原理和方法,对医学数据进行收集、整理、分析和解释,从而为医学研究提供可靠的依据。

本文将介绍医学统计学的基本概念、常用方法以及在医学研究中的应用。

2. 医学统计学的基本概念2.1 总体与样本在医学研究中,我们通常关注的是一个特定人群或物体的某种特征。

这个人群或物体称为总体,而从总体中选取出来的一部分个体则称为样本。

通过对样本进行观察和测量,我们可以对总体进行推断。

2.2 参数与统计量参数是描述总体特征的数值,例如总体均值、方差等。

由于很难获得总体所有个体的数据,我们通常通过样本来估计参数。

样本所得到的数值称为统计量,例如样本均值、样本方差等。

2.3 假设检验与置信区间在医学研究中,我们经常需要判断某种治疗方法是否有效、某种因素是否与疾病有关等。

假设检验是一种常用的统计方法,它通过对样本数据进行分析,判断总体参数是否符合某种假设。

置信区间则是对总体参数的估计范围。

3. 常用的医学统计学方法3.1 描述统计学描述统计学是对数据进行整理、总结和展示的方法。

常用的描述统计学方法包括:频数分布表、直方图、散点图等。

这些方法可以帮助我们了解数据的分布特征、集中趋势和离散程度。

3.2 推断统计学推断统计学是根据样本数据对总体进行推断的方法。

常用的推断统计学方法包括:参数估计和假设检验。

参数估计可以帮助我们估计总体参数,并给出其置信区间;假设检验可以帮助我们判断某个假设是否成立。

3.3 生存分析生存分析是研究个体发生某个事件(如死亡、复发)所需时间的方法。

常用的生存分析方法包括:生存函数曲线、危险比(hazard ratio)等。

生存分析可以帮助我们评估治疗效果、预测疾病进展等。

3.4 回归分析回归分析是研究因变量与自变量之间关系的方法。

常用的回归分析方法包括:线性回归、 logistic回归等。

回归分析可以帮助我们探索影响因素、预测结果等。

1.医学统计学的基本概念

1.医学统计学的基本概念

医学院
预防医学教研室
2012/2/26
3
2.用途:医学统计学是进行医学科研、 2.用途:医学统计学是进行医学科研、 用途
促进专业发展所必需的主要手段。 促进专业发展所必需的主要手段。
阅读医学书刊; 阅读医学书刊; 登记工作、填写各种报表; 登记工作、填写各种报表 科研工作、撰写科研论文; 科研工作、撰写科研论文; 制订计划、检查工作、 制订计划、检查工作、总结经验
医学院 预防医学教研室 2012/2/26
12
STATISTICS
总体 样本
工程 工程 工程 工程 工程 工程 工程 工程
参数
μ 理论 σ π
医学院
统计量
平均数 标准差 …. 率 计量
x
s p
13
预防医学教研室
2012/2/26
3. 变量与变量值 (1)变 量 (Variable):被观察单位 (1)变
医学院
预防医学教研室
2012/2/26
23
6. 概率 (Probability)
﹡ 是描述随机事件发生可能性大小的数值,用P 是描述随机事件发生可能性大小的数值,
表示; 表示; ﹡ 必然事件的概率为 1 (100%)、 、 不可能发生事件的概率为 0; ; ﹡ 随机事件的概率在 0~1 之间:0≤ P≤1; 之间: ; ﹡ P ≤ 0.05, P ≤ 0.01, 属小概率事件 即认为该事件不可能发生
医学院 预防医学教研室 2012/2/26
24
四、统计资料的类型 —— 计量资料 (数值变量) 数值变量)
用定量的方法测定同质观察单位某 用定量的方法测定同质观察单位某 同质 项指标测定值的集合,亦称 。 项指标测定值的集合,亦称~。 是定量的指标,一般有单位。 是定量的指标,一般有单位。

