数学北师大版七年级下册尺规作图之做一个角等于已知角的评测练习
《用尺规作三角形》基础练习【七年级 下学期 数学 北师大 试题】
4.4 用尺规作三角形一、判断题1.只要知道三角形的三个基本元素,就可以作出惟一的三角形.()2.用量角器作一个角等于已知角也是尺规作图的一种.()3.已知两边和一角一定能做出惟一的三角形.()4.作一个角等于已知角是尺规作图中的最常用的基本作图之一.()二、填空题1.在几何里,把只用_________和_________画图的方法称为尺规作图.2.完成下列作图语言:(1)作射线_________(2)以点O为圆心,以OB为半径画弧,交射线_________于点B.(3)延长线段_________到_________,使_________=_________.(4)以_________为圆心,以_________为半径作弧,交_________于_________,交_________于_________.三、选择题1.尺规作图的画图工具是()A.刻度尺、圆规B.三角板和量角器C.直尺和量角器D.没有刻度的直尺和圆规2.利用基本作图,不能作出惟一三角形的是()A.已知两边及其夹角B.已知两角及夹边C.已知两边及一边的对角D.已知三边3.已知三边作三角形,用到的基本作图是()A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作一条线段等于已知线段的和4.用尺规画直角的正确方法是()A.用量角器B.用三角板C.平分平角D.作两个锐角互余5.作△ABC的高AD,中线AE,角平分线AF,三者中有可能画在△ABC外的是()A.ADB.AEC.AFD.都有可能四、用尺规作图已知线段a及锐角α,求作:三角形ABC,使∠C=90°,∠B=∠α,BC=a.(1)(2)(3)作法:1.作∠MCN=90°.2.以_________为圆心,_________为半径,在CM上截取_________.3.以_________为顶点,_________为一边作∠ABC=_________交CN于点A连结AB,则△ABC即为所作的三角形.参考答案一、1.× 2.× 3.× 4.√二、1.直尺圆规2.(1)OA(2)OA(3)AB C BC AB(4)O OD OA D OB E三、1.D 2.C 3.C 4.C 5.A四、2.C a CB=a3.B BC∠α。
北师大七年级下2.4《用尺规作角》习题含详细答案
《用尺规作角》习题一、选择题1.下列关于作图的语句中正确的是()A.画直线AB=10厘米B.画射线OB=10厘米C.已知A,B,C三点,过这三点画一条直线D.过直线AB外一点画一条直线和直线AB平行2.下列属于尺规作图的是()A.用刻度尺和圆规作△ABC B.用量角器画一个300的角C.用圆规画半径2cm的圆 D.作一条线段等于已知线段3.尺规作图的画图工具是()A.刻度尺、量角器B.三角板、量角器C.直尺、量角器 D.没有刻度的直尺和圆规4.下列作图语句正确的是()A.以点O为顶点作∠AOB B.延长线段AB到C,使AC=BC C.作∠AOB,使∠AOB=∠αD.以A为圆心作弧5.图中的尺规作图是作()A.线段的垂直平分线 B.一条线段等于已知线段C.一个角等于已知角 D.角的平分线6.下列作图语句正确的是()A.作射线AB,使AB=a B.作∠AOB=∠aC.延长直线AB到点C,使AC=BC D.以点O为圆心作弧7.下列叙述中,正确的是()A.以点O为圆心,以任意长为半径画弧,交线段OA于点B B.以∠AOB的边OB为一边作∠BOCC.以点O为圆心画弧,交射线OA于点BD.在线段AB的延长线上截取线段BC=AB8.下列尺规作图的语句错误的是()A.作∠AOB,使∠AOB=3∠αB.作线段AB,使线段AB=aC.以点O为圆心画弧 D.作∠ABC,使∠ABC=∠α+∠β9.下列属于尺规作图的是()A.用量角器画∠AOB的平分线OPB.利用两块三角板画15°的角C.用刻度尺测量后画线段AB=10cmD.在射线OP上截取OA=AB=BC=a10.下列关于作图的语句正确的是()A.作∠AOB的平分线OE=3 cmB.画直线AB=线段CDC.用直尺作三角形的高是尺规作图D.已知A、B、C三点,过这三点不一定能画出一条直线11.下列作图属于尺规作图的是()A.画线段MN=3cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线L的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α12.下列尺规作图的语句错误的是()A.作∠AOB,使∠AOB=3∠αB.以点O为圆心作弧C.以点A为圆心,线段a的长为半径作弧D.作∠ABC,使∠ABC=∠α+∠β二、填空题13.作图题的书写步骤是、、,而且要画出和,保留.14.下列语句表示的图形是(只填序号)①过点O的三条直线与另条一直线分别相交于点B、C、D三点:.②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD:.③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点:.15.下列语句是有关几何作图的叙述.①以O为圆心作弧;②延长射线AB到点C;③作∠AOB,使∠AOB=∠1;④作直线AB,使AB=a;⑤过三角形ABC的顶点C作它的对边AB的平行线.其中正确的有.(填序号即可)参考答案一、选择题1.答案:D解析:【解答】A、直线没有长度,故A选项错误;B、射线没有长度,故B选项错误;C、三点有可能在一条直线上,可画出一条直线,也可能不在一条直线上,此时可画出三条直线,故选项错误;D、正确.故选:D.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论.2.答案:D解析:【解答】A、用刻度尺和圆规作△ABC,而尺规作图中的直尺是没有长度的,错误;B、量角器不在尺规作图的工具里,错误;C、画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D、正确.故选:D.【分析】根据尺规作图的定义分别分析得出即可.3.答案:D解析:【解答】尺规作图的画图工具是没有刻度的直尺和圆规.故选D.【分析】根据尺规作图的定义可知.4.答案:C解析:【解答】A、画角既需要顶点,还需要角度的大小,错误;B、延长线段AB到C,则AC>BC,即AC=BC不可能,错误;C、作一个角等于已知角是常见的尺规作图,正确;D、画弧既需要圆心,还需要半径,缺少半径长,错误.故选C.【分析】根据画角的条件判断A;根据线段延长线的等腰判断B;根据基本作图判断C;根据确定弧的条件判断D.5.答案:A解析:【解答】根据图象是一条线段,它是以线段的两端点为圆心,作弧,进而作出垂直平分线,故做的是:线段的垂直平分线,故选:A.【分析】根据图象以及做线段垂直平分线的作法,即可得出答案.6.答案:B解析:【解答】A、射线是不可度量的,故选项错误;B、正确;C、直线是向两方无线延伸的,故选项错误;D、需要说明半径的长,故选项错误.故选B.【分析】根据射线、直线的延伸性以及确定弧的条件即可作出判断.7.答案:D解析:【解答】A、以点O为圆心,以任意长为半径画弧,交线段OA于点B,任意长为半径,不一定与线段AO相交,故此选项错误;B、以∠AOB的边OB为一边作∠BOC,∠BOC的度数不确定,故此选项错误;C、以点O为圆心画弧,交射线OA于点B,没有半径长,故此选项错误;D、在线段AB的延长线上截取线段BC=AB,正确.故选:D.【分析】分别利用尺规作图的定义,结合能否画出图形进而分析得出即可.8.答案:C解析:【解答】A、作一个角等于已知角的倍数是常见的尺规作图,语句正确;B、作一条线段等于已知线段是常见的尺规作图,语句正确;C、画弧既需要圆心,还需要半径,缺少半径长,这样的弧可以画出无数条,语句错误;D、作一个角等于两个已知角的和是基本作图,语句正确.故选C.【分析】分别利用尺规作图的定义,结合能否画出图形进而分析得出即可.9.答案:D解析:【解答】根据尺规作图的定义可得:在射线OP上截取OA=AB=BC=a,属于尺规作图,故选:D.【分析】根据尺规作图的定义:是指用没有刻度的直尺和圆规作图可直接选出答案.10.答案:D解析:【解答】A、作∠AOB的平分线OE=3 cm,角平分线是射线,故此选项错误;B、画直线AB=线段CD,直线没有长度,故此选项错误;C、用直尺作三角形的高是尺规作图,尺规应有圆规,故此选项错误;D、已知A、B、C三点,过这三点不一定能画出一条直线,此选项正确;故选:D.【分析】射线、直线具有延伸性,不能画出其长度;尺规作图需用圆规和无刻度的直尺;若A、B、C三点不共线,则无法过这三点画出一条直线,即A、B、C错误,D项正确.11.答案:D解析:【解答】A、画线段MN=3cm,需要知道长度,而尺规作图中的直尺是没有长度的,错误;B、用量角器画出∠AOB的平分线,量角器不在尺规作图的工具里,错误;C、用三角尺作过点A垂直于直线L的直线,三角尺也不在作图工具里,错误;D、正确.故选D.【分析】根据尺规作图的定义可知.12.答案:B解析:【解答】A、作一个角等于已知角的倍数是常见的尺规作图,正确;B、画弧既需要圆心,还需要半径,缺少半径长,错误.C、以点A为圆心,线段a的长为半径作弧,正确;D、作∠ABC,使∠ABC=∠α+∠β,正确故选B.【分析】根据基本作图的方法,逐项分析,从而得出结论.二、填空题13.答案:已知、求作、作法,图形,结论,作图痕迹.解析:【解答】作图题的书写步骤是已知、求作、作法,而且要画出图形和结论,保留作图痕迹.【分析】根据作图题的书写步骤和尺规作图的要求作答.14.答案:(3),(2),(1).解析:【解答】①过点O的三条直线与另一条直线分别相交于点B、C、D三点的图形为(3);②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD的图形为(2);③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点的图形为(1).【分析】图(1)为过点O有两条射线OC、OD,一条直线AB;图(2)为以直线AB上一点O 为顶点,在直线AB的同侧画∠AOC和∠BOD,图(3)为过点O的三条直线AB、OC、OD与另一条直线分别相交于点B、C、D三点.根据语句及图形特征进行选择.15.答案:③⑤.解析:【解答】①以O为圆心作弧可以画出无数条弧,因为半径不固定,所以叙述错误;②射线AB是由A向B向无限延伸,所以叙述错误;③根据作一个角等于已知角的作法,可以作一个角∠AOB,使∠AOB等于已知∠1,所以叙述正确;④直线可以向两方无限延伸,所以叙述错误;⑤根据平行公理:过直线外一点有且只有一条直线与已知直线平行,可以过三角形ABC的顶点C作它的对边AB的平行线,所以叙述正确.所以正确的有③⑤.【分析】①根据确定圆的两个条件:圆心和半径判断即可;②根据射线的性质判断即可;③根据基本作图:作一个角等于已知角判断即可;④根据直线的性质判断即可;⑤根据平行公理判断即可.。
