新人教版九年级下数学反比例函数导学案

合集下载

人教版数学九年级(下)第二十六章《反比例函数》导学案

人教版数学九年级(下)第二十六章《反比例函数》导学案

人教版数学九年级(下)第二十六章《反比例函数》导学案26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围栏建一个面积为24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求另一边长y(m)与x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?教材精华知识点1反比例函数的定义重点;理解一般地,形如kyx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数⇔kyx=(k≠0)⇔xy=k(k≠0) ⇔变量y与x成反比例,比例系数为k.拓展 (1)在反比例函数kyx=(k≠0)的左边是函数y,右边是分母为自变量x的分式,也就是说,分母不能是多项式,只能是x的一次单项式,如1yx=,312yx=等都是反比例函数,但21yx=+就不是关于x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y=kx-1或xy=k 的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式难点:运用由于反比例函数kyx=中只有一个待定系数,因此只要有一对对应的x,y值,或已知其图象上一点坐标,即可求出k,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式kyx=(k≠0).(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k的方程.(3)解方程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y 的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.(3)反比例函数kyx=(k≠0)的图象的两个分支关于原点对称.(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0.知识点4反比例函数kyx=(k≠0)的性质难点;灵活应用(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数kyx=的图象是由两支曲线组成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。

人教版九年级数学下册全册导学案

人教版九年级数学下册全册导学案

学科数学课题26.1.2反比例函数的图象和性质班级授课者时间审核者课型学习目标1.通过画反比例函数图象,训练作图能力 2.通过从图象中获取信息.训练识图能力.3.通过对图象性质的研究,训练探索能力和语言组织能力.重点会确定一个单项式的系数和次数;难点会确定一个单项式的系数和次数;探究新知(一)小组合作学习自学主题一:自学教材P4页.做—做观察反比例函数y=x2,y=x4,y=x6的图象它们有什么共同点? 总结它们的共同特征.(1)函数图象分别位于哪几个象限?(2)在每一个象限内,随着x值的增大.y的值是怎样变化的?能说明这是为什么吗?(3)反比例函数的图象可能与x轴相交吗?可能与y轴相交吗?为什么?请大家先独立思考,再互相交流得出结论.对于问题 (3),可能会有学生认为图象在逐渐接近x轴,y轴,所以当自变量取很小或很大的数时,图象能与x轴y轴相交.可以从函数式的定义域、函数与方程等角度进行解释。

总结:当k>0时,函数图象分别位于第象限内,并且在每一个象限内,y随x 的增大而 .主题二:议一议用类推的方法来研究y=-x2,y=-x4,y=-x6的图象有哪些共同特征?结论:反比例函数y =xk的图象,当k>0时,在每一象限内,y 的值随x 值的增大而 ;当k<0时,在每一象限内,y 的值随x 值的增大而 . 对 学对子间检查自学内容并相互讨论 群 学 1、组长带领组员进行讨论上述的相关问题,并检查本组成员的完成情况。

2、组长组织好本组要展示的内容和展示人员的安排。

(二)展示展示一:主题一:反比例函数的图像 展示二:主题一:反比例函数的性质课堂练习1.已知反比例函数xky -=3,分别根据下列条件求出字母k 的取值范围:(1)函数图象位于第一、三象限(2)在第二象限内,y 随x 的增大而增大2.函数y =-ax +a 与xay -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数分析式为课堂小结通过本节课的学习,你有什么收获和体会?还有什么疑惑?课后练习1.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,则m 的取值范围是 2.反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ; 当x >-2时;y 的取值范围是学科数学课题27.1图形的相似班级授课者时间审核者课型学习目标1.通过对生活中的事物或图形的观察,从而加以识别相似的图形.2.通过观察、归纳等数学活动,能用所学的知识去解决问题。

人教版九年级数学下册《反比例函数》导学案

人教版九年级数学下册《反比例函数》导学案

26.1.1 反比例函数一、学习目标1.知识与技能目标(1)理解并掌握反比例函数的概念;(2)能判断一个给定的函数是否为反比例函数,并会用待定系数法求反比例函数的解析式.2.过程与方法目标(1)经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念;(2)能根据实际问题中的条件确定反比例函数的解析式,体会函数的建模思想.3.情感,态度与价值观目标(1)体会数学知识之间的相互联系;(2)体会数学知识在解决实际问题的重要作用,培养学生学习数学的兴趣.4.感悟重要数学思想方法类比、转化、待定系数法、整体思想等.二、学习重点与难点重点:理解反比例函数的概念,会用待定系数法求反比例函数的解析式.难点:利用反比例函数的相关知识灵活解题,体会整体思想.三、学习过程(一)“一史”:“闭眼打转问题”在世界著名的水都威尼斯,有个马尔克广场。

广场的一端有一座宽82米的雄伟教堂。

教堂的前面是一片开阔地。

这片开阔地经常吸引着四方游人到这里做一种奇特的游戏:把眼睛蒙上,然后从广场的一端向另一端教堂走去,看谁能到达教堂的正前面!奇怪的是,尽管这段距离只有175米,但却没有一名游客能幸运地做到这一点!全都走成了弧线,或左或右,偏斜到了一边!为什么呢?这就涉及到我们数学中的反比例函数知识了,学习完反比例函数后,有兴趣的同学可以研究研究! (二)复习回顾 1.什么是函数?2.正比例函数一般形式是______________,它的图象是一条过原点的_________.3.一次函数一般形式是________________,它的图象是一条_________________. (三)堂上练习1.下列函数中,y 是x 的一次函数的是( ) ①y=x-6; ②y=x2 ;③y=8x ;④y=7-xA.①②③B.①③④C.①②③④D.②③④ 2.若一次函数y=x+b 的图象过点 A (1,-1),则b=_______________. 3.图象经过点(2,4)的正比例函数解析式是____________________. (四)读例类比前段时间我们学习过的正比例函数:形如y =kx(k 是常数,k ≠0)的函数,这节课我们来学习另一种函数——反比例函数,首先请同学们思考:下列问题中,变量间具有函数关系吗?如果有,请列出解析式,并观察它们有什么共同特点?(1)京沪线铁路全程为1463 km,某次列车的平均速度为v(单位:km h)随此次列车的全程运行时间t(单位:h)的变化而变化:/________________________________.(2)某住宅小区要种植一个面积为1000 2m的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化:________________________________.(3)已知北京市的总面积为41.6810平方千米,人均占有的土地面积s (单位:米/人)随全市总人口n(单位:人)的变化而变化:________________________________.同学们已经列出了上面三个问题的函数解析式,它们是我们以前学习过的正比例函数吗?请同学们仿照正比例函数的定义来给上面的函数给个恰当的定义:________________________________.下面请同学们来比较一下正比例函数以及反比例函数的异同:(五)做例1.下列函数关系式中,哪些是y 与x 成反比例函数关系,并指出k 的值.(1) xy 3= (2)121+=y (3)2=xy (4) x y 43-= (5)12=x y (6) 21x y =2.若函数3-=m x y 是反比例函数,则m=_______.3.在下列函数中,y 是x 的反比例函数的是( ) A. 58+=x y B. 731+=xy C. 5=xy D. 22x y =(六)读例(例题学习)例1:已知y 是x 的反比例函数,当2x =时,6y =.(1) 写出y 与x 之间的函数解析式 ;(2)当4x =时,求y 的值. 分析:因为y 是x 的反比例函数,根据反比例函数的定义,可以设ky x =,再把2x =和6y =代入上式就可以求出常数k 的值. 解:(1)设xk y =, ∵当2x =时,6y =,∴ 62k = 解得 12k =∴ 12y x=(2)把 4x =代入 12y x =,得 1234y ==(七)做例(A 组)1. 反比例函数k y x=的图象过点(2,3),则k =_________.2. 若反比例函数xy 3-=的图象经过点(3,m),则m _________=.3. 下列各点中,在反比例函数2y x=-图象上的是( )A. (2,1)B. 2(,3)3C. (2,1)--D. (1,2)-(B 组)1.已知y 是x 的反比例函数,且当4x =时,12y =-.(1)写出y 与x 之间的函数解析式;(2)求当2y =时,x 的取值.(C 组)1.已知y 与2x 成反比例,并且当x 3=时, 4y =.(1)写出y 和x 之间的函数解析式;(2)求当 1.5x =时y 的值.归纳方法、注意事项:(八)创例(自主命题,要求附解答过程)(1)请同学根据反比例函数的定义写出一个反比例函数,同桌之间交换,并互相说出该函数k的值.(2)仿照上面例1的题型出一道有关反比例函数的解答题,同桌之间交换,并互相解答.(九)归纳小结(1)知识方面:反比例函数定义式及常见表达式:____________________________________________.(2)重要数学思想方法:____________________________________________________.(3)你有什么要对同伴们说的?(十)堂上小测(5分钟限时小测)(十一)课后作业1.课本P3 1、22.甲乙两地相距200km,有一汽车以每小时25km的速度由甲地去乙地,设汽车离乙地距离为s km,写出s(km)与行使时间t(h)之间的函数关系式:_________________________.3.池中有6003m水,每小时抽503m,写出剩水量Q(3m)与时间t(h)之间的函数关系式:___________.4.已知y与x-1成反比例,并且x=-2时y=7,求(1)y和x之间的函数关系式;(2)当x=8时,求y的值;(3)当y3=时,求x的值.5.下表给出了我们已学过的一种函数中x与y的一些值.(1)你发现这是个什么函数?写出这个函数的表达式;(2)根据函数表达式完成上表.6.已知y与2y=.x+成反比例,并且当x3=时,16(1)写出y和x之间的函数解析式;(2)求当4x=时y的值.。

