2019届中考数学复习解答中考压轴题的“金钥匙”.docx

合集下载

中考数学精品文档——解答中考压轴题的“金钥匙”

中考数学精品文档——解答中考压轴题的“金钥匙”

剖析湖北中考压轴题 提炼解题方法与技巧一般设计3~4问,由易到难有一定的坡度,或连续设问,或独立考查,最后一问较难,一般是涉及几何特殊图形(或特殊位置)的探究问题。

本人就最后一问进行了研究,提炼出一些方法、技巧,供大家参考。

一、 数学思想:主要是数形结合思想、分类讨论思想、特殊到一般的思想 二、 探究问题:1、三角形相似、平行四边形、梯形的探究2、特殊角-----直角(或直角三角形)的探究3、平分角(或相等角)的探究4、平移图形后重叠部分面积函数的探究5、三角形(或多边形)最大面积的探究6、图形变换中特殊点活动范围的探究 三、 解题方法:1、画图法:(从形到数)一般先画出图形,充分挖掘和运用坐标系中几何图形的特性,选取合适的相等关系列出方程,问题得解。

画图分类时易掉情况,要细心。

2、解析法:(从数到形)一般先求出点所在线(直线或抛物线)的函数关系式,再根据需要列出方程、不等式或函数分析求解。

不会掉各种情况,但解答过程有时较繁。

四、 解题关键:1、从数到形:根据点的坐标特征,发现运用特殊角或线段比2、从形到数:找出特殊位置,分段分类讨论 五、 实例分析:(荆州2012压轴题编)如图,求△OAE 右移t (0<t ≤3)时,△OAE 与△ABE 重叠部分面积函数关系式。

t=23,分类讨论:230≤≤t ,323≤t ; 其次,求面积关系式时,充分运用两个比:1=OEOA, 21000=E O A O .如图,230≤≤t 时,显然,阴影部分的面积M AA AH O OAE S S S S 11∆∆∆--=阴 其中关键是求1AA 边上的高MN 。

∵=MN NA21000=E O A O ∴MN=2NA 又=MN NA 11=OEOA∴ 1NA MN = ∴1NA MN ==2NA (A 是1NA 中点)(十堰2012压轴题编)动点M(m, 0)在x 轴上,N (1, n )在线段EF 上,求∠MNC=090时m 的取值范围。

2019年湖南省中考数学真题精选分类汇编:压轴题(含答案解析)

2019年湖南省中考数学真题精选分类汇编:压轴题(含答案解析)

2019年湖南省各市中考数学真题精选汇编压轴题:1-16页2019年湖南省各市中考数学真题精选压轴题剖析:17-79页一.选择题(共10小题)1.(2019•长沙)如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE 上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10 2.(2019•永州)若关于x的不等式组有解,则在其解集中,整数的个数不可能是()A.1B.2C.3D.4 3.(2019•衡阳)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()A.B.C.D.4.(2019•娄底)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为()A.﹣2B.﹣1C.0D.1 5.(2019•湘潭)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程为()A.=B.=C.=D.=6.(2019•株洲)从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S的最大值()A.10B.6C.5D.4 7.(2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c 的取值范围是()A.c<﹣3B.c<﹣2C.c<D.c<1 8.(2019•邵阳)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.9.(2019•常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0B.1C.7D.8 10.(2019•郴州)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF 的边长是()A.B.2C.D.4二.填空题(共10小题)11.(2019•长沙)如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA.其中正确的结论的序号是.(只填序号)12.(2019•永州)我们知道,很多数学知识相互之间都是有联系的.如图,图一是“杨辉三角”数阵,其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和;图二是二项和的乘方(a+b)n的展开式(按b的升幂排列).经观察:图二中某个二项和的乘方的展开式中,各项的系数与图一中某行的数一一对应,且这种关系可一直对应下去.将(s+x)15的展开式按x的升幂排列得:(s+x)15=a0+a1x+a2x2+…+a15x15.依上述规律,解决下列问题:(1)若s=1,则a2=;(2)若s=2,则a0+a1+a2+…+a15=.13.(2019•衡阳)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为.14.(2019•娄底)已知点P(x0,y0)到直线y=kx+b的距离可表示为d=,例如:点(0,1)到直线y=2x+6的距离d==.据此进一步可得两条平行线y=x和y=x﹣4之间的距离为.15.(2019•湘潭)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为平方米.16.(2019•株洲)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为.17.(2019•岳阳)如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是.(写出所有正确结论的序号)①AM平分∠CAB;②AM2=AC•AB;③若AB=4,∠APE=30°,则的长为;④若AC=3,BD=1,则有CM=DM=.18.(2019•邵阳)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.19.(2019•常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N的坐标分别为(0,1),(0,﹣1),P是二次函数y=x2的图象上在第一象限内的任意一点,PQ垂直直线y=﹣1于点Q,则四边形PMNQ是广义菱形.其中正确的是.(填序号)20.(2019•郴州)如图,点A,C分别是正比例函数y=x的图象与反比例函数y=的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为.三.解答题(共19小题)21.(2019•长沙)已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围;(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好≤≤,求m,n的值.22.(2019•长沙)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B 三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.23.(2019•永州)某种机器使用若干年后即被淘汰,该机器有一易损零件,为调查该易损零件的使用情况,随机抽取了100台已被淘汰的这种机器,经统计:每台机器在使用期内更换的该易损零件数均只有8,9,10,11这四种情况,并整理了这100台机器在使用期内更换的该易损零件数,绘制成如图所示不完整的条形统计图.(1)请补全该条形统计图;(2)某公司计划购买一台这种机器以及若干个该易损零件,用上述100台机器更换的该易损零件数的频率代替一台机器更换的该易损零件数发生的概率.①求这台机器在使用期内共更换了9个该易损零件的概率;②若在购买机器的同时购买该易损零件,则每个200元;若在使用过程中,因备用该易损零件不足,再购买,则每个500元.请你帮该公司用花在该易损零件上的费用的加权平均数进行决策:购买机器的同时应购买几个该易损零件,可使公司的花费最少?24.(2019•永州)(1)如图1,在平行四边形ABCD中,∠A=30°,AB=6,AD=8,将平行四边形ABCD分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)(2)若将一边长为1的正方形按如图2﹣1所示剪开,恰好能拼成如图2﹣2所示的矩形,则m的值是多少?(3)四边形ABCD是一个长为7,宽为5的矩形(面积为35),若把它按如图3﹣1所示的方式剪开,分成四部分,重新拼成如图3﹣2所示的图形,得到一个长为9,宽为4的矩形(面积为36).问:重新拼成的图形的面积为什么会增加?请说明理由.25.(2019•衡阳)如图,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点N,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接CP,过点P作CP的垂线与y轴交于点E.(1)求该抛物线的函数关系表达式;(2)当点P在线段OB(点P不与O、B重合)上运动至何处时,线段OE的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点M,连接MN、MB.请问:△MBN的面积是否存在最大值?若存在,求出此时点M的坐标;若不存在,请说明理由.26.(2019•衡阳)如图,在等边△ABC中,AB=6cm,动点P从点A出发以1cm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.27.(2019•娄底)如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:△AEH≌△CGF;(2)试判断四边形EFGH的形状,并说明理由.(3)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.28.(2019•娄底)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.29.(2019•湘潭)如图一,抛物线y=ax2+bx+c过A(﹣1,0)B(3.0)、C(0,)三点(1)求该抛物线的解析式;(2)P(x1,y1)、Q(4,y2)两点均在该抛物线上,若y1≥y2,求P点横坐标x1的取值范围;(3)如图二,过点C作x轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CD、CB,点F为线段CB的中点,点M、N分别为直线CD和CE上的动点,求△FMN周长的最小值.30.(2019•湘潭)如图一,在射线DE的一侧以AD为一条边作矩形ABCD,AD=5,CD =5,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求∠CAD的大小;(2)问题探究:动点M在运动的过程中,①是否能使△AMN为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②∠MBN的大小是否改变?若不改变,请求出∠MBN的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.31.(2019•株洲)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交于点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.32.(2019•株洲)已知二次函数y=ax2+bx+c(a>0)(1)若a=1,b=﹣2,c=﹣1①求该二次函数图象的顶点坐标;②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.(2)设b=c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.F A的延长线与BC的延长线相交于点P,若=,求二次函数的表达式.33.(2019•岳阳)操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF 上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.(1)如图1,求证:BE=BF;(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;(3)类比探究:若DE=a,CF=b.①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)34.(2019•邵阳)如图1,已知⊙O外一点P向⊙O作切线P A,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.35.(2019•邵阳)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P 向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.36.(2019•常德)如图,已知二次函数图象的顶点坐标为A(1,4),与坐标轴交于B、C、D三点,且B点的坐标为(﹣1,0).(1)求二次函数的解析式;(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)当矩形MNHG的周长最大时,能否在二次函数图象上找到一点P,使△PNC的面积是矩形MNHG面积的?若存在,求出该点的横坐标;若不存在,请说明理由.37.(2019•常德)在等腰三角形△ABC中,AB=AC,作CM⊥AB交AB于点M,BN⊥AC 交AC于点N.(1)在图1中,求证:△BMC≌△CNB;(2)在图2中的线段CB上取一动点P,过P作PE∥AB交CM于点E,作PF∥AC交BN于点F,求证:PE+PF=BM;(3)在图3中动点P在线段CB的延长线上,类似(2)过P作PE∥AB交CM的延长线于点E,作PF∥AC交NB的延长线于点F,求证:AM•PF+OM•BN=AM•PE.38.(2019•郴州)如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE沿DE翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把∠BEF折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.(1)求证:△A1DE∽△B1EH;(2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF的形状,并说明理由;(3)如图3,在(2)的条件下,点G为△DEF内一点,且∠DGF=150°,试探究DG,EG,FG的数量关系.39.(2019•郴州)已知抛物线y=ax2+bx+3与x轴分别交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点.①如图1,设k=,当k为何值时,CF=AD?②如图2,以A,F,O为顶点的三角形是否与△ABC相似?若相似,求出点F的坐标;若不相似,请说明理由.2019年湖南省中考数学真题精选分类汇编:压轴题(含答案解析)参考答案与试题解析一.选择题(共10小题)1.(2019•长沙)如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE 上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tan A==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.【解答】解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tan A==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.方法二:作CM⊥AB于M,交BE于点D,则点D满足题意.通过三角形相似或三角函数证得BD=DM,从而得到CD+BD=CM=4.故选:B.【点评】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.2.(2019•永州)若关于x的不等式组有解,则在其解集中,整数的个数不可能是()A.1B.2C.3D.4【分析】先分别求出每一个不等式的解集,再根据不等式组有解,求出m<4,然后分别取m=2,0,﹣1,得出整数解的个数,即可求解.【解答】解:解不等式2x﹣6+m<0,得:x<,解不等式4x﹣m>0,得:x>,∵不等式组有解,∴<,解得m<4,如果m=2,则不等式组的解集为<x<2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<x<3,整数解为x=1,2,有2个;如果m=﹣1,则不等式组的解集为﹣<x<,整数解为x=0,1,2,3,有4个.故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2019•衡阳)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()A.B.C.D.【分析】根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离<a时,如图1S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,根据函数关系式即可得到结论;【解答】解:∵在直角三角形ABC中,∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∵EF⊥BC,ED⊥AC,∴四边形EFCD是矩形,∵E是AB的中点,∴EF=AC,DE=BC,∴EF=ED,∴四边形EFCD是正方形,设正方形的边长为a,如图1当移动的距离<a时,S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,∴S关于t的函数图象大致为C选项,故选:C.【点评】本题考查动点问题的函数图象,正方形的性质、勾股定理等知识,解题的关键是读懂题意,学会分类讨论的思想,属于中考常考题型.4.(2019•娄底)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为()A.﹣2B.﹣1C.0D.1【分析】先计算点P走一个的时间,得到点P纵坐标的规律:以1,0,﹣1,0四个数为一个周期依次循环,再用2019÷4=504…3,得出在第2019秒时点P的纵坐标为是﹣1.【解答】解:点运动一个用时为÷π=2秒.如图,作CD⊥AB于D,与交于点E.在Rt△ACD中,∵∠ADC=90°,∠ACD=∠ACB=60°,∴∠CAD=30°,∴CD=AC=×2=1,∴DE=CE﹣CD=2﹣1=1,∴第1秒时点P运动到点E,纵坐标为1;第2秒时点P运动到点B,纵坐标为0;第3秒时点P运动到点F,纵坐标为﹣1;第4秒时点P运动到点G,纵坐标为0;第5秒时点P运动到点H,纵坐标为1;…,∴点P的纵坐标以1,0,﹣1,0四个数为一个周期依次循环,∵2019÷4=504…3,∴第2019秒时点P的纵坐标为是﹣1.故选:B.【点评】本题考查了规律型中的点的坐标,解题的关键是找出点P纵坐标的规律:以1,0,﹣1,0四个数为一个周期依次循环.也考查了垂径定理.5.(2019•湘潭)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程为()A.=B.=C.=D.=【分析】根据题意,可以列出相应的分式方程,本题得以解决.【解答】解:由题意可得,,故选:B.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.6.(2019•株洲)从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S的最大值()A.10B.6C.5D.4【分析】找出a i+b i的值,结合对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,即可得出S的最大值.【解答】解:∵﹣1+1=0,﹣1+2=1,﹣1+4=3,1+2=3,1+4=5,2+4=6,∴a i+b i共有5个不同的值.又∵对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,∴S的最大值为5.故选:C.【点评】本题考查了规律型:数字的变化类,找出a i+b i共有几个不同的值是解题的关键.7.(2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c 的取值范围是()A.c<﹣3B.c<﹣2C.c<D.c<1【分析】由函数的不动点概念得出x1、x2是方程x2+2x+c=x的两个实数根,由x1<1<x2知△>0且x=1时y<0,据此得,解之可得.【解答】解:由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2是方程x2+2x+c =x的两个不相等实数根,且x1<1<x2,整理,得:x2+x+c=0,由x2+x+c=0有两个不相等的实数根,且x1<1<x2,知△>0,令y=x2+x+c,画出该二次函数的草图如下:则,解得c<﹣2,故选:B.【点评】本题主要考查二次函数图象与系数的关系,解题的关键是理解并掌握不动点的概念,并据此得出关于c的不等式.8.(2019•邵阳)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.9.(2019•常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0B.1C.7D.8【分析】首先得出尾数变化规律,进而得出70+71+72+…+72019的结果的个位数字.【解答】解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,…,∴个位数4个数一循环,∴(2019+1)÷4=505,∴1+7+9+3=20,∴70+71+72+…+72019的结果的个位数字是:0.故选:A.【点评】此题主要考查了尾数特征,正确得出尾数变化规律是解题关键.10.(2019•郴州)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF 的边长是()A.B.2C.D.4【分析】设正方形ADOF的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,解方程即可.【解答】解:设正方形ADOF的边长为x,由题意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,解得:x=2,或x=﹣12(舍去),∴x=2,即正方形ADOF的边长是2;故选:B.【点评】本题考查了正方形的性质、全等三角形的性质、一元二次方程的解法、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.二.填空题(共10小题)11.(2019•长沙)如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA.其中正确的结论的序号是①③④.(只填序号)【分析】①设点A(m,),M(n,),构建一次函数求出C,D坐标,利用三角形的面积公式计算即可判断.②△OMA不一定是等边三角形,故结论不一定成立.③设M(1,k),由△OAM为等边三角形,推出OA=OM=AM,可得1+k2=m2+,推出m=k,根据OM=AM,构建方程求出k即可判断.④如图,作MK∥OD交OA于K.利用平行线分线段成比例定理解决问题即可.【解答】解:①设点A(m,),M(n,),则直线AC的解析式为y=﹣x++,∴C(m+n,0),D(0,),∴S△ODM=n×=,S△OCA=(m+n)×=,∴△ODM与△OCA的面积相等,故①正确;∵反比例函数与正比例函数关于原点对称,∴O是AB的中点,∵BM⊥AM,∴OM=OA,∴k=mn,∴A(m,n),M(n,m),∴AM=(n﹣m),OM=,∴AM不一定等于OM,∴∠BAM不一定是60°,∴∠MBA不一定是30°.故②错误,∵M点的横坐标为1,∴可以假设M(1,k),∵△OAM为等边三角形,∴OA=OM=AM,1+k2=m2+,∵m>0,k>0,∴m=k,∵OM=AM,∴(1﹣m)2+=1+k2,∴k2﹣4k+1=0,∴k=2,∴k=2+,故③正确,如图,作MK∥OD交OA于K.∵OF∥MK,∴==,∴=,∵OA=OB,∴=,∴=,∵KM∥OD,∴==2,∴DM=2AM,故④正确.故答案为①③④.【点评】本题考查反比例函数与一次函数的交点问题,三角形的面积,平行线分线段成比例定理等知识,解题的关键是学会利用参数解决问题,学会构造平行线,利用平行线分线段成比例定理解决问题,属于中考填空题中的压轴题.12.(2019•永州)我们知道,很多数学知识相互之间都是有联系的.如图,图一是“杨辉三角”数阵,其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和;图二是二项和的乘方(a+b)n的展开式(按b的升幂排列).经观察:图二中某个二项和的乘方的展开式中,各项的系数与图一中某行的数一一对应,且这种关系可一直对应下去.将(s+x)15的展开式按x的升幂排列得:(s+x)15=a0+a1x+a2x2+…依上述规律,解决下列问题:(1)若s=1,则a2=105;(2)若s=2,则a0+a1+a2+…+a15=315.【分析】(1)根据图形中的规律即可求出(1+x)15的展开式中第三项的系数为前14个数的和;(2)根据x的特殊值代入要解答,即把x=1代入时,得到结论.【解答】解:(1)由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴s=1,则a2=1+2+3+…+14=105.故答案为:105;(2)∵(s+x)15=a0+a1x+a2x2+…+a15x15.当x=1时,a0+a1+a2+…+a15=(2+1)15=315,故答案为:315.【点评】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b 的指数是从低到高.13.(2019•衡阳)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,。

2019年中考数学压轴题 (1)

2019年中考数学压轴题 (1)

