化工原理实验装置图
化工原理实验教材
化工原理实验教材武汉科技大学化学工程与技术学院2003年目录实验一流体静力学演示实验 (1)实验二流体机械能转换实验——柏努利方程演示 (4)实验三雷诺数的测定与流型观察 (7)实验四管内流体流动阻力的测定 (9)实验五离心泵性能实验——离心泵特性曲线的测定 (12)试验六离心泵汽蚀、气缚的演示实验 (16)试验七传热实验 (19)试验八板式精馏塔的操作及塔板效率实验 (25)试验九吸收实验 (29)试验十填料塔流体力学特性实验 (34)试验十一板式塔演示实验 (37)试验十二干燥实验 (39)实验一流体静力学演示实验实验目的1.通过本实验的演示,加强对静力学概念的理解;2.掌握U型管压力计测量压力的使用方法;3.了解U型管压力计中不同指示液对读数的影响;基本原理⒈压力:流体垂直作用于单位面积上的力称为压强,工业上习惯称为压力。
常用压力表所示读数,即表压力(表压),并非表内压力的实际值,即绝对压力(绝压),而是表内压力比表外大气压力高出的值。
两者关系为:表压= 绝压—大气压。
真空表的读数为大气压比所测压力的实际值高出的值,称为真空度(负压)。
两者关系为:真空度= 大气压—绝压。
2.U形管压差计:U形管压差计是利用流体静力学平衡原理测流体静压力的仪器,为连通器应用的实例之一。
其读数的方法以图3.1-a 和3.1- b两种情况为例:(a) (b)图1.1流体静力学平衡示意图图1.1— a 表示容器内为正压,其绝对压力gRP P a ρ+=图1.1— b 表示容器内为负压,其绝对压力gRP P a ρ-=其中:P ——绝对压力,2m N ;aP ——大气压,2m N ;gR ρ——表压,2m N ;ρ——指示液密度,3m kg ;R ——液位差,m ;g ——重力加速度,2s m .若将图示中指示液改为密度为a ρ 或b ρ 、c ρ…… 的液体,则有===c c b b a a R R R ρρρ……若已知a ρ,则可求出b ρ、c ρ……实验装置(如图1.2)图1.2 静力学实验装置实验步骤1.打开阀门D,使大、小水箱内压力等于大气压。
化工原理传热实验
一、实验名称冷空气-蒸汽的对流传热实验二、实验目的(1)测定冷空气-蒸汽在套管换热器中的总传热系数K 。
(2)测定冷空气在光滑套管内的给热系数。
(3)测定冷空气在螺旋套管内的给热系数。
(4)比较冷空气在光滑套管内和螺旋套管内的传热性能,绘制Nu 与Re 之间的关系曲线。
(5)熟悉温度、流量等化工测试仪表的使用。
三、实验原理(1)冷空气-蒸汽的传热速率方程: m Q KA t =∆1212ln m t t t t t ∆-∆∆=∆∆21()v p Q q c t t ρ=-实验测得冷空气流量v q 、冷空气进出换热器的温度12t t 、;蒸汽在换热器内温度T ,可得K 。
(2)总热阻为1112211m bd d K h kd h d =++ 冷空气走管程,由于蒸汽2h 较大,k 较大,可忽略后两项,即1h K ≈。
(3)流体在圆形直管中强制对流时,'Re Pr mn Nu C =其中11h d Nu k =,Re du ρμ=,1Pr p c k μ=。
对冷空气而言,在较大温度范围内Pr 基本不变,取0.7;流体加热,0.4n =,可简化为Re mNu C =,改变流量,Re Nu 、改变,双对数坐标下作Re Nu 和关系是一条直线,拟合此直线方程,即为Re Nu 和的准数方程。
四、实验装置图及主要设备(包括名称、型号、规格)(1)实验装置示意图如下图所示(冷空气走管程):图1 对流传热实验装置示意图1-涡轮流量计;2,3,7,10-球阀;4,5,8,9,11,12,14,15,18,19-温度传感器;6-冷凝水收集杯;13-蒸汽发生器;16-闸阀;17-消音器;20-风机;1#,2#-换热器(2) 设备及仪表。
设备:风机、蒸汽发生器、普通套管换热器、螺旋套管换热器、消音器。
仪表:气体涡轮流量计、差压变送器、温度变送器、温度控制器、无纸记录仪、液位计。
五、实验步骤(1)熟悉传热实验装置及仪表使用,检查设备,做好实验操作准备。
化工原理实验
实验一 雷诺试验一、实验目的与要求1、观察流体流动轨迹随流速的变化情况,通过转子流量计改变流量观察流体的流动型态,并对层流和湍流的现象进行比较;2、计算雷诺数并比较雷诺数值与流动型态的关系,确定临界雷诺准数。
二、实验原理雷诺实验揭示了重要的流体流动机理,当流体流速较小时,流体质点只沿流动方向作一维的运动,与其周围的流体间无宏观的混合即分层流动,这种流动形态称层流或滞流。
流体流速增大至一定程度后,流体质点除流动方向(沿管轴方向)上的流动外,还向其它方向作随机的运动,即存在流体质点的不规则的脉动,流体质点彼此混合并有旋涡生成,这种流动形态称湍流或紊流。
层流与湍流是两种完全不同的流动型态。
除流速u 外,管径d ,流体粘度μ和密度ρ,对流动形态也有影响,雷诺将这些影响流体流动形态的因素用雷诺准数(或雷诺数) Re 表示。
即:μρdu =Re一般情况下: Re<2000 层流区 2000<Re<4000 过渡区 Re>4000 湍流区三、实验装置1.示踪剂瓶;2.稳压溢流水槽;3.试验导管;4.转子流量计;5.示踪剂调节阀;6.水流量调节阀;7.上水调节阀;8.放风阀图1 雷诺实验装置四、实验方法实验前准备工作:1.实验前,先用自来水充满稳压溢流水槽。