医学统计学基础

医学统计学基础

医学统计学基础医学统计学是一门研究医学中数据的收集、分析和解释的科学。

它在医学研究中扮演着至关重要的角色,并且对医学实践和决策具有深远影响。

本文将介绍医学统计学的基本概念、常用的统计方法以及其在医学领域的应用。

一、基本概念1.1 总体与样本在医学统计学中,我们常常需要研究某个感兴趣的群体,这个群体被称为总体。

总体可以是人群中的所有个体,也可以是其他单位,如医院、地区等。

由于总体往往很大,我们无法对其进行全面的研究,因此我们从总体中选取一部分个体进行研究,这部分个体称为样本。

1.2 数据类型医学研究中常见的数据类型包括定性数据和定量数据。

定性数据是描述性质或属性的数据,如性别、病情分类等;定量数据是可度量或计数的数据,如年龄、生命体征等。

了解数据类型对选择合适的统计方法至关重要。

1.3 描述统计学与推断统计学描述统计学用于总结和描述已有数据的特征,如均值、中位数、标准差等。

推断统计学则是通过对样本进行分析,推断总体的特征,并对结果进行估计和推断。

推断统计学可通过假设检验和置信区间来实现。

二、常用统计方法2.1 均值与标准差均值是用来描述一组数据集中趋势的指标,一般用于定量数据。

标准差则衡量了数据的离散程度,即数据的波动情况。

2.2 相关分析相关分析用于研究两个变量之间的关系。

通过计算相关系数,可以了解两个变量是正相关、负相关还是无关。

2.3 生存分析生存分析是用来研究事件发生和持续时间的统计方法。

在医学中,生存分析常用于研究患者的生存时间、复发时间等。

2.4 方差分析方差分析用于比较两个或多个组的均值是否存在显著差异。

它适用于一组分类变量和一个连续变量的比较。

三、医学统计学的应用3.1 临床试验设计与分析临床试验是评价药物疗效的重要手段。

医学统计学在临床试验的设计和分析中起到关键作用,如确定样本量、随机分组、双盲试验等。

3.2 流行病学研究流行病学研究可以揭示疾病的发病原因、预后以及控制策略。

医学统计学的方法可以帮助研究者分析大量数据,确定疾病的危险因素和相关性。

医学统计学的基本内容

医学统计学的基本内容
第八章
医学统计学的基本内容

1
统计学是一门运用概率论和数理 统计的基本原理研究数据收集、整理 和分析的方法学,医学统计学方法是
统计学在医学领域中的应用。
2
主要内容
医学统计学的基本概念 统计资料的类型 医学统计工作的基本步骤 统计表与统计图
3
第一节
医学统计学的基本概念
一、同质和变异 二、总体与样本
Quantitative data 计量资料
Qualitative data 计数资料
等级资料 Rank data
变量的转化 不同类型的变量其统计处理方法 不同。在实际工作中,根据统计分析
的具体要求和研究目的,各种不同的
变量间可以互相转化。
23
三类资料间关系
例:一组2040岁成年人的血压(舒张压)
12
四、误差
误差(error):泛指观测值与真值之差。 随机误差:
在随机误差中,最重要的是抽样误差 ( sampling error )。抽样误差是抽样引起的样本 统计量与总体参数之间的差异。抽样误差有规律可 循,样本越大,抽样误差越小。
系统误差
过失误差
13
五、概率
概率 (probability):是描述某一随机事件发 生可能性大小的指标,常用P表示,取值范 围0≤P≤1。 小概率事件:统计学上把概率 P≤0.05 的事 件称为小概率事件。
所有观察单位某项观察值的集合。
分为有限总体和无限总体两类。
8
样本(sample): 是指从总体中随机抽取部分观察单位某 项指标实测值的集合。 由于直接研究总体通常是不可能的,故 一般采用抽样研究。 抽样(sampling): 从总体中抽取部分个体的过程称为抽样

医学统计知识点整理

医学统计知识点整理

医学统计学知识点整理第一节统计学中基本概念一、同质与变异同质:统计研究中,给观察单位规定一些相同的因素情况。

如儿童的生长发育,规定同性别、同年龄、健康的儿童即为同质的儿童。

变异:同质的基础上个体间的差异。

“同质”是相对的,是客观事物在特定条件下的相对一致性,而“变异”则是绝对的μ.δ.πX.S.p1.2.变量:确定总体之后,研究者应对每个观察单位的某项特征进行观察或测量,这种特征能表现观察单位的变异性,称为变量。