北师大版七年级(下)数学4.4用尺规作三角形同步检测(原创)
北师大版七年级(下)数学4.4用尺规作三角形同步检测(原创)学校:___________姓名:___________班级:___________考号:___________一、单选题1.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP V V ≌的根据是( )A .SASB .ASAC .AASD .SSS 2.用尺规作图,已知三边作三角形,用到的基本作图是( )A .作一个角等于已知角B .作一条线段等于已知线段C .作已知直线的垂线D .作角的平分线3.请仔细观察用直尺和圆规作一个角A O B '''∠等于已知角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出A O B AOB '''∠=∠的依据是( )A .SASB .ASAC .AASD .SSS 4.下列属于尺规作图的是( )A .用量角器画∠AOB 的平分线OPB .利用两块三角板画15°的角C .用刻度尺测量后画线段AB =10cmD .在射线OP 上截取OA =AB =BC =a5.尺规作图的画图工具是( )A .刻度尺、量角器B .三角板、量角器C.直尺、量角器D.没有刻度的直尺和圆规6.根据下列条件,能画出唯一△ABC的是()A.AB=3,BC=4,AC=8 B.∠A=60°,∠B=45°,AB=4C.∠C=90°,AB=6 D.AB=4,BC=3,∠A=30°的作图痕迹,则此作图的已知条件是()7.如图是作ABCA.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角8.如图,用尺规作出∠OBF=∠AOB,所画痕迹¼MN是()A.以点B为圆心,OD为半径的弧B.以点C为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧二、填空题9.作三角形用到的基本作图是:(1)___________________________;(2)_______________________________;10.如图所示,要测量池塘AB 宽度,在池塘外选取一点P,连接AP、BP 并分别延长,使PC=PA,PD=PB,连接CD.测得CD 长为9 m,则池塘宽AB 为_____m.11.画线段AB;延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=AC,则线段CD=________AB.12.在ABC V 中给定下面几组条件:①BC=4cm ,AC=5cm ,∠ACB=30°;②BC=4cm ,AC=3cm ,∠ABC=30°;③BC=4cm ,AC=5cm ,∠ABC=90°;④BC=4cm ,AC=5cm ,∠ABC=120°.若根据每组条件画图,则ABC V 能够唯一确定的是___________(填序号).三、解答题13.如图所示,已知线段AB ,∠α,∠β,分别过A 、B 作∠CAB=∠α,∠CBA=∠β.(不写作法,保留作图痕迹)14.已知:线段a ,α∠,求作:ABC △,使AB AC a ==,B α∠=∠.15.已知:线段a ,∠α.求作:等腰△ABC ,使其腰长AB 为a ,底角∠B 为∠α.要求:用尺规作图,不写作法和证明,但要清楚地保留作图痕迹.16.已知三条线段a .b .c ,如图.用尺规作出△ABC ,使BC =a ,AC =b ,AB =c .(不写作法,保留作图痕迹)17.如图,已知线段AB,利用尺规作图,作出一个以线段AB 为边的等边三角形ABC .(保留作图痕迹,不写作法)18.用圆规、直尺作图,不写作法,但要保留作图痕迹.一个缺角的三角形残片如图所示,请你利用尺规画一个与它一样的(全等的)三角形.19.尺规作图,保留必要的作图痕迹.已知ABC ∆,求作DEF ∆,使DEF ABC ∆≅∆.20.如图,已知△ABC(1)作△ACD ,使△ACD 与△ACB 在AC 的异侧,并且△ACD ≌△ACB (要求:尺規作图、保留作图痕迹,不写作法);(2)连接BD ,交AC 于O ,试说明OB =OD .参考答案1.D【解析】解:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,即OC=OD ;以点C ,D 为圆心,以大于CD 长为半径画弧,两弧交于点P ,即CP=DP ;再有公共边OP ,根据“SSS”即得△OCP ≌△ODP .故选D .2.B【解析】【分析】根据作一条线段等于已知线段即可解决问题.【详解】已知三边作三角形,用到的基本作图是作一条线段等于已知线段,故选B .【点睛】本题考查基本作图,解题的关键是熟练掌握五种基本作图.3.D【解析】【分析】根据尺规作图得到OD O D ''=,OC O C ''=,CD C D ''=,根据三条边分别对应相等的两个三角形全等与全等三角形的性质进行求解.【详解】由尺规作图知,OD O D ''=,OC O C ''=,CD C D ''=,由SSS 可判定COD C O D '''≅V V ,则A O B AOB '''∠=∠,故选D .【点睛】本题考查基本尺规作图,全等三角形的判定与性质,熟练掌握全等三角形的判定定理:SSS 和全等三角形对应角相等是解题的关键.4.D【解析】根据尺规作图的定义可得:在射线OP上截取OA=AB=BC=a,属于尺规作图,故选D.5.D【解析】【分析】根据尺规作图的定义可知.【详解】尺规作图的工具是指没有刻度的直尺、圆规.故选D6.B【解析】【分析】判断一个三角形是否为三角形,即两边之和大于第三边,两边之差小于第三边,两边夹一角,或两角夹一边可确定三角形的形状,否则三角形则并不是唯一存在,可能有多种情况存在. 【详解】A.因为AC,BC,AB的长不满足三角形三边关系,所以A选项不能确定一个三角形;B. ∠A,∠B的公共边是AB,根据三角形全等的判定ASA可以确定一个三角形,故B选项能唯一确定一个三角形;C. 只有一个角一条边,故C选项不能唯一确定一个三角形;D. ∠A不是AB和BC边的夹角,故D选项不能唯一确定一个三角形,故选:B.【点睛】本题主要考查了三角形的确定问题,熟练掌握三角形的三边关系等相关问题是解决本题的关键.7.C【解析】【分析】∆的作图痕迹,可得此作图的条件.观察ABC【详解】∆的作图痕迹,可得此作图的已知条件为:∠α,∠β,及线段AB,解:观察ABC故已知条件为:两角及夹边,故选C.【点睛】本题主要考查三角形作图及三角形全等的相关知识.8.D【解析】分析:根据题意,所作出的是∠OBF=∠AOB ,,根据作一个角等于已知角的作法,¼MN是以点E 为圆心,DC 为半径的弧. 故选D .9. 作一个角等于已知角 作一条线段等于已知线段【解析】试题解析:作三角形用到的基本作图是:(1). 作一个角等于已知角(2). 作一条线段等于已知线段故答案为:(1). 作一个角等于已知角(2). 作一条线段等于已知线段.10.9【解析】【分析】这种设计方案利用了“边角边”判断两个三角形全等,利用对应边相等,得AB=CD .【详解】解:在△APB 和△DPC 中PC PA APB CPD PB PD =⎧⎪∠=∠⎨⎪=⎩,∴△APB ≌△DPC (SAS );∴AB=CD=9米(全等三角形的对应边相等).故池塘宽AB 为9m ,故答案为:9.【点睛】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.11.6【分析】先根据题意分别画出各线段,再结合图形利用线段的和差即可得出答案.【详解】(1)画线段AB;(2)延长线段AB到点C,使BC=2AB;(3)反向延长AB到点D,使AD=AC;由图可知,BC=2AB,AD=AC=3AB,故CD=6AB.故答案为6.【点睛】本题只要根据题意画出图形,根据各线段的长可直接解答,比较简单.12.①③④【解析】【分析】根据全等三角形的判定方法进行分析,从而得到答案.【详解】解:①符合全等三角形的判定定理SAS,即能画出唯一三角形,正确;②根据BC=4cm,AC=3cm,∠ABC=30°不能画出唯一三角形,如图所示△ABC和△BCD,错误;③符合全等三角形的判定定理HL,即能画出唯一三角形,正确;④∵∠ABC为钝角,结合②可知,只能画出唯一三角形,正确.故答案为:①③④.本题考查的是全等三角形的判定方法;解答此题的关键是要掌握三角形全等判定的几种方法即可,结合已知逐个验证,要找准对应关系.13.答案见解析【解析】分析:根据作一个角等于已知角的方法,分别以A、B为顶点,作图即可.本题解析:如图所示:14.答案见解析【解析】∠=,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径试题分析:首先作ABCα画弧即可得出C的位置.试题解析:如图所示:△ABC即为所求.15.见解析【解析】【分析】①作一底角∠B为∠α;②在∠B的一边上截取AB=a;③以点A为圆心,AB长为半径画弧,与∠B的另一边相交于点C,连接BC,△ABC就是所求的等腰三角形ABC.【详解】如图所示,△ABC即为所求.16.见解析.【解析】【分析】作线段BC=a,以点B为圆心,c为半径画弧,再以点C为圆心,b为半径画弧两弧的交点就是点A的位置,连接AB,AC即可.【详解】解::如图所示:【点睛】此题考查作图-复杂作图,解题关键在于熟练掌握作图法则17.答案见解析【解析】【分析】分别以A和B两点为圆心,以AB为半径画弧,两弧相加的点即为C点,连接AC和BC,即可得出答案.【详解】解:【点睛】本题考查的是尺规作图,需要熟练掌握等边三角形的性质.18.见解析.【解析】【分析】根据ASA即可作图.【详解】如图所示,△CDE即为所求.【点睛】此题主要考查尺规作图,解题的关键是熟知全等三角形的判定方法. 19.见解析.【解析】【分析】分别作出三边等于已知三角形的三边即可.【详解】步骤如下:;(1)画线段EF BC(2)分别以E、F为圆心,线段AB,AC为半径画弧,两弧交于点D;就是所求作的三角形.(3)连结线段DE、DF,DEF【点睛】此题考查作图-复杂作图,解题关键在于掌握知识点:三边对应相等的两三角形全等.20.(1)如图所示,△ACD即为所求;见解析;(2)见解析.【解析】【分析】根据全等三角形的性质即可作图根据全等三角形的定义即可证明【详解】(1)如图所示,△ACD即为所求;(2)如图所示,∵△ACD≌△ACB,∴∠BAO=∠DAO,AB=AD,又∵AO=AO,∴△ABO≌△ADO(SAS),∴BO=DO.【点睛】本题考查全等三角形,熟练掌握全等三角形的性质及定义是解题的关键.。
北师大版七年级下册数学作一个角等于已知角专项训练(原创)
【分析】
先作∠B=∠α,分别在∠B的两边上截取BA=a,BC=2a,连接AC,则△ABC即为所作.