26.1.3 反比例函数k的几何意义导学案 九年级数学下册(人教版)

26.1.3 反比例函数k的几何意义导学案 九年级数学下册(人教版)

人教版九年级下册第26章《反比例函数》导学案[26.1.3 反比例函数k的几何意义]1.理解并掌握反比例函数有关面积的三个性质;(难点)2.能灵活利用反比例函数“K”的几何意义解决问题.(重点)复习回顾1.反比例函数的图象是什么?2.反比例函数的性质与 k 有怎样的关系?知识精讲反比例函数中“k”的几何意义如图,是y=6的图象,点P是图象上的一个动点.x1.若P(1,a),则矩形OAPB的面积=________;2.若P(3,b),则矩形OAPB的面积=_________;3.若P(5,c),则矩形OAPB的面积=_________.想一想:若P(x,y),则矩形OAPB的面积=_____.【归纳】面积性质(一)的图象上任意一点,过点P分别作x轴,y轴的垂线,垂足为A,B,则:设P(m,n)是y=kx=_______.S矩形OAPB过反比例函数图象上任一点P分别作x轴、y轴的垂线,垂足分别为A,B,它们与坐标轴形成的矩形面积是不变的.典例解析【例1】如图,A,B 是双曲线3y x=上的点,分别经过A,B 两点向x 轴、y 轴作垂线段,若121S S S =+=阴影,则 .【针对练习】1.如图,在函数1y x=(x >0)的图像上有三点A ,B ,C ,过这三点分别向 x 轴、y 轴作垂线,过每一点所作的两条垂线与x 轴、 y 轴围成的矩形的面积分别为S A ,S B ,S C ,则 ( )A. S A >S B >S CB. S A <S B <S CC. S A =S B =S CD. S A <S C <S B2.在双曲线ky x=上任一点分别作x 轴、y 轴的垂线段,与x 轴y 轴围成矩形面积为12,求函数解析式__________.3.如图,点P 、Q 是反比例函数图象上的两点,过点P 、Q 分别向x 轴、y 轴作垂线,则S 1(黄色三角形)S 2(绿色三角形)的面积大小关系是:S 1 ____ S 2.4.如图,点A 在双曲线 y=1x 上,点B 在双曲线y=3x 上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为长方形,则它的面积为_______.知识精讲面积性质(二)设P(m,n)是y =kx (k ≠0)的图象上任意一点,过点P 作x 轴的垂线,垂足为A,连接OP ,则:________.OAP S ∆=过P 作x 轴(y 轴)的垂线,垂足为A,则它与坐标轴形成的三角形的面积是不变的.典例解析【例2】如图所示,点A 在反比例函数ky x=的图象上,AC 垂直 x 轴于点 C ,且 △AOC 的面积为 2,求该反比例函数的表达式.【针对练习】1.如图,过反比例函数ky x=图象上的一点 P ,作 PA⊥x 轴于A. 若△POA 的面积为 6,则 k = .2.双曲线y 1 ,y 2在第一象限的图象如图所示.已知y 1﹦1x , 过y 1上的任意一点A 作x 轴的平行线交y 2与点B ,交y 轴于点C.若S △AOB =1,则y 2的解析式是_______.3.如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数4y x=-和 2y x=的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则∆ABC 的面积为( )A. 3B. 4C. 5D. 64.如图,点A 是反比例函数2y x=(x >0)的图象上任意一点,AB ∥x 轴交反比例函数 3y x=-的图象于点B ,以AB 为边作平行四边形ABCD ,其中C 、D 在轴上,则S 平行四边形ABCD 为( ) A. 2 B. 3 C. 4 D. 5知识精讲面积性质(三)设P(m,n)关于原点的对称点是P ’(-m,-n),过P 作x 轴的垂线与过P ’作y 轴的垂线交于A 点,则:______.='SΔPAP【针对练习】 如图,A 、B 是函数1y x=的图象上关于原点O 对称的任意两点,AC 平行于y 轴,BC 平行于x 轴,∆ABC 的面积为S ,则( )A.S = 1B.1<S<2C.S = 2D.S>2达标检测1.若点 P 是反比例函数图象上的一点,过点 P 分别向x 轴、y 轴作垂线,垂足分别为点 M ,N ,若四边形PMON 的面积为 3,则这个反比例函数的关系式是 .2.如图,点 A 是反比例函数2y x= (x >0)的图象上任意一点,AB//x 轴交反比例函数3y x=- (x <0) 的图象于点 B ,以 AB 为边作平行四边形 ABCD ,其中点 C ,D 在 x 轴上,则 S 平行四边形ABCD =_________.3.如图所示,直线与双曲线交于 A ,B 两点,P 是AB 上的点,△ AOC 的面积 S 1、△ BOD 的面积 S 2、 △ POE 的面积 S 3 的大小关系为 .4.如图,函数 y =-x 与函数4y x=-的图象相交于 A ,B 两点,过点 A ,B 分别作 y 轴的垂线,垂足分别为C ,D ,则四边形ACBD 的面积为 ( ) A. 2 B. 4 C. 6 D. 85.如图(上面),在反比例函数2y x=(x>0)的图象上,有点P 1、P 2、P 3、P 4,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123___.S S S ++=。

人教版九年级数学下册 26.1.1《反比例函数》导学案

人教版九年级数学下册 26.1.1《反比例函数》导学案

26.1.1 反比例函数 导学案【学习目标】1.理解反比例函数的概念,能确定简单的反比例函数关系式.2.培养学生分析问题的能力,并体会函数在实际问题中的应用.【重、难点】重点:理解反比例函数的概念.难点:用待定系数法求反比例函数.导学流程:一、【旧知回顾】:1.在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时,y ,则称x 为 ,y 叫x 的 .2.一次函数的解析式是: ;当 时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),求该直线的解析式.(以上这种求函数解析式的方法叫: . )二、【新知学习】:知识点一:(阅读课本P2页,完成下列内容)1、用函数解析式表示下列问题中的关系:(1)京沪线铁路全程为1463千米,某次列车的平均速度v (千米/小时)随此次列车的全程运行时间t (小时)的变化而变化(2)某住宅小区要种植一个面积为1000平方米的矩形草坪,草坪的长y (米)随宽x (米)的变化而变化 。

(3)已知北京市的总面积为1.68×104平方千米,人均占有的土地面积S 随全市总人口n (人)的变化而变化 。

2、一般地,如果两个变量x 、y 之间的关系可以表示成y = (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数。

可变形为:xy=k 或y=kx -1 针对练习一:1. 已知游泳池的容积为a m 3,向池内注满水所需时间t (h),随注水速度v (m 3/h),那么a = ,当 为定值时,t 、v 成_________关系.2.已知下列函数:(1) ,(2) ,(3)xy = 21(4) ,(5) ,(6)(7)y =x -4 ,其中y 是x 反比例函数的是知识点二:用待定系数法求反比例函数解析 例1、已知:y 与x 成反比例函数,当x=2 时, y=6(1)写出y 与x 的函数关系式。

(2)求当x=4 时, 求y 的值。

3x y =x y 2-=25+=x y x y 23-=31+=x y针对练习二: 1、当m =_____时,函数是反比例函数.2、已知y 与x 2成反比例,并且当x =3时y =4.(1)写出y 和x 之间的函数解析式为 ;(2)当x =1.5时y 的值为________.(3)当y=6时,x=达标检测,反思目标: 1、下列函数:(1) , (2) ,(3)xy =9 (4) ,(5) ,(6)y =2x -1, (7)y = x ,其中y 是x 反比例函数的是_____________. 2、若函数 是反比例函数,则m 的取值是中考连接:已知函数y =y 1+y 2 ,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5 。