2019中考数学压轴题38.(2015三明)如图,已知点A 是双曲线2y x =在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(m ,n ),则m ,n 满足的关系式为( )A .2n m =-B .2n m =-C .4n m =-D .4n m =-【答案】B . 【解析】试题分析:∵点C 的坐标为(m ,n ),∴点A 的纵坐标是n ,横坐标是:2n ,∴点A 的坐标为(2n ,n ),∵点C 的坐标为(m ,n ),∴点B 的横坐标是m ,纵坐标是:2m ,∴点B 的坐标为(m ,2m ),又∵22n m mn =,∴22mn m n =⋅,∴224m n =,又∵m <0,n >0,∴2mn =-,∴2n m =-,故选B .考点:反比例函数图象上点的坐标特征.39.(2015乌鲁木齐)如图,在直角坐标系xOy 中,点A ,B 分别在x 轴和y 轴,34OA OB =.∠AOB 的角平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数ky x =的图象过点C .当以CD 为边的正方形的面积为27时,k 的值是( )A.2 B.3 C.5 D.7【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题.40.(2015重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数3yx=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.22.42【答案】D.【解析】试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3yx=的图象上且纵坐标分别为3,1,∴A ,B 横坐标分别为1,3,∴AE=2,BE=2,∴AB=22,S 菱形ABCD=底×高=22×2=42,故选D .考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题. 41.(2015临沂)在平面直角坐标系中,直线2y x =-+与反比例函数1y x =的图象有唯一公共点,若直线y x b =-+与反比例函数1y x =的图象有2个公共点,则b 的取值范围是( )A .b >2B .﹣2<b <2C .b >2或b <﹣2D .b <﹣2 【答案】C .考点:反比例函数与一次函数的交点问题. 42.(2015滨州)如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转,若∠BOA 的两边分别与函数1y x =-、2y x =的图象交于B 、A 两点,则∠OAB 的大小的变化趋势为( )A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变【答案】D.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题.二、填空题43.(2017云南省,第6题,3分)已知点A(a,b)在双曲线5yx=上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为.【答案】y=﹣5x+5或y=﹣15x+1.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a、b都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解析】∵点A(a,b)在双曲线5yx=上,∴ab=5,∵a、b都是正整数,∴a=1,b=5或a=5,b=1.设经过B(a,0)、C(0,b)两点的一次函数的解析式为y=mx+n.①当a=1,b=5时,由题意,得:5m nn+=⎧⎨=⎩,解得:55mn=-⎧⎨=⎩,∴y=﹣5x+5;②当a=5,b=1时,由题意,得:501m nn+=⎧⎨=⎩,解得:151mn⎧=-⎪⎨⎪=⎩,∴y=﹣15x+1.则所求解析式为y=﹣5x+5或y=﹣15x+1.故答案为:y=﹣5x+5或y=﹣15x+1.点睛:本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式.正确求出a、b 的值是解题的关键.考点:反比例函数图象上点的坐标特征;分类讨论.44.(2017内蒙古通辽市,第17题,3分)如图,直线333--=xy与x,y轴分别交于点A,B,与反比例函数xky=的图象在第二象限交于点C,过点A作x轴的垂线交该反比例函数图象于点D.若AD=AC,则点D的坐标为.【答案】(﹣3,3.【分析】过C作CE⊥x轴于E,求得A(﹣3,0),B(0,﹣3),解直角三角形得到∠OAB=30°,求得∠CAE=30°,设D(﹣3,3k-),得到AD=3k-,AC=3k-,于是得到C(33k-,6k-),列方程即可得到结论.【解析】过C作CE⊥x轴于E,∵直线333--=xy与x,y轴分别交于点A,B,∴A(﹣3,0),B (03,∴tan∠OAB=OBOA=3,∴∠OAB=30°,∴∠CAE=30°,设D(﹣3,3k-),∵AD⊥x轴,∴AD=3k-,∵AD=AC,∴AC=3k-,∴CE=6k-,AE=3k,∴C(33k,6k-),∵C在反比例函数x k y =的图象上,∴(336k -+)•(6k-)=k ,∴k=63-,∴D (﹣3,23),故答案为:(﹣3,23).点睛:本题考查了反比例函数与一次函数的交点问题,解直角三角形,反比例函数图象上点的坐标特征,正确的点A 、B 、C 的坐标解题的关键. 考点:反比例函数与一次函数的交点问题. 45.(2017四川省成都市,第24题,4分)在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P (1x ,1y ),称为点P 的“倒影点”,直线1y x =-+ 上有两点A 、B ,它们的倒影点A ′,B ′均在反比例函数ky x =的图象上,若AB=22,则k= .【答案】43-.【分析】设点A (a ,﹣a+1),B (b ,﹣b+1)(a <b ),则A′(1a ,11a -),B′(1b ,11b -),由AB=22可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k 、a 、b 的方程组,解之即可得出k 值.【解析】设点A (a ,﹣a+1),B (b ,﹣b+1)(a <b ),则A′(1a ,11a -),B′(1b ,11b -),∵AB=22,∴b ﹣a=2,即b=a+2.∵点A′,B′均在反比例函数k y x =的图象上,∴211(1)(1)b a k a a b b =+⎧⎪⎨==⎪--⎩,解得:k=43-.故答案为:43-.点睛:本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k 、a 、b 的方程组是解题的关键. 考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.46.(2017山东省日照市,第16题,4分)如图,在平面直角坐标系中,经过点A 的双曲线ky x =(x>0)同时经过点B ,且点A 在点B 的左侧,点A 2,∠AOB=∠OBA =45°,则k 的值为 ..【答案】15【分析】过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN=2,OM=AN=2,求出B(2+2,2﹣2),得出方程(2+2)•(2﹣2)=k,解方程即可.点睛:本题考查了坐标与图形性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识;本题综合性强,有一定难度.考点:反比例函数图象上点的坐标特征;综合题.47.(2017江苏省南通市,第18题,3分)如图,四边形OABC是平行四边形,点C在x轴上,反比例函数kyx=(x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为.【答案】(8,15 2).【分析】先根据点A(5,12),求得反比例函数的解析式为60yx=,可设D(m,60m),BC的解析式为y=125x+b,把D(m,60m)代入,可得b=60m﹣125m,进而得到BC的解析式为y=125x+60m﹣125m,据此可得OC=m﹣25m=AB,过D作DE⊥AB于E,过A作AF⊥OC于F,根据△DEB∽△AFO,可得DB=13﹣65m,最后根据AB=BD,得到方程m﹣25m=13﹣65m,进而求得D的坐标.【解析】∵反比例函数kyx=(x>0)的图象经过点A(5,12),∴k=12×5=60,∴反比例函数的解析式为60yx=,设D(m,60m),由题可得OA的解析式为y=125x,AO∥BC,∴可设BC的解析式为y=125x+b,把D(m,60m)代入,可得125m+b=60m,∴b=60m﹣125m,∴BC的解析式为y=125x+60m﹣125m,令y=0,则x=m﹣25m,即OC=m﹣25m,∴平行四边形ABCO中,AB=m﹣25m,如图所示,过D作DE⊥AB于E,过A作AF⊥OC于F,则△DEB∽△AFO,∴DB AODE AF=,而AF=12,DE=12﹣60m,22512+ =13,∴DB=13﹣65m,∵AB=DB,∴m﹣25m=13﹣65m,解得m1=5,m2=8,又∵D在A的右侧,即m>5,∴m=8,∴D的坐标为(8,152).故答案为:(8,152).点睛:本题主要考查了反比例函数图象上点的坐标特征以及平行四边形的性质的运用,解决问题的关键是作辅助线构造相似三角形,依据平行四边形的对边相等以及相似三角形的对应边成比例进行计算,解题时注意方程思想的运用.考点:反比例函数图象上点的坐标特征;平行四边形的性质;方程思想;综合题. 48.(2017江苏省宿迁市,第16题,3分)如图,矩形ABOC 的顶点O 在坐标原点,顶点B ,C 分别在x ,y 轴的正半轴上,顶点A 在反比例函数ky x =(k 为常数,k >0,x >0)的图象上,将矩形ABOC 绕点A 按逆时针方向旋转90°得到矩形AB′O′C′,若点O 的对应点O′恰好落在此反比例函数图象上,则C OBO 的值是 .【答案】51-.【分析】设A (m ,n ),则OB=m ,OC=n ,根据旋转的性质得到O′C′=n,B′O′=m,于是得到O′(m+n ,n ﹣m ),于是得到方程(m+n )(n ﹣m )=mn ,求得512m n =,(负值舍去),即可得到结论.【解析】设A (m ,n ),则OB=m ,OC=n ,∵矩形ABOC 绕点A 按逆时针反向旋转90°得到矩形AB′O′C′,∴O′C′=n,B′O′=m,∴O′(m+n ,n ﹣m ),∵A ,O′在此反比例函数图象上,∴(m+n )(n ﹣m )=mn ,∴m2+mn ﹣n2=0,∴m=152-n ,∴512m n =,(负值舍去),∴C OBO 的值是512,故答案为:512.点睛:本题考查了坐标与图形变化﹣旋转,反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.考点:坐标与图形变化﹣旋转;反比例函数图象上点的坐标特征;矩形的性质. 49.(2017江苏省常州市,第18题,2分)如图,已知点A 是一次函数12y x=(x ≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数kyx=(x>0)的图象过点B,C,若△OAB的面积为6,则△ABC的面积是.【答案】3.【分析】作辅助线,构建直角三角形,设AB=2a,根据直角三角形斜边中线是斜边一半得:BE=AE=CE=a,设A(x,12x),则B(x,kx),C(x+a,kx a+),因为B、C都在反比例函数的图象上,列方程组可得结论.【解析】如图,过C作CD⊥y轴于D,交AB于E,∵AB⊥x轴,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,设AB=2a,则BE=AE=CE=a,设A(x,12x),则B B(x,kx),C(x+a,kx a+),∴11262212212OABS AB DE a xka xxka xa x∆⎧=⋅=⨯⨯=⎪⎪⎪=+⎨⎪⎪=+⎪+⎩①②③,由①得:ax=6,由②得:2k=4ax+x2,由③得:2k=2a(a+x)+x (a+x),2a2+2ax+ax+x2=4ax+x2,2a2=ax=6,a2=3,∵S△ABC=12AB•CE=12•2a•a=a2=3.故答案为:3.点睛:本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;等腰直角三角形;反比例函数综合题.50.(2017江苏省盐城市,第16题,3分)如图,曲线l是由函数6yx=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(42-,42),B(22,22)的直线与曲线l相交于点M、N,则△OMN的面积为.【答案】8.【分析】由题意A(42-,42),B(22,22),可知OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴,利用方程组求出M、N的坐标,根据S△OMN=S△OBM﹣S△OBN计算即可.【解析】∵A(42-,42),B(22,22),∴OA⊥OB,建立如图新的坐标系(OB为x′轴,OA 为y′轴.在新的坐标系中,A(0,8),B(4,0),∴直线AB解析式为y′=﹣2x′+8,由'2'86''y xyx=-+⎧⎪⎨=⎪⎩,解得'1'6xy=⎧⎨=⎩或'3'2xy=⎧⎨=⎩,∴M(1.6),N(3,2),∴S△OMN=S△OBM﹣S△OBN=12×46﹣12×42=8,故答案为:8.点睛:本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.考点:坐标与图形变化﹣旋转;反比例函数系数k的几何意义.51.(2017江苏省连云港市,第15题,3分)设函数3yx=与y=﹣2x﹣6的图象的交点坐标为(a,b),则12a b+的值是.【答案】﹣2.【分析】由两函数的交点坐标为(a,b),将x=a,y=b代入反比例解析式,求出ab的值,代入一次函数解析式,得出2a+b的值,将所求式子通分并利用同分母分式的加法法则计算后,把ab及2a+b 的值代入即可求出值.点睛:此题考查了反比例函数与一次函数的交点问题,其中将x=a,y=b代入两函数解析式得出关于a 与b的关系式是解本题的关键.考点:反比例函数与一次函数的交点问题.52.(2017江苏省连云港市,第16题,3分)如图,已知等边三角形OAB与反比例函数kyx=(k>0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则BDDC的值为.(已知sin15°=62-)【答案】31 2.【分析】作辅助线,构建直角三角形,根据反比例函数的对称性可知:直线y=x,求出∠BOF=15°,根据15°的正弦列式可以表示BF的长,证明△BDF∽△CDN,可得结论.【解析】如图,过O作OM⊥x轴于M,∵△AOB是等边三角形,∴AM=BM,∠AOM=∠BOM=30°,∴A、B关于直线OM对称,∵A、B两点在反比例函数kyx=(k>0,x>0)的图象上,且反比例函数关于直线y=x对称,∴直线OM的解析式为:y=x,∴∠BOD=45°﹣30°=15°,过B作BF⊥x轴于F,过C作CN⊥x轴于N,sin∠BOD=sin15°=BFOB=62-,∵∠BOC=60°,∠BOD=15°,∴∠CON=45°,∴△CNO是等腰直角三角形,∴CN=ON,设CN=x,则OC=2x,∴OB=2x,∴2x =62-,∴BF=(31)2x-,∵BF⊥x轴,CN⊥x轴,∴BF∥CN,∴△BDF∽△CDN,∴BD BFCD CN==(31)2xx-=312-,故答案为:312-.点睛:本题考查了反比例函数与一次函数的交点问题、等边三角形的性质、等腰直角三角形的性质和判定、三角函数、三角形相似的性质和判定、翻折的性质,明确反比例函数关于直线y=x对称是关键,在数学题中常设等腰直角三角形的直角边为未知数x,2倍表示斜边的长,从而解决问题.考点:反比例函数与一次函数的交点问题;等边三角形的性质;翻折变换(折叠问题);解直角三角形.53.(2017浙江省宁波市,第17题,4分)已知△ABC的三个顶点为A(﹣1,﹣1),B(﹣1,3),C(﹣3,﹣3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数3 yx =的图象上,则m的值为.【答案】4或1 2.【分析】求得三角形三边中点的坐标,然后根据平移规律可得AB边的中点(﹣1,1),BC边的中点(﹣2,0),AC边的中点(﹣2,﹣2),然后分两种情况进行讨论:一是AB边的中点在反比例函数3yx=的图象上,二是AC边的中点在反比例函数3yx=的图象上,进而算出m的值.【解析】∵△ABC的三个顶点为A(﹣1,﹣1),B(﹣1,3),C(﹣3,﹣3),∴AB边的中点(﹣1,1),BC边的中点(﹣2,0),AC边的中点(﹣2,﹣2),∵将△ABC向右平移m(m>0)个单位后,∴AB边的中点平移后的坐标为(﹣1+m,1),AC边的中点平移后的坐标为(﹣2+m,﹣2).∵△ABC某一边的中点恰好落在反比例函数3yx=的图象上,∴﹣1+m=3或﹣2×(﹣2+m)=3,∴m=4或m=12.故答案为:4或12.点睛:此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.考点:反比例函数图象上点的坐标特征;坐标与图形变化﹣平移;分类讨论.54.(2017浙江省温州市,第15题,5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B 在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数kyx=(k≠0)的图象恰好经过点A′,B,则k的值为.【答案】43.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(12m,32m),列方程即可得到结论.【解析】∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD 关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=12m,A′E=3m,∴A′(12m,3m),∵反比例函数kyx=(k≠0)的图象恰好经过点A′,B,∴12m•3m=m,∴m=43,∴k=43.故答案为:43.点睛:本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.考点:反比例函数图象上点的坐标特征;矩形的性质;轴对称的性质;综合题.55.(2017浙江省湖州市,第16题,4分)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1yx=和9yx=在第一象限的图象于点A,B,过点B作 BD⊥x轴于点D,交1yx=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是.【答案】k=377或155.【分析】根据一次函数和反比例函数的解析式,即可求得点A、B、C的坐标(用k表示),再讨论①AB=BC,②AC=BC,即可解题.点睛:本题考查了点的坐标的计算,考查了一次函数和反比例函数交点的计算,本题中用k表示点A、B、C坐标是解题的关键.考点:反比例函数与一次函数的交点问题;等腰三角形的性质;分类讨论;综合题.56.(2017金华,第15题,4分)如图,已知点A (2,3)和点B (0,2),点A 在反比例函数ky x =的图象上,做射线AB ,再将射线AB 绕点A 按逆时针方向旋转45°,交反比例函数图象于点C ,则点C 的坐标为 .【答案】(﹣1,﹣6).【分析】先过A 作AE ⊥x 轴于E ,以AE 为边在AE 的左侧作正方形AEFG ,交AB 于P ,根据直线AB 的解析式为122y x =+,可得PF=32,将△AGP 绕点A 逆时针旋转90°得△AEH ,构造△ADP ≌△ADH ,再设DE=x ,则DH=DP=x+32,FD=1+2﹣x=3﹣x ,在Rt △PDF 中,根据PF2+DF2=PD2,可得方程22233()(3)()22x x +-=+,进而得到D (1,0),即可得出直线AD 的解析式为y=3x ﹣3,最后解方程组即可得到D 点坐标.【解析】如图所示,过A 作AE ⊥x 轴于E ,以AE 为边在AE 的左侧作正方形AEFG ,交AB 于P ,根据点A (2,3)和点B (0,2),可得直线AB 的解析式为122y x =+,由A (2,3),可得OF=1,当x=﹣1时,y=﹣12+2=32,即P (﹣1,32),∴PF=32,将△AGP 绕点A 逆时针旋转90°得△AEH ,则△ADP ≌△ADH ,∴PD=HD ,PG=EH=32,设DE=x ,则DH=DP=x+32,FD=1+2﹣x=3﹣x ,Rt △PDF 中,PF2+DF2=PD2,即22233()(3)()22x x +-=+,解得x=1,∴OD=2﹣1=1,即D (1,0),根据点A (2,3)和点D (1,0),可得直线AD 的解析式为y=3x ﹣3,解方程组:336y x y x =-⎧⎪⎨=⎪⎩,可得:23x y =⎧⎨=⎩或16x y =-⎧⎨=-⎩,∴C (﹣1,﹣6),故答案为:(﹣1,﹣6).点睛:本题主要考查了反比例函数与一次函数图象交点问题,以及反比例函数图象上点的坐标特征的运用,解决问题的关键是作辅助线构造正方形以及全等三角形,依据勾股定理列方程进行求解.考点:坐标与图形变化﹣旋转;反比例函数图象上点的坐标特征;反比例函数与一次函数的交点问题;综合题.57.(2017湖北省孝感市,第16题,3分)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数kyx=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.【答案】512-.【分析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1﹣n),根据k=n×1=(n+1)(1﹣n)得出方程,解方程即可.【解析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE 和△BAG中,∵∠AOE=∠GAB,∠AOE=∠AGB,AO=AB,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,解得:n=152-±(负值舍去),∴n=512-,∴k=512-;故答案为:512-.点睛:本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.考点:反比例函数图象上点的坐标特征;全等三角形的判定与性质.58.(2017湖北省荆州市,第18题,3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数kyx=(x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE=12,则BN的长为.【答案】3.【分析】利用矩形的面积公式得到AB•BC=32,再根据旋转的性质得AB=DE,OD=OA,接着利用正切的定义得到an∠DOE=DEOD=12,所以DE•2DE=32,解得DE=4,于是得到AB=4,OA=8,同样在Rt△OCM中利用正切定义得到MC=2,则M(﹣2,4),易得反比例函数解析式为8yx=-,然后确定N点坐标,最后计算BN的长.【解析】∵S矩形OABC=32,∴AB•BC=32,∵矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,∴AB=DE,OD=OA,在Rt△ODE中,tan∠DOE=DEOD=12,即OD=2DE,∴DE•2DE=32,解得DE=4,∴AB=4,OA=8,在Rt△OCM中,∵tan∠COM=MCOC=12,而OC=AB=4,∴MC=2,∴M(﹣2,4),把M(﹣2,4)代入kyx=得k=﹣2×4=﹣8,∴反比例函数解析式为8yx=-,当x=﹣8时,88y=--=1,则N(﹣8,1),∴BN=4﹣1=3.故答案为:3.点睛:本题考查了旋转图形的坐标:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了反比例函数图象上点的坐标特征和解直角三角形.考点:坐标与图形变化﹣旋转;反比例函数系数k的几何意义;解直角三角形;综合题.59.(2017湖北省鄂州市,第15题,3分)如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=3D为AC与反比例函数kyx=的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为.【答案】﹣4或﹣8.【分析】过C作CE⊥AB于E,根据∠ABC=60°,AB=4,BC=23,可求得△ABC的面积,再根据点D将线段AC分成1:2的两部分,分两种情况进行讨论,根据反比例函数系数k的几何意义即可得到k 的值.点睛:本题主要考查了反比例函数与一次函数交点问题,以及反比例函数系数k的几何意义的运用.过反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12 |k|,且保持不变.解题时注意分类思想的运用.考点:反比例函数与一次函数的交点问题;数形结合;分类讨论.60.(2017湖南省株洲市,第17题,3分)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数11kyx=(x>0)的图象上,顶点B在函数22kyx=(x>0)的图象上,∠ABO=30°,则12kk= .【答案】13-.【分析】设AC=a ,则OA=2a ,OC=3a ,根据直角三角形30°角的性质和勾股定理分别计算点A 和B 的坐标,写出A 和B 两点的坐标,代入解析式求出k1和k2的值,相比即可.【解析】如图,Rt △AOB 中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB ⊥OC ,∴∠ACO=90°,∴∠AOC=30°,设AC=a ,则OA=2a ,OC=3a ,∴A (3a ,a ),∵A 在函数11k y x =(x >0)的图象上,∴k1=3a•a=23a ,Rt △BOC 中,OB=2OC=23a ,∴BC=22OB OC -=3a ,∴B (3a ,﹣3a ),∵B在函数22k y x =(x >0)的图象上,∴k2=﹣3a 3a=233a -,∴12k k =13-;故答案为:13-.点睛:本题考查了反比例函数图象上点的特征、直角三角形30°的性质,熟练掌握直角三角形30°角所对的直角边是斜边的一半,正确写出A 、B 两点的坐标是关键. 考点:反比例函数图象上点的坐标特征;综合题.61.(2017贵州省遵义市,第18题,4分)如图,点E ,F 在函数2y x =的图象上,直线EF 分别与x轴、y 轴交于点A 、B ,且BE :BF=1:3,则△EOF 的面积是 .【答案】8 3.【分析】证明△BPE∽△BHF,利用相似比可得HF=4PE,根据反比例函数图象上点的坐标特征,设E点坐标为(t,2t),则F点的坐标为(3t,23t),由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.【解析】作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图所示:∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴13PE BEHF BF==,即HF=3PE,设E点坐标为(t,2t),则F点的坐标为(3t,23t),∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=12×2=1,∴S△OEF=S梯形ECDF=12(23t+2t)(3t﹣t)=83;故答案为:83.点睛:本题考查了反比例函数的几何意义、相似三角形的判定与性质;掌握反比例函数图象上点的坐标特征、反比例函数的比例系数的几何意义,证明三角形相似是解决问题的关键.考点:反比例函数系数k的几何意义.62.(2017辽宁省盘锦市,第16题,3分)在平面直角坐标系中,点P的坐标为(0,﹣5),以P为圆心的圆与x轴相切,⊙P的弦AB(B点在A点右侧)垂直于y轴,且AB=8,反比例函数kyx=(k≠0)经过点B,则k= .【答案】﹣8或﹣32.【分析】设AB交y轴于点C,利用垂径定理可求得PC的长,则可求得B点坐标,代入反比例函数解析式可求得k的值.【解析】设线段AB 交y 轴于点C ,当点C 在点P 的上方时,连接PB ,如图,∵⊙P 与x 轴相切,且P (0,﹣5),∴PB=PO=5,∵AB=8,∴BC=4,在Rt △PBC 中,由勾股定理可得PC=22PB BC - =3,∴OC=OP ﹣PC=5﹣3=2,∴B 点坐标为(4,﹣2),∵反比例函数ky x =(k ≠0)经过点B ,∴k=4×(﹣2)=﹣8;当点C 在点P 下方时,同理可求得PC=3,则OC=OP+PC=8,∴B (4,﹣8),∴k=4×(﹣8)=﹣32; 综上可知k 的值为﹣8或﹣32,故答案为:﹣8或﹣32.点睛:本题主要考查切线的性质及反比例函数图象上点的坐标特征,利用垂径定理和切线的性质求得PC 的长是解题的关键,注意分两种情况.考点:反比例函数图象上点的坐标特征;切线的性质;分类讨论. 63.(2017黑龙江省齐齐哈尔市,第18题,3分)如图,菱形OABC 的一边OA 在x 轴的负半轴上,O是坐标原点,tan ∠AOC=43,反比例函数ky x =的图象经过点C ,与AB 交于点D ,若△COD 的面积为20,则k 的值等于 .【答案】﹣24.【分析】易证S 菱形ABCO=2S △CDO ,再根据tan ∠AOC 的值即可求得菱形的边长,即可求得点C 的坐标,代入反比例函数即可解题.【解析】作DE ∥AO ,CF ⊥AO ,设CF=4x ,∵四边形OABC 为菱形,∴AB ∥CO ,AO ∥BC ,∵DE ∥AO ,∴S △ADO=S △DEO ,同理S △BCD=S △CDE ,∵S 菱形ABCO=S △ADO+S △DEO+S △BCD+S △CDE ,∴S 菱形ABCO=2(S △DEO+S △CDE )=2S △CDO=40,∵tan ∠AOC=43,∴OF=3x ,∴22OF CF +,∴OA=OC=5x ,∵S 菱形ABCO=AO•CF=20x2,解得:2,∴OF=32CF=42C 坐标为(﹣3242),∵反比例函数ky x =的图象经过点C ,∴代入点C 得:k=﹣24,故答案为:﹣24.点睛:本题考查了菱形的性质,考查了菱形面积的计算,本题中求得S菱形ABCO=2S△CDO是解题的关键.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;菱形的性质;解直角三角形;综合题.64.(2017山东省济南市,第20题,3分)如图,过点O的直线AB与反比例函数kyx=的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数3kyx-=(x<0)的图象交于点C,连接AC,则△ABC的面积为.【答案】8.【分析】由A(2,1)求得两个反比例函数分别为2yx=,6yx-=,与AB的解析式y=12x,解方程组求得B的坐标,进而求得C点的纵坐标,即可求得BC,根据三角形的面积公式即可求得结论.点睛:本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.考点:反比例函数与一次函数的交点问题;反比例函数及其应用.65.(2017山东省莱芜市,第15题,4分)直线y=kx+b与双曲线6 yx =-交于A(﹣3,m),B(n,﹣6)两点,将直线y=kx+b向上平移8个单位长度后,与双曲线交于D,E两点,则S△ADE= .【答案】16.【分析】利用待定系数法求出平移后的直线的解析式,求出点D、E的左边,再利用分割法求出三角形的面积即可.【解析】由题意A(﹣3,2),B(1,﹣6),∵直线y=kx+b经过点A(﹣3,2),B(1,﹣6),∴326k bk b-+=⎧⎨+=-⎩,解得:24kb=-⎧⎨=-⎩,∴y=﹣2x﹣4,向上平移8个单位得到直线y=﹣2x+4,由624yxy x⎧=-⎪⎨⎪=-+⎩,解得:32xy=⎧⎨=-⎩和16xy=-⎧⎨=⎩,不妨设D(3,﹣2),E(﹣1,6),∴S△ADE=6×8﹣12×4×2﹣12×6×4﹣12×8×4=16,故答案为:16.点睛:本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用分割法求三角形的面积.考点:反比例函数与一次函数的交点问题;一次函数图象与几何变换.66.(2016云南省昆明市)如图,反比例函数kyx=(k≠0)的图象经过A,B两点,过点A作AC⊥x 轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE 的面积为2,则k的值为.【答案】163-.【分析】先设点B坐标为(a,b),根据平行线分线段成比例定理,求得梯形BDCE的上下底边长与高,再根据四边形BDCE的面积求得ab的值,最后计算k的值.【解析】设点B坐标为(a,b),则DO=﹣a,BD=b.∵AC⊥x轴,BD⊥x轴,∴BD∥AC.∵OC=CD,∴CE=12BD=12b,CD=12DO=12-a.∵四边形BDCE的面积为2,∴12(BD+CE)×CD=2,即12(b+12b)×(12-a)=2,∴ab=163-.将B(a,b)代入反比例函数kyx=(k≠0),得:k=ab=163-.故答案为:163-.考点:反比例函数系数k 的几何意义;平行线分线段成比例. 67.(2016内蒙古包头市)如图,在平面直角坐标系中,点A 在第二象限内,点B 在x 轴上,∠AOB=30°,AB=BO ,反比例函数ky x =(x <0)的图象经过点A ,若S △ABO=3,则k 的值为 .【答案】33-.【分析】过点A 作AD ⊥x 轴于点D ,由∠AOB=30°可得出3AD OD=,由此可是点A 的坐标为(﹣3a ,3 a ),根据S △ABO=3结合三角形的面积公式可用a 表示出线段OB 的长,再由勾股定理可用含a的代数式表示出线段BD 的长,由此即可得出关于a 的无理方程,解方程即可得出结论.【解析】过点A 作AD ⊥x 轴于点D ,如图所示.∵∠AOB=30°,AD ⊥OD ,∴ADOD =tan ∠AOB=3,∴设点A 的坐标为(﹣3a 3).∵S △ABO=123OB=2a .在Rt △ADB 中,∠ADB=90°,AD=3a ,AB=OB=2a ,∴222BD AB AD =-=2243a a -,BD=2243a a -.∵OD=OB+BD=3a ,即222433a a a a =+-,解得:a=1或a=﹣1(舍去),∴点A 的坐标为(﹣3,3),∴k=﹣3×3=33-.故答案为:33-. 考点:反比例函数系数k 的几何意义. 68.(2016内蒙古呼和浩特市)已知函数1y x =-,当自变量的取值为﹣1<x <0或x≥2,函数值y 的取值 .【答案】y >1或12-≤y<0.【分析】画出图形,先计算当x=﹣1和x=2时的对应点的坐标,并描出这两点,根据图象写出y 的取值.【解析】当x=﹣1时,y=11--=1,当x=2时,y=12-,由图象得:当﹣1<x <0时,y >1,当x≥2时,12-≤y<0,故答案为:y >1或12-≤y<0.考点:反比例函数的性质.69.(2016四川省内江市)如图,点A 在双曲线5y x =上,点B 在双曲线8y x =上,且AB ∥x 轴,则△OAB 的面积等于 .【答案】32.【分析】延长AB交y轴于点C,根据反比例函数系数的几何意义求出△BOC的面积与△AOC的面积,然后相减即可得解.【解析】延长AB交y轴于点C.S△OAC=12×5=52,S△OCB=12×8=4,则S△OAB=S△OCB﹣S△OAC=4﹣52=32.故答案为:32.考点:反比例函数系数k的几何意义.70.(2016四川省眉山市)如图,已知点A是双曲线6yx=在第三象限分支上的一个动点,连结AO 并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线kyx=上运动,则k的值是.【答案】36-【分析】根据反比例函数的性质得出OA=OB,连接OC,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,根据等边三角形的性质和解直角三角形求出3,求出△OFC∽△AEO,相似比OCOA3ΔOFCΔAEOSS=3,求出△OFC的面积,即可得出答案.。

【附20套名校中考真题】安徽省2019年中考数学试题及答案解析(Word版)

【附20套名校中考真题】安徽省2019年中考数学试题及答案解析(Word版)

2019年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2019年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=00000,00000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2019年我省有效发明专利数比2019年增长22.1%假定2019年的平均增长率保持不变,2019年和2019年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2019年我省有效发明专利数为(1+22.1%)a万件,2019年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2019年我省有效发明专利数为(1+22.1%)a万件,2019年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx 使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD 是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键.16. 《孙子算经》中有过样一道题,原文如下:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.17. 如图,在由边长为1个单位长度的小正方形组成的10×10格中,已知点O,A,B均为格线的交点. (1)在给定的格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证. 【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键.19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM 的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.2019年广西贵港市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.(3.00分)﹣8的倒数是()A.8 B.﹣8 C.D.2.(3.00分)一条数学信息在一周内被转发了0次,将数据0用科学记数法表示为()A.2.18×106 B.2.18×105 C.21.8×106 D.21.8×1053.(3.00分)下列运算正确的是()A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7 D.(﹣a)2•(﹣a)3=﹣a54.(3.00分)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.5.(3.00分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.16.(3.00分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3 B.1 C.﹣1 D.﹣37.(3.00分)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥38.(3.00分)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形9.(3.00分)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°10.(3.00分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.2411.(3.00分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3C.2 D.4.512.(3.00分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分13.(3.00分)若分式的值不存在,则x的值为.14.(3.00分)因式分解:ax2﹣a=.15.(3.00分)已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是.16.(3.00分)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.17.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).18.(3.00分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为().三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.(10.00分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.20.(5.00分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.21.(6.00分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.22.(8.00分)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;在扇形统计图中,m=,n=,“答对8题”所对应扇形的圆心角为度;(2)将条形统计图补充完整;(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.23.(8.00分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?24.(8.00分)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.25.(11.00分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y 轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.26.(10.00分)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO 的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l 相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.2019年广西贵港市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.(3.00分)﹣8的倒数是()A.8 B.﹣8 C.D.【分析】根据倒数的定义作答.【解答】解:﹣8的倒数是﹣.故选:D.2.(3.00分)一条数学信息在一周内被转发了0次,将数据0用科学记数法表示为()A.2.18×106 B.2.18×105 C.21.8×106 D.21.8×105【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数据0用科学记数法表示为2.18×106.故选:A.3.(3.00分)下列运算正确的是()A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7 D.(﹣a)2•(﹣a)3=﹣a5【分析】根据合并同类项,幂的乘方与积的乘方,同底数幂的乘法的计算法则解答.【解答】解:A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.故选:D.4.(3.00分)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.【分析】由标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,利用概率公式计算可得.【解答】解:∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,∴抽到编号是3的倍数的概率是,故选:C.5.(3.00分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.1【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【解答】解:∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选:D.6.(3.00分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3 B.1 C.﹣1 D.﹣3【分析】据根与系数的关系α+β=﹣1,αβ=﹣2,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.【解答】解:∵α,β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1﹣2=﹣3,故选:D.7.(3.00分)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3【分析】利用不等式组取解集的方法,根据不等式组无解求出a的范围即可.【解答】解:∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选:A.8.(3.00分)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.【解答】解:A、=()2当a<0不成立,假命题;B、位似图形在位似比为1时全等,假命题;C、正多边形都是轴对称图形,真命题;D、圆锥的主视图一定是等腰三角形,假命题;故选:C.9.(3.00分)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°【分析】首先利用圆周角定理可得∠COB的度数,再根据等边对等角可得∠OCB=∠OBC,进而可得答案.【解答】解:∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.10.(3.00分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.24【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出则S△ABC的值.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴=,解得:x=2,∴S△ABC=18,故选:B.11.(3.00分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3C.2 D.4.5【分析】作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,由PE+PM=PE′+PM=E′M 知点P、M即为使PE+PM取得最小值的点,利用S菱形ABCD=AC•BD=AB•E′M求二级可得答案.【解答】解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选:C.12.(3.00分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()。

2019金钥匙科技竞赛(初三学生CESL活动)决赛试题(后附答案)