将适量示踪剂(红墨水)加入贮瓶内备用,并排尽贮瓶与针头之间管路内的空气。
2.实验前,先对转子流量计进行标定,作好流量标定曲线。
3.用温度计测定水温。
实验操作步骤:(一)、先做演示实验,观察滞流与湍流时流速分布曲线形态。
1、在玻璃管中流体为静止状态下迅速加入墨水,让墨水将指针附近2-3厘米的水层染上颜色,然后停止加入墨水。
2、慢慢打开水流量阀,并逐渐加大流量至一定的值后,观察墨水随流体流动形成的流速分布曲线形态。
(二)、确定不同流动形态下的临界雷诺准数。
1、打开水源上水阀使高位槽保持少量的溢流,维持高位槽液面稳定,以保证实验具有稳定的压头。
化工原理实验装置图
2.二氧化碳吸收与解吸实验装置流程示意图(见图四)图四二氧化碳吸收与解吸实验装置流程示意图1- CO2流量计;2- CO2瓶减压阀;3- CO2钢瓶;4-吸收用空气流量计;5- 吸收用气泵;6、8-喷头; 7、19- 水箱放水阀;9- 解吸塔;10- 解吸塔塔底取样阀;11- 解吸液储槽;12、15- U型管液柱压强计;13- 吸收液流量计;14-解吸液液泵;16- 吸收液储槽;17- 吸收塔;18- 吸收塔塔底取样阀;20- 解吸液流量计;21- 吸收液液泵;22-空气流量计;23- 空气旁通阀;24- 风机2.离心泵性能测定流程示意图见图一、仪表面板示意图见图二:图一离心泵性能测定流程示意图1-水箱;2-泵入口真空表控制阀;3-离心泵;4-流量调节阀;5-泵出口压力表控制阀;6-泵入口真空表;7-泵出口压力表;8-涡轮流量计;9-灌泵入口; 10-灌水控制阀门;11-排水阀;12-底阀图二设备面板示意图四、实验装置的基本情况1.实验装置流程示意图(如图一所示):图-1 实验装置流程示意图1-调速器;2-电动搅拌器;3、5、6、7、9、16-阀门;4-虑浆槽;8-压力表;10-泥浆泵;11-后滤液入口阀;12-前滤液入口阀;13-后滤液出口阀;14-前滤液出口阀; 15-滤液槽; 17-过滤机组;18-压紧装置;19-反洗水箱;1.实验设备流程图(如图一所示):图一精馏实验装置流程图1-储料罐;2-进料泵;3-放料阀;4-料液循环阀;5-直接进料阀;6-间接进料阀;7-流量计;8-高位槽;9-玻璃观察段;10-精馏塔;11-塔釜取样阀;12-釜液放空阀;13-塔顶冷凝器;14回流比控制器;15-塔顶取样阀;16-塔顶液回收罐;17-放空阀;18-塔釜出料阀;19-塔釜储料罐;20-塔釜冷凝器;21-第六块板进料阀;22-第七块板进料阀;23-第八块板进料阀;T1-T12-温度测点3.洞道式干燥器实验装置流程示意图(见图一)图一洞道式干燥器实验装置流程示意图1-废气排出阀;2-废气循环阀;3-空气进气阀;4-洞道干燥器;5-风机;6-干燥物料;7-重量传感器;8-干球温度计;9-孔板流量计;10-湿球温度计;11-空气进口温度计;12-加热器;13-干球温度显示控制仪表;14-湿球温度显示仪表;15-进口温度显示仪表;16-流量压差显示仪表;17-重量显示仪表;。
化工原理实验流程图MicrosoftWord文档
氟塑料驱动泵一台
直流电机一台
筛板 20块
实验装置流程X1
1.塔身主要参数:塔釜:Φ250x340x3mm 材质:不锈钢塔径:Φ50mm
2.塔节:Φ57x
3.5mm(其中三节为玻璃) 材质:不锈钢(包括法兰)
3.塔板结构:踏板厚度:δ=1mm 不锈钢板间距:HT=100mm 孔径:
do=2mm 孔数:29孔与25孔二种
8
实验装置流程
1.二氧化碳钢瓶
2.减压阀
3.二氧化碳流量计
4.填料塔
5.滴定计量球
6.压差计
7.水流量计
8.高位水槽
1.实验主体为一内径为50mm的玻璃柱。
填料高度为300mm,内装Φ5mm球形玻璃填料。
2.吸收质为纯二氧化碳,由钢瓶经减压阀调节到转子流量计进入塔底。
实验装置流程
1.除尘器(袋滤器)
2.干燥塔塔体
3.加水器
4.气体转子流量计
5.流量调节阀
6.温度计
7.温度计
8.固体物料取样器
9.试验用于干燥物料10.压差计11.电加热器。
化工原理实验——干燥曲线及干燥速率曲线测定实验
实验十干燥曲线及干燥速率曲线测定实验一、实验装置干燥器类型:洞道;洞道截面积:1# A=× = 0.0221m2、2# A=× = 0.030m2加热功率:500w—1500w;空气流量:1-5m3/min;干燥温度:40--120℃孔板流量计:孔流系数C0=,孔板孔径d0=( m)重量传感器显示仪:量程(0-200g),精度级;干球温度计、湿球温度计显示仪:量程(0-150℃),精度级;孔板流量计处温度计显示仪:量程(-50-150℃),精度级;孔板流量计压差变送器和显示仪:量程(0-10KPa),精度级;图10-1 洞道干燥实验流程示意图1.中压风机;2.孔板流量计;3. 空气进口温度计;4.重量传感器;5.被干燥物料;6.加热器;7.干球温度计;8.湿球温度计;9.洞道干燥器;10.废气排出阀;11.废气循环阀;12.新鲜空气进气阀;13.干球温度显示控制仪表;14.湿球温度显示仪表; 15.进口温度显示仪表;16.流量压差显示仪表;17.重量显示仪表;18.压力变送器。
二、物料物料:毛毡;干燥面积:S=**2=(m2)(以实验室现场提供为准)。
绝干物料量(g):1# G C=,2# G C=(以实验室现场提供为准)。