【详解】
如图,先作∠B=∠α,分别在∠B的两边上截取BA=a,BC=2a,连接AC,则△ABC即为所求作.
【点睛】
考查了复杂作图,解题关键是掌握作一个角等于已知角的方法.
16.见解析
【来源】广东省茂名市九校联考2018-2019学年七年级下学期期中数学试题
【解析】
【分析】
根据平行线的判定:同位角相等,两条直线平行,即可作图.
【详解】
过点M作∠AMF=∠AOB,延长FM,如图:
∴EF就是所求作的与OB平行的直线.
【点睛】
本题主要考查尺规作图,掌握同位角相等,两条直线平行,是解题的关键.
15.见解析
【来源】山东省东营市垦利区2019-2020学年七年级上学期期中数学试题
10.已知∠α和线段m,n,求作△ABC,使BC=m,AB=n,∠ABC=∠α,作法的合理顺序为________.(填序号即可)
①在射线BD上截取线段BA=n;②作一条线段BC=m;③以B为顶点,以BC为一边,作∠DBC=∠α;④连接AC,△ABC就是所求作的三角形.
11.完成作图步骤:已知∠ ,∠ (∠ >∠ ),求作一个角,使它等于∠ -∠ .作法:(1)作∠AOB=_______;(2)以OA为一边,在∠AOB的内部作∠AOC=___,则∠BOC就是所求作的角(如图).
则∠ABD=∠CBD=25°,
∴∠BDC的度数为:∠A+∠ABD=105°.
故选D.
【点睛】
此题主要考查了基本作图以及等腰三角形的性质,得出BD平分∠ABC是解题关键.
4.D
北师大版(2012)七年级下册数学随堂小练 2.4用尺规作角(有答案)
数学随堂小练北师大版(2012)七年级下册2.4用尺规作角一、单选题1.用直尺和圆规作一个角等于已知角,如图,能得出'''A O B AOB ∠=∠的依据是( )A. SSSB. SASC. ASAD. AAS2.已知:∠AOB 作法:(1)作射线O'A'.(2)以点O 为圆心,以任意长为半径作弧,交OA 于C,交OB 于D.(3)以点O'为圆心,以OC 长为半径作弧,交O’A'于C'.(4)以点C'为圆心,以CD 长为半径作弧,交前弧于D'.(5)经过点D'作射线O'B'.∠A'D'B'就是所求的角.这个作图是() A.平分已知角B.作一个角等于已知角C.作一个三角形等于已知三角形D.作一个角的平分线3.如图所示,“过点P 画直线a 的平行线b”的作法的依据是( )A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等4.已知α∠是锐角, α∠与β∠互补, α∠与γ∠互余,则βγ∠-∠的值等于( )A.45°B.60°C.90°D.180°5.如图所示,点C 在∠AOB 的OB 边上,用尺规作出了CN∥OA,作图痕迹中,FG 是( )A.以点C 为圆心,OD 为半径的弧B.以点C 为圆心,DM 为半径的弧C.以点E 为圆心,OD 为半径的弧D.以点E 为圆心,DM 为半径的弧6.已知点C 在∠AOB 的OB 边上,用尺规过点C 作CN∥OA,作图痕迹如图所示.下列对弧FG 的描述,正确的是( )A.以点C 为圆心,OD 的长为半径的弧B.以点C 为圆心,OM 的长为半径的弧C.以点E 为圆心,DM 的长为半径的弧D.以点E 为圆心,CE 的长为半径的弧7.请仔细观察用直尺和圆规作一个角等于已知角的示 意图,请你根据所学的三角形全等有关的知识,说明画出∠A'O'B'=∠AOB 的依据是( )A.SASB.ASAC.AASD.SSS8.四位同学做“读语句画图”练习.甲同学读语句“直线经过A,B,C三点,且点C在点A与点B之间”,画出图形(1);乙同学读语句“两条线段AB,CD相交于点P”画出图形(2);丙同学读语句“点P在直线l上,点Q在直线l外”画出图形(3);丁同学读语句“点M在线段AB的延长线上,点N在线段AB的反向延长线上”画出图形(4). 其中画的不正确的是( )A.甲同学B.乙同学C.丙同学D.丁同学9.下列作图语言规范的是( )A.过点P作线段AB的中垂线B.过点P作∠AOB的平分线C.在直线AB的延长线上取一点C,使AB=ACD.过点P作直线AB的垂线二、填空题10.尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法__________.11.用尺规作一个角等于已知角如下图所示,则说明∠AOB=∠A′O′B′的依据是__________(填“SSS” “SAS” “AAS” 或“ASA”)12.如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F,为圆心,大于12EF长为半径作圆弧,两弧交于点G,作射线BG交CD于点H。
北师大版七年级数学下册《用尺规作角》同步练习
4.用尺规作线段和角同步练习
一、判断题
1.尺规作图是指用刻度尺和圆规作图.()
2.尺规中的尺是指没有刻度的直尺.()
3.用直尺和三角板过直线外一点作已知直线的平行线是尺规作图.()
4.最基本的尺规作图是作线段和角.()
二、填空题
1.已知线段AB,求作:线段A′B′,使A′B′=AB.
作法:(1)作射线A′C′.
(2)以点A′为圆心,以____________交A′C′于点B′,_________就是所作的线段.
2.已知:∠AOB.
求作:∠A′O′B′,使∠A′O′B′=∠AOB.
作法:(1)作射线O′A′
(2)以点O为圆心,以_________长为半径画弧交OA于点C,交OB于点D.
(3)以点O′为圆心,以_________长为半径画弧,交O′A′于点C′.
(4)以点C′为圆心,以_________长为半径画弧,交前面的弧于点D′.
(5)过点D′作射线O′B′,∠A′O′B′就是所求作的角.
三、作图
用尺规完成下列作图.
1.已知线段a、b(a>b),利用尺规作线段c,使c=a-b.
2.已知∠α、∠β(∠α>∠β),求作一个角,使它等于∠α-∠β.