【人教版】九年级数学下册-26.1.1 反比例函数(导学案)

【人教版】九年级数学下册-26.1.1 反比例函数(导学案)

第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数——反比例函数的概念和解析式一、新课导入1.课题导入情景:如图,舞台灯光可以瞬间将黑夜变成如白昼般明亮,这样的效果是如何实现的?是通过改变电阻来控制电流的变化实现的.因为当电流I较小时,灯光较暗;反之,当电流I较大时,灯光较亮.问题:电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时,你能用含有R的代数式表示I吗?那么I是R的函数吗?I是R的什么函数呢?本节课我们开始学习反比例函数.(板书课题)2.学习目标(1)理解反比例函数的概念.(2)会求反比例函数式.3.学习重、难点重点:反比例函数的概念,能求反比例函数式.难点:反比例函数的概念.二、分层学习1.自学指导(1)自学内容:教材P2.(2)自学时间:5分钟.(3)自学方法:探究、思考、归纳、总结.(4)自学参考提纲:①形如y=kx(k为常数,k≠0)的函数叫做反比例函数,自变量x的取值范围是x≠0.②由y=kx可得,xy=k,若y=kx-n是反比例函数,则n=1.③反比例函数y=212mx--的比例系数k是122m-2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会列函数关系式,是否会判断反比例函数.②差异指导:指导学生从形式和自变量的取值范围两个方面对比正比例函数理解反比例函数.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)反比例函数的定义;反比例函数式的变式;自变量x的取值范围;k的值.(2)练习:①写出下列问题中两个变量之间的函数关系式,并指出比例系数k的值.a.一个游泳池的容积为2000 m3,游泳池注满水所用的时间t(单位:h)随注水速度v(单位:m3/h) 的变化而变化;答案:2000,2000. t kv==b.某长方体的体积为1000 m3,长方体的高h(单位:m)随底面积S(单位:m2) 的变化而变化;答案:1000,1000.h kS==c.一个物体重100 N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化.答案:100,100.p k S == ②下列函数中哪些是反比例函数?哪些是正比例函数?并指出比例系数. y=4x y x=3 y=2x - y=6x+1 y=x 2-1 y=21x xy=123 答案:反比例函数:y=2x -,比例系数为-2;xy=123,比例系数为123. 正比例函数:y=4x ,比例系数为4;y x =3,比例系数为3. ③若函数y=63m x- 是反比例函数,则m 的取值范围是m≠2.1.自学指导(1)自学内容:教材P3例1.(2)自学时间:5分钟.(3)自学方法:先学习例题的方法,然后模仿例题解答自学参考提纲中的问题.(4)自学参考提纲:①已知y 是x 的反比例函数,求其解析式时,一般先设y=k x ,再由已知条件求出k 即可.②已知y 是x 的反比例函数,则y 与x 成反比例吗?如果y 与x 2成反比例,怎样设其解析式?y 与x 成反比例.可设y=2k x . ③已知y 与x2成反比例,并且当x=3时,y=4.a.写出y 关于x 的函数解析式;236y x ⎛=⎫ ⎪⎝⎭ b.当x=1.5时,求y 的值;(y=16)c.当y=6时,求x 的值.(x=±6)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:关注学生对成反比例与反比例函数的理解.②差异指导:指导学生辨析反比例函数与成反比例.(2)生助生:同桌之间、小组内交流、研讨.4.强化:用待定系数法求反比例函数式的要点.三、评价1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).在学习了一次函数和二次函数后,反比例函数是初中学习阶段的第三种函数类型.在反比例函数教学过程中,应注意将反比例函数和正比例函数进行类比,帮助学生区分其异同,真正理解反比例函数的概念.另外要辨析反比例函数与成反比例的区别,引导学生通过交流研讨来弄清其区别.本节的教学重点是理解反比例函数的概念和求解函数解析式,教学过程中应强调自变量的取值范围以及反比例函数与实际问题的联系.教师最好能够多举实例,联系生活实际,将抽象问题具体化,从而帮助学生理解新知.一、基础巩固(70分)1.(10分)下列等式中,y 是x 的反比例函数的是(B ) A.y=21x 3 C.y=5x+6 D.x=1y 2.(10分) 矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为4y x= 3.(10分) 面积为30 cm 2的三角形的底y (cm )与底边上的高x (cm )的函数关系式是60 y x= 4.(10分) 指出下列函数中哪些是反比例函数,并指出k 的值.(1)y=2x (2)y=53x - (3)y=x 2 (4)y=2x+1解:(2)y=53x -是反比例函数,k=53-. 5.(10分) 写出下列函数解析式,并指出它们各是什么函数.(1)体积是常数V 时,圆柱的底面积S 与高h 的关系;(2)柳树乡共有耕地S 公顷,该乡人均耕地面积y 与全乡总人口x 的关系. 解:(1)S=V h ,反比例函数.(2)y=S x,反比例函数. 6.(10分) 已知y 与x2成反比例,并且当x=6时y=5.(1)写出y 与x 之间的函数解析式;(2)求当x=12时y 的值.解:(1)设y=2k x ,当x=6时,y=5,∴5=26k ,解得k=180,∴y=2180x . (2)把x=12代入y=2180x ,得y=218012=54 7.(10分) 已知y 与x 的部分取值满足下表:试猜想y 与x 的函数关系可能是你们学过的哪类函数,并写出这个函数的解析式.解:猜想:y 是x 的反比例函数,解析式为y=6x-. 二、综合应用(20分)8.(10分) 如果y 是z 的反比例函数,z 是x 的反比例函数,则y 是x 的什么函数?正比例函数.9.(10分) 如果y 是z 的反比例函数,z 是x 的正比例函数,则y 是x 的什么函数?反比例函数.三、拓展延伸(10分)10.(10分) 已知函数y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x=1时,y=4;当x=2时,y=5.(1)求y 与x 的函数关系式;(2)当x=4时,求y 的值.解:(1)设y1=k1x,y2=2k x,则y=k1x+2k x,∵当x=1时,y=4;当x=2时,y=5,∴k1+k2=4,2k1+2k x=5,∴k1=k2=2,∴y=2x+2x.(2)当x=4时,y=2×4+24=172.。

人教九年级数学下册反比例函数导学案

人教九年级数学下册反比例函数导学案

§1.1练习【学习导言】让我们了解反比例函数的概念,会用两种方法求反比例函数的解析式,并会解决一些实际的问题课前学习:尝试体验(再次对话课本,记下问题,尝试练习)【对话课本】阅读教材P1~P3【再认概念】我们把函数叫做反比例函数,这里是自变量,是的函数,叫做。

【尝试练习】1.下列关于的函数中,哪些是反比例函数?是反比例函数的,请指出它的比例系数。

2. 已知反比例函数,这个函数的自变量的取值范围是,当时,函数的值是当时,自变量的值是。

3. 任意写一个比例系数是偶数的反比例函数的解析式,并求:(1)当自变量的值是时函数的值;(2)当函数值是时自变量的值;(3)当自变量是,函数值是时的值。

课内学习:合作体验(检评预习,审视要点,独立练习,纠错反审)【检评预习】同桌交换学案,检查评价批语:【审视要点】审视下面的学习要点【尝试例题】例1 两地相距,一辆汽车打一个来回的平均速度为,时间为。

(1)求关于的函数解析式。

(2)规定汽车的平均速度限定为不超过。

假设一辆汽车打一个来回的时间是,这辆汽车超速了吗?例2 已知是关于的正比例函数,比例系数是2;是关于的反比例函数,比例系数是。

(1)写出此正比例函数和反比例函数的解析式;(2)求关于的函数解析式。

这个函数是反比例函数吗?(3)求当时,的值。

【独立练习】A组1.下列函数是反比例函数的是()A. B. C. D.2.已知三角形的面积是定值,则三角形的高与底的函数关系式是,这时是的函数。

3.已知反比例函数,这个函数的自变量的取值范围是,比例系数是4. 已知反比例函数,当时,,那么的值是。

5 两个整数与的积为10,(1)求关于的函数关系式;(2)写出比例系数;(3)写出自变量的取值范围。

B组6.已知函数是关于的反比例函数,求m的值及比例系数。

课后学习:反审体验(审查错误原因,检查练习,完成作业)【反思审查】再仔细审查学案,用红笔作出示意。

【作业练习】A组1.若与成反比例,且当时,则关于的关系式为()2.如果与成反比例关系,与成正比例关系,则与成()正比例关系反比例关系一次函数关系不同于以上答案3.在面积为的一组菱形中,设两条对角线的长分别为。