三、操作方法⒈ 将干燥物料(毛粘)放入水中浸湿,向湿球温度计的附加蓄水池内补充适量的水, 使池内水面上升至适当位置。
⒉ 调节送风机吸入口的蝶阀12到全开的位置后,按下电源的绿色按钮,再按风机按钮,启动风机。
⒊ 用废气排出阀10和废气循环阀11调节到指定的流量后,开启加热电源。
在智能仪表中设定干球温度,仪表自动调节到指定的温度。
干球温度设定方法:第一套:长按——增大,设定好数值后,按键确定。
第二套:/减小,设定好后,自动确认。
⒋ 干燥器的流量和干球温度恒定达5分钟之后,既可开始实验。
此时,读取数字显示仪的读数作为试样支撑架的重量。
⒌ 将被干燥物料(毛粘)从水中取出,控去浮挂在其表面上的水分(最好挤去所含的水分,以免干燥时间过长),将支架从干燥器内取出,将被干燥物料夹好。
传热实验(化工原理实验)
传热实验一、实验目的1、熟悉套管换热器、列管换热器的结构及操作方法;2、通过对套管换热器空气-水蒸汽传热性能的实验研究,掌握对流传热系数的测定方法;3、确定套管传热管强化前后内管中空气的强制湍流换热关联式,并比较强化传热前后的效果;4、通过对列管换热器传热性能实验研究,掌握总传热系数K 的测定方法,并对变换面积前后换热性能进行比较。
二、实验原理1、普通套管换热器传热系数测定及准数关联式的确定:(1)对流传热系数i α的测定:对流传热系数i α可以根据牛顿冷却定律,通过实验来测定。
i i i mQ S t α=⨯⨯∆(1)i i m iQ t S α=∆⨯(2)式中:i α—管内流体对流传热系数,W/(m 2·℃);i Q —管内传热速率,W ;i S —管内换热面积,m 2;m t ∆—壁面与主流体间的温度差,℃。
平均温度差由下式确定:m w t t t∆=-(3)式中:t —冷流体的入口、出口平均温度,℃;w t —壁面平均温度,℃。
因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,w t 用来表示,由于管外使用蒸汽,所以w t 近似等于热流体的平均温度。
管内换热面积:i i iS d L π=(4)式中:i d —内管管内径,m ;i L —传热管测量段的实际长度,m 。
由热量衡算式:21()i i pi i i Q W c t t =-(5)其中质量流量由下式求得:3600i i i V W ρ=(6)式中:i V —冷流体在套管内的平均体积流量,m 3/h ;pi c —冷流体的定压比热,kJ/(kg·℃);i ρ—冷流体的密度,kg/m 3;pi c 和i ρ可根据定性温度查得,122i i m t t t +=为m 冷流体进出口平均温度;1i t 、2i t 、w t 、i V 可采取一定的测量手段得到。
(2)对流传热系数准数关联式的实验确定:流体在管内作强制湍流,被加热状态,准数关联式的形式为:m ni i i Nu ARe Pr =(7)其中:i i i i d Nu αλ=,i i i i i u d Re ρμ=,pi i i ic Pr μλ=。
化工原理实验指导书
化工原理实验指导书化学与化学工程系化学工程教研室2012.09目录实验一雷诺实验.................................................. 错误!未定义书签。
实验二柏努利实验 ............................................. 错误!未定义书签。
实验三流体流动阻力测定 ................................. 错误!未定义书签。
实验四离心泵特性曲线测定 ............................. 错误!未定义书签。
实验五对流给热系数测定 ................................. 错误!未定义书签。
实验六填料吸收塔传质系数测定实验 ............. 错误!未定义书签。
实验七筛板精馏塔系统实验 ............................. 错误!未定义书签。
实验八干燥速率曲线的测定实验 ..................... 错误!未定义书签。
实验九转盘萃取塔实验 ..................................... 错误!未定义书签。
实验十膜分离实验装置 ..................................... 错误!未定义书签。
实验一 雷诺实验一、实验目的1.观察流体在管内流动的两种不同流型。
2.测定临界雷诺数。
二、基本原理流体流动有两种不同型态,即层流(滞流)和湍流(紊流)。
流体作层流流动时,其流体质点作直线运动,且互相干行;湍流时质点紊乱地向各个方向作不规则的运动,但流体的主体向某一方向流动。
雷诺准数是判断流动型态的准数,若流体在圆管内流动,则雷诺准数可用下式表示:μρdu =Re式中,Re ——雷诺准数,无因次; d ——管子内径,mm ; u ——流体流速,m /s ; ρ——流体密度,kg /m3; μ——流体粘度;Pa·s 。
化工原理实验讲义讲解
化工原理实验讲义专业:环境工程应用化学教研室2015.3实验一 流体机械能转化实验一、实验目的1、了解流体在管内流动情况下,静压能、动能、位能之间相互转化关系,加深对伯努利方程的理解。
2、了解流体在管内流动时,流体阻力的表现形式。