一、数值变量资料又称为计量资料、定量资料:观测每个观察单位某项指标的大小而获得的资料。

表现为数值大小,带有度、量、衡单位。

如身高(cm)、体重(kg)、血红蛋白(g)等。

二、无序分类变量资料又称为定性资料或计数资料:将观察对象按观察对象的某种类别或属性进行分组计数,分组汇总各组观察单位后得到的资料。

分类:二分类:+ -;有效,无效;多分类:ABO血型系统特点:没有度量衡单位,多为间断性资料【例题单选】某地A、B、O、AB血型人数分布的数据资料是( )A.定量资料B.计量资料C.计数资料D.等级资料分组统计描述:是利用统计指标、统计表和统计图相结合来描述样本资料的数量特征及分布规律。

统计推断:是使用样本信息来推断总体特征。

统计推断包括区间估计和假设检验。

第四节统计表与统计图★一、统计表统计表的基本结构与要求标题:高度概括表的主要内容,时间、地点、研究内容,位于表的上方,居中摆放,左侧加表的序号。

标目:横标目和纵标目。

线条:通常采用三线表和四线表的形式。

没有竖线或斜线。

数字:表内数字一律用阿拉伯数字。

同一指标,小数位数应一致,位次对齐。

无数字用“—”表示。

暂缺用“…”表示。

“0”为确切值。

备注:位于表的下面,通常是对表内数字的注解和说明,必要时可以用“*”等标出。

一张统计表的备注不宜太多。

二、制表原则1.(7理分布。

【例题填空】描述某地十年间结核病死亡率的变化趋势宜绘制_________图。

医学统计学的基本概念

医学统计学的基本概念
是定量的指标, 亦称变量值,是定量的指标,一般有单 位。
—— 计数资料 (无序分类变量) 无序分类变量)
按性质和类别进行分组所得的资料。 按性质和类别进行分组所得的资料。其 变量值是定性的,可分二项分类和多项分类。 变量值是定性的,可分二项分类和多项分类。
—— 等级资料 (有序分类变量) 有序分类变量)
按某项指标的不同程度进行分组的资料。 按某项指标的不同程度进行分组的资料。 各组之间有量的差别, 亦为半定量的资料。 各组之间有量的差别 亦为半定量的资料。
根据分析的需要各类资料可以互相转化。 根据分析的需要各类资料可以互相转化。
五、统计工作的基本步骤 —— 设计:关键的一步 设计:
5. 概率
﹡ 是描述随机事件发生可能性大小的 数值, 表示。 数值,用P表示。0≤ P≤1 表示 ﹡ 必然事件的概率为 1 (100%) 不可能发生事件的概率为 0 随机事件的概率在 0~1 之间 ﹡ P<0.05, P<0.01, 属小概率事件
四、统计资料的类型 —— 计量资料 (数值变量) 数值变量)
2. 参数和统计量 参 数:
描述总体的统计指标:µ、 描述总体的统计指标 、σ 、π等。 等
统计量: 统计量:
_
描述样本的统计或分析指标。 、 描述样本的统计或分析指标。如χ、 p、u值、t值等。 值等。 、 值 值等
3. 变量与变异 变 量:
被观察单位 的某项特征 (指标 ;观察指 某项特征 指标 观察指 指标) 标的测定结果称变量值。 标的测定结果称变量值。
—— 分析资料
统计描述 统计分析 参数估计 统计推断 假设检验 统计指标 统计图表
六、学习本学科应注意
﹡ 掌握医学统计学的基本知识