人教版九年级数学下册同步备课 26.1.1 反比例函数(导学案)

人教版九年级数学下册同步备课 26.1.1 反比例函数(导学案)

26.1.1 反比例函数导学案1.理解反比例函数的概念;2.根据题目条件会求对应量的值,能用待定系数法求反比例函数的关系式.3.能利用反比例函数的意义分析简单的问题.★知识点1:反比例函数的概念:一般地,形如y= k(k为常数,且k≠0)的函数,叫做反比例函数,其中x是自变量,y是函数.x★知识点2:利用待定系数法求反比例函数解析式的方法:;1)设出含“未知系数”的函数解析式,如y=kx2)根据已知条件列出含“未知系数”的方程;3)解这个方程,求出未知系数;4)将求出的未知系数的值代入所设的解析式中.一、反比例函数的概念:一般地,形如y= _______________(_____________)的函数,叫做反比例函数,其中_____是自变量,___是函数.★知识点2:利用待定系数法求反比例函数解析式的方法:1)设出含“未知系数”的函数解析式,如_________;2)根据已知条件列出含“__________系数”的方程;3)解这个方程,求出__________;4)将求出的______________代入所设的解析式中【提问一】什么是正比例函数?【提问二】什么是一次函数?【提问三】什么是二次函数?下列问题中两个变量间具有函数关系吗?如果有,请直接写出解析式.[情景一]京沪线铁路全程为1463 km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t (单位:h)的变化而变化.[情景二]某住宅小区要种植一块面积为1000 m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化.[情景三]已知北京市的总面积为1.68×104 km2 ,人均占有面积S(单位:km2 /人)随全市总人口n(单位:人)的变化而变化.【问题一】观察以上三个解析式,你发现了什么?反比例函数的概念:例1 判断下列函数是不是反比例函数,如果是请指出比例系数.【针对训练】1.下列函数中哪些是反比例函数?哪些是一次函数?①y=3x-1 ②y = 2x ③y= 32x ④ y= −1x⑤ y= x2⑥-xy=2 ⑦y=6x-12. 已知反比例函数的解析式为y=|a|−2x,则a的取值范围是() A.a≠2 B.a≠−2C.a≠±2 D.a=±2例2 若函数y=(m+1)x|m|﹣2是反比例函数,则m=()A.±1 B.±3 C.﹣1 D.1【针对训练】1.函数y=(m﹣1)x m2−m−1是反比例函数,求m的值.例3 已知y是x的反比例函数,当x=2时,y=6. 1)写出y与x的函数关系式;2)求当x=4时,y的值.【针对训练】1. 已知y与x2 成反比例,且当x=3时,y=4.1)写出y关于x的函数解析式;2)当x=1.5时,求y的值;3)当y= 6时,求x的值.2. y是x的反比例函数,下表给出了x与y的一些值1)写出这个反比例函数的解析式.2)根据函数表达式完成上表.【问题二】简述利用待定系数法求反比例函数解析式的具体方法?例4 矩形的面积一定,则它的长和宽的关系是()A.正比例函数B.一次函数 C.反比例函数D.二次函数【针对训练】1. 直角三角形两直角边的长分别为 x,y,它的面积为 3,则y与x之间的函数关系式为_________.2. 已知菱形的面积是12cm2,菱形的两条对角线长分别为x和y,则y与x之间的函数关系是________________.3.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式_____.的图象经过点(﹣1,2),则k=_____.例5 反比例函数y=k+1x【针对训练】(k为常数,且k≠0)的图象经过点(3,4),则该函数图象必不经过点()1 已知反比例函数y= kxA.(2,6) B.(-1,-12) C.(0.5,24)D.(-3,8)1. 已知反比例函数的解析式为y=√2k−1x,则最小整数k=______.2. 当m为何值时,函数y=(m﹣3)x2﹣|m|是反比例函数?当m为何值时,此函数是正比例函数?1.(2020·广西贺州·统考中考真题)在反比例函数y=2x中,当x=−1时,y的值为()A.2 B.−2 C.12 D.−122.(2023·重庆·统考中考真题)反比例函数y=−4x的图象一定经过的点是()A.(1,4)B.(−1,−4)C.(−2,2) D.(2,2)3.(2022·黑龙江哈尔滨·统考中考真题)已知反比例函数y=−6x的图象经过点(4,a),则a的值为.1.通过本节课的学习,你学会了哪些知识?2.你知道反比例函数的三种形式吗?3.简述利用待定系数法求反比例函数解析式的具体方法?【参考答案】【提问一】什么是正比例函数?一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数.【提问二】什么是一次函数?一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数.【提问三】什么是二次函数?一般地,形如y=ax²+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数.下列问题中两个变量间具有函数关系吗?如果有,请直接写出解析式.[情景一]京沪线铁路全程为1463 km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t (单位:h)的变化而变化.v=1463t[情景二]某住宅小区要种植一块面积为1000 m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化.y=1000x[情景三]已知北京市的总面积为1.68×104 km2 ,人均占有面积S(单位:km2 /人)随全市总人口n(单位:人)的变化而变化.S=1.68×104n【问题一】观察以上三个解析式,你发现了什么?这三个解析式结构都是:变量= 常量变量反比例函数的概念:一般地,形如y= kx(k为常数,且k≠0)的函数,叫做反比例函数,其中x是自变量,y是函数.例1 判断下列函数是不是反比例函数,如果是请指出比例系数.【针对训练】1.下列函数中哪些是反比例函数?哪些是一次函数?①y=3x-1 ②y = 2x ③y= 32x ④ y= −1x⑤ y= x2⑥-xy=2 ⑦y=6x-1反比例函数:③④⑥⑦ 一次函数:①②⑤2. 已知反比例函数的解析式为y =|a|−2x,则a 的取值范围是( C )A .a ≠2B .a ≠−2C .a ≠±2D .a =±2 例2 若函数y =(m+1)x|m|﹣2是反比例函数,则m =( D )A .±1B .±3C .﹣1D .1【针对训练】 1.函数y=(m ﹣1)x m2−m−1是反比例函数,求m 的值.【详解】解:由题意得:{m −1≠0m 2−m −1=−1. 解得m =0.例3 已知y 是x 的反比例函数,当x=2时,y=6. 1)写出y 与x 的函数关系式; 2)求当x=4时,y 的值.1)解:设y 与x 的函数关系式y= kx , 当x=2,y=6时,反比例关系式为6= k 2, 解得k=12,则y= 12x2)把x=4带入y= 12x ,得y= 124,因此y= 3 【针对训练】1. 已知y 与x 2成反比例,且当x=3时,y=4. 1)写出y 关于x 的函数解析式; 2)当x=1.5时,求y 的值; 3)当y= 6时,求x 的值.1)解:设y 与x 的函数关系式y=kx 2, 当x=3,y=4时,反比例关系式为4= k 9 ,解得k=36,则y= 36x 22)把x=1.5带入y= 36x 2,得y= 362.25,因此y= 16 3)把y=6 带入y= 36x 2,得x 2 = 366,因此x= ±√62. y是x的反比例函数,下表给出了x与y的一些值1)写出这个反比例函数的解析式.2)根据函数表达式完成上表.解∵ y是x的反比例函数,∴y=kx把x=-0.5,y=4代入上式得4=k−0.5解得k=-2,则y= −2x【问题二】简述利用待定系数法求反比例函数解析式的具体方法?;1)设出含“未知系数”的函数解析式,如y=kx2)根据已知条件列出含“未知系数”的方程;3)解这个方程,求出未知系数 ;4)将求出的未知系数的值代入所设的解析式中.例4 矩形的面积一定,则它的长和宽的关系是( C )A.正比例函数B.一次函数 C.反比例函数D.二次函数【针对训练】1. 直角三角形两直角边的长分别为 x,y,它的面积为 3,则y与x之间的函数关系式为_____y=6x____.2. 已知菱形的面积是12cm2,菱形的两条对角线长分别为x和y,则y与x之间的函数关系是______y=24x __________.3.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式__.___t=48Q的图象经过点(﹣1,2),则k=___-3__.例5 反比例函数y=k+1x【针对训练】1 已知反比例函数y= kx(k为常数,且k≠0)的图象经过点(3,4),则该函数图象必不经过点( D )A.(2,6) B.(-1,-12) C.(0.5,24)D.(-3,8)1. 已知反比例函数的解析式为y=√2k−1x,则最小整数k=___1___.2. 当m为何值时,函数y=(m﹣3)x2﹣|m|是反比例函数?当m为何值时,此函数是正比例函数?【详解】根据反比例函数的定义知2﹣|m|=﹣1且m﹣3≠0,解得:m=﹣3;根据正比例函数的定义知2﹣|m|=1且m﹣3≠0,解得:m=±1.1.(2020·广西贺州·统考中考真题)在反比例函数y=2x中,当x=−1时,y的值为( B )A.2 B.−2 C.12 D.−122.(2023·重庆·统考中考真题)反比例函数y=−4x的图象一定经过的点是( C )A.(1,4)B.(−1,−4)C.(−2,2) D.(2,2)3.(2022·黑龙江哈尔滨·统考中考真题)已知反比例函数y=−6x的图象经过点(4,a),则a的值为−32.。