二、实验原理流动的流体具有位能、动能、静压能、它们可以相互转换。
对于实际流体, 因为存在内摩擦,流动过程中总有一部分机械能因摩擦和碰撞,而被损失掉。
所以对于实际流体任意两截面,根据能量守恒有:2211221222f p v p v z z H g g g g ρρ++=+++上式称为伯努利方程。
三、实验装置(d A =14mm ,d B =28mm ,d C =d D =14mm ,Z A -Z D =110mm )实验装置与流程示意图如图1-1所示,实验测试导管的结构见图1-2所示:图1-1 能量转换流程示意图图1-2实验导管结构图四、操作步骤1.在低位槽中加入约3/4体积的蒸馏水,关闭离心泵出口上水阀及实验测试导管出口流量调节阀和排气阀、排水阀,打开回水阀后启动离心泵。
2.将实验管路的流量调节阀全开,逐步开大离心泵出口上水阀至高位槽溢流管有液体溢流。
3.流体稳定后读取并记录各点数据。
4.关小流量调节阀重复上述步骤5次。
5.关闭离心泵出口流量调节阀后,关闭离心泵,实验结束。
五、数据记录和处理五、结果与分析1、观察实验中如何测得某截面上的静压头和总压头,又如何得到某截面上的动压头?2、观察实验,对于不可压缩流体在水平不等径管路中流动,流速与管径的关系如何?3、实验观测到A、B截面的静压头如何变化?为什么?4、实验观测到C、D截面的静压头如何变化?为什么?5、当出口阀全开时,计算从C到D的压头损失?六、注意事项1.不要将离心泵出口上水阀开得过大以免使水流冲击到高位槽外面,同时导致高位槽液面不稳定。
2.流量调节阀开大时,应检查一下高位槽内的水面是否稳定,当水面下降时应适当开大泵上水阀。
精馏实验(化工原理实验)
精馏实验一、实验目的1、了解筛板式精馏塔及其附属设备的基本结构,掌握精馏操作的基本方法;2、掌握精馏过程全回流和部分回流的操作方法;3、掌握测定板式塔全塔效率。
二、实验原理1、全塔效率E T全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值,即-1=T T P N E N (1)式中:T N -完成一定分离任务所需的理论塔板数,包括塔釜;P N -完成一定分离任务所需的实际塔板数。
全塔效率简单地反映了整个塔内塔板的平均效率,表明塔板结构、物性系数、操作状况等因素对塔板分离效果的影响。
对于双组分体系,塔内所需理论塔板数N T ,可通过实验测得塔顶组成x D 、塔釜组成x W 、进料组成x F 及进料热状况q 、回流比R等有关参数,利用相平衡关系和操作线用图解法或逐板计算法求得。
图1塔板气液流向示意图2、单板效率ME 单板效率又称莫弗里板效率,如图1所示,是指气相或液相经过一层实际塔板前后的组成变化值与经过一层理论塔板前后的组成变化值之比。
按气相组成变化表示的单板效率为1*1y =n n MV n n y E y y ++--(2)按液相组成变化表示的单板效率为1*1n n ML n n x x E x x ---=-(3)式中:y n 、1n y +-分别为离开第n 、n+1块塔板的气相组成,摩尔分数;1n x -、n x -分别为离开第n-1、n 块塔板的液相组成,摩尔分数;*ny -与x n 成平衡的气相组成,摩尔分数;*nx -与y n 成平衡的液相组成,摩尔分数。
3、图解法求理论塔板数N T图解法又称麦卡勃-蒂列(McCabe-Thiele)法,简称M-T 法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x 图上直观地表示出来。
对于恒摩尔流体系,精馏段的操作线方程为:111D n n x R y x R R +=+++(4)式中:1n y +-精馏段第n+1块塔板上升的蒸汽组成,摩尔分数;n x -精馏段第n 块塔板下流的液体组成,摩尔分数;D x -塔顶溜出液的液体组成,摩尔分数;R -回流比。
化工原理流体流动实验
流体流动综合实验(离心泵与管路特性曲线测定、流量性能测定)一、实验目的及任务1、熟悉离心泵的操作方法。
2、熟悉离心泵的结构与操作方法。
3、测定流量调节阀某一开度下管路特性曲线。
二、实验装置图-1 流动过程综合实验流程示意图1-水箱;2-水泵;3-入口真空表;4-出口压力表;5、16-缓冲罐顶阀;6、14-测局部阻力近端阀;7、15-测局部阻力远端阀;8、17-粗糙管测压阀;9、21-光滑管测压阀;10-局部阻力阀;11-压差传感器左阀;12-压力传感器;13-压差传感器右阀;18 、24-阀门;20-粗糙管阀;22-小转子流量计;23-大转子流量计;25-水箱放水阀;26-倒U型管放空阀;27- 倒U型管;28、30-倒U型管排水阀;29、31-倒U型管平衡阀三、实验原理离心泵特性曲线测定离心泵是最常见的液体输送设备。
在一定的型号和转速下,离心泵的扬程H、轴功率N及效率η均随流量Q而改变。
通常通过实验测出H—Q、N—Q及η—Q 关系,并用曲线表示之,称为特性曲线。
特性曲线是确定泵的适宜操作条件和选用泵的重要依据。
泵特性曲线的具体测定方法如下:(1) H 的测定:在泵的吸入口和排出5之间列柏努利方程出入入出出入入入-+++=+++f H gu g P Z H g u g P Z 2222ρρ (1) ()出入入出入出入出-+-+-+-=f H gu u g P P Z Z H 222ρ (2) 上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力,与柏努力方程中其它项比较,出入-f H 值很小,故可忽略。