2019金钥匙科技竞赛(初三学生CESL活动)决赛试题(后附答案)

2019⾦钥匙科技竞赛(初三学⽣CESL活动)决赛试题(后附答案)2019年“⾦钥匙”科技竞赛(初三学⽣CESL活动)决赛试题(满分100分,时间90分钟)可能⽤的相对原⼦质量:H:1 C:12 N:14 O:16 Na:23 Mg:24 Cl:35.5 Fe:56Ca:40 Al:27⼀、选择题(本⼩题包括20⼩题,每⼩题2分,共40分,每⼩题有1个或2个选项符合题意,若1.全球最长跨海⼤桥⼀⼀港珠澳⼤桥于2018年10⽉24⽇正式通车运营。

港珠澳⼤桥跨越伶仃洋,东接⾹港特別⾏政区,西接⼴东省珠海市和澳门特別⾏政区,全长55公⾥,使⽤寿命120年,可抗16级台风、8级地震,是在“⼀国两制”框架下、粵港澳三地⾸次合作建设的超⼤型跨海交通⼯程,下列说法正确的是A.桥梁的开通⼤⼤地缩短了⾹港、珠海、澳门之间的通⾏时间B.铺设隧道的不锈钢具有韧性好、硬度⼩的性能C.桥栏杆等使⽤了⼤量建筑材料⼤理⽯,其主要成分是⼆氧化硅D.建桥所⽤主梁钢板的含碳量在0.03%-2%之间2.电影《流浪地球)描述了⼀个全⼈类团结起来与太阳系毁灭抗争的科幻故事。

根据现有科学知识,下列叙述不正确的是A.太阳带给地球光和热B.太阳中发⽣着4个氢原⼦聚合为1个氦原⼦的反应C.潮汐现象主要由太阳造成D.⼀定⽐例的氢⽓和氧⽓混合点燃会发⽣爆炸3.2019年是俄国化学家门捷列夫发明元素周期表150周年,也被联合国定为“国际化学元素周期表年(the International Year of the Periodic Table of Chemical Elements)”,简称“I YPT2019”。

下列关于元素周期表说法正确的是A.⽬前已发现的所有元素占据了周期表⾥全部位置,不可能再有新的元素被发现B.元素周期表的第⼀周期有⼋种元素C.元素的性质随着原⼦序数的增加⽽呈周期性变化D.元素周期表中的⾮⾦属元素种类多于⾦属元素4.我国清代《本草纲⽬拾遗》中记叙⽆机药物335种,其中“强⽔”条⽬下写道:“性最烈,能蚀五⾦…其⽔甚强,五⾦⼋⽯皆能穿第,惟玻璃可盛。

中考数学解答题压轴题突破 重难点突破十 几何综合题

中考数学解答题压轴题突破 重难点突破十 几何综合题

(1)证明:∵四边形 ABCD 是矩形,
∴AB∥CD,AB=CD,∠A=90°.
∵点 E,F 分别是 AB,CD 的中点,
1
1
∴AE=2AB,DF=2CD,∴AE=DF.
∵AE∥DF,∴四边形 AEFD 是平行四边形,
∵∠A=90°,∴四边形 AEFD 是矩形.
(2)解:如解图①,连接 OA,AM, ∵点 A 关于 BP 的对称点为点 M, ∴BP 垂直平分 AM, ∴OA=OM. ∵四边形 AEFD 是矩形, ∴EF⊥AB. ∵点 E 是 AB 的中点, ∴EF 垂直平分 AB, ∴OA=OB,∴OB=OM.
(3)证明:如解图,连接 AC,过点 B 作 BP∥AC 交 AF 的延长线于点 P, ∴△BFP∽△CFA, ∴BCFF=BCPA, ∵四边形 ABCD 是平行四边形,AB=AD, ∴四边形 ABCD 是菱形, ∵∠ABC=60°, ∴∠PBC=∠ACB=60°. ∴∠ABP=120°,∴∠DAE=∠ABP,
在△ADE 与△BAP 中, ∠DAE=∠ABP, AD=AB, ∠ADE=∠BAF, ∴△ADE≌△BAP(ASA),
∴AE=BP,
又∵AC=AD, BF AE
∴CF=AD.
类型二:动点问题
(省卷:2017T23;昆明:2020T23)
(2020·岳阳)如图 1,在矩形 ABCD 中,AB=6,BC=8,动点 P,Q 分別从 C 点,A 点同时以每秒 1 个单位长度的速度出发,且分别在边 CA, AB 上沿 C→A,A→B 的方向运动,当点 Q 运动到点 B 时,P,Q 两点同时 停止运动.设点 P 运动的时间为 t(s),连接 PQ,过点 P 作 PE⊥PQ,PE 与边 BC 相交于点 E,连接 QE.

2019中考数学压轴题精编(含参考答案与试题解析共300页)

2019中考数学压轴题精编(含参考答案与试题解析共300页)

2019中考数学压轴题精编(含参考答案与试题解析共300页)中考数学压轴题精选(共120题,共两部分:前一部分为试题+参考答案与试题解析,后一部分为纯试题汇编)第一部分1.(2014•黔南州)如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l 与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.考点:二次函数综合题.专题:压轴题.分析:(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可;(3)过P作y轴的平行线,交AC于Q;易求得直线AC的解析式,可设出P点的坐标,进而可表示出P、Q的纵坐标,也就得出了PQ的长;然后根据三角形面积的计算方法,可得出关于△PAC的面积与P点横坐标的函数关系式,根据所得函数的性质即可求出△PAC的最大面积及对应的P点坐标.解答:解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(3分)(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,∴抛物线的对称轴l与⊙C相交.(7分)(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;(8分)设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△PAC=S△PAQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).(10分)点评:此题考查了二次函数解析式的确定、相似三角形的判定和性质、直线与圆的位置关系、图形面积的求法等知识.2.(2014•巴中)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0)和点B,与y 轴交于点C,直线x=1是该抛物线的对称轴.(1)求抛物线的解析式;(2)若两动点M,H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0).求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值.考点:二次函数综合题.分析:(1)根据抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴,得到方程组,解方程组即可求出抛物线的解析式;(2)由于点M到达抛物线的对称轴时需要3秒,所以t≤3,又当点M到达原点时需要2秒,且此时点H 立刻掉头,所以可分两种情况进行讨论:①当0<t≤2时,由△AMP∽△AOC,得出比例式,求出PM,AH,根据三角形的面积公式求出即可;②当2<t≤3时,过点P作PM⊥x轴于M,PF⊥y轴于点F,表示出三角形APH的面积,利用配方法求出最值即可.解答:解:(1)∵抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴,∴,解得:,∴抛物线的解析式是:y=x2﹣x﹣4,(2)分两种情况:①当0<t≤2时,∵PM∥OC,∴△AMP∽△AOC,∴=,即=,∴PM=2t.解方程x2﹣x﹣4=0,得x1=﹣2,x2=4,∵A(﹣2,0),∴B(4,0),∴AB=4﹣(﹣2)=6.∵AH=AB﹣BH=6﹣t,∴S=PM•AH=×2t(6﹣t)=﹣t2+6t=﹣(t﹣3)2+9,当t=2时S的最大值为8;②当2<t≤3时,过点P作PM⊥x轴于M,作PF⊥y轴于点F,则△COB∽△CFP,又∵CO=OB,∴FP=FC=t﹣2,PM=4﹣(t﹣2)=6﹣t,AH=4+(t﹣2)=t+1,∴S=PM•AH=(6﹣t)(t+1)=﹣t2+4t+3=﹣(t﹣)2+,当t=时,S最大值为.综上所述,点M的运动时间t与△APQ面积S的函数关系式是S=,S的最大值为.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数的解析式,三角形的面积,二次函数的最值等知识,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键..3.(2014•潍坊)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.考点:二次函数综合题.分析:(1)先把C(0,4)代入y=ax2+bx+c,得出c=4①,再由抛物线的对称轴x=﹣=1,得到b=﹣2a②,抛物线过点A(﹣2,0),得到0=4a﹣2b+c③,然后由①②③可解得,a=﹣,b=1,c=4,即可求出抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F 的坐标为(t,﹣t2+t+4),则FH=﹣t2+t+4,FG=t,先根据三角形的面积公式求出S△OBF=OB•FH=﹣t2+2t+8,S△OFC=OC•FG=2t,再由S四边形ABFC=S△AOC+S△OBF+S△OFC,得到S四边形ABFC=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,由△=(﹣4)2﹣4×5=﹣4<0,得出方程t2﹣4t+5=0无解,即不存在满足条件的点F;(3)先运用待定系数法求出直线BC的解析式为y=﹣x+4,再求出抛物线y=﹣x2+x+4的顶点D(1,),由点E在直线BC上,得到点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).分两种情况进行讨论:①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,解方程﹣m2+2m=,求出m的值,得到P1(3,1);②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,解方程m2﹣2m=,求出m的值,得到P2(2+,2﹣),P3(2﹣,2+).解答:解:(1)∵抛物线y=ax2+bx+c(a≠0)过点C(0,4),∴c=4 ①.∵对称轴x=﹣=1,∴b=﹣2a ②.∵抛物线过点A(﹣2,0),∴0=4a﹣2b+c ③,由①②③解得,a=﹣,b=1,c=4,∴抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),其中0<t<4,则FH=﹣t2+t+4,FG=t,∴S△OBF=OB•FH=×4×(﹣t2+t+4)=﹣t2+2t+8,S△OFC=OC•FG=×4×t=2t,∴S四边形ABFC=S△AOC+S△OBF+S△OFC=4﹣t2+2t+8+2t=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,则△=(﹣4)2﹣4×5=﹣4<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F;(3)设直线BC的解析式为y=kx+n(k≠0),∵B(4,0),C(0,4),∴,解得,∴直线BC的解析式为y=﹣x+4.由y=﹣x2+x+4=﹣(x﹣1)2+,∴顶点D(1,),又点E在直线BC上,则点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,由﹣m2+2m=,解得:m=1或3.当m=1时,线段PQ与DE重合,m=1舍去,∴m=3,P1(3,1).②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,由m2﹣2m=,解得m=2±,经检验适合题意,此时P2(2+,2﹣),P3(2﹣,2+).综上所述,满足题意的点P有三个,分别是P1(3,1),P2(2+,2﹣),P3(2﹣,2+).点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数、一次函数的解析式,四边形的面积,平行四边形的判定等知识,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.4.(2014•重庆)如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标;(2)若点P为线段BC上一点(不与B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM 的面积最大时,求△BPN的周长;(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得△CNQ为直角三角形,求点Q的坐标.考点:二次函数综合题.分析:(1)依据抛物线的解析式直接求得C的坐标,令y=0解方程即可求得A、B点的坐标;(2)△BCM的面积最大,则过点M作直线L∥BC,直线L应与抛物线相切,即只有一个交点,设直线L 的解析式为y=﹣x+b,则﹣x2+2x+3=﹣x+b的,△=9﹣4b+12=0求得b的值,从而求得三角形的三边长,求得周长;(3)分三种情况:①当∠CQN=90°时;②当∠CNQ=90°时;③当∠NCQ=90°时;讨论求解.解答:解:(1)由抛物线的解析式y=﹣x2+2x+3,∴C(0,3),令y=0,﹣x2+2x+3=0,解得x=3或x=﹣1;∴A(﹣1,0),B(3,0).(2)过点M作直线L∥BC,当与抛物线相切时,三角形BCM的面积最大,∵直线BC的解析式为y=﹣x+3,设直线L的解析式为y=﹣x+b,则﹣x2+2x+3=﹣x+b,只有一个解,整理得x2﹣3x+b﹣3=0,∴△=9﹣4b+12=0,解得b=,代入﹣x2+2x+3=﹣x+b,解得x=,把x=代入y=﹣x2+2x+3,M(,),代入直线BCy=﹣x+3,则P(,),N(,0),∴BN=,PN=,PB=,∴C△BCN=BN+PN+PB=3+.(3)作抛物线的对称轴x=1,设Q(1,h),①∠CQN=90°时,则CN2=CQ2+QN2,∴32+32=22+h2+12+(h﹣3)2,整理得h2﹣6h﹣2=0,解得:h=或,∴Q(1,)或Q(1,);②当∠CNQ=90°时,则Q点应在x轴的下方,∴CQ2=CN2+QN2,∴12+(3﹣h)2=22+h2+32+32,解得h=﹣2,∴Q(1,﹣2);③当∠NCQ=90°时,则Q应在x轴的上方,∴NQ2=CQ2+CN2h2+22=12+(h﹣3)2+32+32,解得h=4,∴Q(1,4).点评:此题考查了二次函数与坐标轴的交点的性质、三角形面积的确定、二次函数的应用等知识,难度较大.二次函数这部分经常利用数形结合以及分类讨论思想相结合,综合性较强注意不要漏解.5.(2014•福州)如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.考点:二次函数综合题.分析:(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P的坐标,并进而求出点Q的坐标.解答:(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).此时点Q坐标为(3,1)或(,).点评:本题是二次函数压轴题,涉及考点众多,难度较大.第(2)问中,注意观察图形,将问题转化为证明△ADE 为直角三角形的问题,综合运用勾股定理及其逆定理、三角函数(或相似形)求解;第(3)问中,解题关键是将最值问题转化为求EP2最小值的问题,注意解答中求EP2最小值的具体方法.6.(2014•济宁)如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM 是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)首先求出对称点A′的坐标,然后代入抛物线解析式,即可判定点A′是否在抛物线上.本问关键在于求出A′的坐标.如答图所示,作辅助线,构造一对相似三角形Rt△A′EA∽Rt△OAC,利用相似关系、对称性质、勾股定理,求出对称点A′的坐标;(3)本问为存在型问题.解题要点是利用平行四边形的定义,列出代数关系式求解.如答图所示,平行四边形的对边平行且相等,因此PM=AC=10;利用含未知数的代数式表示出PM的长度,然后列方程求解.解答:解:(1)∵y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,∴,解得.∴抛物线的解析式为y=x2﹣x﹣.(2)如答图所示,过点A′作A′E⊥x轴于E,AA′与OC交于点D,∵点C在直线y=2x上,∴C(5,10)∵点A和A′关于直线y=2x对称,∴OC⊥AA′,A′D=AD.∵OA=5,AC=10,∴OC===.∵S△OAC=OC•AD=OA•AC,∴AD=.∴AA′=,在Rt△A′EA和Rt△OAC中,∵∠A′AE+∠A′AC=90°,∠ACD+∠A′AC=90°,∴∠A′AE=∠ACD.又∵∠A′EA=∠OAC=90°,∴Rt△A′EA∽Rt△OAC.∴,即.∴A′E=4,AE=8.∴OE=AE﹣OA=3.∴点A′的坐标为(﹣3,4),当x=﹣3时,y=×(﹣3)2+3﹣=4.所以,点A′在该抛物线上.(3)存在.理由:设直线CA′的解析式为y=kx+b,则,解得∴直线CA′的解析式为y=x+…(9分)设点P的坐标为(x,x2﹣x﹣),则点M为(x,x+).∵PM∥AC,∴要使四边形PACM是平行四边形,只需PM=AC.又点M在点P的上方,∴(x+)﹣(x2﹣x﹣)=10.解得x1=2,x2=5(不合题意,舍去)当x=2时,y=﹣.∴当点P运动到(2,﹣)时,四边形PACM是平行四边形.点评:本题是二次函数的综合题型,考查了二次函数的图象及性质、待定系数法、相似、平行四边形、勾股定理、对称等知识点,涉及考点较多,有一定的难度.第(2)问的要点是求对称点A′的坐标,第(3)问的要点是利用平行四边形的定义列方程求解.7.(2014•泰安)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.考点:二次函数综合题.分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式;(2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解;(3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标.解答:解:(1)由题设可知A(0,1),B(﹣3,),根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MN、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=﹣1,故当N(﹣1,4)时,MN和NC互相垂直平分.点评:本题是待定系数法求二次函数的解析式,以及二次函数的性质、菱形的判定的综合应用,利用二次函数的性质可以解决实际问题中求最大值或最小值问题.8.(2014•泸州)如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣,0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程=0的根,求a的值;(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG 的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.考点:二次函数综合题.分析:(1)首先利用待定系数法求出二次函数解析式,然后求出其最大值;(2)联立y1与y2得,求出点C的坐标为C(,),因此使y2>y1成立的x的取值范围为0<x<,得s=1+2+3=6;将s的值代入分式方程,求出a的值;(3)第1步:首先确定何时四边形DEFG的面积最大.如答图1,四边形DEFG是一个梯形,将其面积用含有未知数的代数式表示出来,这个代数式是一个二次函数,根据其最值求出未知数的值,进而得到面积最大时点D、E的坐标;第2步:利用几何性质确定PD+PE最小的条件,并求出点P的坐标.如答图2,作点D关于x轴的对称点D′,连接D′E,与x轴交于点P.根据轴对称及两点之间线段最短可知,此时PD+PE最小.利用待定系数法求出直线D′E的解析式,进而求出点P的坐标.解答:解:(1)∵二次函数y2=﹣x2+mx+b经过点B(0,1)与A(2﹣,0),∴,解得∴l:y1=x+1;C′:y2=﹣x2+4x+1.y2=﹣x2+4x+1=﹣(x﹣2)2+5,∴y max=5;(2)联立y1与y2得:x+1=﹣x2+4x+1,解得x=0或x=,当x=时,y1=×+1=,∴C(,).使y2>y1成立的x的取值范围为0<x<,∴s=1+2+3=6.代入方程得解得a=;(3)∵点D、E在直线l:y1=x+1上,∴设D(p,p+1),E(q,q+1),其中q>p>0.如答图1,过点E作EH⊥DG于点H,则EH=q﹣p,DH=(q﹣p).在Rt△DEH中,由勾股定理得:DE2+DH2=DE2,即(q﹣p)2+[(q﹣p)]2=()2,解得q﹣p=2,即q=p+2.∴EH=2,E(p+2,p+2).当x=p时,y2=﹣p2+4p+1,∴G(p,﹣p2+4p+1),∴DG=(﹣p2+4p+1)﹣(p+1)=﹣p2+p;当x=p+2时,y2=﹣(p+2)2+4(p+2)+1=﹣p2+5,∴F(p+2,﹣p2+5)∴EF=(﹣p2+5)﹣(p+2)=﹣p2﹣p+3.S四边形DEFG=(DG+EF)•EH=[(﹣p2+p)+(﹣p2﹣p+3)]×2=﹣2p2+3p+3∴当p=时,四边形DEFG的面积取得最大值,∴D(,)、E(,).如答图2所示,过点D关于x轴的对称点D′,则D′(,﹣);连接D′E,交x轴于点P,PD+PE=PD′+PE=D′E,由两点之间线段最短可知,此时PD+PE最小.设直线D′E的解析式为:y=kx+b,则有,解得∴直线D′E的解析式为:y=x﹣.令y=0,得x=,∴P(,0).点评:本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、待定系数法、函数最值、分式方程的解、勾股定理、轴对称﹣最短路线等知识点,涉及考点众多,难度较大.本题难点在于第(3)问,涉及两个最值问题,第1个最值问题利用二次函数解决,第2个最值问题利用几何性质解决.9.(2014•益阳)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.考点:二次函数综合题.分析:(1)先求出直线y=﹣3x+3与x轴交点A,与y轴交点B的坐标,再将A、B两点坐标代入y=a(x﹣2)2+k,得到关于a,k的二元一次方程组,解方程组即可求解;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF 与Rt△BQE中,用勾股定理分别表示出AQ2=AF2+QF2=1+m2,BQ2=BE2+EQ2=4+(3﹣m)2,由AQ=BQ,得到方程1+m2=4+(3﹣m)2,解方程求出m=2,即可求得Q点的坐标;(3)当点N在对称轴上时,由NC与AC不垂直,得出AC为正方形的对角线,根据抛物线的对称性及正方形的性质,得到M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,此时,MF=NF=AF=CF=1,且AC⊥MN,则四边形AMCN为正方形,在Rt△AFN中根据勾股定理即可求出正方形的边长.解答:解:(1)∵直线y=﹣3x+3与x轴、y轴分别交于点A、B,∴A(1,0),B(0,3).又∵抛物线抛物线y=a(x﹣2)2+k经过点A(1,0),B(0,3),∴,解得,故a,k的值分别为1,﹣1;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF中,AQ2=AF2+QF2=1+m2,在Rt△BQE中,BQ2=BE2+EQ2=4+(3﹣m)2,∵AQ=BQ,∴1+m2=4+(3﹣m)2,∴m=2,∴Q点的坐标为(2,2);(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.又∵对称轴x=2是AC的中垂线,∴M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,其坐标为(2,1).此时,MF=NF=AF=CF=1,且AC⊥MN,∴四边形AMCN为正方形.在Rt△AFN中,AN==,即正方形的边长为.点评:本题是二次函数的综合题型,其中涉及到的知识点有二元一次方程组的解法,等腰三角形的性质,勾股定理,二次函数的性质,正方形的判定与性质,综合性较强,难度适中.10.(2014•兰州)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.考点:二次函数综合题.分析:(1)由待定系数法建立二元一次方程组求出求出m、n的值即可;(2)由(1)的解析式求出顶点坐标,再由勾股定理求出CD的值,再以点C为圆心,CD为半径作弧交对称轴于P1,以点D为圆心CD为半径作圆交对称轴于点P2,P3,作CE垂直于对称轴与点E,由等腰三角形的性质及勾股定理就可以求出结论;(3)先求出BC的解析式,设出E点的坐标为(a,﹣a+2),就可以表示出F的坐标,由四边形CDBF 的面积=S△BCD+S△CEF+S△BEF求出S与a的关系式,由二次函数的性质就可以求出结论.解答:解:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP2=CP3=CD.作CH⊥x轴于H,∴HP1=HD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤x≤4).=﹣(a﹣2)2+∴a=2时,S四边形CDBF的面积最大=,∴E(2,1).点评:本题考查了待定系数法求一次函数的解析式的运用,二次函数的解析式的运用,勾股定理的运用,等腰三角形的性质的运用,四边形的面积的运用,解答时求出函数的解析式是关键.11.(2014•钦州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)将A(1,0),B(0,4)代入y=﹣x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)由E(m,0),B(0,4),得出P(m,﹣m2﹣m+4),G(m,4),则PG=﹣m2﹣m+4﹣4=﹣m2﹣m;(3)先由抛物线的解析式求出D(﹣3,0),则当点P在直线BC上方时,﹣3<m<0.再运用待定系数法求出直线BD的解析式为y=x+4,于是得出H(m,m+4).当以P、B、G为顶点的三角形与△DEH相似时,由于∠PGB=∠DEH=90°,所以分两种情况进行讨论:①△BGP∽△DEH;②△PGB∽△DEH.都可以根据相似三角形对应边成比例列出比例关系式,进而求出m的值.解答:解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(1,0),与y轴交于点B(0,4),∴,解得,∴抛物线的解析式为y=﹣x2﹣x+4;(2)∵E(m,0),B(0,4),PE⊥x轴交抛物线于点P,交BC于点G,∴P(m,﹣m2﹣m+4),G(m,4),∴PG=﹣m2﹣m+4﹣4=﹣m2﹣m;(3)在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似.∵y=﹣x2﹣x+4,∴当y=0时,﹣x2﹣x+4=0,解得x=1或﹣3,∴D(﹣3,0).当点P在直线BC上方时,﹣3<m<0.设直线BD的解析式为y=kx+4,将D(﹣3,0)代入,得﹣3k+4=0,解得k=,∴直线BD的解析式为y=x+4,∴H(m,m+4).分两种情况:①如果△BGP∽△DEH,那么=,即=,由﹣3<m<0,解得m=﹣1;②如果△PGB∽△DEH,那么=,即=,由﹣3<m<0,解得m=﹣.综上所述,在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似,此时m的值为﹣1或﹣.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数、一次函数的解析式,线段的表示,相似三角形的性质等知识,综合性较强,难度适中.运用数形结合、方程思想及分类讨论是解题的关键.12.(2014•贵港)如图,抛物线y=ax2+bx﹣3a(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),连接BC.(1)求该抛物线的解析式和对称轴,并写出线段BC的中点坐标;(2)将线段BC先向左平移2个单位长度,在向下平移m个单位长度,使点C的对应点C1恰好落在该抛物线上,求此时点C1的坐标和m的值;(3)若点P是该抛物线上的动点,点Q是该抛物线对称轴上的动点,当以P,Q,B,C四点为顶点的四边形是平行四边形时,求此时点P的坐标.考点:二次函数综合题.分析:(1)把点A(﹣1,0)和点C(0,2)的坐标代入所给抛物线可得a、b的值,进而得到该抛物线的解析式和对称轴,再求出点B的坐标,根据中点坐标公式求出线段BC的中点坐标即可;(2)根据平移的性质可知,点C的对应点C1的横坐标为﹣2,再代入抛物线可求点C1的坐标,进一步得到m的值;(3)B、C为定点,可分BC为平行四边形的一边及对角线两种情况探讨得到点P的坐标.解答:解:(1)∵抛物线y=ax2+bx﹣3a(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),∴,解得.∴抛物线的解析式为y=﹣x2+x+2=﹣(x﹣1)2+2,∴对称轴是x=1,∵1+(1+1)=3,∴B点坐标为(3,0),∴BC的中点坐标为(1.5,1);(2)∵线段BC先向左平移2个单位长度,再向下平移m个单位长度,使点C的对应点C1恰好落在该抛物线上,∴点C1的横坐标为﹣2,当x=﹣2时,y=﹣×(﹣2)2+×(﹣2)+2=﹣,∴点C1的坐标为(﹣2,﹣),m=2﹣(﹣)=5;(3)①若BC为平行四边形的一边,∵BC的横坐标的差为3,∵点Q的横坐标为1,∴P的横坐标为4或﹣2,∵P在抛物线上,∴P的纵坐标为﹣3,∴P1(4,﹣3),P2(﹣2,﹣3);②若BC为平行四边形的对角线,则BC与PQ互相平分,∵点Q的横坐标为1,BC的中点坐标为(1.5,1),∴P点的横坐标为1.5+(1.5﹣1)=2,∴P的纵坐标为﹣×22+×2+2=2,∴P3(2,2).综上所述,点P的坐标为:P1(4,﹣3),P2(﹣2,﹣3),P3(2,2).点评:考查了二次函数综合题,涉及待定系数法求函数解析式,抛物线的对称轴,中点坐标公式,平移的性质,平行四边形的性质,注意分BC为平行四边形的一边或为对角线两种情况进行探讨.13.(2014•厦门)如图,已知c<0,抛物线y=x2+bx+c与x轴交于A(x1,0),B(x2,0)两点(x2>x1),与y 轴交于点C.(1)若x2=1,BC=,求函数y=x2+bx+c的最小值;(2)过点A作AP⊥BC,垂足为P(点P在线段BC上),AP交y轴于点M.若=2,求抛物线y=x2+bx+c顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.考点:二次函数综合题.分析:(1)根据勾股定理求得C点的坐标,把B、C点坐标代入y=x2+bx+c即可求得解析式,转化成顶点式即可.(2)根据△AOM∽△COB,得到OC=2OB,即:﹣c=2x2;利用x22+bx2+c=0,求得c=2b﹣4;将此关系式代入抛物线的顶点坐标,即可求得所求之关系式.解答:解:(1)∵x2=1,BC=,∴OC==2,∴C(0,﹣2),把B(1,0),C(0,﹣2)代入y=x2+bx+c,得:0=1+b﹣2,解得:b=1,∴抛物线的解析式为:y=x2+x+﹣2.转化为y=(x+)2﹣;∴函数y=x2+bx+c的最小值为﹣.(2)∵∠OAM+∠OBC=90°,∠OCB+∠OBC=90°,∴∠OAM=∠OCB,又∵∠AOM=∠BOC=90°,∴△AOM∽△COB,∴,∴OC=•OB=2OB,∴﹣c=2x2,即x2=﹣.∵x22+bx2+c=0,将x2=﹣代入化简得:c=2b﹣4.抛物线的解析式为:y=x2+bx+c,其顶点坐标为(﹣,).令x=﹣,则b=﹣2x.y==c﹣=2b﹣4﹣=﹣4x﹣4﹣x2,∴顶点的纵坐标随横坐标变化的函数解析式为:y=﹣x2﹣4x﹣4(x>﹣).点评:本题考查了勾股定理、待定系数法求解析式、三角形相似的判定及性质以及抛物线的顶点坐标的求法等.14.(2014•重庆)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC 交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.考点:二次函数综合题.分析:(1)通过解析式即可得出C点坐标,令y=0,解方程得出方程的解,即可求得A、B的坐标.(2)设M点横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,矩形PMNQ的周长d=﹣2m2﹣8m+2,将﹣2m2﹣8m+2配方,根据二次函数的性质,即可得出m的值,然后求得直线AC的解析式,把x=m代入可以求得三角形的边长,从而求得三角形的面积.(3)设F(n,﹣n2﹣2n+3),根据已知若FG=2DQ,即可求得.解答:解:(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3),令y=0,则0=﹣x2﹣2x+3,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1,设M点的横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2=﹣2(m+2)2+10,∴当m=﹣2时矩形的周长最大.∵A(﹣3,0),C(0,3),设直线AC解析式为;y=kx+b,解得k=1,b=3,∴解析式y=x+3,当x=﹣2时,则E(﹣2,1),∴EM=1,AM=1,∴S=•AM•EM=.(3)∵M点的横坐标为﹣2,抛物线的对称轴为x=﹣1,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4)∴DQ=DC=,∵FC=2DQ,∴FG=4,设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方,∴(n+3)﹣(﹣n2﹣2n+3)=4,解得:n=﹣4或n=1.∴F(﹣4,﹣5)或(1,0).点评:本题考查了二次函数与坐标轴的交点的求法,矩形的性质,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.15.(2014•德州)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.。