初三数学九年级下册《反比例函数》导学案

初三数学九年级下册《反比例函数》导学案

第26章 反比例函数26.1.1反比例函数的意义【学习目标】1、 经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、 理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、 让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用 【学习重点】理解反比例函数的意义,确定反比例函数的解析式 【学习难点】反比例函数的解析式的确定 【学法指导】自主、合作、探究【自主学习,基础过关】 一、自主学习: (一)复习巩固1.在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时, y ,则称x 为 ,y 叫x 的 .2.一次函数的解析式是: ;当 时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),求该直线的解析式. 以上这种求函数解析式的方法叫: . (二)自主探究提出问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?(1)京沪线铁路全程为1463km ,乘坐某次列车所用时间t (单位:h )随该列车平均速度v (单位:km/h )的变化而变化;(2)某住宅小区要种植一个面积为1000m 2的矩形草坪,草坪的长为y 随宽x 的变化; (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S (单位:平方千米/人)随全市人口n (单位:人)的变化而变化.1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么? (1) (2) (3)2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗? (三)归纳总结:1、三个函数表达式:v t 1262=、xy 1000=、S =n 41068.1⨯有什么共同特征?你能用一个一般形式来表示吗?2、对于函数关系式xy 1000=,完成下表:3、类比一次函数的概念给上述新的函数下一个恰当的定义 讨论:1、反比例函数xky =中自变量x 在分式的什么位置?自变量的取值范围是什么?2、你能再举出两个反比例函数关系的实例吗?写出函数表达式,与同伴进行交流。

新人教版九年数学下导学案(26.2反比例函数的图像和性质(二))

新人教版九年数学下导学案(26.2反比例函数的图像和性质(二))

班 姓名 成绩: 优 良 差 学习目标1.进一步理解和掌握反比例函数及其图象与性质2.能灵活运用函数图象和性质解决一些较综合的问题3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法4.经历观察、分析,交流的过程,逐步提高从函数图象中感受其规律的能力。

学习重点:理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题 学习难点:学会从图象上分析、解决问题,理解反比例函数的性质。

【导读指导】1.情景导入2.明确目标3.预习检测(1)什么是反比例函数?(2)反比例函数的图象是什么?有什么性质?【导学指导】4.探究展示例1若点A (-2,a )、B (-1,b )、C (3,c )在反比例函数x k y =(k <0)图象上,则a 、b 、c 的大小关系怎样?例2 如图, 一次函数y =kx +b 的图象与反比例函数xm y =的图象交于A (-2,1)、B (1,n )两点(1)求反比例函数和一次函数的解析式(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值范围例3已知变量y 与x 成反比例,且当x=2时y=9。

写出y 与x 之间的函数解析式和自变量的取值范围。

【导练指导】5.拓展测评1.当质量一定时,二氧化碳体积V 与密度p 成反比例。

且V=5m 3时,p=1.98kg /m 3(1)求p 与V 的函数关系式,并指出自变量的取值范围。

(2)求V=9m 3时,二氧化碳的密度。

2.已知反比例函数y=k/x (k ≠0)的图像经过点(4,3),求当x=6时,y 的值。

3.已知一次函数y= -x+8和反比例函数y =xk (1)k 满足什么条件时,这两个函数在同一直角坐标系中的图象有两个交点?(2)如果其中一个交点为(-1,9),求另一个交点坐标。

【导思指导】6.小结与反思反比例函数的图象和性质,领会函数解析式与函数图象之间的联系。

7.点评激励8.课后作业(1)已知反比例函数xk y 12+=的图象在每个象限内函数值y 随自变量x 的增大而减小,且k 的值还满足)12(29--k ≥2k -1,若k 为整数,求反比例函数的解析式(2)已知一次函数b kx y +=的图像与反比例函数x y 8-=的图像交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是-2 ,求(1)一次函数的解析式;(2)△AOB 的面积。

九年级数学下册第二十六章反比例函数反比例函数的图象和性质一导学案新人教

九年级数学下册第二十六章反比例函数反比例函数的图象和性质一导学案新人教

反比例函数的图象和性质一、【自主学习】 1.反比例函数xy 23-=中,比例系数k= ; 2.已知变量y 、x 成反比例,且当x=2时y=6,则这个函数关系式是 ;3.画函数图象的一般步骤是: 、 、 .4.画出反比例函数y=x 6和y=-—x6的图象。

x… -4-3 -2 -1123 4 (x)y 6=……xy 6-=… …二、【合作探究】 总结:比较两个函数的图象,总结它们有何异同: 1.反比例函数的图象是______________。