于是上式变为:()gu u g P P Z Z H 222入出入出入出-+-+-=ρ (3) 将测得的()入出Z Z -和入出PP -值以及计算所得的出入u u ,代入上式,即可求得H 。
(2) N 测定:功率表测得的功率为电动机的输入功率。
由于泵由电动机直接带动,传动效率可视为1,所以电动机的输出功率等于泵的轴功率。
化工原理实验-——液体流动,、离心泵
实验一流动过程综合实验实验1-1 流体阻力测定实验一、实验装置⒈实验装置流程图如图1-2所示。
⒉流量测量:在图1-2中由转子流量计22、23测量。
⒊直管段压强降的测量:差压变送器和倒置U形管直接测取压差值。
图一、流体综合实验装置流程示意图1:水箱:2:水泵;3:入口真空表;4:出口压力表;5,16:缓冲罐:6,14测局部阻力近端阀;7,15:测局部阻力远端阀;8,17:粗糙管测压阀;9,21:光滑管测压阀;10:局部阻力阀;11:文丘里流量计;12:压力传感器;13:涡流流量计;18:阀门;19光滑管阀;20:粗糙管阀;22:小流量计;23:大流量计;24阀门25:水箱放水阀;26:倒U型管放空阀;27: 倒U型管;28,30:倒U型管排水阀;29,31: 倒U型管平衡阀;32:功率表;33:变频调速器设备主要参数二、实验内容⒈测定实验管路内流体流动的阻力和直管摩擦系数λ。
⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 之间的关系曲线。
⒊在本实验压差测量范围内,测量阀门的局部阻力系数。
三、实验原理⒈直管摩擦系数λ与雷诺数Re 的测定h f = ρfP ∆=22u d l λ (1-1)λ=22u P l d f∆⋅⋅ρ (1-2) Re =μρ⋅⋅u d (1-3)式中:-d 管径,m ;-∆f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,Pa ·s 。
⒉局部阻力系数ζ的测定 22'u P h ff ζρ=∆=' (1-4)2'2u P f∆⋅⎪⎪⎭⎫ ⎝⎛=ρζ (1-5)式中:-ζ局部阻力系数,无因次; -∆'f P 局部阻力引起的压强降,Pa ;-'f h 局部阻力引起的能量损失,J /kg 。
图1-1 局部阻力测量取压口布置图局部阻力引起的压强降'f P ∆ 可用下面的方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在其上、下游开两对测压口a-a'和b-b ',见图1-1,使ab =bc ; a 'b '=b 'c ' 则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c ' 在a~a '之间列柏努利方程式:P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f(1-6)在b~b '之间列柏努利方程式:P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f = △P f ,a b +△P f ,a 'b '+△P 'f (1-7) 联立式(1-6)和(1-7),则:'f P ∆=2(P b -P b ')-(P a -P a ')为了实验方便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。
化工原理实验——恒压过滤
化⼯原理实验——恒压过滤实验四恒压过滤常数的测定⼀、实验装置:见图4-1、图4-2设备流程如图4-1所⽰,滤浆槽内放有已配制有⼀定浓度的碳酸钙~⽔悬浮液。
⽤电动搅拌器进⾏搅拌使滤浆浓度均匀(但不要使流体旋涡太⼤,使空⽓被混⼊液体的现象),⽤真空泵使系统产⽣真空,作为过滤推动⼒。
滤液在计量瓶内计量。
设备参数表⼆、实验内容测定不同压⼒下恒压过滤的过滤常数K 、e q 、e 。
图4-1 恒压过滤实验流程⽰意图1─滤浆槽; 2─过滤漏⽃; 3─搅拌电机; 4─真空旋塞. 5─积液瓶; 6─真空压⼒表; 7─针型放空阀; 8─缓冲罐.9─真空泵; 10─放液阀; 11─真空胶⽪管.三、实验原理恒压过滤⽅程)()(2e e K q q θθ+=+ (4-1)式中:q —单位过滤⾯积获得的滤液体积,m 3/m 2; e q —单位过滤⾯积上的虚拟滤液体积,m 3/m 2;θ—实际过滤时间,s ; e θ—虚拟过滤时间,s ; K —过滤常数,m 2/s 。
将式(4-1)进⾏微分可得:e q Kq K dq d 22+=θ(4-2)这是⼀个直线⽅程式,于普通坐标上标绘q dq d -θ的关系,可得直线。
其斜率为K2,截距为e q K2,从⽽求出K 、e q 。
⾄于e θ可由下式求出:e e K q θ=2 (4-3)当各数据点的时间间隔不⼤时,dqd θ可⽤增量之⽐qθ来代替.在实验中,当计量瓶中的滤液达到100ml 刻度时开始按表计时,作为横压过滤时间的零点。