2019年中考数学最后一题解答题解析版

2019年中考数学最后一题解答题解析版

2019年中考数学解答题解析版1.(8分)在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,BC.若点P为直线BC上方抛物线上一动点,过点P作PE∥y 轴交BC于点E,作PF⊥BC于点F,过点B作BG∥AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当△PEF的周长最大时,求PH+HK+KG的最小值及点H的坐标.(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D′,N为直线DQ上一点,连接点D′,C,N,△D′CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由.【分析】(1)首先证明△PEF∽△BCO,推出当PE最大时,△PEF的周长最大,构建二次函数,求出PE最大时,点P的坐标,将直线GO绕点G逆时针旋转60°,得到直线l,作PM⊥直线l于M,KM′⊥直线l于M′,则PH+HK+KG=PH+HK+KM′≥PM,求出PM即可解决问题.(2)首先利用待定系数法求出点D′坐标,设N(1,n),∵C(0,2),D′(5,),则NC2=1+(n﹣2)2,D′C2=52+(﹣2)2,D′N2=(5﹣1)2+(﹣n)2,分三种情形分别构建方程求出n的值即可解决问题.解:(1)如图1中,对于抛物线y=﹣x2+x+2,令x=0,得到y=2,令y=0,得到﹣x2+x+2=0,解得x=﹣2或4,∴C(0,2),A(﹣2,0),B(4,0),抛物线顶点D坐标(1,),∵PF⊥BC,∴∠PFE=∠BOC=90°,∵PE∥OC,∴∠PEF=∠BCO,∴△PEF∽△BCO,∴当PE最大时,△PEF的周长最大,∵B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2,设P(m,﹣m2+m+2),则E(m,﹣m+2),∴PE=﹣m2+m+2﹣(﹣m+2)=﹣m2+m,∴当m=2时,PE有最大值,∴P(2,2),如图,将直线GO绕点G逆时针旋转60°,得到直线l,作PM⊥直线l于M,KM′⊥直线l于M′,则PH+HK+KG=PH+HK+KM′≥PM,∵P(2,2),∴∠POB=60°,∵∠MOG=30°,∴∠MOG+∠BOC+∠POB=180°,∴P,O,M共线,可得PM=10,∴PH+HK+KG的最小值为10,此时H(1,).(2)∵A(﹣2,0),C(0,2),∴直线AC的解析式为y=x+2,∵DD′∥AC,D(1,),∴直线DD′的解析式为y=x+,设D′(m,m+),则平移后抛物线的解析式为y1=﹣(x﹣m)2+m+,将(0,0)代入可得m=5或﹣1(舍弃),∴D′(5,),设N(1,n),∵C(0,2),D′(5,),∴NC2=1+(n﹣2)2,D′C2=52+(﹣2)2,D′N2=(5﹣1)2+(﹣n)2,①当NC=CD′时,1+(n﹣2)2=52+(﹣2)2,解得:n=②当NC=D′N时,1+(n﹣2)2=(5﹣1)2+(﹣n)2,解得:n=③当D′C=D′N时,52+(﹣2)2=(5﹣1)2+(﹣n)2,解得:n=,综上所述,满足条件的点N的坐标为(1,)或(1,)或(1,)或(1,)或(1,).【点评】本题属于二次函数综合题,考查了一次函数的性质,二次函数的性质,垂线段最短,相似三角形的判定和性质,一元二次方程等知识,解题的关键是,学会用转化的思想思考问题,把最短问题转化为垂线段最短,学会利用参数构建方程解决问题,属于中考压轴题.2.(13分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,4)三点.(1)求抛物线的解析式及顶点D的坐标;(2)将(1)中的抛物线向下平移个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线.若新抛物线的顶点D′在△ABC内,求h的取值范围;(3)点P为线段BC上一动点(点P不与点B,C重合),过点P作x轴的垂线交(1)中的抛物线于点Q,当△PQC与△ABC相似时,求△PQC的面积.解:(1)函数表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+3x+4,函数顶点D(,);(2)物线向下平移个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线的顶点D′(﹣h,1),将点AC的坐标代入一次函数表达式并解得:直线AC的表达式为:y=4x+4,将点D′坐标代入直线AC的表达式得:1=4(﹣h)+4,解得:h=,故:0<h;(3)过点P作y轴的平行线交抛物线和x轴于点Q、H∵OB=OC=4,∴∠PBA=∠OCB=45°=∠QPC,直线BC的表达式为:y=﹣x+4,则AB=5,BC=4,AC=,S△ABC=×5×4=10,设点Q(m,﹣m2+3m+4),点P(m,﹣m+4),CP=m,PQ=﹣m2+3m+4+m﹣4=﹣m2+4m,①当△CPQ∽△CBA,,即,解得:m=,相似比为:,②当△CPQ∽△ABC,同理可得:相似比为:,利用面积比等于相似比的平方可得:S△PQC=10×()2=或S△PQC=10×()2=.3.(15分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x 轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.【分析】(1)将点A、B坐标代入二次函数表达式,即可求解;(2)①S△PBC=PG(x C﹣x B),即可求解;②分点P在直线BC下方、上方两种情况,分别求解即可.解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=PG(x C﹣x B)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵<0,∴S△PBC有最大值,当t=﹣时,其最大值为;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立①⑤并解得:x=﹣或﹣4(舍去﹣4),故点P(﹣,﹣);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣,﹣)或(0,5).【点评】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、图形的面积计算等,其中(2),要主要分类求解,避免遗漏.4.(14分)如图,已知抛物线y=ax2+bx﹣1与x轴的交点为A(﹣1,0),B(2,0),且与y轴交于C点.(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由.(3)已知点P是直线y=x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q 为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标解:(1)将A(﹣1,0),B(2,0)分别代入抛物线y=ax2+bx﹣1中,得,解得:∴该抛物线的表达式为:y=x2﹣x﹣1.(2)在y=x2﹣x﹣1中,令x=0,y=﹣1,∴C(0,﹣1)∵点C关于x轴的对称点为C1,∴C1(0,1),设直线C1B解析式为y=kx+b,将B(2,0),C1(0,1)分别代入得,解得,∴直线C1B解析式为y=﹣x+1,设M(t,+1),则E(t,0),F(0,+1)∴S矩形MFOE=OE×OF=t(﹣t+1)=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,S矩形MFOE最大值=,此时,M(1,);即点M为线段C1B中点时,S最大.矩形MFOE(3)由题意,C(0,﹣1),C1(0,1),以C、C1、P、Q为顶点的四边形为平行四边形,分以下两种情况:①C1C为边,则C1C∥PQ,C1C=PQ,设P(m,m+1),Q(m,﹣m﹣1),∴|(﹣m﹣1)﹣(m+1)|=2,解得:m1=4,m2=﹣2,m3=2,m4=0(舍),P1(4,3),Q1(4,5);P2(﹣2,0),Q2(﹣2,2);P3(2,2),Q3(2,0)②C1C为对角线,∵C1C与PQ互相平分,C1C的中点为(0,0),∴PQ的中点为(0,0),设P(m,m+1),则Q(﹣m,+m﹣1)∴(m+1)+(+m﹣1)=0,解得:m1=0(舍去),m2=﹣2,∴P4(﹣2,0),Q4(2,0);综上所述,点P和点Q的坐标为:P1(4,3),Q1(4,5)或P2(﹣2,0),Q2(﹣2,2)或P3(2,2),Q3(2,0)或P4(﹣2,0),Q4(2,0).5.(12分)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.【分析】(1)先根据题意得出点B的坐标,再利用待定系数法求解可得;(2)分点P在点C上方和下方两种情况,先求出∠OBP的度数,再利用三角函数求出OP的长,从而得出答案;(3)分对称轴x=1在a到a+1范围的右侧、中间和左侧三种情况,结合二次函数的性质求解可得.解:(1)∵点A(﹣1,0)与点B关于直线x=1对称,∴点B的坐标为(3,0),代入y=x2+bx+c,得:,解得,所以二次函数的表达式为y=x2﹣2x﹣3;(2)如图所示:由抛物线解析式知C(0,﹣3),则OB=OC=3,∴∠OBC=45°,若点P在点C上方,则∠OBP=∠OBC﹣∠PBC=30°,∴OP=OB tan∠OBP=3×=,∴CP=3﹣;若点P在点C下方,则∠OBP′=∠OBC+∠P′BC=60°,∴OP′=OB tan∠OBP′=3×=3,∴CP=3﹣3;综上,CP的长为3﹣或3﹣3;(3)若a+1<1,即a<0,则函数的最小值为(a+1)2﹣2(a+1)﹣3=2a,解得a=1﹣(正值舍去);若a<1<a+1,即0<a<1,则函数的最小值为1﹣2﹣3=2a,解得:a=﹣2(舍去);若a>1,则函数的最小值为a2﹣2a﹣3=2a,解得a=2+(负值舍去);综上,a的值为1﹣或2+.【点评】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、三角函数的运用、二次函数的图象与性质及分类讨论思想的运用.6.(12分)已知二次函数:y=ax2+(2a+1)x+2(a<0).(1)求证:二次函数的图象与x轴有两个交点;(2)当二次函数的图象与x轴的两个交点的横坐标均为整数,且a为负整数时,求a的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x轴的两个交点A,B(A在B的左侧),与y轴的交点C及其顶点D这四点画出二次函数的大致图象,同时标出A,B,C,D的位置);(3)在(2)的条件下,二次函数的图象上是否存在一点P使∠PCA=75°?如果存在,求出点P的坐标;如果不存在,请说明理由.解:(1)∵y=ax2+(2a+1)x+2=(x+2)(ax+1),且a<0,∴抛物线与x轴的交点为(﹣2,0)、(﹣,0),则二次函数的图象与x轴有两个交点;(2)∵两个交点的横坐标均为整数,且a为负整数,∴a=﹣1,则抛物线与x轴的交点A的坐标为(﹣2,0)、B的坐标为(1,0),∴抛物线解析式为y=(x+2)(﹣x+1)=﹣x2﹣x+2=﹣(x+)2+,当x=0时,y=2,即C(0,2),函数图象如图1所示:(3)存在这样的点P,∵OA=OC=2,∴∠ACO=45°,如图2,当点P在直线AC上方时,记直线PC与x轴的交点为E,∵∠PCA=75°,∴∠PCO=120°,∠OCB=60°,则∠OEC=30°,∴OE===2,则E(2,0),求得直线CE解析式为y=﹣x+2,联立,解得或,∴P(,);如图3,当点P在直线AC下方时,记直线PC与x轴的交点为F,∵∠ACP=75°,∠ACO=45°,∴∠OCF=30°,则OF=OC tan∠OCF=2×=,∴F(,0),求得直线PC解析式为y=﹣x+2,联立,解得:或,∴P(﹣1,﹣1),综上,点P的坐标为(,)或(﹣1,﹣1).7.(10分)如图,直线y=x﹣3交x轴于点A,交y轴于点C,点B的坐标为(1,0),抛物线y=ax2+bx+c(a≠0)经过A,B,C三点,抛物线的顶点为点D,对称轴与x 轴的交点为点E,点E关于原点的对称点为F,连接CE,以点F为圆心,CE的长为半径作圆,点P为直线y=x﹣3上的一个动点.(1)求抛物线的解析式;(2)求△BDP周长的最小值;(3)若动点P与点C不重合,点Q为⊙F上的任意一点,当PQ的最大值等于CE 时,过P,Q两点的直线与抛物线交于M,N两点(点M在点N的左侧),求四边形ABMN 的面积.解:(1)直线y=x﹣3,令x=0,则y=﹣3,令y=0,则x=3,故点A、C的坐标为(3,0)、(0,﹣3),则抛物线的表达式为:y=a(x﹣3)(x﹣1)=a(x2﹣4x+3),则3a=﹣3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+4x﹣3…①;(2)过点B作直线y=x﹣3的对称点B′,连接BD交直线y=x﹣3于点P,直线B′B交函数对称轴与点G,连接AB′,则此时△BDP周长=BD+PB+PD=BD+B′B为最小值,D(2,1),则点G(2,﹣1),即:BG=EG,即点G是BB′的中点,过点B′(3,﹣2),△BDP周长最小值=BD+B′B=;(3)如图2所示,连接PF并延长交圆与点Q,此时PQ为最大值,点A、B、C、E、F的坐标为(3,0)、(1,0)、(0,﹣3)、(2,0)、(﹣2,0),则CE=,FQ=CE,则PF=CE﹣CE=,设点P(m,m﹣3),点F(﹣2,0),PF2=13=(m﹣2)2+(m﹣3)2,解得:m=1,故点P(1,﹣2),将点P、F坐标代入一次函数表达式并解得:直线PF的表达式为:y=﹣x﹣…②,联立①②并解得:x=,故点M、N的坐标分别为:(,)、(,),过点M、N分别作x轴的垂线交于点S、R,则S四边形ABMN=S梯形NRSM﹣S△ARN﹣S△SBM=.8.(12分)如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.【分析】(1)OA=OC=4OB=4,即可求解;(2)抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即可求解;(3)PD=HP sin∠PFD=(x﹣4﹣x2+3x+4,即可求解.解:(1)OA=OC=4OB=4,故点A、C的坐标分别为(4,0)、(0,﹣4);(2)抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=﹣4,解得:a=1,故抛物线的表达式为:y=x2﹣3x﹣4;(3)直线CA过点C,设其函数表达式为:y=kx﹣4,将点A坐标代入上式并解得:k=1,故直线CA的表达式为:y=x﹣4,过点P作y轴的平行线交AC于点H,∵OA=OC=4,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,设点P(x,x2﹣3x﹣4),则点H(x,x﹣4),PD=HP sin∠PFD=(x﹣4﹣x2+3x+4)=﹣x2+2x,∵<0,∴PD有最大值,当x=2时,其最大值为2,此时点P(2,﹣6).【点评】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、图象的面积计算等,其中(3),用函数关系表示PD,是本题解题的关键.9.(12分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?【分析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ、AC=CQ、CQ=AQ三种情况,分别求解即可;(3)由PN=PQ sin∠PQN=(﹣m2+m+4+m﹣4)即可求解.解:(1)由二次函数交点式表达式得:y=a(x+3)(x﹣4)=a(x2﹣x﹣12),即:﹣12a=4,解得:a=﹣,则抛物线的表达式为y=﹣x2+x+4;(2)存在,理由:点A、B、C的坐标分别为(﹣3,0)、(4,0)、(0,4),则AC=5,AB=7,BC=4,∠OAB=∠OBA=45°,将点B、C的坐标代入一次函数表达式:y=kx+b并解得:y=﹣x+4…①,同理可得直线AC的表达式为:y=x+4,设直线AC的中点为M(﹣,4),过点M与CA垂直直线的表达式中的k值为﹣,同理可得过点M与直线AC垂直直线的表达式为:y=﹣x+…②,①当AC=AQ时,如图1,则AC=AQ=5,设:QM=MB=n,则AM=7﹣n,由勾股定理得:(7﹣n)2+n2=25,解得:n=3或4(舍去4),故点Q(1,3);②当AC=CQ时,如图1,CQ=5,则BQ=BC﹣CQ=4﹣5,则QM=MB=,故点Q(,);③当CQ=AQ时,联立①②并解得:x=(舍去);故点Q的坐标为:Q(1,3)或(,);(3)设点P(m,﹣m2+m+4),则点Q(m,﹣m+4),∵OB=OC,∴∠ABC=∠OCB=45°=∠PQN,PN=PQ sin∠PQN=(﹣m2+m+4+m﹣4)=﹣m2+m,∵﹣<0,∴PN有最大值,当m=时,PN的最大值为:.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.(12分)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.【分析】①点B、C在直线为y=x+n上,则B(﹣n,0)、C(0,n),点A(1,0)在抛物线上,所以,解得a=﹣1,b=6,因此抛物线解析式:y=﹣x2+6x﹣5;②先求出点P到BC的高h为BP sin45°=(4﹣t),于是S△PBE=BE•h==,当t=2时,△PBE的面积最大,最大值为2;③由①知,BC所在直线为:y=x﹣5,所以点A到直线BC的距离d=2,过点N作x轴的垂线交直线BC于点P,交x轴于点H.设N(m,﹣m2+6m﹣5),则H(m,0)、P(m,m﹣5),易证△PQN为等腰直角三角形,即NQ=PQ=2,PN=4,Ⅰ.NH+HP =4,所以﹣m2+6m﹣5﹣(m﹣5)=4解得m1=1(舍去),m2=4,Ⅱ.NH+HP=4,m ﹣5﹣(﹣m2+6m﹣5)=4解得m1=,m2=(舍去),Ⅲ.NH﹣HP=4,﹣(﹣m2+6m﹣5)﹣[﹣(m﹣5)]=4,解得m1=(舍去),m2=.解:①∵点B、C在直线为y=x+n上,∴B(﹣n,0)、C(0,n),∵点A(1,0)在抛物线上,∴,∴a=﹣1,b=6,∴抛物线解析式:y=﹣x2+6x﹣5;②由题意,得,PB=4﹣t,BE=2t,由①知,∠OBC=45°,∴点P到BC的高h为BP sin45°=(4﹣t),∴S△PBE=BE•h==,当t=2时,△PBE的面积最大,最大值为2;③由①知,BC所在直线为:y=x﹣5,∴点A到直线BC的距离d=2,过点N作x轴的垂线交直线BC于点P,交x轴于点H.设N(m,﹣m2+6m﹣5),则H(m,0)、P(m,m﹣5),易证△PQN为等腰直角三角形,即NQ=PQ=2,∴PN=4,Ⅰ.NH+HP=4,∴﹣m2+6m﹣5﹣(m﹣5)=4解得m1=1,m2=4,∵点A、M、N、Q为顶点的四边形是平行四边形,∴m=4;Ⅱ.NH+HP=4,∴m﹣5﹣(﹣m2+6m﹣5)=4解得m 1=,m 2=,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形, m >5, ∴m =,Ⅲ.NH ﹣HP =4,∴﹣(﹣m 2+6m ﹣5)﹣[﹣(m ﹣5)]=4, 解得m 1=,m 2=,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形, m <0, ∴m =,综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或或.【点评】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键. 11.(本小题满分12)如图,抛物线y =c bx ax ++2经过点A (-2,5),与x 轴相交于B (-1,0),C (3,0)两点, (1)抛物线的函数表达式; (2)点D 在抛物线的对称轴上,且位于x 轴的上方,将△BCD 沿沿直线BD 翻折得到△B C 'D ,若点C '恰好落在抛物线的对称轴上,求点C '和点D 的坐标;(3)设P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP 的函数表达式。