答略。
北师大版七年级数学下册第二章《尺规作图》专项练习试题含答案
七年级数学下册第二章《尺规作图》专项练习班级:_________________ 姓名:_________________ 座号:________________ 评分:一. 选择题 (共10小题,答案写在表格内,否则答案无效)A .刻度尺和圆规B .不带刻度的直尺和圆规C .刻度尺D .圆规2.如图,用尺规作出∠OBF=∠AOB,作图痕迹MN 是( ).A .以点B 为圆心,OD 为半径的圆 B .以点B 为圆心,DC 为半径的圆 C .以点E 为圆心,OD 为半径的圆D .以点E 为圆心,DC 为半径的圆3.我们利用尺规作图可以作一个角()''A O B ∠等于已知角()AOB ∠,如下所示:(1)作射线OA ;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ; (3)以O '为圆心,OC 为半径作弧,交OA '于'C ; (4)以C '为圆心,OC 为半径作弧,交前面的弧于D ; (5)连接'O D '作射线,O B ''则A O B '''∠就是所求作的角. 以上作法中,错误的一步是( ) A .()2B .()3C .()4D .()54.下面出示的的尺规作图题,题中符号代表的内容正确的是( ) 如图,已知∠AOB ,求作:∠DEF ,使∠DEF =∠AOB作法:(1)以①为圆心,任意长为半径画弧,分别交OA 、OB 于点P 、Q ; (2)作射线EG ,并以点E 为圆心②长为半径画弧交EG 于点D ; (3)以点D 为圆心③长为半径画弧交(2)步中所画弧于点F ; (4)作④,∠DEF 即为所求作的角.A .①表示点EB .②表示PQC .③表示OQD .④表示射线EF5.用直尺和圆规作∠HDG=∠AOB 的过程中,弧②是( )A .以D 为圆心,以DN 为半径画弧B .以M 为圆心,以DN 长为半径画弧C .以M 为圆心,以EF 为半径画弧D .以D 为圆心,以EF 长为半径画弧6.如图,是用直尺和圆规作一个角等于己知角的方法,即作'''A O B AOB ∠=∠.这种作法依据的是( )A .SSSB .SASC .AASD .ASA7.用直尺和圆规作∠HDG =∠AOB 的过程,弧①是( )A .以D 为圆心,以DN 为半径画弧B .以D 为圆心,以EF 为半径画弧C .以M 为圆心,以DN 为半径画弧D .以M 为圆心,以EF 为半径画弧8.下面是黑板上出示的尺规作图题,需要回答横线上符号代表的内容:如图,已知AOB ∠,求作:DEF ∠,使DEF AOB ∠=∠.作法:(1)以为圆心,任意长为半径画弧,分别交OA 、OB 于点P 、Q ;(2)作射线EG ,并以点E 为圆心,长为半径画弧交EG 于点D ;(3)以点D 为圆心,长为半径画弧交(2)步中所画弧于点F ;(4)作,DEF ∠即为所求作的角.A .表示点EB .表示PQC .表示OQD .表示射线EF9.如图,点C 在AOB ∠的OB 边上,用尺规作出了BCD AOB ∠=∠.以下是排乱的作图过程:①以C 为圆心,OE 长为半径画MN ,交OB 于点M . ②作射线CD ,则BCD AOB ∠=∠.③以M 为圆心,EF 长为半径画弧,交MN 于点D .④以O 为圆心,任意长为半径画EF ,分别交OA ,OB 于点E ,F .则正确的作图顺序是( )A .①—②—③—④B .③—②—④—①C .④—①—③—②D .④—③—①—② 10.在△ABC 中,AB=AC ,∠A=80°,进行如下操作:①以点B 为圆心,以小于AB 长为半径作弧,分别交BA 、BC 于点E 、F ; ②分别以E 、F 为圆心,以大于12EF 长为半径作弧,两弧交于点M ;③作射线BM 交AC 于点D , 则∠BDC 的度数为( ).A .100°B .65°C .75°D .105°二.填空题(共7小题)11.在几何里,把只用_________和_________画图的方法称为尺规作图. 12.已知1∠和2∠,画一个角使它等于12∠+∠,画法如下: (1)画AOB ∠=______________.(2)以点O 为顶点,OB 为始边,在AOB ∠的__________作2BOC ∠=∠;则12AOC ∠=∠+∠.13.如图,∠CAD 为△ABC 的外角,按以下步骤作图:①以点B 为圆心,以适当长为半径画弧,交BA 于点M ,交BC 于点N ; ②以点A 为圆心,以BM 长为半径画弧,交AD 于点P ; ③以点P 为圆心,以MN 长为半径画弧,交前一条弧于点Q ; ④经过点Q 画射线AE ,若∠C=50°,则∠EAC 的大小是_____度.14.下列作图中:①用量角器画出90AOB ∠=︒;②作AOB ∠,使2AOB α∠=∠;③连接AB ;④用直尺和三角板作AB 的平行线CD ,属于尺规作图的是__________.(填序号)15.已知∠α和线段m ,n ,求作△ABC ,使BC =m ,AB =n ,∠ABC =∠α,作法的合理顺序为________.(填序号即可)①在射线BD 上截取线段BA =n ;②作一条线段BC =m ;③以B 为顶点,以BC 为一边,作∠DBC =∠α;④连接AC ,△ABC 就是所求作的三角形.16.如图,CAD ∠为ABC ∆的外角,按以下步骤作图:①以点B 为圆心,以适当长为半径画弧,交BA 于点M ,交BC 于点N ;②以点A 为圆心,以BM 长为半径画弧,交AD 于点P ;③以点P 为圆心,以MN 长为半径画弧,交前一条弧于点Q ;④经过点Q 画射线AE .若50C ∠=︒,则EAC ∠的大小是__________度.17.如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径.画弧,分别交AB 、AC 于点E 、F ; ②分别以点E 、F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ; ③作射线AG ,交BC 边于点D ,则∠ADC 的度数为_____.三.解答题18.如图,在△ABC 中,BD 是边AC 上的高.请用尺规作图法,在BD 上求作一点E ,使得∠CED +∠ABD =90°.(保留作图痕迹,不写作法)19.已知:线段c 和αβ∠∠,求作:ABC ,使得AB c A B αβ=∠=∠∠=∠,,(不写作法,但保留作图痕迹)20.已知线段a 及锐角α,用直尺和圆规作ABC ,使B α∠=∠,AB BC a ==.21.尺规作图:已知α∠,β∠,求一个角∠AOB ,使∠AOB =α∠+β∠.(保留作图痕迹)22.如图,已知三角形ABC 和射线EM ,用直尺和圆规按下列步骤作图(保留作图痕迹,不写作法):(1)在射线EM 的上方,作NEM B ∠=∠;(2)在射线EN 上作线段DE ,在射线EM 上作线段EF ,使得DE AB =,EF BC =;(3)连接DF ,观察并猜想:DF 与AC 的数量关系是DF ______AC ,填(“>”、“<”或“=”) 23.按要求作图(1)如图,已知线段,a b ,用尺规做一条线段,使它等于+a b (不要求写作法,只保留作图痕迹)(2)已知:∠α,求作∠AOB=∠α(要求:直尺和圆规作图,不写作法,保留作图痕迹)24.如图,已知ABC 中,AB AC =,点P 在BC 上.(1)试用直尺和圆规在AC 上找一点D ,使CPD BAP ∠=∠(不写作法,但需保留作图痕迹);(2)在(1)的条件下,若2APC ABC ∠=∠;求证://PD AB .25.(1)如图,在直线MN 的异侧有A 、B 两点,按要求画图,并注明画图的依据. 请在图1中直线MN 上画一点D ,使线段AD +BD 最短.依据是 . (2)如图2,已知∠AOB,用圆规和没有刻度的直尺求作∠A'O'B',使∠A'O'B'=∠AOB26.如图,已知锐角△ABC ,点D 是AB 边上的一定点,请用尺规在AC 边上求作一点E ,使∠ADE =∠ABC ,(保留作图痕迹,不写做法)27.如图,已知α∠,β∠.求作:AOB ∠,使AOB αβ∠=∠-∠.(尺规作图,保留作图痕迹,不写作法)28.尺规作图(1)如图所示,已知线段AB ,∠α,∠β,用尺规作一个△ABC,使它的两个角分别为∠CAB=∠α,∠CBA=∠β.(不写作法,保留作图痕迹,图作在空白处)(2)已知:点P 为∠CAB 边上的一点,求作:直线PQ ,使得PQ∥AB29.如图,已知AOB ∠和射线O A ''.(1) 请用尺规作图法,在射线O A ''上作A O B '''∠,使得A O B AOB '''∠=∠; (不要求写作法,保留作图痕迹).(2) 若40AOB ︒∠=,求AOB ∠的余角和补角.30.如图,已知点P 为∠AOB 一边OB 上的一点.(1)请利用尺规在∠AOB 内部作∠BPQ ,使∠BPQ =∠AOB ;(不写作法,保留作图痕迹)(2)根据上面的作图,判断PQ 与OA 是否平行?若平行,请说明理由.31.如图,在△ABC 中,∠C >∠B.(1)请用尺规过点C 作一条射线,与边AB 交于点D ,使△ACD ∽△ABC (保留作图痕迹,不写作法);(2)已知AB =6,AC =4,求AD 的长. 32.作图与计算(1)已知:AOB α∠∠,.求作:在图2中,以OA 为一边,在∠AOB 的内部作.∠AOC =α∠(要求:直尺和圆规作图,不写作法,保留图痕迹.)(2)过点O 分别引射线OA 、OB 、OC ,且∠AOB =65°,∠BOC =30°,求∠AOC 的度数.33.如图,一块大的三角板ABC ,D 是AB 上一点,现要求过点D 割出一块小的三角板ADE ,使∠ADE=∠ABC,(1)尺规作出∠ADE.(不写作法,保留作图痕迹,要写结论) (2)判断BC 与DE 是否平行,如果是,请证明.34.如图,点D 在ABC △的AB 边上,且ACD A ∠=∠. (1)作BDC ∠的平分线DE ,交BC 于点E (用量角器画).(2)在(1)的条件下,BDC ACD A ∠=∠+∠,判断直线DE 与直线AC 的位置关系.35.