但是,在此之前吸率早已开始,这部分系统存液量可视为常量,以V '表⽰(V '=360ml ),则对单位过滤⾯积上来说这部分滤液为q ′,(q ′=AV ,),这些滤液对应的滤饼视为过滤介质以外的另⼀层过滤介质,在整理数据时应考虑进去,则⽅程应改为:qθ=K 2q+K2(e q +q ′)(4-4)以qθ与相应区间的平均值q 作图。
在普通坐标纸上以qθ为纵坐标,q 为横坐标标绘qθ~q 关系,其直线的斜率为:K 2;直线的截距为:K2(e q +q ′)。
化工原理实验(10个)资料
实验一 流体流动阻力的测定一、实验目的1. 掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法;2. 测定直管摩擦系数λ~R e 的关系,验证在一般湍流区内λ、R e 与ε/d 的函数关系;3. 测定流体流经阀门及突然扩大管时的局部阻力系数ζ;4.测定层流管的摩擦阻力。
二、实验原理流体流经直管时所造成机械能损失为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
(1) 直管阻力摩擦系数λ的测定:流体在水平等径直管中稳定流动时,阻力损失为:2122f p p l u h d λρ-== 即 1222()d p p luλρ-= 层流时:λ=64/Re; 湍流时:λ是Re 和ε/d 的函数,须由实验测定。
(2)局部阻力系数的测定: 局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
本实验采用阻力系数法进行测定。
22f u h ζ=三、实验装置与流程实验装置部分是由水箱,离心泵,不同管径、材质的水管,各种阀门、管件,涡轮流量计和倒U 形压差计等所组成。
管路部分由五段并联的长直管,自上而下分别为用于测定层流阻力、局部阻力、光滑管直管阻力、粗糙管直管阻力和扩径管阻力。
测定阻力部分使用不锈钢管,其上装有待测管件(球阀或截止阀);光滑管直管阻力的测定同样使用内壁光滑的1、水箱2、离心泵3、涡轮流量计4、层流水槽5、层流管6、截止阀7、球阀8、光滑管9、粗糙管 10、突扩管 11、孔板流量计 12、流量调节阀不锈钢管,而粗糙管直管阻力的测定对象为管道内壁较粗糙的镀锌管。
本装置的流量使用涡轮流量计测量。
管路和管件的阻力采用各自的倒U形压差计测量,同时差压变送器将差压信号传递给差压显示仪。
四、实验步骤1. 首先对水泵进行灌水,然后关闭出口阀门,启动水泵电机,待电机转动平稳后,把泵的出口阀缓缓开到最大;2. 同时打开被测管线上的开关阀及面板上与其相应的切换阀,关闭其他的开关阀和切换阀,保证测压点一一对应;3. 改变流量测量流体通过被测管的压降,每次改变流量(变化10L/min左右),待流动达到稳定后,分别仪表控制箱上的压降数值;4. 实验结束,关闭出口阀,停止水泵电机,清理装置。
化工原理实验-传热实验
传热实验——传热系数的测定2011011743 分1 黄浩实验日期:2013-11-15同组实验者:周昱、曹庆辰、陈辰地点:化工实验教学中心108室实验内容:传热系数的测定一、实验目的(1)掌握传热系数K、给热系数α和导热系数λ的测定方法。
(2)比较保温管、裸管、汽水套管的传热速率,并进行讨论。
(3)掌握热电偶测温原理及相关二次仪表的使用方法。
二、实验原理根据传热基本方程、牛顿冷却定律及圆筒壁的热传导方程,已知传热设备的结构尺寸,只要测得传热速率Q以及各相关温度,即可算出K、α和λ。
(1)测定汽-水套管的传热系数K [W/(m2·℃)]K=Q/AΔt m式中:A——传热面积,m2;Δt m——冷、热流体的平均温差,℃;Q——传热速率,W;Q=W汽×r式中:W汽——为冷凝液流量(kg/s),r——为汽化潜热(J/kg)。
(2)测定裸管的自然对流给热系数α [W/(m2·℃)]α=Q/A(t w−t f)式中:t W,t f——壁温和空气温度,℃。
(3)测定保温材料的导热系数λ [W/(m·℃)]λ=Qb/A m(T w−t w)式中:q——热通量,W/(m2)T W,t W——保温层两侧的温度,℃;b——保温层的厚度,m;A m——保温层内外壁的平均面积,m2。
三、实验流程与装置该装置主体设备为“三根管”:汽水套管、裸管和保温管。
这“三根管”与锅炉、汽包、高位槽、智能数字显示控制仪等组成整个测试系统。
如图1:图1 传热系数测定的实验装置示意图工艺流程为:锅炉内加热的水蒸气送入汽包,然后在三根并联的紫铜管内同时冷凝,冷凝液由计量管或量筒收集。
三根管外情况不同:一根管外用珍珠岩保温;一根为裸管;还有一根为套管式换热器,管外有来自高位槽的冷却水。
可定性观察到三个设备冷凝速率的差异,并测定K、α和λ。
1)各种设备的尺寸:2)锅炉加热功率:0~6 kW。
3)冷却水流量:0~160 L/h。
化工原理实验报告-流体流动阻力的测定
实验一流体流动阻力的测定一、实验目的1、掌握测定流体流经直管、管件(阀门)时阻力损失的一般实验方法。
2、测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re的关系曲线。
3、测定流体流经管件(阀门)时的局部阻力系数ξ。
4、识辨组成管路的各种管件、阀门,并了解其作用。