医学统计学考试必会名词解释

医学统计学考试必会名词解释

P表示。

,如总体均数μ,总体率л,总体标准差σ等。

(用拉丁字母代表)如相本均数x,样本率p,样本标准差s等。

,称为正偏态;若集中位置偏向数值大的一侧(右x表演示样本均数。

R表示。

极差大,说明变异程度大;反之,说明变异程度小。

x百分位置上的数值,用符号表示为P x。

CV),亦称离散系数,为标准差与均数之比。

写成公式为:CV=S/X×100%,常用于(1)比较计量单位不同的几组资料的离样本均数的标准差称为标准误,其计算公式为。

=0.05。

H0,即“弃真”的错误。

Ⅰ型错误的概率用а表示,若确立检验水准为а=0.05,则犯第一类错误的概率为H0,即“存伪”的错误。

Ⅱ型错误的概率用β表示。

H0所规定的总体中随机抽样,获得等于及大于(或等于及小于)现有样本统计量的概率。

N(u,б2),经变换后,u服从均数为0,标准差为1的正态分布,这种正态分布称为标准正态分布。

X,它的可能取值是0,1,……n,且相应的取值概率P 叫随机变量服从以n,л为参数的二项分布,记X,它的可能取值为0,1,……n,,且相应取值概率为称随机变量X服从μ为参数M-Friedman在符号检验的基础上提出来的,常称为Friedman检验,又称M检验。

SS e表示。

反映组间变异。

b表示,b的统计意义为自变量x改变一个单位时,应变量y平均变化b个单位。

x对y的线性影响外,其它所有因素对y变异的影响,即在总平方和中无法用x与y的线性关系所能解释的部分y的随机误差。

x,y间的相互关系。

Pearson积矩相关系数,说明具有直线关系的两变量间相关方向与密切程度。

以符号r表示样本相关系数,ρ表示总体相r2表示,它反映应变量y的总变异中,可用回归关系解释的比例,其公式为r2= 。

医学统计学基本概念

医学统计学基本概念

医学统计学基本概念1.医学统计学是以医学理论为指导,应用概率论与数理统计的有关原理和方法,研究医学资料的搜集、整理、分析和推断的一门应用科学。

2.统计工作的步骤:(1)设计(2)收集资料(3)整理资料(4)分析资料;或者分三步:(1)研究设计(2)资料分析(3)结论。

3.定量资料:又称为数值变量资料,特点:(1)各观察值之间有量的差别;(2)数据间有连续性。

它是指变量的取值不止是可列个,而是可取某区间[a,b],(-oo,oo)上的一切值。

4.定性资料:又称为分类资料、分类变量资料(包括二项分类、多项分类资料),特点:(1)各观察值之间有质的差别;(2)数据间有离散性。

它是指变量的取值有限的,至多是可列多个。

附:无序分类:二项分类、多项分类5.等级资料:又称为半定量资料,有序分类,指各类之间有程度的差别。

特点:()各观察单位间或者相同,或者存在质的差别;(2)各等级间只有顺序,而无数值大小,故等级之间不可度量。

6.个体individual:即每个观察单位。

7.总体population:根据研究目的确定的同质观察单位的全体。

8.样本:是从总体中随机抽取部分观察单位,其实测值的集合。

样本包含的观察单位数称为样本含量或样本大小。

9.参数parameters:描述某总体特征的统计指标称为总体参数,简称参数。

如总体均数、总体标准差等。

特点:参数是未知的,固有的,不变的!10.统计量:描述某样本特征的的统计指标称为样本统计量,简称统计量。

特点:统计量是已知的,变化的,有误差的!11.概率probability:是描述随机事件发生的可能性大小的数值。

常用P表示。

它的大小界于0和1之间。

12.随机事件:(1)可重复性:相同条件下可重复进行;(2)随机性:出现两种机两种以上结果;(3)偶然性:实验前不能肯定将出现哪种结果。

13.频率的稳定性:在重复试验中,事件A的频率随着试验次数的不断增加将愈来愈接近一个常数p,频率的这一特性称为频率的稳定性。

医学统计学重点要点

医学统计学重点要点

医学统计学重点第一章绪论1.基本概念:总体:根据研究目的确定的性质相同或相近的研究对象的某个变量值的全体。

样本:从总体中随机抽取部分个体的某个变量值的集合.总体参数:刻画总体特征的指标,简称参数。

是固定不变的常数,一般未知。

统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。

抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。

频率:若事件A在n次独立重复试验中发生了m次,则称m为频数。

称m/n为事件A在n次试验中出现的频率或相对频率。

概率:频率所稳定的常数称为概率。

统计描述:选用合适统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。

统计推断:包括参数估计和假设检验。

用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计.用样本差别或样本与总体差别推断总体之间是否可能存在差别,称为假设检验。