2.当k 〉0时,图象的两个分支分布在第___ ___象限内;在每个象限内y 随x 的增大而__________或y 随x 的减小而__________。

3.当k 〈 0时,图象的两个分支分布在第______象限内;在每个象限内y 随X 的增大而__________或y 随x 的减小而__________。

4.反比例函数图象的两个分支关于_________对称。

5.反比例函数y=x6和y=-x6的图象关于______对称,也关于_______对称学习目标:1.进一步熟悉画函数图象的主要步骤,会画反比例函数的图象2.体会函数三种表示方法的相互转换,对函数进行认识上的整合3.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质,体会分类讨论思想、数形结合思想的运用 学习重点 掌握反比例函数的画图 学习难点反比例函数三种表示方法的相互转换三、【展示交流】1、完成课本6页第1、2、3题(在课本上完成) 2.反比例函数xy 3-=的图象在第 象限,在每个象限内y 随x 的减小而 ;反比例函数xy 3=的图象在第 象限,在每个象限内y 随x 的增大而 ;四、【课堂检测】 1.反比例函数y= -x5的图象大致是( )2.反比例函数y=-x2的图象在第 象限,在它的图象上y 随x 的 减小而 ;反比例函数2y x=的图象在第 象限,在它的图象上 y 随x 的增大而 ; 3.已知反比例函数2y x=,下列结论中,不正确...的 ( ) A .图象必经过点(12), B .y 随x 的增大而减少 C .图象在第一、三象限内 D.两支图像关于原点对称4、已知反比例函数xky =(k 〈0),点A(-2,y 1) B(1,y 2)在函数图象上,则y 1_____________________y 2(填〉、〈、=)5、若直线y =kx +b 经过第一、二、四象限,则函数xkby =的图象在( ) (A )第一、三象限 (B )第二、四象限 (C )第三、四象限 (D )第一、二象限D :xyoC :xyoA :xyoB :xyo中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【答案】B【解析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x=,解得x=45(尺),故选B.【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.2.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形【答案】D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A、对角线互相平分且垂直的四边形是菱形,故错误;B、四条边相等的四边形是菱形,故错误;C、对角线相互平分的四边形是平行四边形,故错误;D、对角线相等且相互平分的四边形是矩形,正确;故选D.点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.3.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C∆相似的是()A .B .C .D .【答案】B【解析】根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C 中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,故选:B . 【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.4.如图,点A ,B 为定点,定直线l//AB ,P 是l 上一动点.点M ,N 分别为PA ,PB 的中点,对于下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离; ⑤∠APB 的大小.其中会随点P 的移动而变化的是( )A .②③B .②⑤C .①③④D .④⑤【答案】B【解析】试题分析:①、MN=12AB ,所以MN 的长度不变; ②、周长C △PAB =12(AB+PA+PB ),变化; ③、面积S △PMN =14S △PAB =14×12AB·h ,其中h 为直线l 与AB 之间的距离,不变; ④、直线NM 与AB 之间的距离等于直线l 与AB 之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB 的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线5.如图,在正方形ABCD 中,E 为AB 的中点,G ,F 分别为AD 、BC 边上的点,若AG=1,BF=2,∠GEF=90°,则GF 的长为( )A.2 B.3 C.4 D.5 【答案】B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴AE AG BF BE,又∵AE=BE,∴AE2=AG•BF=2,∴AE=2(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.6.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.【详解】解:观察图形可知图案D通过平移后可以得到.故选D.【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.7.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°【答案】C【解析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.8.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,则t的取值范围是( )A.-5<t≤4B.3<t≤4C.-5<t<3 D.t>-5【答案】B【解析】先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1<x<3的范围内有公共点可确定t的范围.【详解】∵ 抛物线y=-x 2+mx 的对称轴为直线x=2, ∴222(1)b m a -=-=⨯-, 解之:m=4,∴y=-x 2+4x ,当x=2时,y=-4+8=4, ∴顶点坐标为(2,4),∵ 关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解, 当x=1时,y=-1+4=3,当x=2时,y=-4+8=4,∴ 3<t≤4,故选:B【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.9.﹣3的绝对值是( )A .﹣3B .3C .-13D .13【答案】B【解析】根据负数的绝对值是它的相反数,可得出答案. 【详解】根据绝对值的性质得:|-1|=1. 故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.10.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.【答案】A【解析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】由题意得:m ﹣1≠0,解得:m≠1,故选A .【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.二、填空题(本题包括8个小题)11.因式分解:3a 2-6a+3=________. 【答案】3(a -1)2【解析】先提公因式,再套用完全平方公式. 【详解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2. 【点睛】考点:提公因式法与公式法的综合运用.12.如图,直线x=2与反比例函数2yx=和1yx=-的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.【答案】32.【解析】解:∵把x=1分别代入2yx=、1yx=-,得y=1、y=12-,∴A(1,1),B(1,1x-).∴13AB122⎛⎫=--=⎪⎝⎭.∵P为y轴上的任意一点,∴点P到直线BC的距离为1.∴△PAB的面积1133AB22 2222 =⨯=⨯⨯=.故答案为:32.13.已知二次函数2(0)y ax bx c a=++≠,y与x的部分对应值如下表所示:x…-1 0 1 2 3 4 …y… 6 1 -2 -3 -2 m …下面有四个论断:①抛物线2(0)y ax bx c a=++≠的顶点为(23)-,;②240b ac-=;③关于x的方程2=2ax bx c++-的解为12=13x x=,;④=3m-.其中,正确的有___________________.【答案】①③.【解析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x 的方程ax 2+bx+c =﹣2的解为x 1=1,x 2=3,结论正确; ④m =﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③ 【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.14.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x 人,则可列方程为__________. 【答案】8374x x -=+【解析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决【详解】解:由题意可设有x 人, 列出方程:8374x x +﹣=, 故答案为8374x x +﹣=. 【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.15.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这块扇形铁皮的半径是_____cm .【答案】40cm【解析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【详解】∵圆锥的底面直径为60cm , ∴圆锥的底面周长为60πcm , ∴扇形的弧长为60πcm , 设扇形的半径为r ,则270180rπ=60π, 解得:r=40cm , 故答案为:40cm . 【点睛】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.16.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A 按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____ m.【答案】7.5【解析】试题解析:当旋转到达地面时,为最短影长,等于AB,∵最小值3m,∴AB=3m,∵影长最大时,木杆与光线垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴BC ABEC EF=,∵AE=5m,∴4310EF=,解得:EF=7.5m.故答案为7.5.点睛:相似三角形的性质:相似三角形的对应边成比例. 17.比较大小:512_____1(填“<”或“>”或“=”).【答案】<【解析】∵512≈0.62,0.62<1,∴512<1;故答案为<.18.计算:|﹣3|+(﹣1)2= .【答案】4.【解析】|﹣3|+(﹣1)2=4,故答案为4.三、解答题(本题包括8个小题)19.关于x 的一元二次方程ax 2+bx+1=1.当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根. 【答案】(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x 2=x 2=﹣2.【解析】分析:(2)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况. (2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可. 详解:(2)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如: 解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根. 当240b ac ∆=-=时,方程有两个相等的实数根. 当240b ac ∆=-<时,方程没有实数根.20.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.若将这种水果每斤的售价降低x 元,则每天的销售量是 斤(用含x 的代数式表示);销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元? 【答案】(1)100+200x ;(2)1.【解析】试题分析:(1)销售量=原来销售量﹣下降销售量,列式即可得到结论; (2)根据销售量×每斤利润=总利润列出方程求解即可得到结论.试题解析:(1)将这种水果每斤的售价降低x 元,则每天的销售量是100+0.1x×20=100+200x 斤;(2)根据题意得:(42)(100200)300x x --+=,解得:x=12或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1. 答:张阿姨需将每斤的售价降低1元.考点:1.一元二次方程的应用;2.销售问题;3.综合题.21.我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A 、C 两地海拔高度约为1000米,山顶B 处的海拔高度约为1400米,由B 处望山脚A 处的俯角为30°,由B 处望山脚C 处的俯角为45°,若在A 、C 两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据3≈1.732)【答案】隧道最短为1093米.【解析】作BD⊥AC于D,利用直角三角形的性质和三角函数解答即可.【详解】如图,作BD⊥AC于D,由题意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵tan30°=BDAD,即40033AD=,∴3(米),在Rt△BCD中,∵tan45°=BDCD,即4001CD=,∴CD=400(米),∴3(米),答:隧道最短为1093米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键. 22.先化简,再求值:222(2)()y x yy x y x yx y x y⎛⎫--÷--+⎪+-⎝⎭,其中1x=-,2y=.【答案】1【解析】分析:先把小括号内的通分,按照分式的减法和分式的除法法则进行化简,再把字母的值代入运算即可.详解:原式()()()()222,x y x yy xy yx y x yx y x y x y-+⎛⎫+=-⋅--+⎪++-⎝⎭()()()222,x y x yxyx xy yx y x y-+-=⋅---+-222,xy x xy y=--++222x y=-+,当x=-1、y=2时,原式=-(-1)2+2×22=-1+8=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.鲜丰水果店计划用12元/盒的进价购进一款水果礼盒以备销售.()1据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?()2在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了1%5m ,月销量比(1)中最低月销量800盒增加了%m ,结果该月水果店销售该水果礼盒的利润达到了4000元,求m 的值.【答案】(1)若使水果礼盒的月销量不低于800盒,每盒售价应不高于20元;(2)m 的值为25. 【解析】(1)设每盒售价应为x 元,根据月销量=980-30×超出14元的部分结合月销量不低于800盒,即可得出关于x 的一元一次不等式,解之取其最大值即可得出结论;(2)根据总利润=每盒利润×销售数量,即可得出关于m 的一元二次方程,解之取其正值即可得出结论.【详解】解:()1设每盒售价x 元. 依题意得:()9803014800x --≥ 解得:20x ≤答:若使水果礼盒的月销量不低于800盒,每盒售价应不高于20元()2依题意:()1201%12125%5m ⎡⎤⎛⎫--⨯+ ⎪⎢⎥⎝⎭⎣⎦()8001+m%4000⨯=令:%m t =化简:240t t -= 解得:10t =(舍)214t =25m ∴=,答:m 的值为25. 【点睛】考查一元二次方程的应用,一元一次不等式的应用,读懂题目,找出题目中的等量关系或不等关系是解题的关键.24.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.求证:四边形BFDE 是矩形;若CF =3,BF =4,DF =5,求证:AF平分∠DAB .【答案】(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB 与CD 的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB ,根据等腰三角形的判定与性质,可得∠DAF=∠DFA ,根据角平分线的判定,可得答案. 试题分析:(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD .∵BE ∥DF ,BE=DF ,∴四边形BFDE 是平行四边形. ∵DE ⊥AB ,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC=22FC FB+=2234+=5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.25.为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)【答案】解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可.【解析】易得M在AB的垂直平分线上,且到C的距离等于AB的一半.26.如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD 的延长线上一点且满足∠OBC=∠OFC,求证:CF为⊙O的切线;若四边形ACFD是平行四边形,求sin∠BAD的值.【答案】(1)见解析;(2)1 3 .【解析】(1)连接OC,根据等腰三角形的性质得到∠OCB=∠B,∠OCB=∠F,根据垂径定理得到OF⊥BC,根据余角的性质得到∠OCF=90°,于是得到结论;(2)过D作DH⊥AB于H,根据三角形的中位线的想知道的OD=12AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=2x,求得BD=2x,根据勾股定理得到AD=226AC CD+=x,于是得到结论.【详解】解:(1)连接OC,∵OC=OB,∴∠OCB=∠B,∵∠B=∠F,∴∠OCB=∠F,∵D为BC的中点,∴OF⊥BC,∴∠F+∠FCD=90°,∴∠OCB+∠FCD=90°,∴∠OCF=90°,∴CF为⊙O的切线;(2)过D作DH⊥AB于H,∵AO=OB,CD=DB,∴OD=12AC,∵四边形ACFD是平行四边形,∴DF=AC,设OD=x,∴AC=DF=2x,∵∠OCF=90°,CD⊥OF,∴CD2=OD•DF=2x2,∴2x,∴2x,∴226AC CD+,∵OD=x,2x,∴3x,∴DH=3CD BD OB ⋅=x , ∴sin ∠BAD=DH AD =13. 【点睛】本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.下列运算正确的是( )A .a 3•a 2=a 6B .a ﹣2=﹣21a C .33﹣23=3 D .(a+2)(a ﹣2)=a 2+4【答案】C【解析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案. 【详解】A 、a 3•a 2=a 5,故A 选项错误;B 、a ﹣2=21a ,故B 选项错误; C 、33﹣23=3,故C 选项正确; D 、(a+2)(a ﹣2)=a 2﹣4,故D 选项错误, 故选C .【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.2.下列图形中,周长不是32 m 的图形是( )A .B .C .D .【答案】B【解析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32. B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32. C. L=(6+10)×2=32,其周长为32. D. L=(6+10)×2=32,其周长为32. 采用排除法即可选出B 故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.3.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A ,(2,)B b ,则正方形ABCD 的面积是( )A.13B.20C.25D.34【答案】D【解析】作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,22223534AD AO OD∴=+=+=,∴正方形ABCD的面积是:343434⨯=,故选D.4.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.24【答案】D【解析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】E、F分别是AC、DC的中点,∴EF是ADC的中位线,∴2236AD EF==⨯=,∴菱形ABCD的周长44624AD==⨯=.故选:D.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.5.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.15 B.17 C.19 D.24【答案】D【解析】由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n >1时),由此得出规律解决问题.【详解】解:解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个(n>1时),则第⑦个图中三角形的个数是4×(7﹣1)=24个,故选D.【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出a n=4(n﹣1)是解题的关键.6.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【答案】C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.73,0.21,2π,180.001,0.20202中,无理数的个数为()A.1 B.2 C.3 D.4【答案】C3,0.21,2π,180.001,0.20202中,根据无理数的定义可得其中无理数有﹣3,2π,0.001,共三个. 故选C .8.如图,AB 切⊙O 于点B ,OA =23,AB =3,弦BC ∥OA ,则劣弧BC 的弧长为( )A .33π B .32π C .π D .32π 【答案】A【解析】试题分析:连接OB ,OC ,∵AB 为圆O 的切线,∴∠ABO=90°,在Rt △ABO 中,OA=23A=30°, ∴3AOB=60°, ∵BC ∥OA ,∴∠OBC=∠AOB=60°,又OB=OC ,∴△BOC 为等边三角形,∴∠BOC=60°,则劣弧BC 6033π⨯=.故选A.考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.9.设x 1,x 2是一元二次方程x 2﹣2x ﹣5=0的两根,则x 12+x 22的值为( ) A .6 B .8C .14D .16【答案】C【解析】根据根与系数的关系得到x 1+x 2=2,x 1•x 2=-5,再变形x 12+x 22得到(x 1+x 2)2-2x 1•x 2,然后利用代入计算即可.【详解】∵一元二次方程x 2-2x-5=0的两根是x 1、x 2,∴x 1+x 2=2,x 1•x 2=-5,∴x 12+x 22=(x 1+x 2)2-2x 1•x 2=22-2×(-5)=1.故选C . 【点睛】考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x1+x2=-ba,x1•x2=ca.10.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2 【答案】D【解析】解不等式得到x≥12m+3,再列出关于m的不等式求解.【详解】23m x-≤﹣1,m﹣1x≤﹣6,﹣1x≤﹣m﹣6,x≥12m+3,∵关于x的一元一次不等式23m x-≤﹣1的解集为x≥4,∴12m+3=4,解得m=1.故选D.考点:不等式的解集二、填空题(本题包括8个小题)11.2-的相反数是______,2-的倒数是______.【答案】2,12-【解析】试题分析:根据相反数和倒数的定义分别进行求解,﹣2的相反数是2,﹣2的倒数是12-.考点:倒数;相反数.12.如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,23).将矩形OABC 绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.【答案】(-23,6)【解析】分析:连接OB1,作B1H⊥OA于H,证明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=23,得到答案.详解:连接OB1,作B1H⊥OA于H,由题意得,OA=6,AB=OC-23,则tan ∠BOA=33AB OA =, ∴∠BOA=30°,∴∠OBA=60°,由旋转的性质可知,∠B 1OB=∠BOA=30°, ∴∠B 1OH=60°, 在△AOB 和△HB 1O ,111B HO BAOB OH ABO OB OB ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△AOB ≌△HB 1O ,∴B 1H=OA=6,OH=AB=23,∴点B 1的坐标为(-23,6),故答案为(-23,6).点睛:本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键.13.如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点D .若∠A=32°,则∠D=_____度.【答案】1【解析】分析:连接OC ,根据圆周角定理得到∠COD=2∠A ,根据切线的性质计算即可.详解:连接OC ,由圆周角定理得,∠COD=2∠A=64°, ∵CD 为⊙O 的切线, ∴OC ⊥CD ,∴∠D=90°-∠COD=1°,故答案为:1.点睛:本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.14.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是_________.【答案】a <﹣1【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.15.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.【答案】40︒.【解析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】连续左转后形成的正多边形边数为:4559÷=,则左转的角度是360940︒÷=︒.故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.16.分解因式:m2n﹣2mn+n= .【答案】n(m﹣1)1.【解析】先提取公因式n后,再利用完全平方公式分解即可【详解】m1n﹣1mn+n=n(m1﹣1m+1)=n(m﹣1)1.故答案为n(m﹣1)1.17.分解因式6xy2-9x2y-y3 = _____________.【答案】-y(3x-y)2【解析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止. 18.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m,两侧离地面4m。