二、实验装置实验装置如下图所示:1、水箱2、离心泵3、压差传感器4、温度计5、涡轮流量计6、流量计7、转子流量计8、转子流量计9、压差传感器10、压差传感器11、压差传感器12、粗糙管实验段13、光滑管实验段14、层流管实验段15、压差传感器16、压差传感器17、阐阀18、截止阀图1 实验装置流程图装置参数:名称材质管内径/mm 测量段长度/mm三、实验原理1、直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:2122ff p p p l u h d λρρ∆-=== ⑴即 22fd p luλρ∆=⑵Re du ρμ=⑶采用涡轮流量计测流量V2900Vu dπ=⑷ 用压差传感器测量流体流经直管的压力降f p ∆。
根据实验装置结构参数l 、d ,流体温度T (查流体物性ρ、μ),及实验时测定的流量V 、压力降ΔPf ,求取Re 和λ,再将Re 和λ标绘在双对数坐标图上。
2、局部阻力系数ζ的测定流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,这种方法称为阻力倍数法。
即:'2'2ffp u h g gζρ∆== ⑸ 故 '22fp u ζρ∆=⑹根据连接管件或阀门两端管径中小管的直径d ,流体温度T (查流体物性ρ、μ),及实验时测定的流量V 、压力降ΔPf ’,通过式⑸或⑹,求取管件(阀门)的局部阻力系数ζ。
四、实验步骤1、开启仪表柜上的总电源、仪表电源开关。
2、首先对水泵进行灌水,然后关闭出口阀,启动水泵,待电机转动平稳后,把出口阀缓缓开到最大。
3、实验从做大流量开始做起,最小流量应控制在1.5m3/h。
化工原理实验装置
班级:11级制药工程姓名:陈鑫瑀学号:20115211031化工原理实验装置一.化工流动过程综合实验装置图1-1 流体流动过程综合实验流程示意图1-水箱;2-水泵;3-入口真空表;4-出口压力表;5、16-缓冲罐;6、14-测局部阻力近端阀;7、15-测局部阻力远端阀;8、17-粗糙管测压阀;9、21-光滑管测压阀;10-局部阻力阀;11-文丘里流量计(孔板流量计);12-压力传感器;13-涡流流量计;18、32-阀门;20-粗糙管阀;22-小转子流量计;23-大转子流量计;24阀门;25-水箱放水阀;26-倒U 型管放空阀;27- 倒U型管;28、30-倒U型管排水阀;29、31-倒U型管平衡阀图1—2 流体流动过程综合实验装置【基本原理】1.流体阻力实验a.直管摩擦系数λ与雷诺数Re 的测定:直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。
流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为:ρρff p p p h ∆=-=21 ⑴又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式)22u d l p h ff λρ=∆= ⑵整理⑴⑵两式得22u p l d f∆⋅⋅=ρλ ⑶ μρ⋅⋅=u d R e ⑷式中: -d 管径,m ;-∆f p 直管阻力引起的压强降,Pa ;-l 管长,m ; -u 流速,m / s ;-ρ流体的密度,kg / m 3;-μ流体的粘度,N·s / m 2。
在实验装置中,直管段管长l 和管径d 都已固定。
若水温一定,则水的密度ρ和粘度μ也是定值。
所以本实验实质上是测定直管段流体阻力引起的压强降f p ∆与流速u (流量V )之间的关系。
根据实验数据和式⑶可计算出不同流速下的直管摩擦系数λ,用式⑷计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。
大学化工原理实验装置图doc1
1-旋涡式气泵;2-排气阀;3-孔板流量计;4-冷流体进气阀;5-冷流体进口温度;6-冷流体出口温度;7-冷流体进口侧蒸汽温度;8-冷流体出口侧蒸汽温度;9-冷凝水出口阀;10-压力表;11-蒸汽进口阀;12-冷凝水排水口;13-紫铜管;14-蒸汽进口;15-冷流体出口;16-换热器;17-电气控制箱图4-1空气-水蒸气换热流程图图10-3干燥装置流程图1-风机;2-管道;3-进风口;4-加热器;5-厢式干燥器;6-气流均布器;7-称重传感器;8-湿毛毡;9-玻璃视镜门;10,11,12-蝶阀图12-4固体流态化装置流程图6 3789图11-1雷诺演示流体流型演示实验1-红墨水储槽;2-溢流稳压槽;3-实验管;4-转子流量计;5-循环泵;6-上水管;7-溢流回水管;8-调节阀;9-储水槽91-水箱;2-泵进口管;3-进口压力表;4-离心泵;5-出口压力表;6-涡沦流量计;7-电器控制箱;8-闸阀;9-水箱放空阀;10保塔接头;11—温度计;图1离心泵实验装置流程示意图1-水箱;2-管道泵;3-涡轮流量计;4-进口阀;5-均压阀;6-闸阀;7-引压阀;8-压力变送器;9-出口阀;10-排水阀;11-电气控制箱图1流体流动阻力实验装置流程示意图61—风机;2—冷流体管路;3冷流体进口调节阀;4—转子流量计;5—冷流体进口温度; 6—惰性气体排空阀;7—蒸汽温度;8—视镜;9—冷流体进口温度;10—压力表; 