2.样本特点:足够的样本含量、可靠性、代表性。

3。

资料类型:(1)定量资料:又称计量资料、数值变量或尺度资料.是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。

每个个体都能观察到一个观察指标的数值,有度量衡单位.(2)分类资料:包括无序分类资料(计数资料)和有序分类资料(等级资料)①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。

包括二分类资料和多分类资料。

二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容.多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。

4.统计工作基本步骤:统计设计、资料收集、资料整理、统计分析.第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2。

误差分类:随机误差(抽样误差、随机测量误差)、系统误差、过失误差。

3。

实验设计的三个基本原则:对照原则、随机化分组原则、重复原则.4。

第八章 医学统计学的基本内容

第八章 医学统计学的基本内容
统计量(statistic):根据样本中个体值计算 出来的描述样本特征的指标。统计量用拉 丁字母表示,:泛指观测值与真值之差。
随机误差:
在随机误差中,最重要的是抽样误差 (sampling error)。抽样误差是抽样引起的样本 统计量与总体参数之间的差异。
察单位的全体,更确切地说,是同质的 所有观察单位某项观察值的集合。
分为): 是指从总体中随机抽取部分观察单位某
项观察值的集合。 由于直接研究总体通常是不可能的,故
一般采用抽样研究。 meter) : 根 据 总 体 中 全 部 个 体 值计算出来的描述总体特征的指标。参数 一般用希腊字母表示,如总体均数μ、总 体率π等。
• 标目:标目用简单的文字来说明表格内的 项目,要有单位。
• 线条:3~4字必须准确无误,用阿拉 伯数字表示。同一指标的小数位数要一致, 上下要对齐,表内不留空格,
●备注:表中用“*”标出,再在表二、统计图:是用点、线、面等几何图形来反映统计结果。万象馆·19一、统计表
1. 统计表的结构 2. 统计表的种类 3.构
包括标题、标目、线条、数字、备注
• 标题:位于统计表的上方中央,要表达出 统计表的主要内容,必要时应注明时间、 地点。
其变量值是用定性方法得到的, 通常将观察单位按某种属性或类别分 组,然后汇
①二项分类变量 ②多项分类变量 无序分类变量构成的资料称为计数资料。 2.有序分类变量 有序分类变量型
16
变量的转化
不同类型的变量其统计处理方法 不同。在实际工作中,根据统计分析 的具体要求和研究目的,各种不同工作的基本步骤
1. 设计 2. 收集资料 3. 统计图
一、统计表:是将统计分析结果以表格的形
第八率论和数理统 计的基本原理研究数据收集、整理和 分析的方法学,医学统计学方法是统 医学统计学的基本概念 ➢统计资料的类型 ➢医学统计工作的基

常用医学统计方法及科研论文写作

常用医学统计方法及科研论文写作

设计需考虑以下几方面: 1、研究的目的和假设是什么? 2、研究对象的选择范围是什么?如何确定? 3、研究方法是什么?技术路线如何? 4、具体的研究内容、观察项目与指标是什么? 5、研究对象的数量大小,如何抽样?怎样分组? 6、对观察指标如何进一步计算?具体采用哪些统计分 析方法? 7、有哪些可能存在的误差?如何避免与减少其影响? 8、时间、人员、经费方面的安排。
老少比 =
×
65岁及以上老年人口数 14岁及以下少年儿童人口数
100%
人口金字塔
人口金字塔是一种用几何图形来形象地表示 人口性别年龄构成的方法。其图形形如金字塔, 故称为人口金字塔 。
人口金字塔分型
增长型人口:人口金字 塔呈上尖下宽,多 为出生率大于死亡 率,表示人口不断 增长。 静止型人口:除高龄组 构成较小外,其它 各年龄组构成相近, 此类人口出生率基 本等于死亡率,人 口总数基本稳定。 缩减型人口:人口金字 塔呈现上下两头小, 中间大,一般多为 死亡率大于出生率, 人口总数不断减少。
解决方法
可避免 查明并去除原因
测量误差 (随机) 抽样误差 (随机)
测量变异
测值-真值
随机
不可避免 提高测量精度 不可避免 增加样本含量
个体变异
样本--总体 样本--样本
随机
4、概率和小概率事件
概率是反映某一事件发生的可能性的大小,常
用符号P表示。其值在0和1之间。概率等于1
的事件是必然事件(P=1),概率等于0的事
围生期死亡 新生儿 死亡
婴儿 死亡
新生儿死亡率 指某地某年平均每千名活产 数中未满28天的新生儿死亡数,其算式为:
同年未满28天的新生儿死亡数
新生儿死亡率=
某年活产总数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题-医学统计学基本概念
选择题:
1. 若以舒张期血压大于等于1
2.7kPa 为为高血压,调查某地1000 人,记录每人是否患有高血压。