2019中考数学压轴题

2019中考数学压轴题

2019中考数学压轴题相似形问题精讲一、选择题1.(2017内蒙古包头市,第12题,3分)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .若AC=3,AB=5,则CE 的长为( )A . 32B . 43C . 53D .852.(2017四川省绵阳市,第11题,3分)如图,直角△ABC 中,∠B=30°,点O 是△ABC 的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点M ,则MOMF 的值为( )A .12B .C .23D .3.(2017山东省淄博市,第12题,4分)如图,在Rt △ABC 中,∠ABC=90°,AB=6,BC=8,∠BAC ,∠ACB 的平分线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,则EF 的长为( )A .52B .83C . 103D .1544.(2017广东省深圳市,第12题,3分)如图,正方形ABCD 的边长是3,BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA2=OE•OP;③S △AOD=S四边形OECF ;④当BP=1时,tan ∠OAE=1316,其中正确结论的个数是( )A .1B .2C .3D .45.(2017四川省雅安市,第12题,3分)如图,四边形ABCD 中,AB=4,BC=6,AB ⊥BC ,BC ⊥CD ,E为AD 的中点,F 为线段BE 上的点,且FE=13BE ,则点F 到边CD 的距离是 ( )A .3B .103C .4D .1436.(2017山东省莱芜市,第12题,3分)如图,正五边形ABCDE 的边长为2,连结AC 、AD 、BE ,BE分别与AC 和AD 相交于点F 、G ,连结DF ,给出下列结论:①∠FDG=18°;②FG=3S 四边形CDEF )DF2﹣DG2=7﹣ )A .1B .2C .3D .47.(2017江苏省镇江市,第17题,3分)点E 、F 分别在平行四边形ABCD 的边BC 、AD 上,BE=DF ,点P 在边AB 上,AP :PB=1:n (n >1),过点P 且平行于AD 的直线l 将△ABE 分成面积为S1、S2的两部分,将△CDF 分成面积为S3、S4的两部分(如图),下列四个等式:①n S S :1:21=②)12(:1:41+=n S S③n S S S S :1)(:)(3241=++④)1(:)(:)(4213+=--n n S S S S其中成立的有( )A .①②④B .②③C .②③④D .③④8.(2016山东省东营市)如图,在矩形ABCD 中,E 是AD 边的中点,BE⊥AC,垂足为点F ,连接DF ,分析下列四个结论:其中正确的结论有( )A .4个B .3个C .2个D .1个9.(2015资阳,第10题,3分)如图,在△ABC 中,∠ACB=90°,AC=BC=1,E 、F 为线段AB 上两动点,且∠ECF=45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①AB=E 与点B 重合时,MH=12;③AF+BE=EF ;④MG•MH=12,其中正确结论为( )A .①②③B .①③④C .①②④D .①②③④10.(2015东营,第10题,3分)如图,在Rt △ABC 中,∠ABC=90°.AB=AC .点D 是线段AB 上的一点,连结CD .过点B 作BG ⊥CD ,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连结DF ,给出以下四个结论:①AG AF AB FC =;②若点D 是AB 的中点,则AF=AB ;③当B 、C 、F 、D四点在同一个圆上时,DF=DB ;④若12DB AD =,则S △ABC=9S △BDF ,其中正确的结论序号是( )A .①② B.③④ C.①②③ D.①②③④二、填空题11.(2017内蒙古呼和浩特市,第15题,3分)如图,在▱ABCD 中,∠B=30°,AB=AC ,O 是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE 与△BMF的面积比为.12.(2017四川省内江市,第16题,5分)如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=,则CE= .13.(2017四川省绵阳市,第17题,3分)将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AB=1:3,则MD+12MA DN⋅的最小值为.14.(2017四川省绵阳市,第18题,3分)如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延长线于点F.在AF上取点M,使得AM=13AF,连接CM并延长交直线DE于点H.若AC=2,△AMH的面积是112,则ACH∠tan1的值是.15.(2017枣庄,第18题,4分)在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)16.(2017广西桂林市,第17题,3分)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则AOAE的值为.17.(2017江苏省苏州市,第18题,3分)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则''CCBB= (结果保留根号).18.(2017浙江省杭州市,第15题,4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D 在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.19.(2017湖北省十堰市,第16题,3分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=43NF;③38BMMG=;④12CGNF ANGDS S=.其中正确的结论的序号是.20.(2017山东省莱芜市,第17题,4分)如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE= .21.(2016安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C 恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)22.(2016四川省宜宾市)如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C 落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为⑤当△ABP≌△ADN时,BP=4.三、解答题23.(2017内蒙古包头市,第25题,12分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C 按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD 的延长线上时,求EF 的长;(3)如图③,当AE=EF 时,连接AC ,CF ,求AC•CF 的值.24.(2017安徽省,第23题,14分)已知正方形ABCD ,点M 边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且∠AGB=90°,延长AG 、BG 分别与边BC 、CD 交于点E 、F . ①求证:BE=CF ;②求证:BE2=BC•CE.(2)如图2,在边BC 上取一点E ,满足BE2=BC•CE,连接AE 交CM 于点G ,连接BG 并延长CD 于点F ,求tan ∠CBF 的值.25.(2017山东省东营市,第24题,10分)如图,在等腰三角形ABC 中,∠BAC=120°,AB=AC=2,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=30°.(1)求证:△ABD ∽△DCE ;(2)设BD=x ,AE=y ,求y 关于x 的函数关系式并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.26.(2017广东省,第25题,9分)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C (0),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB =;②设AD=x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.27.(2017江苏省南通市,第27题,13分)我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“內似线”.(1)等边三角形“內似线”的条数为 ;(2)如图,△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求证:BD是△ABC的“內似线”;(3)在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分别在边AC、BC上,且EF是△ABC的“內似线”,求EF的长.28.(2017江苏省淮安市,第27题,12分)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B= .【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△A P′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),求BD的长(用含k的式子表示).29.(2017天门,第24题,10分)在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求MEMD的值.30.(2017湖北省武汉市,第23题,10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E .(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos ∠ADC=35,CD=5,AB=12,△CDE 的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC=cos ∠ADC=35,CD=5,CF=ED=n ,直接写出AD 的长(用含n 的式子表示)31.(2017湖北省随州市,第24题,10分)如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF 经过点C ,连接DE 交AF 于点M ,观察发现:点M 是DE 的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD 交AF 于点H .…请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD 、EF 交于点N ,求AMNE 的值;(3)在(2)的条件下,若AF AB =k (k ,直接用含k 的代数式表示AMMF 的值.32.(2017湖北省黄石市,第24题,9分)在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A41,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD中,P为DC边上一定点,且CP=BC,如图所示.(1)如图①,求证:BA=BP;(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求CGGB的值;(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF 的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.33.(2017湖南省永州市,第26题,12分)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB 于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使13DE AFDO AB==,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当D E m D B n=时,请猜想AFAB的值(请直接写出结论).34.(2017湖南省邵阳市,第25题,8分)如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.【问题引入】(1)若点O是AC的中点,13AMBM=,求CNBN的值;温馨提示:过点A作MN的平行线交BN的延长线于点G.【探索研究】(2)若点O 是AC 上任意一点(不与A ,C 重合),求证:1AM BN CO MB NC OA ⋅⋅=;【拓展应用】(3)如图2所示,点P 是△ABC 内任意一点,射线AP ,BP ,CP 分别交BC ,AC ,AB 于点D ,E ,F ,若13AF BF =,12BD CD =,求AE CE 的值.35.(2017贵州省贵阳市,第24题,12分)(1)阅读理解:如图①,在四边形ABCD 中,AB ∥DC ,E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证△AEB ≌△FEC ,得到AB=FC ,从而把AB ,AD ,DC 转化在一个三角形中即可判断.AB 、AD 、DC 之间的等量关系为 ;(2)问题探究:如图②,在四边形ABCD 中,AB ∥DC ,AF 与DC 的延长线交于点F ,E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB ∥CF ,AE 与BC 交于点E ,BE :EC=2:3,点D 在线段AE 上,且∠EDF=∠BAE ,试判断AB 、DF 、CF 之间的数量关系,并证明你的结论.36.(2017辽宁省抚顺市,第25题,12分)如图,OF 是∠MON 的平分线,点A 在射线OM 上,P ,Q 是直线ON 上的两动点,点Q 在点P 的右侧,且PQ=OA ,作线段OQ 的垂直平分线,分别交直线OF 、ON 交于点B 、点C ,连接AB 、PB .(1)如图1,当P 、Q 两点都在射线ON 上时,请直接写出线段AB 与PB 的数量关系;(2)如图2,当P 、Q 两点都在射线ON 的反向延长线上时,线段AB ,PB 是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;(3)如图3,∠MON=60°,连接AP ,设APOQ =k ,当P 和Q 两点都在射线ON 上移动时,k 是否存在最小值?若存在,请直接写出k 的最小值;若不存在,请说明理由.37.(2017辽宁省营口市,第25题,14分)在四边形中ABCD ,点E 为AB 边上的一点,点F 为对角线BD 上的一点,且EF ⊥AB .(1)若四边形ABCD 为正方形.①如图1,请直接写出AE 与DF 的数量关系 ;②将△EBF 绕点B 逆时针旋转到图2所示的位置,连接AE ,DF ,猜想AE 与DF 的数量关系并说明理由;(3)如图3,若四边形ABCD 为矩形,BC=mAB ,其它条件都不变,将△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.38.(2017四川省攀枝花市,第23题,12分)如图1,在平面直角坐标系中,,直线MN 分别与x 轴、y 轴交于点M (6,0),N (0,,等边△ABC 的顶点B 与原点O 重合,BC 边落在x 轴正半轴上,点A 恰好落在线段MN 上,将等边△ABC 从图l 的位置沿x 轴正方向以每秒l 个单位长度的速度平移,边AB ,AC 分别与线段MN 交于点E ,F (如图2所示),设△ABC 平移的时间为t (s ).(1)等边△ABC 的边长为_______;(2)在运动过程中,当t=_______时,MN 垂直平分AB ;(3)若在△ABC 开始平移的同时.点P 从△ABC 的顶点B 出发.以每秒2个单位长度的速度沿折线BA —AC 运动.当点P 运动到C 时即停止运动.△ABC 也随之停止平移.①当点P 在线段BA 上运动时,若△PEF 与△MNO 相似.求t 的值;②当点P 在线段AC 上运动时,设PEF S S ∆=,求S 与t 的函数关系式,并求出S 的最大值及此时点P 的坐标.39.(2017辽宁省抚顺市,第25题,12分)如图,OF 是∠MON 的平分线,点A 在射线OM 上,P ,Q 是直线ON 上的两动点,点Q 在点P 的右侧,且PQ=OA ,作线段OQ 的垂直平分线,分别交直线OF 、ON 交于点B 、点C ,连接AB 、PB .(1)如图1,当P 、Q 两点都在射线ON 上时,请直接写出线段AB 与PB 的数量关系;(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;(3)如图3,∠MON=60°,连接AP,设APOQ=k,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.40.(2017辽宁省鞍山市,第25题,12分)如图,∠MBN=90°,点C是∠MBN平分线上的一点,过点C分别作AC⊥BC,CE⊥BN,垂足分别为点C,E,AC=P为线段BE上的一点(点P不与点B、E重合),连接CP,以CP为直角边,点P为直角顶点,作等腰直角三角形CPD,点D落在BC左侧.(1)求证:CP CE CD CB=;(2)连接BD,请你判断AC与BD的位置关系,并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.41.(2016四川省眉山市)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F(1)求证:PC CE CD CB=;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.42.(2016四川省自贡市)矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P 处.(1)如图1,已知折痕与边BC 交于点O ,连接AP 、OP 、OA .若△OCP 与△PDA 的面积比为1:4,求边CD 的长.(2)如图2,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(不与点P 、A 重合),动点N 在线段AB 的延长线上,且BN=PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M 、N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,说明理由.43.(2016山东省烟台市)(探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD 中,EF⊥GH,EF 分别交AB ,CD 于点E ,F ,GH 分别交AD ,BC 于点G ,H .求证:EF AD GH AB =;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M ,N 分别在边BC ,CD 上,若1115EF GH =,则BN AM的值为 ;【联系拓展】(3)如图3,四边形ABCD 中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M ,N 分别在边BC ,AB 上,求DNAM 的值.44.(2016广东省梅州市)如图,在Rt△ABC 中,∠ACB=90°,AC=5cm ,∠BAC=60°,动点M 从点B出发,在BA 边上以每秒2cm 的速度向点A 匀速运动,同时动点N 从点C 出发,在CB 的速度向点B 匀速运动,设运动时间为t 秒(0≤t≤5),连接MN .(1)若BM=BN ,求t 的值;(2)若△MBN 与△ABC 相似,求t 的值;(3)当t 为何值时,四边形ACNM 的面积最小?并求出最小值.45.(2016上海市)如图所示,梯形ABCD 中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且∠AGE=∠DAB.(1)求线段CD 的长;(2)如果△AEC 是以EG 为腰的等腰三角形,求线段AE 的长;(3)如果点F 在边CD 上(不与点C 、D 重合),设AE=x ,DF=y ,求y 关于x 的函数解析式,并写出x 的取值范围.46.(2016安徽)如图1,A ,B 分别在射线OA ,ON 上,且∠MON 为钝角,现以线段OA ,OB 为斜边向∠MON 的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C ,D ,E 分别是OA ,OB ,AB 的中点.(1)求证:△PCE≌△EDQ;(2)延长PC ,QD 交于点R .①如图1,若∠MON=150°,求证:△ABR 为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON 大小和PQ AB的值.47.(2016江苏省扬州市)如图1,△ABC 和△DEF 中,AB=AC ,DE=DF ,∠A=∠D.(1)求证:BC EF AB DE=;(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)=AA∠∠的对边(底边)的邻边(腰)=BCAB,如T(60°)=1.①理解巩固:T(90°)= ,T(120°)= ,若α是等腰三角形的顶角,则T(α)的取值范围是;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)48.(2016浙江省衢州市)如图1,在直角坐标系xoy中,直线l:y=kx+b交x轴,y轴于点E,F,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,以BD为对称轴,作与△BCD或轴对称的△BC′D.(1)当∠CBD=15°时,求点C′的坐标.(2)当图1中的直线l经过点A,且k=时(如图2),求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.(3)当图1中的直线l经过点D,C′时(如图3),以DE为对称轴,作于△DOE或轴对称的△DO′E,连结O′C,O′O,问是否存在点D,使得△DO′E与△CO′O相似?若存在,求出k、b的值;若不存在,请说明理由.49.(2016湖北省咸宁市)阅读理解:我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1sinα的值叫做这个平行四边形的变形度.(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形度是.猜想证明:(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,1sinα之间的数量关系,并说明理由;拓展探究:(3)如图2,在矩形ABCD中,E是AD边上的一点,且2AB=AE•AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为m>0),平行四边形A1B1C1D1的面积为m >0),试求∠A1E1B1+∠A1D1B1的度数.50.(2016湖北省宜昌市)在△ABC 中,AB=6,AC=8,BC=10,D 是△ABC 内部或BC 边上的一个动点(与B 、C 不重合),以D 为顶点作△DEF,使△DEF∽△ABC(相似比k >1),EF∥BC.(1)求∠D 的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH .①如图1,连接GH 、AD ,当GH ⊥AD 时,请判断四边形AGDH 的形状,并证明;②当四边形AGDH 的面积最大时,过A 作AP⊥EF 于P ,且AP=AD ,求k 的值.51.(2016湖北省武汉市)在△ABC 中,P 为边AB 上一点.(1)如图1,若∠ACP=∠B ,求证:2AC =AP•AB;(2)若M 为CP 的中点,AC=2.①如图2,若∠PBM=∠ACP ,AB=3,求BP 的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP 的长.52.(2016湖北省黄石市)在△ABC 中,AB=AC ,∠BAC=2∠DAE=2α.(1)如图1,若点D 关于直线AE 的对称点为F ,求证:△ADF∽△ABC;(2)如图2,在(1)的条件下,若α=45°,求证:222DE BD CE =+;(3)如图3,若α=45°,点E 在BC 的延长线上,则等式222DE BD CE =+还能成立吗?请说明理由.53.(2016辽宁省丹东市)如图①,△ABC 与△CDE 是等腰直角三角形,直角边AC 、CD 在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.54.(2016辽宁省大连市)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求AEEC的值(用含k的式子表示).55.(2016重庆市)在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF.(1)若AB=BC的长;(2)如图1,当点G在AC上时,求证:BD=12CG;(3)如图2,当点G 在AC 的垂直平分线上时,直接写出ABCG 的值.56.(2016重庆市)已知△ABC 是等腰直角三角形,∠BAC=90°,CD=12BC ,DE⊥CE,DE=CE ,连接AE ,点M 是AE 的中点.(1)如图1,若点D 在BC 边上,连接CM ,当AB=4时,求CM 的长;(2)如图2,若点D 在△ABC 的内部,连接BD ,点N 是BD 中点,连接MN ,NE ,求证:MN⊥AE;(3)如图3,将图2中的△CDE 绕点C 逆时针旋转,使∠BCD=30°,连接BD ,点N 是BD 中点,连接MN ,探索MNAC 的值并直接写出结果.57.(2015来宾,第25题,12分)在矩形ABCD 中,AB=a ,AD=b ,点M 为BC 边上一动点(点M 与点B 、C 不重合),连接AM ,过点M 作MN⊥AM,垂足为M ,MN 交CD 或CD 的延长线于点N .(1)求证:△CMN∽△BAM;(2)设BM=x ,CN=y ,求y 关于x 的函数解析式.当x 取何值时,y 有最大值,并求出y 的最大值;(3)当点M 在BC 上运动时,求使得下列两个条件都成立的b 的取值范围:①点N 始终在线段CD 上,②点M 在某一位置时,点N 恰好与点D 重合.58.(2015贵港,第26题,10分)已知:△ABC 是等腰三角形,动点P 在斜边AB 所在的直线上,以PC 为直角边作等腰三角形PCQ ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P 在线段AB 上,且AC=1PB= ,PC= ;②猜想:2PA ,2PB ,2PQ 三者之间的数量关系为 ; (2)如图②,若点P 在AB 的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P 满足13PA PB =,求PC AC 的值.(提示:请利用备用图进行探求)59.(2015常州,第26题,10分)设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD ,延长AD 到E ,使DE=DC ,以AE 为直径作半圆.延长CD 交半圆于点H ,以DH 为边作正方形DFGH ,则正方形DFGH 与矩形ABCD 等积.理由:连接AH ,EH .∵AE 为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.∵DH⊥AE,∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED,∴△ADH∽ . ∴DE DH DH AD =,即DH2=AD×DE.又∵DE=DC∴DH2= ,即正方形DFGH 与矩形ABCD 等积.(2)操作实践平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形. 如图②,请用尺规作图作出与▱ABCD 等积的矩形(不要求写具体作法,保留作图痕迹).(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的 (填写图形名称),再转化为等积的正方形.如图③,△ABC 的顶点在正方形网格的格点上,请作出与△ABC 等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC 面积作图).(4)拓展探究n 边形(n >3)的“化方”思路之一是:把n 边形转化为等积的n ﹣1边形,…,直至转化为等积的三角形,从而可以化方.如图④,四边形ABCD 的顶点在正方形网格的格点上,请作出与四边形ABCD 等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD 面积作图).60.(2015无锡,第28题,10分)如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB;(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形;①问:11OM ON的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由;②设菱形OMPQ的面积为1S,△NOC的面积为2S,求12SS的取值范围.61.(2015宜昌,第20题,8分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.62.(2015武汉,第23题,10分)如图,△ABC 中,点E 、P 在边AB 上,且AE=BP ,过点E 、P 作BC 的平行线,分别交AC 于点F 、Q ,记△AEF 的面积为1S ,四边形EFQP 的面积为2S ,四边形PQCB 的面积为3S .(1)求证:EF+PQ=BC ;(2)若132S S S +=,求PEAE 的值;(3)若312S S S -=,直接写出PEAE 的值.63.(2015广东省,第25题,9分)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC 和Rt△ADC 拼在一起,使斜边AC 完全重合,且顶点B ,D 分别在AC 的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm(1)填空:AD= (cm ),DC= (cm )(2)点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A→D,C→B 方向运动,点N 到AD 的距离(用含x 的式子表示)(3)在(2)的条件下,取DC 中点P ,连接MP ,NP ,设△PMN 的面积为y (cm2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出y 的最大值.(参考数据sin75°=,sin15°=)64.(2015佛山,第25题,11分)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 是AD 上的点,且AE=EF=FD .连接BE 、BF ,使它们分别与AO 相交于点G 、H .(1)求EG :BG 的值;(2)求证:AG=OG ;(3)设AG=a ,GH=b ,HO=c ,求a :b :c 的值.65.(2015南平,第25题,14分)定义:底与腰的比是的等腰三角形叫做黄金等腰三角形.如图,已知△ABC中,AB=BC,∠C=36°,BA1平分∠ABC交AC于A1.AB=AA1•A C;(1)2(2)探究:△ABC是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC=1)(3)应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.(n为大于1的整数,直接回答,不必说明理由)66.(2015福州,第25题,13分)如图①,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)求证:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图②,求证:△DEG∽△ECF;(3)在图②中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.67.(2015龙岩,第24题,13分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.(1)判断MN与AC的位置关系;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN是等腰三角形,求t的值.68.(2015江西省,第24题,12分)我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例。

中考数学压轴题特训详解

中考数学压轴题特训详解

第1页(共6页)中考数学压轴题汇编(1)1、(安徽)按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。

(1)若y 与x 的关系是y =x +p(100-x),请说明:当p =12时,这种变换满足上述两个要求;(2)若按关系式y=a(x -h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。

(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【解】(1)当P=12时,y=x +()11002x -,即y=1502x +。

∴y 随着x 的增大而增大,即P=12时,满足条件(Ⅱ)……3分 又当x=20时,y=1100502⨯+=100。

而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(Ⅰ),综上可知,当P=12时,这种变换满足要求;……6分(2)本题是开放性问题,答案不唯一。

若所给出的关系式满足:(a )h ≤20;(b )若x=20,100时,y 的对应值m ,n 能落在60~100之间,则这样的关系式都符合要求。

如取h=20,y=()220a x k -+,……8分∵a >0,∴当20≤x ≤100时,y 随着x 的增大…10分 令x=20,y=60,得k=60 ① 令x=100,y=100,得a ×802+k=100 ②由①②解得116060a k ⎧=⎪⎨⎪=⎩, ∴()212060160y x =-+。

………14分 2、(常州)已知(1)A m -,与(233)B m +,是反比例函数ky x=图象上的两个点. (1)求k 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.解:(1)由(1)2(33)m m -=+ ,得23m =-,因此23k =. ································ 2分(2)如图1,作BE x ⊥轴,E 为垂足,则3CE =,3BE =,23BC =,因此30BCE =∠.由于点C 与点A 的横坐标相同,因此CA x ⊥轴,从而120ACB =∠. 当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B , 故不符题意. ····························· 3分 当BC 为底时,过点A 作BC 的平行线,交双曲线于点D , 过点A D ,分别作x 轴,y 轴的平行线,交于点F .由于30DAF =∠,设11(0)DF m m =>,则13A F m=,12AD m =, 由点(123)A --,,得点11(1323)D m m -+-+,.因此BC xy1 1 1-1- O图1ABCxyO FE D图2ABC xyO DH开始y 与x 的关系式结束输入x输出y第2页(共6页)11(13)(23)23m m -+-+= ,解之得1733m =(10m =舍去),因此点363D ⎛⎫⎪ ⎪⎝⎭,.此时1433AD =,与BC 的长度不等,故四边形ADBC 是梯形. ······ 5分如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D .由于AC BC =,因此30CAB = ∠,从而150ACD =∠.作DH x ⊥轴,H 为垂足,则60DCH =∠,设22(0)CH m m =>,则23DH m =,22CD m =由点(10)C -,,得点22(13)D m m -+,, 因此22(1)323m m -+= .解之得22m =(21m =-舍去),因此点(123)D ,.此时4CD =,与AB 的长度不相等,故四边形ABDC 是梯形. ········ 7分 如图3,当过点C 作AB 的平行线,与双曲线在第三象限内的交点为D 时,同理可得,点(23)D --,,四边形ABCD 是梯形. ············· 9分综上所述,函数23y x=图象上存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形,点D 的坐标为:363D ⎛⎫⎪ ⎪⎝⎭,或(123)D ,或(23)D --,. ··············· 10分3、(福建龙岩)如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.解:(1)抛物线的对称轴5522a x a -=-=………2分 (2)(30)A -, (54)B , (04)C ,…………5分 把点A 坐标代入254y ax ax =-+中,解得16a =-………6分 215466y x x ∴=-++…………………………………………7分(3)存在符合条件的点P 共有3个.以下分三类情形探索. 设抛物线对称轴与x 轴交于N ,与CB 交于M .过点B 作BQ x ⊥轴于Q ,易得4BQ =,8AQ =, 5.5AN =,52BM =图3ABCxy O DACByx0 11Ax1 1Q 2P1P3PNM Ky① ······························································································································· 以AB 为腰且顶角为角A 的PAB △有1个:1PAB △. 222228480AB AQ BQ ∴=+=+=················· 8分 在1Rt ANP △中,222221119980(5.5)2PN AP AN AB AN =-=-=-= 1519922P ⎛⎫∴- ⎪ ⎪⎝⎭, ························ 9分 ②以AB 为腰且顶角为角B 的PAB △有1个:2P AB △.在2Rt BMP △中,222222252958042MPBP BM AB BM =-=-=-=10分 25829522P ⎛⎫-∴ ⎪ ⎪⎝⎭,························ 11分 ③以AB 为底,顶角为角P 的PAB △有1个,即3P AB △.画AB 的垂直平分线交抛物线对称轴于3P ,此时平分线必过等腰ABC △的顶点C . 过点3P 作3P K 垂直y 轴,垂足为K ,显然3Rt Rt PCK BAQ △∽△. 312P K BQ CK AQ ∴==. 3 2.5P K =5CK ∴= 于是1OK = ··············· 13分 3(2.51)P ∴-, ··························· 14分 注:第(3)小题中,只写出点P 的坐标,无任何说明者不得分.4、(福州)如图12,已知直线12y x =与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4.(1)求k 的值; (2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.解:(1)∵点A 横坐标为4 , ∴当 x = 4时,y = 2 .∴ 点A 的坐标为( 4,2 ). ∵ 点A 是直线 与双曲线 (k>0)的交点 , ∴ k = 4 ×2 = 8 .(2) 解法一:如图12-1, ∵ 点C 在双曲线上,y = 8时,x = 1∴ 点C 的坐标为 ( 1, 8 ) . 过点A 、C 分别做x 轴、y 轴的垂线,垂足为M 、N ,得矩形DMON . S 矩形ONDM = 32 , S △ONC = 4 , S △CDA = 9, S △OAM = 4 . S △AOC = S 矩形ONDM - S △ONC - S △CDA - S △OAM = 32 - 4 - 9 - 4 = 15 .解法二:如图12-2,过点 C 、A 分别做x 轴的垂线,垂足为E 、F , ∵ 点C 在双曲线8y x=上,当y = 8时,x = 1 . ∴ 点C 的坐标为 ( 1, 8 ). ∵ 点C 、A 都在双曲线8y x=上 , ∴ S △COE = S △AOF = 4 。

中考数学压轴题归类复习(十大类型附详细解答)

中考数学压轴题归类复习(十大类型附详细解答)

中考数学压轴题辅导(十大类型)目录动点型问题................................................................ . (3)几何图形的变换(平移、旋转、翻折) (6)相似与三角函数问题9三角形问题(等腰直角三角形、等边三角形、全等三角形等) (13)与四边形有关的二次函数问题 (16)初中数学中的最值问题 (19)定值的问存在性问题(如:平行、垂直,动点,面积等) (25)与圆有关的二次函数综合题 (29)其它(如新定义型题、面积问题等) (33)参考答案 (36)中考数学压轴题辅导(十大类型)数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。