如图,已知△ABC,(1)作图:试过点C 作直线CD∥AB,(用尺规作图法,保留作图痕迹,不要求写作法); (2)请你写出(1)的作图依据: .参考答案一. 选择题(每小题3分,共10小题)二.填空题(每小题4分,共7小题)11. 没有刻度的直尺圆规12. ∠1, 外部13. 50 14. ②③15. ②③①④ 16. 50 17. 65°三.解答题(共8小题)18.解:如图,点E为所求.19. 解:△ABC为所求作.20. 解:如图所示:△ABC即为所作.21. 解:如图,AOB ∠即为所作.22. 解:(1)如图所示:作法:①以点B 为圆心任意长为半径画圆弧,交AB ,BC 于点G ,H ②再以点E 为圆心以①中的半径画圆弧,交EM 于点P③再以点P 为圆心GH 长为半径画圆弧,与②所画的圆弧交于点N ,连接EN 即可 (2)如图所示:作法:①用圆规取BC 的长度,以点E 为圆心BC 长为半径画弧,交EM 于点F ,则EF=BC ②用圆规取AB 的长度,以点E 为圆心AB 长为半径画弧,交EN 的延长线于点D ,则DE=AB(3)根据EF=BC ,DE=AB ,B NEM ∠=∠可证ABC EDF △≌△,则DF=AC23. 解:(1)作射线CF ,在射线上顺次截取CD=a ,DE=b ,如下图所示,线段CE 即为所求:(2)首先作射线OA ,如下图所示,∠AOB 即为所求:24. 解:解:(1)如图所示.(2)∵2APC APD DPC ABC BAP ABC ∠=∠+∠=∠+∠=∠∴BAP ABC ∠=∠∵BAP CPD ∠=∠∴CPD ABC ∠=∠∴//PD AB .25. 解:(1)D 点为线段AB 与直线MN 的交点,如图.依据为两点之间线段最短.(2)①作任意一射线O A '',如图2;②以O 点为圆心,任意长度为半径作弧交OA 、OB 于点M 、N ,如图1;③以O '点为圆心,同样的长度为半径作弧交O A ''于点M ',如图2;④以点M '为圆心,MN 为半径作弧交③的弧于点N ',如图2;⑤连接O N ''并延长至B ',如图2,则A O B '''∠即为所求的角.26. 解:解:如图所示:通过这个方法作图,可以证明()BGF DAH SSS ≅,就可以得到ADE ABC =∠∠.27. 解:作∠AOC=α∠,然后在∠AOC 内部作∠BOC=β∠,即可得到AOB αβ∠=∠-∠,如下图所示,∠AOB 即为所求.28. 解:(1)如图所示:;(2)如图所示:.29. 解:(1)所作图形如答图2所示,A O B '''∠即为所求.(2) 当40AOB ∠=︒时,AOB ∠的余角=904050︒-︒=︒.AOB ∠的补角18040140=-=︒︒︒.30. 解:(1)如图所示: ;(2)BPQ AOB ∠=∠,//PQ OA ∴(同位角相等,两直线平行).31. 解:(1)如图,CM 即为所求作的射线;(2)在△ABC和△ACD中,∵∠ACD=∠B,∠A=∠A,∴△ABC∽△ACD,∴AB AC AC AD=,∴224863ACADAB===.32. 解:(1)如图所示:∠AOC就是所求的角.(2)分两种情况讨论:①当OC在∠AOB内部时,如图1,∠AOC=∠AOB-∠BOC=65°-30°=35°;②当OC在∠AOB外部时,如图2,∠AOC=∠AOB+∠BOC=65°+30°=95°.33. 解:(1)如图,∠ADE为所作;(2)BC∥DE.理由如下:∵∠ADE=∠ABC,∴BC∥DE.34. 解:(1)如图:(2)DE∥AC,理由:∵∠BDC=∠A+∠DCA,∠A=∠DCA,∴∠BDC=2∠DCA,∵DE平分∠BDC,∴∠BDC=2∠EDC,∴∠EDC=∠DCA,∴DE∥AC.35. 解:(1)(2)同位角相等,两直线平行.。
七年级数学下册 相交线与平行线用尺规作角练习 北师大版(1)
2.4 用尺规作图同步测试一、单选题(共10题;共20分)1.如图所示的尺规作图的痕迹表示的是()A. 尺规作线段的垂直平分线B. 尺规作一条线段等于已知线段C. 尺规作一个角等于已知角D. 尺规作角的平分线2.下列尺规作图的语句正确的是()A. 延长射线AB到DB. 以点D为圆心,任意长为半径画弧C. 作直线AB=3cmD. 延长线段AB至C,使AC=BC3.已知三边作三角形,用到的基本作图是()A. 作一个角等于已知角 B.平分一个已知角C. 在射线上截取一线段等于已知线段D. 作一条直线的垂线4.在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB的长为()A. 3cmB. 7cmC. 3cm或7cm D. 5cm或2cm5.用直尺和圆规作线段的垂直平分线,下列作法正确的是()A. B. C.D.6.作已知角的平分线是根据三角形的全等判定()作的.A. AASB. ASAC. SASD. SSS7.作一个角等于已知角用到下面选项的哪个基本事实()A. SSSB. SASC. ASAD. AAS8.如图,用尺规法作∠DEC=∠BAC,作图痕迹的正确画法是()A. 以点E为圆心,线段AP为半径的弧B. 以点E为圆心,线段QP为半径的弧C. 以点G为圆心,线段AP为半径的弧D. 以点G为圆心,线段QP为半径的弧9.在△ABC中,AB=AC,∠A=80°,进行如下操作:①以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点E、F;②分别以E、F为圆心,以大于EF长为半径作弧,两弧交于点M;③作射线BM交AC于点D,则∠BDC的度数为()A. 100°B. 65°C. 75°D. 105°10.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法错误的是()A. ∠BAD=∠CADB. 点D到AB边的距离就等于线段CD的长C. S△ABD=S△ACDD. AD垂直平分MN二、填空题(共5题;共5分)11.如图,已知线段AB,分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,连接AC,BC,BD,CD.其中AB=4,CD=5,则四边形ABCD的面积为________ .12.在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为________ .13.如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是________ .14.利用直尺和圆规作出一个角的角平分线的作法,其理论依据是全等三角形判定方法________ .15.数学活动课上,同学们围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”其中一位同学作出了如图所示的图形.你认为他的作法的理由有________三、解答题(共2题;共20分)16.综合题。
七年级数学下册第四章三角形4用尺规作三角形直角三角形全等的判定、尺规作图、测距离试题北师大版
直角三角形全等的判定、尺规作图、测距离知识点一:直角三角形的判定1.直角三角形全等的判定条件——HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等.2.直角三角形全等的判定方法的综合运用.判定两个直角三角形全等的方法有五种,即SSS、SAS,ASA.AAS,HL.3.判定条件的选择技巧(1)上述五种方法是判定两直角三角形全等的方法,但有些方法不可能运用.如SSS,因为有两边对应相等就能够判定两个直角三角形全等.(2)判定两个直角三角形全等,必须有一组对应边相等.(3)证明两个直角三角形全等,可以从两个方面思考:①是有两边相等的,可以先考虑用HL,再考虑用SAS;②是有一锐角和一边的,可考虑用ASA或AAS.例1.如图所示,有两个长度相等的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯的水平方向的长度DF相等,则∠ABC+∠DFE=________.分析:本题解决问题的关键是证明Rt△ABC≌Rt△DEF,由此,我们也知道三角形全等是解决问题的有力工具.解:由现实意义及图形提示可知CA⊥BF,ED⊥BF,即∠BAC=∠EDF=90°.又因为BC=EF,AC=DF,可知Rt△ABC≌Rt△DEF.得∠DFE=∠ACB.因为∠ACB+∠ABC=90°,故∠ABC+∠DFE=90°.例2.如图所示,△ABC中,AD是它的角平分线,BD=CD,DE.DF分别垂直于AB.AC,垂足为E.F.求证BE=CF.解:在△AED和△AFD中,∠ ∠ (垂直的定义)∠ ∠ (角平分线的定义)(公共边)所以△AED≌△AFD(AAS).所以DE=DF(全等三角形的对应边相等).在Rt△BDE和Rt△CDF中, (已知) (已证)所以Rt△BDE≌△Rt△CDF(HL).所以BE= CF(全等三角形的对应边相等).例3.如图所示,已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:CF=DF.分析:要证CF=DF,可连接AC.AD后,证△ACF≌△ADF即可.证明:连结AC.AD.在△ABC和△AED中,所以AC=AD(全等三角形的对应边相等).因为AF⊥CD(已知),所以∠AFC=∠AFD=90°(垂直定义).在Rt△ACF和Rt△ADF中,(已证) (公共边)所以Rt△ACF≌Rt△ADF(HL).所以CF=DF(全等三角形的对应边相等).例4.已知在△ABC与△A′B′C′中,CD.C′D′分别是高,且AC=A′C′,AB=A′B′,CD=C′D′,试判断△ABC 与△A′B′C′是否全等,说说你的理由.分析:分析已知条件,涉及到三角形的高线,而三角形的高线有在三角形内、外或形上三种情形,故需分类讨论. 解:情形一,如果△ABC与△A′B′C′都为锐角三角形,如图所示.因为CD.C′D′分别是△ABC.△A′B′C′的高.所以∠ADC=∠A′D′C′=90°.在△ADC和△A′D′C′中∴Rt△ADC≌Rt△A′D′C′,则∠A=∠A′.