新人教版九年级数学下册26.1.1反比例函数导学案新版

新人教版九年级数学下册26.1.1反比例函数导学案新版

反比例函数一、新课导入1、复习函数的定义。

2、对于函数,你了解了哪些方面的知识?二、学习目标1、理解并掌握反比例函数的概念;。

2、能判断一个给定的函数是否为反比例函数;3、并会用待定系数法求函数解析式三、研读课本认真阅读课本的内容,完成以下练习。

(一)划出你认为重点的语句。

(二)完成下面练习,并体验知识点的形成过程。

研读一、认真阅读课本要求:知道反比例函数的定义;会判断一个函数是不是反比例函数,会求反比例函数的解析式。

一边阅读一边完成检测一。

检测练习一、1.在下列实际问题中,变量间的对应关系可用怎样的函数式表示?(1)一辆以60km/h 匀速行驶的汽车,它行驶的距离S(单位:km)随时间t(单位:h)的变化而变化。

(2)一辆汽车的油箱中现有汽油50升,如果不再加油,平均每千米耗油量为0.1升,油箱中剩余的油量y(单位:升)随行驶里程 x (单位:千米)的变化而变化。

(3)京沪线铁路全程为1463km ,某次列车的平均速度v (单位:km/h )随此次列车的全程运行时间t (单位:h )的变化而变化。

(4)某住宅小区要种植一个面积为1000的矩形草坪,草坪的长y (单位:m )随宽x (单位:m )的变化而变化(5)已知北京市的总面积为41.6810 平方千米,人均占有的土地面积S (单位:平方千米/人)随全市总人口n (单位:人)的变化而变化。

(6)正方形的面积S 随边长x 的变化而变化。

2.反比例函数:一般地,形如__________(k 为常数,k ≠0)的函数,叫做反比例函数.3.反比例函数,自变量x 的取值范围是什么?4、完成尝试应用5、由反比例函数的概念知,只要确定__________,就确定了反比例函数的解析式.步骤:(1)先根据题意,设出反比例函数的解析式为_________________________;(2)代入x 与y 的一组对应值;(3)通过解方程,求出常数______;(4)写出反比例函数的解析式研读二、认真阅读课本已知y 是x 的反比例函数,当x=2时,y=6.(1)写出y 与x 的函数关系式(2)求当x=4时,y 的值检测练习二、已知y 与成反比例,当x =3时,y =4,(1)写出y 和x 之间的函数解析式;(2)求x =1.5时y 的值.研读三、问题探究:已知:12y y y =+,与x 成正比例,与x 成反比例,且当x=1时, y=4;x=2时,y=5,求y 与x 之间的函数关系式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杏山镇中心学校九年级数学导学案课题:反比例函数备课人: 审核人:学习目标:1.理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式; 学习难点:理解反比例函数的概念及建模;知识链接:1、形如)0(≠=k kx y 的函数叫做正比例函数,2,形如)0k b (≠+=是常数,且、k b kx y 的函数叫做一次函数。