函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。

求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。

几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。

求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。

找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。

求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。

而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。

解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

2019中考数学压轴题

2019中考数学压轴题

2019中考数学压轴题76.(2016江苏省盐城市)如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF= .77.(2016内蒙古赤峰市)如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于 cm.78.(2016重庆市)正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若ABFE′的面积是.79.(2016河北省)如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=__ ___°.……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=___ ____°.80.(2016广西桂林市)如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH= .81.(2016山东省济南市)如图1,在矩形纸片ABCD中,AB=AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME/NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG= .82.(2016湖北省鄂州市)如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l上一点,当△APB为直角三角形时,AP= .83.(2016辽宁省葫芦岛市)如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线12 y x =于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y轴,分别交直线y=x和12y x=于A2,B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△AnBnCn的面积为.(用含正整数n的代数式表示)84.(2016浙江省舟山市)如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果P运动一周时,点Q运动的总路程为.85.(2015鄂州)已知点P是半径为1的⊙O外一点,PA切⊙O于点A,且PA=1,AB是⊙O的弦,连接PB,则PB= .86.(2015广元)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确结论是________ (只需填写序号).87.(2015荆州)如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数kyx=(0k≠)的图象经过圆心P,则k= .88.(2015常州)如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是.三、解答题89.(2017江苏省盐城市,第26题,12分)【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC 中,BC=a ,BC 边上的高AD=h ,矩形PQMN 的顶点P 、N 分别在边AB 、AC 上,顶点Q 、M 在边BC 上,则矩形PQMN 面积的最大值为 .(用含a ,h 的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD ,经测量AB=50cm ,BC=108cm ,CD=60cm ,且tanB=tanC=43,木匠徐师傅从这块余料中裁出了顶点M 、N 在边BC 上且面积最大的矩形PQMN ,求该矩形的面积.90.(2017江苏省苏州市,第27题,10分)如图,已知△ABC 内接于⊙O ,AB 是直径,点D 在⊙O 上,OD ∥BC ,过点D 作DE ⊥AB ,垂足为E ,连接CD 交OE 边于点F .(1)求证:△DOE ∽△ABC ;(2)求证:∠ODF=∠BDE ;(3)连接OC ,设△DOE 的面积为S1,四边形BCOD 的面积为S2,若1227S S,求sinA 的值.91.(2017江苏省连云港市,第27题,14分)问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE=DG ,求证:2ABCD EFGH S S =矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1.如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S 四边形EFGH=S 矩形ABCD+S .如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S 矩形ABCD 与S 之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S 四边形EFGH=11,EG 的长.(2)如图5,在矩形ABCD 中,AB=3,AD=5,点E 、H 分别在边AB 、AD 上,BE=1,DH=2,点F 、G 分别是边BC 、CD 上的动点,且EF 、HG ,请直接写出四边形EFGH 面积的最大值.92.(2017江西省,第23题,12分)我们定义:如图1,在△ABC看,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.93.(2017河北,第25题,11分)平面内,如图,在ABCD中,AB=10,AD=15,tanA=43.点P为AD边上任意一点,连接PB,将PB绕点P逆时针旋转90°得到线段PQ.(1)当∠DPQ=10°时,求∠APB的大小;(2)当tan∠AtanA=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积(结果保留π).94.(2017丽水,第24题,12分)如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连接AF,BF,EF,过点F作GF⊥AF交AD于点G,设ADn AE=.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示ADAB的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.95.(2017浙江省嘉兴市,第23题,10分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当DM=4时,求DH的长.96.(2017浙江省宁波市,第26题,14分)有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=12∠D,∠C=12∠A,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,当DH=BG时,求△BGH与△ABC的面积之比.97.(2017浙江省杭州市,第23题,12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似数据:猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.98.(2017浙江省温州市,第24题,14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD 上),连结AC,DE.(1)当∠APB=28°时,求∠B和CM的度数;(2)求证:AC=AB.(3)在点P的运动过程中.①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.99.(2017浙江省绍兴市,第22题,12分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°.①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD;(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.100.(2017金华,第23题,10分)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC 边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能合成一个无缝隙,无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段,;S矩形AES▱ABCD= .(2)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.101.(2017天门,第24题,10分)在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求MEMD的值.102.(2017湖北省十堰市,第24题,10分)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则:①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式.103.(2016山东省济南市)在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF= 度,线段BE、EF、FD之间的数量关系为.(2)如图3,当但点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度.104.(2016山东省日照市)阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.由此你得到动点P的运动轨迹是:.知识应用:如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长.拓展提高:如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.(1)求∠AQB的度数;(2)若AB=6,求动点Q运动轨迹的长.105.(2016山东省泰安市)(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则EBAD的值是多少?(直接写出结论,不要求写解答过程)106.(2016内蒙古包头市)如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=47,求AFBF的值.107.(2016吉林省)如图,在等腰直角三角形ABC中,∠BAC=90°,AC=,AD⊥BC于点D,点P从点A出发,沿A→C的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x= ;(2)当点M落在AD上时,x= ;(3)求y关于x的函数解析式,并写出自变量x的取值范围.108.(2016贵州省贵阳市)(12分)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.109.(2016辽宁省抚顺市)如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.110.(2016辽宁省沈阳市)在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG 与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.111.(2016浙江省湖州市)数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD (∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:3AE AFAC的值为常数t,则t= .112.(2016四川省甘孜州)如图①,AD为等腰直角△ABC的高,点A和点C分别在正方形DEFG的边DG和DE上,连接BG,AE.(1)求证:BG=AE;(2)将正方形DEFG绕点D旋转,当线段EG经过点A时,(如图②所示)①求证:BG⊥CE;②设DG与AB交于点M,若AG:AE=3:4,求GMMD的值.113.(2016上海市)如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x 的取值范围.114.(2016吉林省长春市)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E 作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作G H⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD时,t的值为.115.(2016内蒙古巴彦淖尔市)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E 作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EH=3,求BF及AF长.116.(2015百色)已知⊙O为△ABC的外接圆,圆心O在AB上.(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);(2)如图2,设∠BAC的平分线AD交BC于E,⊙O半径为5,AC=4,连接OD交BC于F.①求证:OD⊥BC;②求EF的长.117.(2015南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.118.(2015凉山州)如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O于D、C 两点.(1)求证:PA•PB=PD•PC;(2)若PA=454,AB=194,PD=DC+2,求点O到PC的距离.119.(2015安徽省)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.120.(2015镇江)【发现】如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)【思考】如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?请证明点D也不在⊙O内.【应用】利用【发现】和【思考】中的结论解决问题:若四边形ABCD中,AD∥BC,∠CAD=90°,点E在边AB 上,CE⊥DE.(1)作∠ADF=∠AED,交CA的延长线于点F(如图④),求证:DF为Rt△ACD的外接圆的切线;(2)如图⑤,点G在BC的延长线上,∠BGE=∠BAC,已知sin∠AED=25,AD=1,求DG的长.121.(2015杭州)如图1,⊙O 的半径为r (r >0),若点P′在射线OP 上,满足OP′•OP=2r ,则称点P′是点P 关于⊙O 的“反演点”.如图2,⊙O 的半径为4,点B 在⊙O 上,∠BOA=60°,OA=8,若点A′,B′分别是点A ,B 关于⊙O 的反演点,求A′B′的长.122.(2015北海)如图,AB 、CD 为⊙O 的直径,弦AE∥CD,连接BE 交CD 于点F ,过点E 作直线EP 与CD 的延长线交于点P ,使∠PED=∠C. (1)求证:PE 是⊙O 的切线; (2)求证:ED 平分∠BEP;(3)若⊙O 的半径为5,CF=2EF ,求PD 的长.123.(2015南宁)如图,AB 是⊙O 的直径,C ,G 是⊙O 上两点,且AC=CG ,过点C 的直线CD⊥BG 于点D ,交BA 的延长线于点E ,连接BC ,交OD 于点F . (1)求证:CD 是⊙O 的切线.(2)若32FD OF ,求∠E 的度数.(3)连接AD ,在(2)的条件下,若CD=3,求AD 的长.124.(2015桂林)如图,四边形ABCD 是⊙O 的内接正方形,AB=4,PC 、PD 是⊙O 的两条切线,C 、D 为切点.(1)如图1,求⊙O的半径;(2)如图1,若点E是BC的中点,连接PE,求PE的长度;(3)如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.125.(2015柳州)如图,已知抛物线21(76)2y x x=--+的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:2()y a x h k=-+(0a≠),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.。

中考数学压轴题解题技巧

中考数学压轴题解题技巧

关于中考数学压轴题的思考2013、5、18思考一:中考数学压轴题如何攻克对中考数学卷,压轴题是考生最怕的,以为它一定很难,不敢碰它;其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难;这样,就能减轻做“压轴题”的心理压力,从中找到应对的办法;压轴题难度有约定:历年中考,压轴题一般都由3个小题组成;第1题容易上手,得分率在以上;第2题稍难,一般还是属于常规题型,得分率在与之间,第3题较难,能力要求较高,但得分率也大多在与之间;近十年来,最后小题的得分率在以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注;控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为各地区数学试卷设计的一大特色,以往茂名卷的压轴题大多不偏不怪,得分率稳定在与之间,即考生的平均得分在7分或8分;由此可见,压轴题也并不可怕;压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识;如果以为这是构造压轴题的唯一方式那就错了;方程与图形的综合的几何问题也是常见的综合方式,就是根据已知的几何条件列出代数方程而得解的,这类问题在外省市近年的中考试卷中也不乏其例;动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明融合在一起;在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角;总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题;分析结构理清关系:解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要;如果1、2、3三个小题是平列关系,它们分别以大题的已知为条件进行解题,1的结论与2的解题无关,2的结论与3的解题无关,整个大题由这三个小题“拼装”而成;如果1、2两个小题是“递进关系”,1的结论由大题的已知条件证得,除已知外,1的结论又是解2所必要的条件之一;思考二:中考数学压轴题解题技巧之分类讨论题分类讨论在数学题中经常以最后压轴题的方式出现,是满分率比较低的一种题,这一类题的特点就是小题较多,且容易失分,常常会被同学们忽略,经常忘记分类讨论,而大题却经常是讨论不全,讨论全了结果还不一定对;而且,这类题往往陷阱比较多,一个不注意就会掉进出题陷阱中;因此我们在考试当中一定要养成以下几个好习惯;以下几点是需要大家注意分类讨论的1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决;在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合;2、讨论点的位置,一定要看清点所在的范围,是在直线上,还是在射线或者线段上;3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论;4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍;5、考查点的取值情况或范围;这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围;6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点;7、由动点问题引出的函数关系,当运动方式改变后比如从一条线段移动到另一条线段时,所写的函数应该进行分段讨论;值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的;最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留;思考三:破解中考数学压轴题四个秘诀切入点一:做不出、找相似,有相似、用相似;压轴题牵涉到的知识点较多,知识转化的难度较高;学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形;切入点二:构造定理所需的图形或基本图形即作辅助线;在解决问题的过程中,有时添加辅助线是必不可少的;对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题;中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形;切入点三:紧扣不变量,并善于使用前题所采用的方法或结论;在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变;切入点四:在题目中寻找多解的信息分类思考; 图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题;思考四:压轴题的做题技巧1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”;所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍;2、解数学压轴题做一问是一问;第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问;过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质;例解压轴题解题:如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B4,0、C8,0、D8,8.抛物线y=ax2+bx过A、C两点.1直接写出点A的坐标,并求出抛物线的解析式;2动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形请直接写出相应的t值.解:1点A的坐标为4,8将A 4,8、C8,0两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8ba=-12,b=4∴抛物线的解析式为:y=-12x2+4x …………………3分2①在Rt △APE 和Rt △ABC 中,tan ∠PAE=PE AP =BC AB ,即PE AP =48∴PE=12AP=12t .PB=8-t .∴点E的坐标为4+12t,8-t. ∴点G 的纵坐标为:-124+12t 2+44+12t=-18t 2+8. …………………5分∴EG=-18t 2+8-8-t =-18t 2+t.∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分压轴题解题技巧练习一、 对称翻折平移旋转1.2010年南宁如图12,把抛物线2y x =-虚线部分向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、B 分别是抛物线1l 、2l 与x 轴的交点,D 、C 分别是抛物线1l 、2l 的顶点,线段CD 交y 轴于点E .1分别写出抛物线1l 与2l 的解析式;2设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形说明你的理由.3在抛物线1l 上是否存在点M ,使得ABMAOED S S ∆∆=四边形,如果存在,求出M 点的坐标,如果不存在,请说明理由.2.福建2009年宁德市如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点点A 在点B 的左边,点B 的横坐标是1.1求P 点坐标及a 的值;4分2如图1,抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;4分3如图2,点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点点E 在点F 的左边,当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.5分二、 动态:动点、动线3.2010年辽宁省锦州如图,抛物线与x 轴交于Ax 1,0、Bx 2,0两点,且x 1>x 2,与y 轴交于点C 0,4,其中x 1、x 2是方程x 2-2x -8=0的两个根. 1求这条抛物线的解析式;2点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE的面积最大时,求点P 的坐标;3探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三角形若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.4.2008年山东省青岛市已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC =3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为ts0<t<2,解答下列问题:1当t为何值时,PQ∥BC2设△AQP的面积为y2cm,求y与t之间的函数关系式;3是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分若存在,求出此时t的值;若不存在,说明理由;4如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形若存在,求出此时菱形的边长;若不存在,说明理由.5.09年吉林省如图所示,菱形ABCD的边长为6厘米,∠B=60°.从初始时刻开始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A→C→B的方向运动,点Q以2厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动.设P、Q运动的时间为x秒时,△APQ与△ABC重.叠部分...的面积为y平方厘米这里规定:点和线段是面积为0的三角形,解答下列问题:1点P、Q从出发到相遇所用时间是__________秒;2点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时x的值是__________秒;3求y与x之间的函数关系式.6.2009年浙江省嘉兴市如图,已知A、B是线段MN上的两点,4=MN,1=MB.以A为中心顺时针旋转点M,以B为中心逆时MA,1>针旋转点N,使M、N两点重合成一点1求x的取值范围;2若△ABC为直角三角形,求x的值;3探究:△ABC的最大面积三、圆7.2010青海如图10,已知点A3,0,以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.1以直线l为对称轴的抛物线过点A及点C0,9,求此抛物线的解析式;2抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长;3点F是切线DE上的一个动点,当△BFD与EAD△相似时,求出BF的长.8.2009年中考天水如图1,在平面直角坐标系xOy,二次函数y=ax2+bx+ca >0的图象顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为3,0,OB=OC,tan∠ACO=错误!. 1求这个二次函数的解析式;2若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x 轴相切,求该圆的半径长度;3如图2,若点G2,y是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大求此时点P 的坐标和△AGP 的最大面积.9.09年湖南省张家界市在平面直角坐标系中,已知A -4,0,B 1,0,且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D . 1求点C 的坐标和过A ,B ,C 三点的抛物线的解析式;2求点D 的坐标;3设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切若存在,求出该圆的半径,若不存在,请说明理由.角坐标O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C .1求抛物线的解析式;2抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长.3过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.四、比例比值取值范围11.2010年怀化图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M1,-4.1求出图象与x 轴的交点A,B 的坐标;2在二次函数的图象上是否存在点P,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;3将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.12. 湖南省长沙市2010年如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm, OC=8cm,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒.1用t 的式子表示△OPQ 的面积S ;2求证:四边形OPBQ 的面积是一个定值,并求出这个定值;3当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.13.成都市2010年在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于A B 、两点点A 在点B 的左侧,与y 轴交于点C ,点A 的坐标为(30)-,,若将经过A C 、两点的直线y kx b =+沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-.1求直线AC 及抛物线的函数表达式;2如果P 是线段AC 上一点,设ABP ∆、BPC ∆的面积分别为ABP S ∆、BPC S ∆,且:2:3ABP BPC S S ∆∆=,求点P 的坐标;3设Q 的半径为l,圆心Q 在抛物线上运动,则在运动过程中是否存在Q 与坐标轴相切的情况若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切五、探究型14.内江市2010如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.1请求出抛物线顶点M 的坐标用含m 的代数式表示,A B 、两点的坐标; 2经探究可知,BCM △与ABC △的面积比不变,试求出这个比值; 3是否存在使BCM △为直角三角形的抛物线若存在,请求出;如果不存在,请说明理由.15.重庆市潼南县2010年如图, 已知抛物线c bx x y ++=221与y 轴相交于C,与x 轴相交于A 、B,点A 的坐标为2,0,点C 的坐标为0,-1.1求抛物线的解析式;2点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D,连结DC,当△DCE 的面积最大时,求点D的坐标;3在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.16.2008年福建龙岩如图,抛物线254y ax ax=-+经过ABC△的三个顶点,已知BC x∥轴,点A在x轴上,点C在y轴上,且AC BC=.1求抛物线的对称轴;2写出A B C,,三点的坐标并求抛物线的解析式;3探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在PAB△是等腰三角形.若存在,求出所有符合条件的点P坐标;不存在,请说明理由.17.09年广西钦州26.本题满分10分如图,已知抛物线y=34x2+bx+c与坐标轴交于A、B、C三点, A点的坐标为-1,0,过点C的直线y=34t x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.1填空:点C的坐标是_▲_,b=_▲_,c=_▲_;2求线段QH的长用含t的式子表示;3依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ 相似若存在,求出所有t的值;若不存在,说明理由.18.09年重庆市已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.1求过点E、D、C的抛物线的解析式;2将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与1中的抛物线交于另一点M,6,那么EF=2GO是否成立若成立,请给予证明;若不点M的横坐标为5成立,请说明理由;3对于2中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形若存在,请求出点Q的坐标;若不存在,请说明理由.B19.09年湖南省长沙市如图,抛物线y3,0、B两点,与y轴相交于点C0,3.当x2+bx +ca≠0的函数值y相等,连结AC、1求实数a,b,c的值;2若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;3在2的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似若存在,请求出点Q的坐标;若不存在,请说明理由.20.08江苏徐州如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF =90°,∠EDF=30°操作将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板....DEF..,并使边DE与边AB交于点P,边EF与边BC于点Q ..E.旋转...绕点探究一在旋转过程中,(1) 如图2,当CE 1EA=时,EP 与EQ 满足怎样的数量关系并给出证明. (2) 如图3,当CE 2EA=时EP 与EQ 满足怎样的数量关系,并说明理由. (3) 根据你对1、2的探究结果,试写出当CE EA=m 时,EP 与EQ 满足的数量关系式 为_________,其中m 的取值范围是_______直接写出结论,不必证明 探究二若,AC =30cm,连续PQ,设△EPQ 的面积为Scm 2,在旋转过程中:(1) S 是否存在最大值或最小值若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化不出相应S 值的取值范围.六、最值类22.2010年恩施 如图11,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为3,0,与y 轴交于C 0,-3点,点P 是直线BC 下方的抛物线上一动点.1求这个二次函数的表达式.2连结PO、PC,并把△POC沿CO翻折,得到四边形POP/C, 那么是否存在点P,使四边形POP/C为菱形若存在,请求出此时点P的坐标;若不存在请说明理由.3当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.。

2019年江苏省13市中考数学试卷压轴题及答案解析WORD版

2019年江苏省13市中考数学试卷压轴题及答案解析WORD版

2019年江苏省13市中考数学试卷压轴题及答案解析WORD版2019年江苏省南京市中考数学试卷压轴题26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)2019年江苏省南京市中考数学试卷压轴题答案26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.【分析】(1)根据邻边相等的四边形是菱形证明即可.(2)求出几种特殊位置的CD的值判断即可.【解答】(1)证明:∵DE=DG,EF=DE,∴DG=EF,∵DG∥EF,∴四边形DEFG是平行四边形,∵DG=DE,∴四边形DEFG是菱形.(2)如图1中,当四边形DEFG是正方形时,设正方形的边长为x.在Rt△ABC中,∵∠C=90°,AC=3,BC=4,∴AB==5,则CD=x,AD=x,∵AD+CD=AC,∴+x=3,∴x=,∴CD=x=,观察图象可知:0≤CD<时,菱形的个数为0.如图2中,当四边形DAEG是菱形时,设菱形的边长为m.∵DG∥AB,∴=,∴=,解得m=,∴CD=3﹣=,如图3中,当四边形DEBG是菱形时,设菱形的边长为n.∵DG∥AB,∴=,∴=,∴n=,∴CG=4﹣=,∴CD==,观察图象可知:当0≤CD<或<CD≤时,菱形的个数为0,当CD=或<CD≤时,菱形的个数为1,当<CD≤时,菱形的个数为2.【点评】本题考查相似三角形的判定和性质,菱形的判定和性质,作图﹣复杂作图等知识,解题的关键是学会寻找特殊位置解决问题,属于中考常考题型,题目有一定难度.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=3.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是(1,2).(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)【分析】(1)①根据定义可求出d(O,A)=|0+2|+|0﹣1|=2+1=3;②由两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|及点B是函数y=﹣2x+4的图象上的一点,可得出方程组,解方程组即可求出点B的坐标;(2)由条件知x>0,根据题意得,整理得x2﹣3x+4=0,由△<0可证得该函数的图象上不存在点C,使d(O,C)=3.(3)根据条件可得|x|+|x2﹣5x+7|,去绝对值后由二次函数的性质可求出最小值;(4)以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=﹣x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E 作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处,可由d(O,P)≥d(O,E)证明结论即可.【解答】解:(1)①由题意得:d(O,A)=|0+2|+|0﹣1|=2+1=3;②设B(x,y),由定义两点间的距离可得:|0﹣x|+|0﹣y|=3,∵0≤x≤2,∴x+y=3,∴,解得:,∴B(1,2),故答案为:3,(1,2);(2)假设函数的图象上存在点C(x,y)使d(O,C)=3,根据题意,得,∵x>0,∴,,∴,∴x2+4=3x,∴x2﹣3x+4=0,∴△=b2﹣4ac=﹣7<0,∴方程x2﹣3x+4=0没有实数根,∴该函数的图象上不存在点C,使d(O,C)=3.(3)设D(x,y),根据题意得,d(O,D)=|x﹣0|+|x2﹣5x+7﹣0|=|x|+|x2﹣5x+7|,∵,又x≥0,∴d(O,D)=|x|+|x2﹣5x+7|=x+x2﹣5x+7=x2﹣4x+7=(x﹣2)2+3,∴当x=2时,d(O,D)有最小值3,此时点D的坐标是(2,1).(4)如图,以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=﹣x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处.理由:设过点E的直线l1与x轴相交于点F.在景观湖边界所在曲线上任取一点P,过点P作直线l2∥l1,l2与x轴相交于点G.∵∠EFH=45°,∴EH=HF,d(O,E)=OH+EH=OF,同理d(O,P)=OG,∵OG≥OF,∴d(O,P)≥d(O,E),∴上述方案修建的道路最短.【点评】考查了二次函数的综合题,涉及的知识点有新定义,解方程(组),二次函数的性质等.2019年江苏省常州市中考数学试卷压轴题27.(10分)如图,二次函数y=﹣x2+bx+3的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣1,0),点D为OC的中点,点P在抛物线上.(1)b=;(2)若点P在第一象限,过点P作PH⊥x轴,垂足为H,PH与BC、BD分别交于点M、N.是否存在这样的点P,使得PM=MN=NH?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点P的横坐标小于3,过点P作PQ⊥BD,垂足为Q,直线PQ与x轴交于点R,且S△PQB=2S△QRB,求点P的坐标.28.(10分)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:①半径为1的圆:;②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.①若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);②若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.2019年江苏省常州市中考数学试卷压轴题答案27.(10分)如图,二次函数y=﹣x2+bx+3的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣1,0),点D为OC的中点,点P在抛物线上.(1)b=2;(2)若点P在第一象限,过点P作PH⊥x轴,垂足为H,PH与BC、BD分别交于点M、N.是否存在这样的点P,使得PM=MN=NH?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点P的横坐标小于3,过点P作PQ⊥BD,垂足为Q,直线PQ与x轴交于点R,且S△PQB=2S△QRB,求点P的坐标.【分析】(1)把点A坐标代入二次函数解析式即求得b的值.(2)求点B、C、D坐标,求直线BC、BD解析式.设点P横坐标为t,则能用t表示点P、M、N、H的坐标,进而用含t的式子表示PM、MN、NH的长.以PM=MN为等量关系列得关于t的方程,求得t的值合理(满足P在第一象限),故存在满足条件的点P,且求得点P坐标.(3)过点P作PF⊥x轴于F,交直线BD于E,根据同角的余角相等易证∠EPQ=∠OBD,所以cos∠EPQ=cos∠OBD=,即在Rt△PQE中,cos∠EPQ=;在Rt △PFR中,cos∠RPF=,进而得PQ=PE,PR=PF.设点P横坐标为t,可用t表示PE、PF,即得到用t表示PQ、PR.又由S△PQB=2S△QRB易得PQ=2QR.要对点P位置进行分类讨论得到PQ与PR的关系,即列得关于t的方程.求得t的值要注意是否符合各种情况下t的取值范围.【解答】解:(1)∵二次函数y=﹣x2+bx+3的图象与x轴交于点A(﹣1,0)∴﹣1﹣b+3=解得:b=2故答案为:2.(2)存在满足条件呢的点P,使得PM=MN=NH.∵二次函数解析式为y=﹣x2+2x+3当x=0时y=3,∴C(0,3)当y=0时,﹣x2+2x+3=0解得:x1=﹣1,x2=3∴A(﹣1,0),B(3,0)∴直线BC的解析式为y=﹣x+3∵点D为OC的中点,∴D(0,)∴直线BD的解析式为y=﹣+,设P(t,﹣t2+2t+3)(0<t<3),则M(t,﹣t+3),N(t,﹣t+),H(t,0)∴PM=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,MN=﹣t+3﹣(﹣x+)=﹣t+,NH=﹣t+∴MN=NH∵PM=MN∴﹣t2+3t=﹣t+解得:t1=,t2=3(舍去)∴P(,)∴P的坐标为(,),使得PM=MN=NH.(3)过点P作PF⊥x轴于F,交直线BD于E∵OB=3,OD=,∠BOD=90°∴BD==∴cos∠OBD=∵PQ⊥BD于点Q,PF⊥x轴于点F∴∠PQE=∠BQR=∠PFR=90°∴∠PRF+∠OBD=∠PRF+∠EPQ=90°∴∠EPQ=∠OBD,即cos∠EPQ=cos∠OBD=在Rt△PQE中,cos∠EPQ=∴PQ=PE在Rt△PFR中,cos∠RPF=∴PR=PF∵S△PQB=2S△QRB,S△PQB=BQ•PQ,S△QRB=BQ•QR∴PQ=2QR设直线BD与抛物线交于点G∵﹣+=﹣x2+2x+3,解得:x1=3(即点B横坐标),x2=﹣∴点G横坐标为﹣设P(t,﹣t2+2t+3)(t<3),则E(t,﹣t+)∴PF=|﹣t2+2t+3|,PE=|﹣t2+2t+3﹣(﹣t+)|=|﹣t2+t+|①若﹣<t<3,则点P在直线BD上方,如图2,∴PF=﹣t2+2t+3,PE=﹣t2+t+∵PQ=2QR∴PQ=PR∴PE=•PF,即6PE=5PF∴6(﹣t2+t+)=5(﹣t2+2t+3)解得:t1=2,t2=3(舍去)∴P(2,3)②若﹣1<t<﹣,则点P在x轴上方、直线BD下方,如图3,此时,PQ<QR,即S△PQB=2S△QRB不成立.③若t<﹣1,则点P在x轴下方,如图4,∴PF=﹣(﹣t2+2t+3)=t2﹣2t﹣3,PE=﹣t+﹣(﹣t2+2t+3)=t2﹣t﹣∵PQ=2QR∴PQ=2PR∴PE=2•PF,即2PE=5PF∴2(t2﹣t﹣)=5(t2﹣2t﹣3)解得:t1=﹣,t2=3(舍去)∴P(﹣,﹣)综上所述,点P坐标为(2,3)或(﹣,﹣).【点评】本题考查了二次函数的图象与性质,一次函数的图象与性质,解一元二次方程,同角的余角相等,三角函数的应用.第(3)题解题过程容易受第(2)题影响而没有分类讨论点P的位置,要通过图象发现每种情况下相同的和不同的解题思路.28.(10分)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:①半径为1的圆:1;②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:1+;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.①若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);②若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.【分析】(1)①平面图形S的“宽距”的定义即可解决问题.②如图1,正方形ABCD的边长为2,设半圆的圆心为O,点P是⊙O上一点,连接OP,PC,OC.求出PC的最大值即可解决问题.(2)①如图2﹣1中,点C所在的区域是图中正方形AEBF,面积为2.②如图2﹣2中,当点M在y轴的右侧时,连接AM,作MT⊥x轴于T.求出d=5或8时,点M的坐标,即可判断,再根据对称性求出点M在y轴左侧的情形即可.【解答】解:(1)①半径为1的圆的宽距离为1,故答案为1.②如图1,正方形ABCD的边长为2,设半圆的圆心为O,点P是⊙O上一点,连接OP,PC,OC.在Rt△ODC中,OC===∴OP+OC≥PC,∴PC≤1+,∴这个“窗户形“的宽距为1+.故答案为1+.(2)①如图2﹣1中,点C所在的区域是图中正方形AEBF,面积为2.②如图2﹣2中,当点M在y轴的右侧时,连接AM,作MT⊥x轴于T.∵AC≤AM+CM,又∵5≤d≤8,∴当d=5时.AM=4,∴AT==2,此时M(2﹣1,2),当d=8时.AM=7,∴AT==2,此时M(2﹣1,2),∴满足条件的点M的横坐标的范围为2﹣1≤x≤2﹣1.当点M在y轴的左侧时,满足条件的点M的横坐标的范围为﹣2+1≤x﹣2+1.【点评】本题属于圆综合题,考查了平面图形S的“宽距”的定义,正方形的判定和性质,三角形的三边关系等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会寻找特殊位置解决问题,属于中考压轴题.2019年江苏省扬州市中考数学试卷压轴题27.(本题满分12分),如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°。

初中数学考试压轴题解题技巧方法

初中数学考试压轴题解题技巧方法

初中数学考试压轴题解题技巧方法压轴题这类题目一般分数多,难度大,考验综合能力强,在考试中是能够拉开成绩的题目,也是很多同学重点钻研项目。

下面是小编为大家整理的关于初中数学压轴题解题技巧,希望对您有所帮助!中考数学压轴题解题技巧1.学会运用与方程思想。

从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或的数学模型,从而使问题得到解决的思维方法,这就是方程思想。