在△ABC与△A′B′C′中,∴△ABC≌△A′B′C′(SAS).情形二,当△ABC为锐角三角形,△A′B′C′为钝角三角形,如图.显然△ABC与△A′B′C′不全等.情形三,当△ABC与△A′B′C′都为钝角三角形时,如图.由CD.C′D′分别为△ABC和△A′B′C′的高,所以∠ADC=∠A′D′C′=90°,在Rt△ADC和Rt△A′D′C′中,CD=C′D′,AC=A′C′∴Rt△ACD≌Rt△A′C′D′,∴∠CAD=∠C′A′D′.∴∠CAB=∠C′A′B′,在△ABC与△A′B′C′中∴△ABC≌△A′B′C′.例5.阅读下题及证明过程:如图,已知D是△ABC中BC边上的一点,E是AD上一点,EB=EC,∠BAE=∠CAE,求证:∠ABE=∠ACE.证明:在△ABE和△ACE中∴△ABE≌△ACE 第一步∴∠ABE=∠ACE 第二步上面的证明过程是否正确?若正确,请写出每一步推理的根据,若不正确,请指出错在哪一步,并写出你认为正确的证明过程.分析:用三角形全等的判定条件去判断,易发现错在第一步,它不符合全等三角形的条件,因此需另辟途径.由题设知,当结论成立时,必有△ABE≌△ACE,而由已知条件不能求证这两个三角形全等,故需将这两个三角形中重新构造出全等三角形.解:上面的证明过程不正确,错在第一步,正确的证明过程如下:过E作EG⊥AB于G,EH⊥AC于H.如图所示则∠BGE=∠CHE=90°在△AGE与△AHE中∴△AGE≌△AHE∴EG=EH在Rt△BGE与Rt△CHE中,EG=EH,BE=CE.∴Rt△BGE≌Rt△CHE,∴∠ABE=∠ACE.例6.已知:如图所示,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD.(1)求证:BE⊥AC;(2)若把条件BF=AC和结论BE⊥AC互换,那么这个命题成立吗?(1)证明:因为AD⊥BC(已知),所以∠BDA=∠ADC=90°(垂直定义),∠1+∠2=90°(直角三角形两锐角互余).在Rt△BDF和Rt△ADC中, (已知) (已知)所以Rt△BDF≌Rt△ADC(HL).所以∠2=∠C(全等三角形的对应角相等).因为∠1+∠2=90°(已证),所以∠1+∠C=90°.因为∠1+∠C+∠BEC=180°(三角形内角和等于180°),所以∠BEC=90°.所以BE⊥AC(垂直定义);(2)证明:命题成立,因为BE⊥AC,AD⊥BC,所以∠BDF=∠ADC=90°(垂直定义).所以∠1+∠C=90°,∠DAC+∠C=90°.所以∠1=∠DAC(同角的余角相等).在△BFD与△ACD中,∠ ∠ (已证)∠ ∠ °(已证)(已知)所以△BFD≌△ACD(AAS).所以BF=AC(全等三角形的对应边相等).知识二:利用三角形全等测距离通过探索三角形全等,得到了“边边边”,“边角边”,“角边角”,“角角边”定理,用这些定理能够判断两个三角形是否全等,掌握了这些知识,就具备了“利用三角形全等测距离”的理论基础.体会数学与生活的密切联系,能够利用三角形全等解决生活中的实际问题.在解决实际问题时确定方案使不能直接测量的物体间的距离转化为可以测量的距离(即把距离的测量转化为三角形全等的问题).例1.如图,有一湖的湖岸在A.B之间呈一段圆弧状,A.B间的距离不能直接测得.•你能用已学过的知识或方法设计测量方案,求出A.B间的距离吗?答案:要测量A.B间的距离,可用如下方法:(1)过点B作AB的垂线BF,在BF上取两点C.D,使CD=BC,再定出BF的垂线DE,使A.C.E在一条直线上,根据“角边角公理”可知△EDC≌△ABC.因此:DE=BA.•即测出DE的长就是A.B之间的距离.(如图甲)(2)从点B出发沿湖岸画一条射线BF,在BF上截取BC=CD,过点D作DE∥AB,使A.•C.E在同一直线上,这时△EDC≌△ABC,则DE=BA.即DE的长就是A.B间的距离.(•如图乙)例2.如图、小红和小亮两家分别位于A.B两处隔河相望,要测得两家之间的距离,请你设计出测量方案.分析:本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,使一个三角形在河岸的同一边,通过测量这个三角形中与AB相等的线段的长,就可求出两家的距离.方案:如图,在点B所在的河岸上取点C,连接BC并延长到D,使CD=CB,利用测角仪器使得∠B=∠D,A.C.E三点在同一直线上.测量出DE的长,就是AB的长.因为∠B=∠D,CD=CB,∠ACB=∠ECD,所以△ACB≌△ECD,所以AB=DE.知识点三:尺规作图1.用尺规作三角形的根据是三角形全等的条件.2.尺规作图的几何语言①过点×、点×作直线××;或作直线××;或作射线××;②连接两点××;或连接××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;④在××上截取××=××;⑤以点×为圆心,××的长为半径作圆(或弧);⑥以点×为圆心,××的长为半径作弧,交××于点×;⑦分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×.3.用尺规作图具有以下三个步骤①已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;②求作:能根据题目写出要求作出的图形及此图形应满足的条件;③作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹. 对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.例1.已知三角形的两角及其夹边,求作这个三角形.已知:∠α,∠β,线段c(如图).求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.请按照给出的作法作出相应的图形.例2.如图,已知线段a,b,c,满足a+b>c,用尺规作图法作△ABC,使BC=a,AC=b,AB=c.错误作法:(1)作线段AB=c;(2)作线段BC=a;(3)连接AC,则△ABC就是所求作的三角形(如图).分析:本题第2步作线段BC=a,在哪个方向作,∠CBA的度数是多少是不确定,所以这步的作法不正确,不能保证AC的长一定等于b.错误的原因在于没有真正理解用尺规作三角形的方法.正确作法:(1)作射线CE;(2)在射线CE上截取CB=a;(3)分别以C,B为圆心,b,c长为半径画弧,两弧交于点A.连接AC.AB,则△ABC为所求作的三角形(如图).例3.已知两边和其中一边上的中线,求作三角形.已知线段A.b 和 m.求作△ABC,使BC=a,AC=b,BC边上的中线等于m.分析:如果BC已作出,则只要确定顶点A.由于AD是中线,则D为BC的中点,A在以D为圆心,m为半径的圆上,又AC=b,点A也在以C为圆心b为半径的圆上,因此点A是这两个轨迹的交点.作法:1.作线段BC=a.2.分别以B.C为圆心,大于 长为半径画弧,在BC两侧各交于一点M、N,连接M、N交BC于点D.3.分别以D为圆心,m长为半径作弧,以C为圆心,b长为半径作弧,两弧交于点A.4.分别连接AB.AC.则△ABC就是所求作的三角形.思考:假定△ABC已经作出,其中 BC=a,AC=b,中线 AD=m.显然,在△ADC中,AD=m,DC= ,AC=b,所以△ADC若先作出.然后由BD= 的关系,可求得顶点B的位置,同样可以作出△ABC.作法请同学们自己写出.1.如图,DB⊥AB,DC⊥AC,垂足分别为B.C,且BD=CD,求证:AD平分∠BAC.证明:∵DB⊥AB,DC⊥AC∴∠B=∠C=90°在Rt△ABD和Rt△ACD中∴Rt△ABD≌Rt△ACD(HL)∴∠1=∠2∴AD平分∠BAC.2.如图,已知AB=AC,AB⊥BD,AC⊥CD,AD和BC相交于点E,求证:(1)CE=BE;(2)CB⊥AD.证明:(1)∵AB⊥BD,AC⊥CD∴∠ABD=∠ACD=90°在Rt△ABD和Rt△ACD中∴Rt△ABD≌Rt△ACD (HL)∴∠1=∠2在△ABE和△ACE中∴△ABE≌△ACE(SAS)∴BE=CE(2)∵△ABE≌△ACE∴∠3=∠4又∵∠3+∠4=180°∴∠3=90°∴CB⊥AD3.如图,已知一个角∠AOB,你能否只用一块三角板作出它的平分线吗?说明方法与理由.解:能.作法:(1)在OA,OB上分别截取OM=ON(2)过M作MC⊥OA,过N作ND⊥OB,MC交ND于P(3)作射线OP则OP为∠AOB的平分线证明:∵MC⊥OA.ND⊥OB∴∠1=∠2=90°在Rt△OMP和Rt△ONP中∴Rt△OMP≌Rt△ONP(HL)∴∠3=∠4∴OP平分∠AOB.4.如图,AB=AD,BC=DE,且BA⊥AC,DA⊥AE,你能证明AM=AN吗?解:能.理由如下:∵BA⊥AC,DA⊥AE,∴∠BAC=∠DAE=90° 在 Rt△ABC 和 Rt△ADE 中∴Rt△ABC≌Rt△ADE(HL) ∴∠C=∠E,AC=AE 在△AMC 和△ANE 中∴△AMC≌△ANE(ASA),∴AM=AN. 5.如图,CE⊥AB,DF⊥AB,垂足分别为 E.F,且 AE=BF,AD=BC,则(1)△ADF 和△BEC 全等吗?为什么? (2)CM 与 DN 相等吗?为什么?解: (1)△ADF≌△BCE,理由如下:∵CE⊥AB,DF⊥AB ∴∠1=∠2=∠3=∠4=90° 又∵AE=BF,∴AF=BE 在 Rt△ADF 和 Rt△BCE 中∴Rt△ADF≌Rt△BCE(HL) (2)CM=DN,理由如下: ∵△ADF≌△BCE ∴DF=CE,∠A=∠B 在△AME 和△BNF 中∴△AME≌△BNF(ASA) ∴ME=NF,又∵CE=DF ∴MC=ND. 6.如图所示,已知线段 a,b,∠α ,求作△ABC,使 BC=a,AC=b,∠ACB=∠α ,•根据作图在下面空格中填上适 当的文字或字母. (1)如图甲所示,作∠MCN=________; (2)如图乙所示,在射线 CM 上截取 BC=________,在射线 CN 上截取 AC=________. (3)如图丙所示,连接 AB,△ABC 就是_________.