当b=0时称为正比例函数1、一般地,如果两个变量x 、y 之间的关系可以表示成y = (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.反比例函数的基本形式还能表示为2、下列等式中,哪些是反比例函数? (填序号) (1)3xy =(2)x y 2-= (3)xy =21 (4)25+=x y(5)x y 23-= (6)31+=x y(7)y =x -43、苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为4、矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为5、函数21+-=x y 中自变量x 的取值范围是 6、y 是x 的反比例函数,下表给出了x 与y 的一些值:x -2 -1 21- 2113 y 32 2 -1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表。

三、探究、合作、交流:(根据掌握的知识,认真填写下列内容)1、已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式是 , 当x =-3时,y =2、已知y-2与x 成反比例,当x=3时,y=1,则y 与x 间的函数关系式是 。

3、当n 何值时,y =(n 2+2n )21nn x +-是反比例函数?。

4、已知y 与x 成反比例,且当x=2时,y=6,求y 与x 的函数关系式.5、已知y 与x-1成反比例函数,当x=2时y=1,则这个函数的表达式是( )A 、11-=x yB 、1-=x k yC 、11+=x yD 、11-=x y6、已知y 与x 2成反比例,并且当x=3时y=4.(1)写出y 与x 之间的函数关系式。

(2)求x=1.5时y 的值。

7、已知y=y 1+y 2,y 1与X 成正比例,y 2与x 成反比例,且当x=1时,y =0;当x =4时,y =9.求y 与x 的函数关系式8.若函数28)3(m x m y -+=是反比例函数,求m 。

四、当堂训练1、写出下列函数关系式,并指出它们各是什么函数(1)平行四边形面积是24cm 2,它的一边长xm 和这边上的高hcm 之间的关系是 .(2)小明用10元钱与买同一种菜,买这种菜的数量mkg 与单价n 元/kg•之间的关系是 (3)老李家一块地收粮食1 000kg ,这块地的亩数S 与亩产量tkg/亩之间的关系是 2、若y 是x-1的反比例函数,则x 的取值范围是3、若函数28)3(m x m y -+=是反比例函数,则m 的取值是 4、已知y 与x 2成反比例,并且当x=3时y=4.(1)写出y 与x 之间的函数关系式。

(2)求x=1.5时y 的值。

五、课后达标训练1、写出下列函数解析式:(1)体积是常数V 时,圆柱的底面积S 于高h 的关系;(2)柳树乡共有耕地S 公顷,该乡人均耕地面积y 于全乡人口x 的关系;(3)近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________.(4)某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为 .2、矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为 。

3、已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5. (1)求y 与x 的函数关系式. (2)当x =-2时,求函数y 的值杏山镇中心学校九年级数学导学案课题:反比例函数的性质(1) 备课人: 审核人:学习目标:1、了解反比例函数的图象的意义能描点画出反比例函数的图象;2、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。

学习重点:会作反比例函数的图象并掌握反比例函数的性质。

学习难点:探索并掌握反比例函数的性质。

知识链接:正比例函数y =kx (k ≠0)及一次函数y =kx +b (k 、b 是常数,k ≠0)的图像和性质。

画函数图象的方法与步骤——利用描点作图;列表:取自变量x 的哪些值? ——x 是不为零的任何实数,所以不能取x 的值的为零,但仍可以以零为基准,左右均匀,对称地取值。

描点: 依据什么(数据、方法)找点?连线: 在各个象限内按照自变量从小到大的顺序用两条平滑的曲线把所描的点连接起来。

一、预习导学1、一次函数y =kx +b (k 、b 是常数,k ≠0)的图象是 。

其性质有(1)所过象限 (2)增减性 (3)与坐标轴的交点 (4)平行 。

正比例函数y =kx (k ≠0)呢?2、已知变量y 与x 成反比例,并且当x =2时,y =-3。

(1)求y 与x 的函数关系式; (2)当y =2时x 的值;3、建立平面直角坐标系,画出下列函数的图象 (1) x y 6=(2)xy 6-= 二、 探究、合作、交流,生成总结探讨1.观察上述所作图像思考下列问题:(1)反比例函数xky =的图象是由 组成的.(通常称为 ) (2)当k =6时,两支曲线分别位于第 象限内,在每一象限内......,y 的值 (3)当k =-6时,两支曲线分别位于第 象限内,在每一象限内......,y 的值 (4)x y 6=和xy 6-=的图象关于 对称。

归纳:反比例函数图象的特征及性质: (1)反比例函数xky =(k ≠0)的图象是由两个分支组成的曲线,又叫 。

当0>k 时,图象在 象限,在每一象限内,y 随x 的增大而 ;当0<k 时,图象在 象限,在每一象限内 ,y 随x 的增大而 。

(2)与坐标轴的交点: (3)对称性: 三、当堂训练1.函数y =-ax +a 与xay -=(a ≠0)在同一坐标系中的图象可能是( )2.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,则m 的取值范围是 3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则反比例函数解析式为 4.过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( ) (A )S 1>S 2 (B )S 1=S 2 (C )S 1<S 2 (D )大小关系不能确定 四、课后达标训练1.反比例函数y=1m x-的图象在第二、四象限,则m 的取值范围是________. 2.已知反比例函数y=5mx-的图象在每一个象限内,y 随x 增大而增大,则m________.3.如果点(1,-2)在双曲线xky =上,那么该双曲线在第______象限.4.在反比例函数1ky x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( )A .-1B .0C .1D .25.若点(m ,-2m )在反比例函数ky x=的图像上,那么这个反比例函数的图像在( ) A .第一、二象限B 。

第三、四象限C 。

第一、三象限D 。

第二、四象限6、在反比例函数y=kx(k<0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1>x 2>0,则y 1-y 2的值为 ( )(A )正数 (B )负数 (C )非正数 (D )非负数 7、在直角坐标系中,若一点的横坐标与纵坐标互为倒数,•则这点一定在函数图象上 ________(填函数关系式).8.若一次函数y=kx+b 的图象经过第一、二、四象限,则反比例函数y=kbx的图象一定在 象限.9.已知反比例函数y a xa=--()226,当x >0时,y 随x 的增大而增大,求函数关系式。

10.已知反比例函数32)1(--=m x m y 的图象在第二、四象限,求m 值,并指出在每个象限内y 随x 的变化情况?杏山镇中心学校九年级数学导学案课题:反比例函数的图像和性质(2) 备课人: 审核人:学习目标:1、能用待定系数法求反比例函数的解析式.2、能用反比例函数的定义和性质解决实际问题.学习重点:反比例函数图象性质的应用.学习难点:反比例函数图象图象特征的分析及应用,学会从函数图象上分析、解决问题。

学习准备:1、如何画反比例函数图象。

2、反比例函数有哪些性质。

知识链接:待定系数法求函数解析式的一般步骤:(1)写出函数解析式的一般式,其中包括未知的系数;(2)把自变量与函数的对应值代入函数解析式中, 得到关于待定系数的方程或方程组;(3)解方程(组)求出待定系数的值,从而写出函数解析式。

二、探究、合作、交流1、已知反比例函数的图象经过点A (2,6)(1)这个函数的图象分布在哪些象限?y 随x 的增大而如何变化?(2)点B (3,4)、C (-212,-445)和D (2,5)是否在这个函数的图象上? 2、若点A (-2,a )、B (-1,b )、C (3,c )在反比例函数xky =(k <0)图象上,则a 、b 、c 的大小关系怎样?3、如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-2,1)、B (1,n )两点。

(1)求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值范围。

三、当堂训练1、判断下列说法是否正确 (1)反比例函数图象的每个分支只能无限接近x 轴和y 轴,•但永远也不可能到达x 轴或y 轴.( )(2)在y=3x中,由于3>0,所以y 一定随x 的增大而减小.( )(3)(3)已知点A (-3,a )、B (-2,b )、C (4,c )均在y=-2x的图象上,则a<b<c .( )(4)反比例函数图象若过点(a ,b ),则它一定过点(-a ,-b ).( )1、点(1,3)在反比例函数y=kx的图象上,则k= ,在图象的每一支上,y 随x •的增大而 . 2、设反比例函数y=3mx-的图象上有两点A (x 1,y 1)和B (x 2,y 2),且当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是 . 3、如图,Rt △ABO 的顶点A 是双曲线xky =与直线)1(+--=k x y 在第二象限的交点,AB ⊥x 轴于B 且S △ABO =23 (1)求这两个函数的解析式(2)求直线与双曲线的两个交点A ,C 的坐标和△AOC 的面积。

相关文档
最新文档