11—冷凝水排空阀;12—蒸汽进口阀;13—冷凝水排空阀;14—蒸汽进口管路;15—冷流体出口管路;图4-1空气-水蒸气换热流程图1、2、13-球阀;3-气体流量调节阀;4-液体流量调节阀;5-气体转子流量计;6-液体转子流量计;7-喷淋头;8、11-填料层;9-液体再分布器;10-塔底;11-支撑板;12-压差计;14-气压表;15-二氧化碳转子流量计;16-气体混合罐图5-1填料吸收装置流程图1-轻相槽;2-萃余相(回收槽);3-电机搅拌系统;4-电机控制箱;5-萃取塔;6-水流量计;7-重相槽;8-水泵;9-煤油流量计;10-煤油泵;11-萃取相出口图6-2转盘萃取实验装置图1-塔釜排液口;2-电加热器;3-塔釜;4-塔釜液位计;5-塔板;6-温度计;7-窥视节;8-冷却水流量计;9-盘管冷凝器;10-塔顶平衡管;11-回流液流量计;12-塔顶出料流量计;13-产品取样口;14-进料管路;15-塔釜平衡管;16-盘管加热器;17-塔釜出料流量计;18-进料流量计;19进料泵;20-产品储槽;21-残液储槽;22-料液取样口;23-冷却水进口;24-惰性气体出口;25-冷却水出口图8-5筛板塔精馏塔实验装置图。
化工原理实验:能量转换实验
能量转换演示实验—、实验设备的特点1.实验装置体积小,重量轻,使用方便,移动方便。
2.实验测试导管、测压管均用玻璃制成便于观测。
3.所有设备采用了耐腐蚀材料制成管中不会生锈。
二、实验装置的基本情况(流程图见图一)不锈钢离心泵 SZ-037 型低位槽 490×400×500 材料 不锈钢 高位槽 295×195×380 材料 有机玻璃 实验测试导管的结构尺寸见图二中标绘 三、实验的操作方法:1. 将低位槽灌有一定数量的蒸馏水,关闭离心泵出口调节阀门及实验测试导管出口调节阀门而后启动离心泵。
2. 逐步开大离心泵出口调节阀当高位槽溢流管有液体溢流后,调节导管出口调节阀为全开位置。
3. 流体稳定后读取A 、B 、C 、D 截面静压头和冲压头并记录数据。
4. 关小导管出口调节阀重复步骤。
5. 分析讨论流体流过不同位置处的能量转换关系并得出结果。
6. 关闭离心泵,实验结束。
四、使用设备时应注意的事项:1.不要将离心泵出口调节阀开得过大以免使水流冲击到高位槽外面,同时导致高位槽液面不稳定。
2.当导管出口调节阀开大应检查一下高位槽内的水面是否稳定,当水面下降时应适当开大泵出口调节阀。
3.导管出口调节阀须缓慢地关小以免造成流量突然下降测压管中的水溢出管外。
4.注意排除实验导管内的空气泡。
5.离心泵不要空转和出口阀门全关的条件下工作。
截面中心线为零基准面(即标尺为-305毫米)Z D =0。
A 截面和D 截面的距离为95mm 。
A 、B 、C 截面Z A =Z B =Z C =95(即标尺为-210毫米) 由以上实验数据可以分析到1. 冲压头的分析,冲压头为静压头与动压头之和。
从实验观测到在A 、B 截面上的冲压头依次下降,这符合下式所示的从截面1流至截面2的柏努利方程。
21,21222)2()2(1--+=+f H gu g p g u g p ρρ2.A 、B 截面间静压头的分析,由于两截面同处于一水平位置,截面面积比A 截面面积大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.二氧化碳吸收与解吸实验装置流程示意图(见图四)
图四二氧化碳吸收与解吸实验装置流程示意图
1- CO2流量计;2- CO2瓶减压阀;3- CO2钢瓶;4-吸收用空气流量计;5- 吸收用气泵;6、8-喷头; 7、19- 水箱放水阀;9- 解吸塔;10- 解吸塔塔底取样阀;11- 解吸液储槽;12、15- U型管液柱压强计;13- 吸收液流量计;14-解吸液液泵;16- 吸收液储槽;17- 吸收塔;18- 吸收塔塔底取样阀;20- 解吸液流量计;21- 吸收液液泵;22-空气流量计;23- 空气旁通阀;24- 风机
2.离心泵性能测定流程示意图见图一、仪表面板示意图见图二:
图一离心泵性能测定流程示意图
1-水箱;2-泵入口真空表控制阀;3-离心泵;4-流量调节阀;5-泵出口压力表控制阀;6-泵入口真空表;7-泵出口压力表;8-涡轮流量计;9-灌泵入口; 10-灌水控制阀门;11-排水阀;12-底阀
图二设备面板示意图
四、实验装置的基本情况
1.实验装置流程示意图(如图一所示):
图-1 实验装置流程示意图
1-调速器;2-电动搅拌器;3、5、6、7、9、16-阀门;4-虑浆槽;8-压力表;10-泥浆泵;11-后滤液入口阀;12-前滤液入口阀;13-后滤液出口阀;14-前滤液出口阀; 15-滤液槽; 17-过滤机组;18-压紧装置;19-反洗水箱;
1.实验设备流程图(如图一所示):
图一精馏实验装置流程图
1-储料罐;2-进料泵;3-放料阀;4-料液循环阀;5-直接进料阀;6-间接进料阀;7-流量计;8-高位槽;9-玻璃观察段;10-精馏塔;11-塔釜取样阀;12-釜液放空阀;13-塔顶冷凝器;14回流比控制器;15-塔顶取样阀;16-塔顶液回收罐;17-放空阀;18-塔釜出料阀;19-塔釜储料罐;20-塔釜冷凝器;21-第六块板进料阀;22-第七块板进料阀;23-第八块板进料阀;T1-T12-温度测点
3.洞道式干燥器实验装置流程示意图(见图一)
图一洞道式干燥器实验装置流程示意图
1-废气排出阀;2-废气循环阀;3-空气进气阀;4-洞道干燥器;5-风机;6-干燥物料;7-重量传感器;8-干球温度计;9-孔板流量计;10-湿球温度计;11-空气进口温度计;12-加热器;13-干球温度显示控制仪表;14-湿球温度显示仪表;15-进口温度显示仪表;16-流量压差显示仪表;17-重量显示仪表;。