答案:∠α ,a,b,所求作的三角形. 7.已知线段 a 及锐角α ,求作:三角形 ABC,使∠C=90°,∠B=∠α ,BC=A.作法:(1)作∠MCN=90°; (2)以 C 为圆心,a 为半径,在 CM 上截取 CB=a; (3)以 B 为顶点,BC 为一边作∠ABC=∠α ,交 CN 于点 A.连接 AB,则△ABC 即为所求作的三角形. 8.你一定玩过跷跷板吧!如图是贝贝和晶晶玩跷跷板的示意图,支柱 OC 与地面垂直,点 O 是横板 AB 的中点,AB 可以绕着点 O 上下转动,当 A 端落地时,∠OAC=20°.(1)横板上下可转动的最大角度(即∠A′OA)是多少? (2)在上下转动横板的过程中,两人上升的最大高度 AA′,BB′有何数量关系?为什么?解:(1)∵OC⊥AB′,∠OAC=20°, ∴∠AOC=90°-20°=70°, 同理可求∠B′OC=70°, ∴∠AOA′=180°-2×70°=40°;(2)AA′=BB′, 如图所示,连接 AA′、BB′, ∵AB=A′B′,∠BAB′=∠A′B′A,AB′=B′A, ∴△A′AB′≌△BB′A,∴AA′=BB′. 9.有一池塘,要测池塘两端 A.B 间的距离,可先在平地上取一个可以直接到达 A 和 B 的点 C,连接 AC 并延长到 D, 使 CD=CA,连接 BC 并延长到 E,使 CE=CB,连接 DE,量出 DE 的长,这个长就是 A.B 之间的距离。
北师大版七年级数学下4.4用尺规作三角形同步练习含答案
4.4用尺规作三角形1.用直尺和圆规作一个角等于已知角的示意图如图5—94所示,则说明∠A′O′B′=∠AOB的依据是( )A.SS S D.SAS C.ASA D.AAS2.已知:任画一条线段a.求作:等腰三角形(两腰长相等),使底边长为2a,腰长为3a.3.已知:任意画出一个∠α、一个∠β(都是锐角)和一条线段a.求作:ΔABC,使∠A=∠α,∠B=∠β,AC=a.4.已知:任画两条线段a,b(a>b).求作:边长为a-b的等边三角形(三边长相等).5.已知:任意画出一个∠α、一个∠β(都是钝角)和一条线段a.求作:ΔABC,使∠A=180°-∠α,∠B=180°-∠β,AB=a.6.已知:如图5—95所示,线段a,m,h(m>h),O为线段a的中点.求作:ΔABC,使它的一边等于a,这条边上的中线和高分别等于m和h(m>h).参考答案1.A[提示:由作法知,OC=OD=O′C′=O′D′,CD=C′D′,由SSS 可知,ΔOCD≌ΔO′C′D′,从而说明∠A′O′B′=∠AOB.故选A.] 2.作法:如图5—96所示.(1)作线段BC=2a;(2)分别以B,C为圆心,3a长为半径在BC同侧画弧,两弧的一个交点为A;(3)连接AC,AB.ΔABC就是所求作的三角形.3.略.4.提示:如图5—97所示.(1)作线段BC=a-b;(2)分别以B,C为圆心,a-b 长为半径在BC同侧画弧,两弧的一个交点为A;(3)连接AC,AB.ΔABC就是所求作的三角形.5.略.6.作法:如图5—98所示.(1)作ΔAED,使∠AED=90°,AE=h,AD=m(AD在AE右侧);(2)延长ED到B,使DB=a;(3)在DE上截取DC=a;(4)连接AB,AC.则ΔABC即为所求作的三角形.。
北师大七年级数学下2.4《用尺规作角》习题含详细答案
C、作一个角等于已知角是常见的尺规作图,正确;
D、画弧既需要圆心,还需要半径,缺少半径长,错误.
故选C.
【分析】根据画角的条件判断A;根据线段延长线的等腰判断B;根据基本作图判断C;根据确定弧的条件判断D.
5.答案:A
解析:【解答】根据图象是一条线段,它是以线段的两端点为圆心,作弧,进而作出垂直平分线,故做的是:线段的垂直平分线,
故选:D.
【分析】射线、直线具有延伸性,不能画出其长度;尺规作图需用圆规和无刻度的直尺;若A、B、C三点不共线,则无法过这三点画出一条直线,即A、B、C错误,D项正确.
11.答案:D
解析:【解答】A、画线段MN=3cm,需要知道长度,而尺规作图中的直尺是没有长度的,错误;
B、用量角器画出∠AOB的平分线,量角器不在尺规作图的工具里,错误;
B、量角器不在尺规作图的工具里,错误;
C、画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;
D、正确.
故选:D.
【分析】根据尺规作图的定义分别分析得出即可.
3.答案:D
解析:【解答】尺规作图的画图工具是没有刻度的直尺和圆规.
故选D.
【分析】根据尺规作图的定义可知.
4.答案:C
解析:【解答】A、画角既需要顶点,还需要角度的大小,错误;
C、用三角尺作过点A垂直于直线L的直线,三角尺也不在作图工具里,错误;
D、正确.
故选D.
【分析】根据尺规作图的定义可知.
12.答案:B
解析:【解答】A、作一个角等于已知角的倍数是常见的尺规作图,正确;
B、画弧既需要圆心,还需要半径,缺少半径长,错误.
北师大版七年级数学下册用尺规作三角形测试题
北师大版数学七年级下册第四章4.3尺规作图课后练习一、选择题(共15题)1.已知△ABC内部有一点P,且点P到边AB、AC、BC的距离都相等,则这个点是()。
A.三条角平分线的交点 B.三边高线的交点 C.三边中线的交点 D.三边中垂线的交点答案: D解析:解答:本作图属于作图中的基本作图,作一条已知线段的垂直平分线,故选D.故选:D .分析:本题主要考查了作图—基本作图,而且是三条线段的垂直平分线的交点,在三角形中,经常最到这个问题,简单易答.2.已知:线段AB作法:(1)分别以点A和B为圆心,大于12AB的长为半径作弧,两弧相交于点C和D.(2)作直线CD.直线CD就是线段AB的().A.中线 B.高线 C.中垂线 D.不确定答案: C解析:解答:本作图属于作图中的基本作图,作一条已知线段的垂直平分线,故选C.故选:C .分析:本题主要考查了作图—基本作图,简单易答,分析此问题的关键考虑到同样长的半径.3.数学活动课上,老师在黑板上画直线平行于射线AN (如图),让同学们在直线l 和射线AN 上各找一点B 和C ,使得以A 、B 、C 为顶点的三角形是等腰直角三角形.这样的三角形最多能画( )个.A .1B . 2C .3D .4答案: C解析:解答:作图有以下几种情况: N L AN LAN L A故选:C .分析:本题主要考查了作图—基本作图,且考察了对等腰直角三角形的理解,问题中容易忽视的是射线AN ,而不是直线AN .4.已知:∠AOB作法:(1)作射线O 'A '.(2)以点O 为圆心,以任意长为半径作弧,交OA 于C ,交OB 于D .(3)以点O '为圆心,以OC 长为半径作弧,交O ’A '于C '.(4)以点C '为圆心,以CD 长为半径作弧,交前弧于D '.(5)经过点D'作射线O'B'.∠A'D'B'就是所求的角.这个作图是()A.平分已知角B.作一个角等于已知角C.作一个三角形等于已知三角形D.作一个角的平分线答案:B解析:解答:这个作图题属于基本作图中的作一个角等于已知角.故选:B .分析:本题主要考查了作图—基本作图中的作一个角等于已知角,问题简单易解.5.已知:∠AOB(图3-43).作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C.(3)作射线OC.OC就是所求的射线.这个作图是()A.平分已知角B.作一个角等于已知角C.作一个三角形等于已知三角形D.作一个角的平分线答案:A解析:解答:这个作图题属于基本作图中的平分已知角.故选:A.分析:本题主要考查了作图—基本作图中的平分已知角,问题简单易解.6.已知:直线AB和AB上一点C(图3-44).作法:作平角ACB的平分线CF.CF就是所求的垂线.这个作图是()A.平分已知角B.作一个角等于已知角C.过直线上一点作此直线的垂线D. 过直线外一点作此直线的垂线答案:C解析:解答:这个作图题属于基本作图中的过直线上一点作此直线的垂线.故选:C.分析:本题主要考查了作图—基本作图中的过直线上一点作此直线的垂线,问题简单易解.7.已知△ABC,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空:(1)作∠ABC的平分线BD交AC于点D;(2)作线段BD的垂直平分线交AB于点E,交BC于点F.由⑴、⑵可得:线段EF与线段BD的关系为( )A.相等B.垂直C.垂直且相等D. 互相垂直平分答案:D解析:解答:∵E F是BD的垂直平分线∴EB=ED,FB=FD易证BE=BF∴EB=ED=FB=FD∴四边形EBFD是菱形∴EF与BD互相垂直平分故选:D.分析:本题主要考查了作图知识,而且考察了菱形的判定和性质,是一道立意较好的作图综合性题目8.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,符合要求的作图是()答案:D解析:解答: D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.分析:本题主要考查了作图知识,解题的关键是根据作图得出PA=PB.要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D 正确.9. 已知点A(4,2),B(-2,2),则直线AB ( )A.平行于x轴B.平行于y轴C.经过原点D.以上都有可能答案:A解析:解答:A(4,2),B(-2,2)∴点A到x轴的距离为2,点B到x轴的距离为2且A、B都在x轴上方∴AB平行于x轴分析:此题是研究平面直角坐标系中,两个点所连线段与坐标轴的位置关系,需要对点到直线的距离有着明确地理解,而且此题属于较简单的判断线与坐标轴位置关系的一类问题。
2019-2020学年七年级数学下册 2.4 用尺规作角测评练习北师大版.doc
2019-2020学年七年级数学下册 2.4 用尺规作角测评练习北师大版
预习效果测评
1.根据作图动作说出作法.如图,已知∠AOB ,作∠A ′O ′B ′=∠AOB.