最后清点结果,其中有10 名高血压患者,有990 名非高血压患者。

()
A.这是计量数据
B.这是等级数据
C.还看不出是记数还是计量数据
D.这是连续型数据
E.这是计数数据
2、统计学中所说的样本是指()
A.随意抽取的总体中任意的部分
B.有意识的选择总体中的典型部分
C.依照研究者要求选取总体中有意义的一部分
D.依照随机原则抽取总体中有代表性的一部分
E.按研究目的随意抽取有代表性的一部分
3、下列资料属等级资料的是()
A.白细胞计数
B.住院天数
C.门、急症就诊人数
D.病人的病情分级(轻、中、重)
E.疾病疗效(有效、无效)
4、总体是由()
A.个体组成
B.研究对象组成
C.同质个体组成
D.研究指标组成
E.观察单位组成
5、抽样的目的是()
A.研究样本统计量
B.由样本统计量推断总体参数
C.研究典型案例研究误差
D.研究总体参数
E.研究样本特征
6、参数是()
A.参与个体数
B.总体的统计指标
C.样本的统计指标
D.样本的总和
E.参考值范围
7、关于随机抽样,下列哪一项说法是正确的()
A.抽样时应使得总体中的每一个个体都有同等的机会被抽取
B.研究者在抽样时应精心挑选个体,以使样本更能代表总体
C.随机抽样即随意抽样个体
D.为确保样本具有更好的代表性,样本量应越大越好
E.以上均不对
8、统计工作各个步骤的首要基础是()
A.收集资料
B.整理资料
C.核对资料
D.分析资料
E.医学研究设计
9、统计工作的基本步骤是:()
A.调查资料、核对资料、整理资料
B调查资料、归纳资料、整理资料
C收集资料、核对资料、整理资料
D收集资料、整理资料、分析资料
E收集资料、核对资料、归纳资料
10、调查得到100 人的血压值资料,根据研究目的,该资料可以整理为()A.计量资料B.计数资料C.等级资料
D.可以是A 也可以是B
E.A、B、C 都有可能
11、变异是指()
A.样本间的差异B.总体间的差异C.个体值间的差异
D.样本与总体间的差异E.同质个体间的差异
12、观察某人群血型,以人为观察单位,结果分A 型、B 型、AB 型和O 型,此资料为()
A.计量资料B.二项分类资料C.等级资料D.多项分类资料E.数量资料
13. 1954年实施了旨在评价索尔克(Salk)疫苗预防小儿麻痹或死于脊髓灰质炎效果的临床试验,有180万儿童参与,约1/4参与者得到了随机化,这180万儿童是
A. 目标总体
B. 研究总体
C. 1份样本
D. 1份随机样本
E. 180万份样本
13-1. 最终肯定了索尔克疫苗的效果,那么得出来的结论是针对哪部分人群。

() A. 180万儿童 B. 每个儿童 C. 所有使用索尔克疫苗的儿童 D. 所有儿童E. 180万儿童中随机化的1/4
问答题:
1. 变量的类型及其关系
2. 误差的概念及其分类。

相关文档
最新文档