用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。

这种思想在代数、几何及生活实际中有着广泛的应用。

2.学会运用数形结合思想。

数形结合思想是指从几何直观的角度,利用的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

纵观近几年全国各地的中考压轴题,绝大部分都是与有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

3.要学会抢得分点。

一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。

如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。

因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。

4.学会运用等价转换思想。

转化思想是解决数学问题的一种最基本的数学思想。

在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。

转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。

2019年中考数学原创押题密卷(福建卷)(全解全析)

2019年中考数学原创押题密卷(福建卷)(全解全析)

12019 年福建中考押题密卷数学·全解全析1. 【参考答案】A【全解全析】–2019 的绝对值是 2019,2019 的倒数是2. 【参考答案】B【全解全析】0.0000005=5×10 –7,故选 B . 3.【参考答案】C12019,故选A . 【全解全析】A 中主视图和左视图与题干不符;B 中三视图与题干均不符;C 符合要求;D 中三视图与题干均不符;故选C .4. 【参考答案】D【全解全析】A .不是同类项,不能合并,故错误;B .a ⋅ a 4 = a 5 ,故错误;C .a 6 ÷ a 3 = a 3 ,故错误;D 正确.故选D .5. 【参考答案】B3【全解全析】取出黑球的概率为= 1.故选B .6. 【参考答案】C【全解全析】如图所示:2 + 4 +3 3∵∠BDE 是△ADE 的外角,∴∠BDE =∠3+∠A =∠1+∠A =65°,∵a ∥b ,∴∠DBF =∠BDE =65°, 又∵∠ABC =90°,∴∠2=180°–90°–65°=25° .故选 C . 7. 【参考答案】D2⎪【全解全析】观察函数图象,发现:当−2<x <0 或 x >1 时,一次函数图象在反比例函数图象的下方,∴不 等式 ax +b < k 的解集是−2<x <0 或 x >1,即不等式 ax +b – k<0 的解集为−2<x <0 或 x >1,故选 D .xx8. 【参考答案】C【全解全析】由圆周角定理得,∠ABC =∠ADC =26°,∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠CAB =90°–∠ABC =64°,故选C .9. 【参考答案】A【全解全析】∠B = 90, BC = 3, AB = 4 ,∴ AC == 5 ,D ,E 分别是 AB ,AC的中点,∴ DE = 1 BC = 3 ,EC = 1 AC = 5,DE ∥BC ,∴∠FCM = ∠EFC , CF 平分∠ACM ,2 2 2 2∴∠FCM = ∠FCE ,∴∠EFC = ∠FCE ,∴ EF = EC = 5,∴DF = DE + EF = 4 ,故选A .210. 【参考答案】B⎧1x -1 1 (x -1)①3 + a 【全解全析】⎨3 2,解①得 x ≥–3,解②得 x ≤ 5 ,不等式组的解集是–3≤x ≤ 3 + a ⎪⎩2x - a 3(1- x )②3 + a 3ya +12.∵仅有三个整数解,∴–1≤5a +10 <0,∴–8≤a <–3.∵5a +10 y - 2 +2 - y=1,整理得 3y –a –12=y –2,∴y =.∵y ≠2,∴a ≠–6,又y = 有整数解,∴a =–8 或–4,所有满足条件的整数a 的值之 22和是(–8)+(–4)=–12,故选B . 11.【参考答案】2【全解全析】原式=1+3–2=2.故答案为:2.12. 【参考答案】x ≤3【全解全析】根据题意得:3–x ≥0,解得 x ≤3,故答案为:x ≤3.13. 【参考答案】4【全解全析】∵数据个数是偶数,且中位数是 4,∴a =4,故答案为:4. 14.【参考答案】36°【全解全析】∵五边形 ABCDE 是正五边形,∴AB =BC =CD =AE =ED ,∠B =∠E =∠BCD =∠CDE =108°, ∴△ABC ≌△AED ,∴∠CAB =∠DAE = 1(180°–108°)=36°,∴∠CAD =108°–36°–36°=36° .故答案为: 236°.32 3 + 3 ⎩⎩⎩ ⋅15. 【参考答案】m >1 4【全解全析】根据题意得 Δ=(–3)2–4(2+m )<0,解得 m > 1 .故答案为:m > 1.4416. 【参考答案】12【全解全析】如图,过点 A 作 AC ⊥x 轴于点 C ,过点 B 作 BD ⊥AC 于点 D ,则∠ACO =∠BDA =90°,∵△ABO 是等腰直角三角形,∴AO =BA ,∠BAO =90°,∴∠OAC +∠BAD =∠ABD +∠BAD =90°,∴∠OAC = ∠ABD ,∴△AOC ≌△BAD (AAS ),∴AD =OC =2,BD =AC =4,∴点 B 的坐标为(6,2),∴2= k,6解得 k =12,故答案为:12.⎧ x = 3 17.【参考答案】⎨ y = 2 .⎧x + y = 5①【全解全析】⎨2x + 3y = 12② ,②–①×2 得 y =2,(3 分)把 y =2 代入①得 x =3,(6 分)⎧ x = 3则方程组的解为⎨ y = 2.(8 分)a18. 【参考答案】,. a - 23(a -1)(a +1) 2a -1 a +1【全解全析】原式=[a +1 - ]⋅ a +1 (a - 2)2 a 2 - 2a a +1= a +1 (a - 2)2a (a - 2) = ⋅a +1 a +1 (a - 2)243 2 + 3 3a=a - 2,(4 分)当 a =2+ 时,原式=2 3 + 3= = .(8 分) 319. 【参考答案】这种玩具的销售单价为 460 元时,厂家每天可获利润 20000 元.【全解全析】设这种玩具的销售单价为 x 元时,厂家每天可获利润 20000 元, 由题意得,(x –360)[160+2(480–x )]=20000,(4 分) 整理得 x 2 - 920x + 211600 = 0 , 解得 x 1 = x 2 = 460 ,∴这种玩具的销售单价为 460 元时,厂家每天可获利润 20000 元.(8 分)20. 【参考答案】(1)见全解全析;(2)75°.【全解全析】(1)如图所示,BD 即为所求;(4 分)(2)∵在△ABC 中,AB =AC ,∠ABC =70°,∴∠ABC =∠ACB =70°,∴∠A =180°–2∠ABC =180°–140°=40°.(6 分)∵BD 是∠ABC 的平分线, 1 1∴∠ABD = ∠ABC = ×70°=35°,22∵∠BDC 是△ABD 的外角,∴∠BDC =∠A +∠ABD =40°+35° =75°.(8 分)21.【参考答案】证明见全解全析.【全解全析】∵四边形 ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠ABC =∠ADC ,∴∠BAE =∠DCF .(2 分)2 +3 2 + 3 - 2⎨⎩∵BE、DF 分别是∠ABC、∠ADC 的平分线,∴∠ABE=1∠ABC,∠CDF=1∠ADC,2 2∴∠ABE=∠CDF.(4 分)⎧∠ABE =∠CDF在△ABE 与△CDF 中,∵⎪AB =CD ,⎪∠BAE =∠DCF∴△ABE≌△CDF(ASA),∴AE=CF.(8 分)22.【参考答案】(1)当点P 是BC 的中点时,DP 是⊙O 的切线.(2)75.8【全解全析】(1)当点P 是BC 的中点时,DP 是⊙O 的切线.(1 分)理由如下:连接AP,∵AB=AC,∴ AB = AC .又∵ PB = PC ,∴ PBA = PCA .∴PA 是⊙O 的直径.(2 分)∵PB = PC ,∴∠1=∠2.又∵AB=AC,∴PA⊥BC.(3 分)又∵DP∥BC,∴DP⊥PA.∴DP 是⊙O 的切线.(4 分)(2)连接OB,设PA 交BC 于点E.由垂径定理,得BE=EC=1BC =6.(5 分)2在Rt△ABE 中,由勾股定理得AE.(6 分)设⊙O 的半径为r,则OE=8–r,在Rt△OBE 中,由勾股定理得r2 =62 +(8-r)2 ,解得r=25.(8 分)4∵DP∥BC,∴∠ABE=∠D.56又∵∠1=∠1,∴△ABE ∽△ADP ,BEAE6875∴=,即=DPAPDP 25 ,解得 DP =2 ⨯ 4.(10 分)23. 【参考答案】(1)50.5.(2)甲品种挂果数超过 49 个的西红柿秧苗的数量有 270 株.(3)甲品种的小西红柿秧苗更适应市场需求,理由见全解全析.【全解全析】(1)把这组数据按从小到大的顺序排列,因为数据的总数是 50 个,其中位数为中间两 50 + 51 个数(25 和26 个数)的平均数,即 =50.5,故中位数 m =50.5;(2 分)2(2) 样品中,甲品种挂果数超过 49 个的西红柿秧苗有 27 株,∴27⨯ 500 = 270 (株), 50∴估计甲品种挂果数超过 49 个的小西红柿秧苗的数量有 270 株.(6 分)(3) 可以推断出甲品种的小西红柿秧苗更适应市场需求,(8 分)理由为:①甲品种挂果数的平均数高,说明甲品种平均产量高;②甲品种挂果数的中位数比乙高,说明甲品种有一半秧苗的产量高于乙品种;③甲品种产量的方差小于乙品种,说明甲品种的产量比较稳定,挂果数相差不大.(10 分)24. 【参考答案】(1)见全解全析.(2)①见全解全析.②AP =310 .【全解全析】(1)如图 1,∵AE 垂直于 AN ,∴∠EAB +∠BAN =90°,∵四边形 ABCD 是正方形,∴∠BAD =90°,∴∠NAD +∠BAN =90°,∴∠EAB =∠NAD , 又∵∠ABE =∠D =90°,AB =AD ,∴△ABE ≌△ADN ;(4 分) (2)①如图 2,在 ND 上截取 DG =BM ,连接 AG 、MG ,∵AD =AB ,∠ADG =∠ABM =90°,∴△ADG ≌△ABM ,∴AG =AM ,∠MAB =∠GAD ,∵∠BAD =∠BAG +∠GAD =90°,∴∠MAG =∠BAG +∠MAB =90°,∴△AMG 为等腰直角三角形,872 6 5 由题可知∠MAN =45°,则∠GAN =45°,∴AN ⊥MG ,∴AN 为 MG 的垂直平分线,∴NM =NG ,∴DN –DG =GN ,即 DN –BM =MN ,即 MN +BM =DN ;(8 分)②如图 3,连接 AC ,由①可知 MN +BM =DN ,∴MN +CM –BC =DC +CN ,∴CM –CN +MN =DC +BC =2BC , 即 8–CN +10=2BC ,即 CN =18–2BC ,在 Rt △MNC 中,根据勾股定理得 MN 2=CM 2+CN 2,即 102=82+CN 2,∴CN =6,∴BC =6,∴AC =6 ,∵∠BAP +∠BAQ =45°,∠NAC +∠BAQ =45°,∴∠BAP =∠NAC ,又∵∠ABP =∠ACN =135°,∴△ABP ∽△ACN ,∴AP= AB = 1 ,AN AC 2在 Rt △AND 中,根据勾股定理得 AN 2=AD 2+DN 2=36+144,解得 AN =6 5 ,∴ AP = 1,∴AP =3 210 .(12 分)8⎨25.【参考答案】(1)y =– 2 x 2– 4x +2.(2)l =–2 (m + 1 )2+ 49 2,当 m =– 1 时,l 有最大值,最333 4 484大值为49 2 .(3)点 M 的坐标为(2,–10 )或(–4,–10 )或(–2,2).4833【全解全析】(1)∵矩形 OBDC 的边 CD =1,∴OB =1,∵AB =4,∴OA =3,∴A (–3,0),B (1,0),⎧a + b + 2 = 0把 A 、B 两点坐标代入抛物线解析式可得 , ⎩9a - 3b + 2 = 0⎧a =- 2 ⎪ 32 2 4解得⎨,∴抛物线解析式为 y =– x – x +2;(4 分) 4 3 3 ⎪b =- ⎩⎪ 3(2)在 y =– 2 x 2– 4 x +2 中,令 y =2 可得 2=– 2 x 2– 4x +2,解得 x =0 或 x =–2,3 3 3 3∴E (–2,2),∴直线 OE 解析式为 y =–x ,由题意可得 P (m ,– 2m 2– 4m +2),(6 分)3 3∵PG ∥y 轴,∴G (m ,–m ),∵P 在直线OE 的上方,∴PG =– 2 m 2– 4 m +2–(–m )=– 2212(m + 1 )2+49,(8 分)33 3m – m +2=–3 34 24∵直线 OE 的解析式为 y =–x ,∴∠PGH =∠COE =45°,∴l =2 PG = 2 [– 2 (m + 1 )2+ 49 ]=– 2 (m + 1 )2+ 49 2 ,2 234 24 34 48∴当 m =– 1时,l 有最大值,最大值为49 2;(11 分)44810 10 (3)点M 的坐标为(2,– )或(–4,–)或(–2,2).(14 分)33①当 AC 为平行四边形的边时,则有 MN ∥AC ,且 MN =AC ,如图,过 M 作对称轴的垂线,垂足为 F , 设 AC 交对称轴于点 L ,则∠ALF =∠ACO =∠FNM ,9⎨ ⎩⎧∠MFN = ∠AOC 在△MFN 和△AOC 中, ⎪∠FNM = ∠ACO ,⎪MN = AC ∴△MFN ≌△AOC (AAS ),∴MF =AO =3,∴点 M 到对称轴的距离为 3,又 y =– 2 x 2– 4x +2,∴抛物线对称轴为 x =–1,3 3 设 M 点坐标为(x ,y ),则|x +1|=3,解得 x =2 或 x =–4, 10 10当x =2 时,y =– ,当x =–4 时,y =– , 3310 10 ∴M 点坐标为(2,–)或(–4,–);33②当 AC 为对角线时,设 AC 的中点为 K , 3 ∵A (–3,0),C (0,2),∴K (– ,1),2∵点 N 在对称轴上,∴点 N 的横坐标为–1,设 M 点横坐标为 x ,3 ∴x +(–1)=2×(– )=–3,解得 x =–2,此时 y =2,∴M (–2,2);210 10 综上可知点M 的坐标为(2,– )或(–4,–)或(–2,2).33。

(完整版)2019年中考数学压轴题汇编(几何1)解析版

(完整版)2019年中考数学压轴题汇编(几何1)解析版

(2019年安徽23题)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB =∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2?h3.【分析】(1)利用等式的性质判断出∠PBC=∠P AB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△P AB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠P AB+∠PBA=45°∴∠PBC=∠P AB又∵∠APB=∠BPC=135°,∴△P AB∽△PBC(2)∵△PAB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴P A=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△P AB∽△PBC,∴,∴∴.即:h12=h2?h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.(2019年北京27题)27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.【分析】(1)根据题意画出图形.(2)由旋转可得∠MPN=150°,故∠OPN=150°﹣∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°﹣30°﹣∠OPM=150°﹣∠OPM,得证.(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP =∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD =NC,DM=CP.此时加上ON=QP,则易证得△OCN≌△QDP,所以OC=QD.利用∠AOB=30°,设PD=NC=a,则OP=2a,OD=a.再设DM=CP=x,所以QD=OC=OP+PC=2a+x,MQ=DM+QD=2a+2x.由于点M、Q关于点H对称,即点H为MQ中点,故MH=MQ=a+x,DH=MH﹣DM=a,所以OH=OD+DH=a+a=+1,求得a=1,故OP=2.证明过程则把推理过程反过来,以OP=2为条件,利用构造全等证得ON=QP.【解答】解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN﹣∠OPM=150°﹣α∵∠AOB=30°∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α∴∠OMP=∠OPN(3)OP=2时,总有ON=QP,证明如下:过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2∴∠NCP=∠PDM=∠PDQ=90°∵∠AOB=30°,OP=2∴PD=OP=1∴OD=∵OH=+1∴DH=OH﹣OD=1∵∠OMP=∠OPN∴180°﹣∠OMP=180°﹣∠OPN即∠PMD=∠NPC在△PDM与△NCP中∴△PDM≌△NCP(AAS)∴PD=NC,DM=CP设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1∵点M关于点H的对称点为Q∴HQ=MH=x+1∴DQ=DH+HQ=1+x+1=2+x∴OC=DQ在△OCN与△QDP中∴△OCN≌△QDP(SAS)∴ON=QP【点评】本题考查了根据题意画图,旋转的性质,三角形内角和180°,勾股定理,全等三角形的判定和性质,中心对称的性质.第(3)题的解题思路是以ON=QP为条件反推OP的长度,并结合(2)的结论构造全等三角形;而证明过程则以OP=2为条件构造全等证明ON=QP.(2019年北京28题)28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.【分析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE为直径的半圆,的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,①当t=时,要注意圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角∠AEP 满足90°≤∠AEP<135°;②根据题意,t的最大值即圆心P在AC上时求得的t值.【解答】解:(1)如图2,以DE为直径的半圆弧,就是△ABC的最长的中内弧,连接DE,∵∠A=90°,AB=AC=,D,E分别是AB,AC的中点,∴BC===4,DE=BC=×4=2,∴弧=×2π=π;(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE 垂直平分线FP,作EG⊥AC交FP于G,①当t=时,C(2,0),∴D(0,1),E(1,1),F(,1),设P(,m)由三角形中内弧定义可知,圆心线段DE上方射线FP上均可,∴m≥1,∵OA=OC,∠AOC=90°∴∠ACO=45°,∵DE∥OC∴∠AED=∠ACO=45°作EG⊥AC交直线FP于G,FG=EF=根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;∴m≤综上所述,m≤或m≥1.②如图4,设圆心P在AC上,∵P在DE中垂线上,∴P为AE中点,作PM⊥OC于M,则PM=,∴P(t,),∵DE∥BC∴∠ADE=∠AOB=90°∴AE===,∵PD=PE,∴∠AED=∠PDE∵∠AED+∠DAE=∠PDE+∠ADP=90°,∴∠DAE=∠ADP∴AP=PD=PE=AE由三角形中内弧定义知,PD≤PM∴AE≤,AE≤3,即≤3,解得:t≤,∵t>0∴0<t≤.【点评】此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.(2019年福建24题)24.(12分)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD 的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=4,求tan∠BAD的值.【分析】(1)根据等腰三角形的性质得出∠ABC=∠ACB,根据圆心角、弧、弦的关系得到=,即可得到∠ABC=∠ADB,根据三角形内角和定理得到∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∠ADB=90°﹣∠CAD,从而得到∠BAC=∠CAD,即可证得结论;(2)易证得BC=CF=4,即可证得AC垂直平分BF,证得AB=AF=10,根据勾股定理求得AE、CE、BE,根据相交弦定理求得DE,即可求得BD,然后根据三角形面积公式求得DH,进而求得AH,解直角三角函数求得tan∠BAD的值.【解答】解:(1)∵AB=AC,∴=,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∵BD⊥AC,∴∠ADB=90°﹣∠CAD,∴∠BAC=∠CAD,∴∠BAC=2∠CAD;(2)解:∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=∠BDC=∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=4,设AE=x,CE=10﹣x,由AB2﹣AE2=BC2﹣CE2,得100﹣x2=80﹣(10﹣x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE===3,∴BD=BE+DE=3+8=11,作DH⊥AB,垂足为H,∵AB?DH=BD?AE,∴DH===,∴BH==,∴AH=AB﹣BH=10﹣=,∴tan∠BAD===.【点评】本题属于圆综合题,考查了圆周角定理,勾股定理,锐角三角函数,圆心角、弧、弦的关系,相交弦定理,等腰三角形的判定和性质等知识,解题的关键是熟练掌握并灵活运用性质定理,属于中考压轴题.(2019年甘肃兰州27题)27.(10分)通过对下面数学模型的研究学习,解决问题.【模型呈现】如图,在Rt△ABC,∠ACB=90°,将斜边AB绕点A顺时针旋转90°得到AD,过点D 作DE⊥AC于点E,可以推理得到△ABC≌△DAE,进而得到AC=DE,BC=AE.我们把这个数学模型成为“K型”.推理过程如下:【模型应用】如图,在Rt△ABC内接于⊙O,∠ACB=90°,BC=2,将斜边AB绕点A顺时针旋转一定的角度得到AD,过点D作DE⊥AC于点E,∠DAE=∠ABC,DE=1,连接DO交⊙O 于点F.(1)求证:AD是⊙O的切线;(2)连接FC交AB于点G,连接FB.求证:FG2=GO?GB.【分析】(1)因为直角三角形的外心为斜边中点,所以点O在AB上,AB为⊙O直径,故只需证AD⊥AB即可.由∠ABC+∠BAC=90°和∠DAE=∠ABC可证得∠DAE+∠BAC =90°,而E、A、C在同一直线上,用180°减去90°即为∠BAD=90°,得证.(2)依题意画出图形,由要证的结论FG2=GO?GB联想到对应边成比例,所以需证△FGO∽△BGF.其中∠FGO=∠BGF为公共角,即需证∠FOG=∠BFG.∠BFG为圆周角,所对的弧为弧BC,故连接OC后有∠BFG=∠BOC,问题又转化为证∠FOG=∠BOC.把DO延长交BC于点H后,有∠FOG=∠BOH,故问题转化为证∠BOH=∠BOC.只要OH⊥BC,由等腰三角形三线合一即有∠BOH=∠BOC,故问题继续转化为证DH∥CE.联系【模型呈现】发现能证△DEA≌△ACB,得到AE=BC=2,AC=DE =1,即能求AD=AB=.又因为O为AB中点,可得到,再加上第(1)题证得∠BAD=90°,可得△DAO∽△AED,所以∠ADO=∠EAD,DO∥EA,得证.【解答】证明:(1)∵⊙O为Rt△ABC的外接圆∴O为斜边AB中点,AB为直径∵∠ACB=90°∴∠ABC+∠BAC=90°∵∠DAE=∠ABC∴∠DAE+∠BAC=90°∴∠BAD=180°﹣(∠DAE+∠BAC)=90°∴AD⊥AB∴AD是⊙O的切线(2)延长DO交BC于点H,连接OC∵DE⊥AC于点E∴∠DEA=90°∵AB绕点A旋转得到AD∴AB=AD在△DEA与△ACB中∴△DEA≌△ACB(AAS)∴AE=BC=2,AC=DE=1∴AD=AB=∵O为AB中点∴AO=AB=∴∵∠DAO=∠AED=90°∴△DAO∽△AED∴∠ADO=∠EAD∴DO∥EA∴∠OHB=∠ACB=90°,即DH⊥BC∵OB=OC∴OH平分∠BOC,即∠BOH=∠BOC∵∠FOG=∠BOH,∠BFG=∠BOC∴∠FOG=∠BFG∵∠FGO=∠BGF∴△FGO∽△BGF∴∴FG2=GO?GB【点评】本题考查了三角形外心定义,圆的切线判定,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的判定和性质,垂径定理,等腰三角形三线合一,圆周角定理.其中第(2)题证明DO∥EA进而得到DO垂直BC是解题关键.(2019年甘肃陇南27题)27.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.【答案】解:延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,如图所示:则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,∴△EB1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E=45°,∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,∴∠M1C1N1=90°+45°=135°,∴∠B1C1E+∠M1C1N1=180°,∴E、C1、N1,三点共线,在△A1B1M1和△EB1M1中,,∴△A1B1M1≌△EB1M1(SAS),∴A1M1=EM1,∠1=∠2,∵A1M1=M1N1,∴EM1=M1N1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A1M1N1=180°-90°=90°.【解析】延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,得出△EB1C1是等腰直角三角形,由等腰直角三角形的性质得出∠B1EC1=∠B1C1E=45°,证出∠B1C1E+∠M1C1N1=180°,得出E、C1、N1,三点共线,由SAS证明△A1B1M1≌△EB1M1得出A1M1=EM1,∠1=∠2,得出EM1=M1N1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论.此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.(2019年甘肃天水25题)25.(10分)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.【分析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;故答案为:AD2+BC2=AB2+CD2.(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.【点评】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.(2019年广东深圳23题)23.(9分)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标,F2(5,0)(直接写出);②求的最大值.【分析】(1)连接ED,证明∠EDO=90°即可,可通过半径相等得到∠EDB=∠EBD,根据直角三角形斜边上中线等于斜边一半得DO=BO=AO,∠ODB=∠OBD,得证;(2)①分两种情况:a)F位于线段AB上,b)F位于BA的延长线上;过F作AC的垂线,构造相似三角形,应用相似三角形性质可求得点F坐标;②应用相似三角形性质和三角函数值表示出=,令y=CG2(64﹣CG2)=﹣(CG2﹣32)2+322,应用二次函数最值可得到结论.【解答】解:(1)证明:如图1,连接DE,∵BC为圆的直径,∴∠BDC=90°,∴∠BDA=90°∵OA=OB∴OD=OB=OA∴∠OBD=∠ODB∵EB=ED∴∠EBD=∠EDB∴EBD+∠OBD=∠EDB+∠ODB即:∠EBO=∠EDO∵CB⊥x轴∴∠EBO=90°∴∠EDO=90°∵点D在⊙E上∴直线OD为⊙E的切线.(2)①如图2,当F位于AB上时,过F作F1N⊥AC于N,∵F1N⊥AC∴∠ANF1=∠ABC=90°∴△ANF∽△ABC∴∵AB=6,BC=8,∴AC===10,即AB:BC:AC=6:8:10=3:4:5∴设AN=3k,则NF1=4k,AF1=5k∴CN=CA﹣AN=10﹣3k∴tan∠ACF===,解得:k=∴即F1(,0)如图3,当F位于BA的延长线上时,过F2作F2M⊥CA于M,∵△AMF2∽△ABC∴设AM=3k,则MF2=4k,AF2=5k∴CM=CA+AM=10+3k∴tan∠ACF=解得:∴AF2=5k=2OF2=3+2=5即F2(5,0)故答案为:F1(,0),F2(5,0).②如图4,∵CB为直径∴∠CGB=∠CBF=90°∴△CBG∽△CFB∴∴BC2=CG?CFCF=∵CG2+BG2=BC2,∴BG2=BC2﹣CG2∴==∴=令y=CG2(64﹣CG2)=﹣CG4+64CG2=﹣[(CG2﹣32)2﹣322]=﹣(CG2﹣32)2+322∴当CG2=32时,此时CG=4==.【点评】本题是一道难度较大,综合性很强的有关圆的代数几何综合题,主要考查了圆的性质,切线的性质和判定定理,直角三角形性质,相似三角形性质和判定,动点问题,二次函数最值问题等,构造相似三角形和应用求二次函数最值方法是解题关键.(2019年广东24题)24.(9分)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC?BE=25,求BG的长.【分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证;(3)证△ABE∽△CBA得AB2=BC?BE,据此知AB=5,连接AG,得∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,由点G为内心知∠DAG=∠GAC,结合∠BAD+∠DAG =∠GDC+∠ACB得∠BAG=∠BGA,从而得出BG=AB=5.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,又∵∠ACB=∠BCD,∠ABC=∠ADC,∴∠BCD=∠ADC,∴ED=EC;(2)如图1,连接OA,∵AB=AC,∴=,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CFA,∴∠ACD=∠CAF+∠CFA=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(3)∵∠ABE=∠CBA,∠BAD=∠BCD=∠ACB,∴△ABE∽△CBA,∴=,∴AB2=BC?BE,∴BC?BE=25,∴AB=5,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GDC+∠ACB,∴∠BAG=∠BGA,∴BG=AB=5.【点评】本题是圆的综合问题,解题的关键是掌握圆心角定理、切线的判定与性质、相似三角形的判定与性质等知识点.(2019年广东广州24题)24.(14分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC=∠A,可证DF∥AB;(2)过点D作DM⊥AB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由△ACD的面积为S1的值是定值,则当点F在DM上时,S△ABF最小时,S最大;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可求AE的长.【解答】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°由折叠可知:DF=DC,且点F在AC上∴∠DFC=∠C=60°∴∠DFC=∠A∴DF∥AB;(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°∴MD=2∴S△ABF的最小值=×6×(2﹣2)=6﹣6∴S最大值=﹣(6﹣6)=3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=FG=∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=﹣1∴BG=∵EH⊥BC,∠C=60°∴CH=,EH=HC=EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE∴∴∴EC=﹣1∴AE=AC﹣EC=7﹣【点评】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.(2019年广西池州25题)25.(10分)如图,五边形ABCDE内接于⊙O,CF与⊙O相切于点C,交AB延长线于点F.(1)若AE=DC,∠E=∠BCD,求证:DE=BC;(2)若OB=2,AB=BD=DA,∠F=45°,求CF的长.【分析】(1)由圆心角、弧、弦之间的关系得出,由圆周角定理得出∠ADE=∠DBC,证明△ADE≌△DBC,即可得出结论;(2)连接CO并延长交AB于G,作OH⊥AB于H,则∠OHG=∠OHB=90°,由切线的性质得出∠FCG=90°,得出△CFG、△OGH是等腰直角三角形,得出CF=CG,OG =OH,由等边三角形的性质得出∠OBH=30°,由直角三角形的性质得出OH=OB =1,OG=,即可得出答案.【解答】(1)证明:∵AE=DC,∴,∴∠ADE=∠DBC,在△ADE和△DBC中,,∴△ADE≌△DBC(AAS),∴DE=BC;(2)解:连接CO并延长交AB于G,作OH⊥AB于H,如图所示:则∠OHG=∠OHB=90°,∵CF与⊙O相切于点C,∴∠FCG=90°,∵∠F=45°,∴△CFG、△OGH是等腰直角三角形,∴CF=CG,OG=OH,∵AB=BD=DA,∴△ABD是等边三角形,∴∠ABD=60°,∴∠OBH=30°,∴OH=OB=1,∴OG=,∴CF=CG=OC+OG=2+.【点评】本题考查了切线的性质,圆周角定理,圆心角、弧、弦之间的关系,全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的性质;熟练掌握切线的性质和圆周角定理是解题的关键.(2019年广西贺州25题)25.(10分)如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.(1)求∠ADB的度数;(2)求AC的长度.【分析】(1)由切线的性质得出AF⊥OA,由圆周角定理好已知条件得出∠F=∠DBC,证出AF∥BC,得出OA⊥BC,求出∠BOA=90°﹣30°=60°,由圆周角定理即可得出结果;(2)由垂径定理得出BE=CE=BC=4,得出AB=AC,证明△AOB是等边三角形,得出AB=OB,由直角三角形的性质得出OE=OB,BE=OE=4,求出OE=,即可得出AC=AB=OB=2OE=.【解答】解:(1)∵AF与⊙O相切于点A,∴AF⊥OA,∵BD是⊙O的直径,∴∠BAD=90°,∵∠BAC=120°,∴∠DAC=30°,∴∠DBC=∠DAC=30°,∵∠F=30°,∴∠F=∠DBC,∴AF∥BC,∴OA⊥BC,∴∠BOA=90°﹣30°=60°,∴∠ADB=∠AOB=30°;(2)∵OA⊥BC,∴BE=CE=BC=4,∴AB=AC,∵∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠OBE=30°,∴OE=OB,BE=OE=4,∴OE=,∴AC=AB=OB=2OE=.【点评】本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、垂径定理、直角三角形的性质等知识;熟练掌握切线的性质和圆周角定理,证出OA⊥BC是解题的关键.(2019年广西柳州25题)25.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点F是⊙O上一点,且=,连接FB,FD,FD交AB于点N.(1)若AE=1,CD=6,求⊙O的半径;(2)求证:△BNF为等腰三角形;(3)连接FC并延长,交BA的延长线于点P,过点D作⊙O的切线,交BA的延长线于点M.求证:ON?OP=OE?OM.【解答】解:(1)如图1,连接BC,AC,AD,∵CD⊥AB,AB是直径∴,CE=DE=CD=3∴∠ACD=∠ABC,且∠AEC=∠CEB∴△ACE∽△CEB∴∴∴BE=9∴AB=AE+BE=10∴⊙O的半径为5(2)∵=∴∠ACD=∠ADC=∠CDF,且DE=DE,∠AED=∠NED=90°∴△ADE≌△NDE(ASA)∴∠DAN=∠DNA,AE=EN∵∠DAB=∠DFB,∠AND=∠FNB∴∠FNB=∠DFB∴BN=BF,∴△BNF是等腰三角形(3)如图2,连接AC,CE,CO,DO,∵MD是切线,∴MD⊥DO,∴∠MDO=∠DEO=90°,∠DOE=∠DOE∴△MDO∽△DEO∴∴OD2=OE?OM∵AE=EN,CD⊥AO∴∠ANC=∠CAN,∴∠CAP=∠CNO,∵∴∠AOC=∠ABF∵CO∥BF∴∠PCO=∠PFB∵四边形ACFB是圆内接四边形∴∠P AC=∠PFB∴∠P AC=∠PFB=∠PCO=∠CNO,且∠POC=∠COE∴△CNO∽△PCO∴∴CO2=PO?NO,∴ON?OP=OE?OM.(2019年广西北部湾等25题)25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.【分析】(1)先判断出∠GCB+∠CBG=90,再由四边形ABCD是正方形,得出∠CBE =90°=∠A,BC=AB,即可得出结论;(2)设AB=CD=BC=2a,先求出EA=EB=AB=a,进而得出CE=a,再求出BG=a,CG═a,再判断出△CQD≌△BGC(AAS),进而判断出GQ=CQ,即可得出结论;(3)先求出CH=a,再求出DH=a,再判断出△CHD∽△DHM,求出HM=a,再用勾股定理求出GH=a,最后判断出△QGH∽△GCH,得出HN==a,即可得出结论.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG?CE=CB?EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG=a,∴GQ=CG﹣CQ=a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DH⊥CE于H,S△CDG=?DQ=CH?DG,∴CH==a,在Rt△CHD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠QGH=∠HCG,∴△QGH∽△GCH,∴,∴HN==a,∴MN=HM﹣HN=a,∴=【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△DGQ≌△CDQ是解本题的关键.(2019年广西梧州25题)25.(10分)如图,在矩形ABCD中,AB=4,BC=3,AF平分∠DAC,分别交DC,BC的延长线于点E,F;连接DF,过点A作AH∥DF,分别交BD,BF于点G,H.(1)求DE的长;(2)求证:∠1=∠DFC.【分析】(1)由AD∥CF,AF平分∠DAC,可得∠FAC=∠AFC,得出AC=CF=5,可证出△ADE∽△FCE,则,可求出DE长;(2)由△ADG∽△HBG,可求出DG,则,可得EG∥BC,则∠1=∠AHC,根据DF∥AH,可得∠AHC=∠DFC,结论得证.【解答】(1)解:∵矩形ABCD中,AD∥CF,∴∠DAF=∠ACF,∵AF平分∠DAC,∴∠DAF=∠CAF,∴∠FAC=∠AFC,∴AC=CF,∵AB=4,BC=3,∴==5,∴CF=5,∵AD∥CF,∴△ADE∽△FCE,∴,设DE=x,则,解得x=∴;(2)∵AD∥FH,AF∥DH,∴四边形ADFH是平行四边形,∴AD=FH=3,∴CH=2,BH=5,∵AD∥BH,∴△ADG∽△HBG,∴,∴,∴DG=,∵DE=,∴=,∴EG∥BC,∴∠1=∠AHC,又∵DF∥AH,∴∠AHC=∠DFC,∠1=∠DFC.【点评】本题考查了矩形的相关证明与计算,熟练掌握矩形的性质、平行四边形的判定与性质与相似三角形的性质与判定是解题的关键.(2019年广西梧州25题)25.(10分)如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2,EB=4,tan∠GEH=2,求四边形EHFG的周长.【分析】(1)证明△ABE≌△CDF(AAS),得BE=DF,根据一组对边平行且相等的四边形是平行四边形可得结论;(2)如图,连接BD,交EF于O,计算EO和BO的长,得∠OEB=30°,根据三角函数可得HM的长,从而得EM和EH的长,利用勾股定理计算FH的长,最后根据四边的和计算结论.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CD,AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠CFD=∠BEA,∵∠BAC=∠BEA+∠ABE,∠DCA=∠CFD+∠CDF,∴∠ABE=∠CDF,在△ABE和△CDF中,∵,∴△ABE≌△CDF(AAS),∴BE=DF,∵BH=DG,∴BE+BH=DF+DG,即EH=GF,∵EH∥GF,∴四边形EHFG是平行四边形;(2)如图,连接BD,交EF于O,∵四边形ABCD是正方形,∴BD⊥AC,∴∠AOB=90°,∵AB=2,∴OA=OB=2,Rt△BOE中,EB=4,∴∠OEB=30°,∴EO=2,∵OD=OB,∠EOB=∠DOF,∵DF∥EB,∴∠DFC=∠BEA,∴△DOF≌△BOE(AAS),∴OF=OE=2,∴EF=4,∴FM=2,EM=6,过F作FM⊥EH于M,交EH的延长线于M,∵EG∥FH,∴∠FHM=∠GEH,∵tan∠GEH=tan∠FHM==2,∴,∴HM=1,∴EH=EM﹣HM=6﹣1=5,FH===,∴四边形EHFG的周长=2EH+2FH=2×5+2=10+2.【点评】此题主要考查了正方形的性质,平行四边形的判定和性质,三角函数和全等三角形的判定等知识.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题,第二问有难度,恰当地作出辅助线是关键.(2019年广西百色25题)25.(10分)如图,已知AC、AD是⊙O的两条割线,AC与⊙O交于B、C两点,AD过圆心O且与⊙O交于E、D两点,OB平分∠AOC.(1)求证:△ACD∽△ABO;(2)过点E的切线交AC于F,若EF∥OC,OC=3,求EF的值.[提示:(+1)(﹣1)=1]【解答】证明:(1)∵OB平分∠AOC∴∠BOE=∠AOC∵OC=OD∴∠D=∠OCD∵∠AOC=∠D+∠OCD∴∠D=∠AOC∴∠D=∠BOE,且∠A=∠A∴△ACD∽△ABO(2)∵EF切⊙O于E∴∠OEF=90°∵EF∥OC∴∠DOC=∠OEF=90°∵OC=OD=3∴CD==3∵△ACD∽△ABO∴∴∴AE=3∵EF∥OC∴∴∴EF=6﹣3(2019年广西贵港26题)26.(10分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB =,求线段PA+PF的最小值.(结果保留根号)【分析】(1)①解直角三角形求出∠A′CD即可解决问题.②连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.首先证明△CFA′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出P A+PF=P A+PB′≥AB′,求出AB′即可解决问题.【解答】(1)①解:旋转角为105°.理由:如图1中,∵A′D⊥AC,∴∠A′DC=90°,∵∠CA′D=15°,∴∠A′CD=75°,∴∠ACA′=105°,∴旋转角为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠FA′O=∠OEC=60°,∴△A′OF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴P A+PF=PA+PB′≥AB′,在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,∴B′M=CB′=1,CM=,∴AB′===.∴P A+PF的最小值为.【点评】本题属于四边形综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.(2019年广西桂林25题)25.(10分)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD 交AB于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE?DC:(3)求tan∠ACD的值.【分析】(1)由切线的性质和圆周角定理可得∠ACB=∠ABM=90°,由角平分线的性质可得∠CAB=∠CBA=45°;(2)通过证明△EDO∽△ODC,可得,即可得结论;(3)连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,由外角的性质可得∠CAB =∠CDB=45°=∠EDO+∠ODB=3∠ODB,可求∠ODB=15°=∠OBD,由直角三角形的性质可得BD=DF+BF=AD+2AD,即可求tan∠ACD的值.【解答】证明:(1)∵BM是以AB为直径的⊙O的切线,∴∠ABM=90°,∵BC平分∠ABM,∴∠ABC=∠ABM=45°∵AB是直径∴∠ACB=90°,∴∠CAB=∠CBA=45°∴AC=BC∴△ACB是等腰直角三角形;(2)如图,连接OD,OC∵DE=EO,DO=CO∴∠EDO=∠EOD,∠EDO=∠OCD∴∠EDO=∠EDO,∠EOD=∠OCD∴△EDO∽△ODC∴∴OD2=DE?DC∴OA2=DE?DC=EO?DC(2)如图,连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,∵DO=BO∴∠ODB=∠OBD,∴∠AOD=2∠ODB=∠EDO,∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,∴∠ODB=15°=∠OBD∵∠BAF=∠DBA=15°∴AF=BF,∠AFD=30°∵AB是直径∴∠ADB=90°∴AF=2AD,DF=AD∴BD=DF+BF=AD+2AD∴tan∠ACD=tan∠ABD===2﹣【点评】本题属于圆的综合题,考查了圆周角定理、垂径定理、相似三角形的判定与性质以及锐角三角函数等知识.注意准确作出辅助线是解此题的关键.(2019年贵州毕节10题)10.(4分)如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2【解答】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∵EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12﹣(4)2=100(cm2).故选:D.(2019年贵州安顺25题)25.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cosC=,求AE的长.【分析】(1)连结OD、AD,如图,先利用圆周角定理得到∠ADB=90°,则根据等腰三角形的性质得BD=CD,再证明OD为△ABC的中位线得到OD∥AC,加上DH⊥AC,所以OD⊥DH,然后根据切线的判定定理可判断DH为⊙O的切线;(2)连结DE,如图,有圆内接四边形的性质得∠DEC=∠B,再证明∠DEC=∠C,然后根据等腰三角形的性质得到CH=EH;(3)利用余弦的定义,在Rt△ADC中可计算出AC=5,在Rt△CDH中可计算出CH =,则CE=2CH=2,然后计算AC﹣CE即可得到AE的长.【解答】(1)解:DH与⊙O相切.理由如下:连结OD、AD,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为⊙O的切线;(2)证明:连结DE,如图,∵四边形ABDE为⊙O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点;(3)解:在Rt△ADC中,CD=BC=5,∵cosC==,∴AC=5,在Rt△CDH中,∵cosC==,∴CH=,∴CE=2CH=2,∴AE=AC﹣CE=5﹣2=3.【点评】本题考查了圆的综合题:熟练掌握圆周角定理、切线的判定定理和等腰三角形的判定与性质;会利用三角函数的定义解直角三角形.(2019年贵州贵阳25题)25.(12分)(1)数学理解:如图①,△ABC是等腰直角三角形,过斜边AB的中点D作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角△ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB=BE+AF,求∠ADB的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,BN的数量关系.【分析】数学理解:(1)由等腰直角三角形的性质可得AC=BC,∠A=∠B=45°,AB=AC,由正方形的性质可得DE=DF=CE,∠DFC=∠DEC=90°,可求AF=DF=CE,即可得AB=(AF+BE);问题解决:(2)延长AC,使FM=BE,通过证明△DFM≌△DEB,可得DM=DB,通过△ADM≌。

2019届中考数学复习解答中考压轴题的“金钥匙”

2019届中考数学复习解答中考压轴题的“金钥匙”

2019 届中考数学复习 解答中考压轴题的“金钥匙”般设计 3~4 问,由易到难有必定的坡度,或连续设问,或独立考察,最后一问较难,一般是波及几何特别图形(或特别地点)的研究问题。

自己就最后一问进行了研究, 提炼出一些方法、技巧,供大家参照。

一、 数学思想:主假如数形联合思想、分类议论思想、特别到一般的思想二、 研究问题:1、三角形相像、平行四边形、梯形的研究2、特别角 -----直角(或直角三角形)的研究3、均分角(或相等角)的研究4、平移图形后重叠部分面积函数的研究5、三角形(或多边形)最大面积的研究6、图形变换中特别点活动范围的研究三、 解题方法:1、绘图法:(从形到数)一般先画出图形,充足发掘和运用坐标系中几何图形的特征,选用适合的相等关系列出方程,问题得解。

绘图分类时易掉状况,要仔细。

2、分析法:( 从数到形)一般先求出点所在线(直线或抛物线)的函数关系式,再根据需要列出方程、不等式或函数剖析求解。

不会掉各样状况,但解答过程有时较 繁。

四、 解题重点:1、从数到形:依据点的坐标特点,发现运用特别角或线段比2、从形到数:找出特别地点,分段分类议论五、 实例剖析:(荆州 2012 压轴题编) 如图,求△ OAE 右移 t ( 0< t ≤3)时,△ OAE 与△ ABE 重叠部分面积函数关系式。

y(1,4)3E 0 3,3E1 B2HEM剖析 :解题重点,第一,求右移过程中,抵达零界地点(点E 落在AB 上)的时间 t=3,而后对时间进行分段2分类 讨DAx3论 : 0,t23t 3;2其次,求面积关系式时,充足运用两个比:OA1O0 A1,. OE O0 E02如图, 0 t 3S阴SOAESO AHSAA 时,明显,暗影部分的面积21 1 M此中重点是求 AA1边上的高MN。

∵NA O0 A1∴ MN=2NAMN O0 E02NA1OA∴ MN NA1∴ MN NA1=2NA(A是 NA1又MN1中点)OE(十堰 2012 压轴题编)动点 M(m, 0) 在 x 轴上, N( 1, n )在线段 EF 上,求∠MNC=900时m的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019 届中考数学复习 解答中考压轴题的“金钥匙”般设计 3~4 问,由易到难有一定的坡度,或连续设问,或独立考查,最后一问较难,一般是涉及几何特殊图形(或特殊位置)的探究问题。

本人就最后一问进行了研究, 提炼出一些方法、技巧,供大家参考。

一、 数学思想:主要是数形结合思想、分类讨论思想、特殊到一般的思想二、 探究问题:1、三角形相似、平行四边形、梯形的探究2、特殊角 -----直角(或直角三角形)的探究3、平分角(或相等角)的探究4、平移图形后重叠部分面积函数的探究5、三角形(或多边形)最大面积的探究6、图形变换中特殊点活动范围的探究三、 解题方法:1、画图法:(从形到数)一般先画出图形,充分挖掘和运用坐标系中几何图形的特性,选取合适的相等关系列出方程,问题得解。

画图分类时易掉情况,要细心。

2、解析法:( 从数到形)一般先求出点所在线(直线或抛物线)的函数关系式,再根据需要列出方程、不等式或函数分析求解。

不会掉各种情况,但解答过程有时较 繁。

四、 解题关键:1、从数到形:根据点的坐标特征,发现运用特殊角或线段比2、从形到数:找出特殊位置,分段分类讨论五、 实例分析:(荆州 2012 压轴题编) 如图,求△ OAE 右移 t ( 0< t ≤3)时,△ OAE 与△ ABE 重叠部分面积函数关系式。

y(1,4)3E 0 3,3E1 B2HEM分析 :解题关键,首先,求右移过程中,到达零界位置(点E 落在AB 上)的时间 t=3,然后对时间进行分段2分类 讨DAx3论 : 0,t23t 3;2其次,求面积关系式时,充分运用两个比:OA1O0 A1,. OE O0 E02如图, 0 t 3S阴SOAESO AHSAA 时,显然,阴影部分的面积21 1 M其中关键是求 AA1边上的高MN。

∵NA O0 A1∴ MN=2NAMN O0 E02NA1OA∴ MN NA1∴ MN NA1=2NA(A是 NA1又MN1中点)OE(十堰 2012 压轴题编)动点 M(m, 0) 在 x 轴上, N( 1, n )在线段 EF 上,求∠MNC=900时m的取值范围。

5yE1,44C3H2P N 2 (1,n)12M 2O F24G xM 16 1分析:解题时,有两个关键位置,先画出来。

2M 1处时,N1与E重合,发现∠CEF=450,得知∠EM1F= 450首先,点 M在最右边∴FM 1=EF=4,∴ M 1 5,0然后,点 M 在最左边 M 2 处时,以 C M 2 为直径的⊙ P 与 EF 相切于点 N 2 (特殊位置 ),易知 N 2 是 HN 的中点,所以 N ( 1,3)。

2又∵△ CH N 2 ∽△ N 2 F M 2∴CH N 2 F1 3, ∴ m= 5∴2HN 2 M 2 F3 1 m 432YM 1 4,32103E5POC1010X5N 1( 襄阳 2012 压轴题编 )点M 在 抛 物 线y2 x 4 2 32 上,点 N 在其对称33轴上,是否存在这样的点M 与 N ,使以 M 、N 、 C 、E 为顶点的四边形是 平行四边形 ?分析:平行四边形中有两个定点 E 、C ,和两个动点 M 、 N ,为了不使情况遗漏,需按EC 在平行四边形中的“角色”分类;然后,求 M 、 N 坐标时,充分运用平10N 2OE3OCE 全等的△,还有线段比。

行四边形在坐标系中的性质求解,关注与△N 3OC4简解: 15(1)CE 为平行四边形的对角线时, 2其中点 P 为其中心, 点 M 与抛物线的顶点重合, 点 NM 3M204,3214与 M 关于点 P 对称,∴ MN 4,33(2)25CE 为平行四边形的一条边时,根据其倾斜方向有两种情况:① 往右下倾斜时,OCEQMN 得 QM=OC=8,NQ=630∴易求 M ( 12, -32 ) N ( 4, -26 )② 往左下倾斜35时,同理可求 M(-4 ,-32) N(4 , -38)(孝感 2012 压轴题编) 若点 P 是抛物线 yx 1 24 的一个动 点,过点 P 作 PQ ∥ AC40交 x 轴于点 Q ,当点 P 的坐标为时,四边形 PQAC 是等腰梯形 。

455y43CN21PAO 2 QB M x241分析:2①、关注线段比OA 1 得到 OA1OC3AC103②、运用等腰梯形的轴对称性画出图形,用解析法求解较简捷。

简解:作 AC的垂直平分线交x 轴于点 M,垂足为点交 x 轴于点 Q,四边形PQAC即为所求。

N,连结CM交抛物线于点P,作PQ∥ AC由 OA AN1,可求出 M( 4,0 ). 再求出直线 CM解析式y 33 与抛物xAC AM104线解析式联立起来求解,即使点P 的坐标。

(恩施 2012 压轴题编)若点 P 是抛物线y x22x 3 位于直线AC上方的一个动点,求△ APC的面积的最大值。

y4P3 C 2,3 2E1AO F x2241分析:2求坐标系中斜放的三角形面积时,简便方法是:三角形面积 =水平宽×铅垂高÷2这里求三角形最大面积,用解析法简便些。

3先求出直线AC函数关系式y x 1 ,则铅垂高PE= x242x 3x1x2x 21AF= 12PE3x 2x 23x127∴S=252228(咸宁 2012 压轴题编)如图,当MB∥ OA时,如果抛物线y ax210ax 的顶点在△ABM 内部(不包括边),求 a 的取值范围。

y4CMEB2OAFx5D2分析:由题意知,当 MB ∥ OA 时,△ ABM 是等腰直角三角形;4210ax 得其对称轴为定直线:又由 y axx10a 52a6顶点纵坐标为:10a 2 25a y4a82 1按要求得: 125a 2∴25a2510(黄冈 2012 压轴题编)在第四象限内, 抛物线 y1x 2 x m (m>0)上是否存m在点 F ,使得点 B 、 C 、 F 为顶点的三角形与△ BCE 相似 ?若存在,求 m 的值。

分析:函数中含有参数,使问题变得复杂起来。

但我们解决问题时,把它当成已知数看待即可。

y由于解析式中含有参数,故抛物线形状是2B可变的。

所以不能画出准确的图形,只能画出示意图辅5助求解。

2但不难得知其图像总过两定点B (-2,0 )和 E ( 0,2 ),4EOCx510那么△ BCE 中有特殊角∠ EBC=45 0 ,由此相似分为两类。

在求解过程中,由于动点F ( x , y )和参数 m ,存在三个681012未14F知数,因此需要三个相等关系才能求解。

简解:(1)△EBC∽△CBF时,设F(x,y)。

由∠ EBC=∠CBF=450得到y = - x-2由相似得 BC 2BE BF得到m 2 222x 2 2由点 F 在抛物线上,得到y1x 2 x mm联立上述三式,转化得m 2 2 4 22∴ m12 2 2m2 m( 2)△ EBC∽△ CFB y由∠ ECB=∠CBF得 EC∥ BF2E得到 BF:y 2 x4B Om m5由相似得 BC 2EC BF24得到 m 2 222m2y 2x 2 26由点 F 在抛物线上,得到y1x2x m8m102 2 2 (舍去)C x510F联立上述三式,转化得m 2 2m24 m4m得出矛盾0=16 ,故不存立。

1214(武汉 2012 压轴题编)抛物线 y 1 x2216向下平移 m( m >0)个单位,顶点为P,如图,218当 NP平分∠ MNQ时,求m的值。

202224y 864H25M OB2A4P6分析:含参数的二次函数问题,把参数NRxQ 5m当已知数看待。

关键是通过求点N 的坐标时,发现∠NMQ=450,(很隐蔽)另外还要发现和运用HP=HN,建立方程求解。

在求解的过程中,若用原参数表示函数关系,过程较繁,若设新参数M( - t,0 ) , 则过程简捷一些。

简解:设 M( -t,0 ),则平移后抛物线为y 1x t x t =1x2 1 t2 222和已知直线 AB: y=2x-2联立起来得点N 坐标( 2+t,2+t+t)∴ MQ=NQ ∴ ∠NMQ=045可推出 HP=HN,于是得t 1 t2 2 2 t ∴t=-2∴m=22。

相关文档
最新文档