2.如图,以O 为顶点,射线OA 为一边,用尺规在∠AOB 外部作一个角∠AOC,使∠AOC=∠AOB.
提示:认真体会加着重符号的语句,确定求作图形的位置.
总结:(1)求作的角已确定顶点及一边,只需确定另一边.
(2)∠BOC 与∠AOB 的关系是 .
3. “议一议” :如图,已知∠ AOB , ∠E O ′ F.
(1)以O 为顶点,∠ AOB 的任意边为一边,在∠AOB 内部作一个角,使它等于
∠E O ′ F.
(2)通过以上尺规作图,比较∠ AOB 与 ∠E O ′ F 的大小.
课堂达标测试
1.已知:如图,钝角∠1,求作: ∠ABC ,使∠ABC=∠1
2.已知∠1, ∠2,用尺规作∠AOB ,使∠AOB= ∠1+∠2
1 O ’ F E B A。
北师大版数学七年级下册第二章相交线与平行线第4节用尺规做角课后练习
第二章相交线与平行线第4节用尺规做角课后练习学校:___________姓名:___________班级:___________考生__________ 评卷人 得分一、单选题1.如图,点C 在∠AOB 的边OB 上,用尺规作出了∠BCN =∠AOC ,作图痕迹中,弧FG 是( )A.以点C 为圆心,OD 为半径的弧 B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧2.如图,在ABC ∆中,90ACB ∠=,按如下步骤操作:∠以点A 为圆心,任意长为半径作弧,分别交AC ,AB 于D ,E 两点;∠以点C 为圆心,AD 长为半径作弧,交AC 的延长线于点F ;∠以点F 为圆心,DE 长为半径作弧,两弧交于点G ;∠作射线CG ,若50FCG ∠=,则B 为( )A .40B .50C .60D .703.如图,不是B ∠的同旁内角是( )A .1∠;B .2∠;C .3∠;D .BCD ∠;4.下列属于尺规作图的是( ) A .用量角器画∠AOB 的平分线OP B .利用两块三角板画15°的角 C .用刻度尺测量后画线段AB =10cm D .在射线OP 上截取OA =AB =BC =a5.下列作图语句正确的是()A.以点O为顶点作∠AOBB.延长线段AB到C,使AC=BCC.作∠AOB,使∠AOB=∠αD.以A为圆心作弧6.如图所示,过点P画直线a的平行线b的作法的依据是()A.两直线平行,同位角相等B.同位角相等,两直线平行C.两直线平行,内错角相等D.内错角相等,两直线平行7.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧8.如图,用尺规法作∠DEC=∠BAC,作图痕迹MN的正确画法是()A.以点E为圆心,线段AP为半径的弧B.以点E为圆心,线段QP为半径的弧C.以点G为圆心,线段AP为半径的弧D.以点G为圆心,线段QP为半径的弧评卷人得分二、填空题9.阅读下面材料:在数学课上,老师提出如下问题:作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小凡利用两块形状相同的三角尺进行如下操作:如图所示:(1)用第一块三角尺的一条边贴住直线l,第二块三角尺的一条边紧靠第一块三角尺;(2)将第二块三角尺沿第一块三角尺移动,使其另一边经过点A,沿这边作出直线AB.所以,直线AB即为所求.老师说:“小凡的作法正确.”请回答:小凡的作图依据是________.10.已知,∠AOB .求作:∠A′O′B′,使∠A′O′B′=∠AOB .作法:∠以________为圆心,________为半径画弧.分别交OA,OB于点C,D .∠画一条射线O′A′,以________为圆心,________长为半径画弧,交O′A′于点C′,∠以点________为圆心________长为半径画弧,与第2步中所画的弧交于点D′.∠过点________画射线O′B′,则∠A′O′B′=∠AOB .11.下列语句表示的图形是(只填序号)∠过点O的三条直线与另条一直线分别相交于点B、C、D三点:_____.∠以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD:_______.∠过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点:_________.12.尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法_______.13.下列作图中:∠用量角器画出90AOB∠=︒;∠作AOB∠,使2AOBα∠=∠;∠连接AB;∠用直尺和三角板作AB的平行线CD,属于尺规作图的是__________.(填序号)14.在几何里,把只用_________和_________画图的方法称为尺规作图.15.完成作图步骤:已知∠α,∠β(∠β>∠α),求作一个角,使它等于∠β-∠α.作法:(1)作∠AOB=_______;(2)以OA为一边,在∠AOB的内部作∠AOC=___,则∠BOC就是所求作的角(如图).16.阅读下面材料:数学课上,老师提出如下问题:小明解答如右图所示,其中他所画的弧MN是以E为圆心,以CD长为半径的弧老师说:“小明作法正确.”请回答小明的作图依据是:_______________________________________.评卷人得分三、解答题17.已知平面内有α∠,如图(1).(1)尺规作图:在图(2)AOB∠的内部作AODα∠=∠(保留作图痕迹,不需要写作法);(2)已知(1)中所作的40AOD∠=︒,OE平分BOC∠,2AOE BOE∠=∠,求BOD∠.18.如图,已知线段40mmAB=,60BAM∠=︒,请你用量角器和刻度尺按下列要求画图:(1)以B为顶点,BA为一边,在BAM∠同侧画30ABN∠=︒,AM与BN相交于点C;(2)取线段AB的中点G,连接CG;(3)用量角器得ACB=∠;(4)用刻度尺测得线段CG=mm,AC的长为mm.(结果保留整数),图中与线段相等的线段有.19.尺规作图,不写作法,保留作图痕迹已知:线段a和∠α求作:∠ABC,使得AB=a,BC=2a,∠ABC=∠α.20.如图,一块大的三角板ABC,D是AB上一点,现要求过点D割出一块小的三角板ADE,使∠ADE=∠ABC,(1)尺规作出∠ADE.(不写作法,保留作图痕迹,要写结论)(2)判断BC与DE是否平行,如果是,请证明.参考答案:1.D【解析】【分析】运用作一个角等于已知角可得答案.【详解】解:根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.故选:D.【点睛】本题主要考查了尺规作图——作一个角等于已知角,熟练掌握作一个角等于已知角是解题的关键.2.A【解析】【分析】利用基本作图得到∠FCG=∠CAB=50°,然后利用互余计算∠B的度数.【详解】解:由作法得∠FCG=∠CAB,∠∠FCG=50°,∠∠CAB=50°,∠∠ACB=90°,∠∠B=90°-50°=40°.故选:A.【点睛】本题考查了作图-复杂作图-作一个角等于已知角,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作,也考查了直角三角形的两锐角互余.3.C【解析】【分析】按照同旁内角的概念逐一判断即可.【详解】解:从图形可以判断,∠1,∠2,∠BCD都是∠B的同旁内角,但∠3不是;故答案为C.【点睛】本题考查了同旁内角的概念,熟知同旁内角概念的模型(如图的∠1和∠2)是解题的关键.4.D【解析】【详解】解:根据尺规作图的定义可得:在射线OP上截取OA=AB=BC=a,属于尺规作图,故选D.5.C【解析】【详解】解:选项A,画角既需要顶点,还需要角度的大小,错误;选项B,延长线段AB到C,则AC>BC,即AC=BC不可能,错误;选项C,作一个角等于已知角是常见的尺规作图,正确;选项D,画弧既需要圆心,还需要半径,缺少半径长,错误.故选C.6.D【解析】【详解】试题解析:如图所示,根据图中直线a、b被c所截形成的内错角相等,可得依据为内错角相等,两直线平行.故选D.7.D【解析】运用作一个角等于已知角可得答案.【详解】解:根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.故选:D.【点睛】本题主要考查了尺规作图——作一个角等于已知角,熟练掌握作一个角等于已知角是解题的关键.8.D【解析】【分析】根据作一个角等于已知角的作法即可得出结论.【详解】先以点A为圆心,以任意长为半径画弧,分别交AC,AB于点Q,P;再以点E为圆心,AQ的长为半径画弧,交AC于点G,再以点G为圆心,PQ的长为半径画弧.故选D.【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的基本步骤是解答此题的关键.9.内错角相等,两直线平行【解析】【分析】根据平行线的判定方法即可解决问题;【详解】解:如图所示:∠两块形状、大小相同的三角尺,将第二块三角尺沿第一块三角尺移动,使其另一边经过∠∠1=∠2,∠AB∠直线l(内错角相等,两直线平行),故答案为:内错角相等,两直线平行.【点睛】本题主要考查的是平行线的判定定理、尺规作图,依据作图过程发现∠1=∠2是解题的关键.10.O任意长O′OC C CD D′【解析】【分析】根据作一个角等于已知角的作图方法解答即可.【详解】∠以O为圆心,任意长为半径画弧.分别交OA,OB于点C、D .∠画一条射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′,∠以点C为圆心CD长为半径画弧,与第2步中所画的弧交于点D′.∠过点D′画射线O′B′,则∠A′O′B′=∠AOB.故答案为:(1). O;(2). 任意长;(3). O′;(4). OC;(5). C ;(6). CD ;(7). D′【点睛】本题主要考查了作一个角等于已知角,是基本作图,需熟练掌握.11.(3)(2)(1)【解析】【详解】解:观察图形,根据所给的信息可得:∠过点O的三条直线与另一条直线分别相交于点B、C、D三点的图形为(3);∠以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD的图形为(2);∠过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点的图形为(1).故答案为:(3);(2);(1).【点睛】本题考查了直线、射线与线段的知识,注意掌握三者的特点,给出图形应该能判断出是哪一个.12.SSS【解析】【详解】在尺规作图中,作一个角等于已知角是通过构建三边对应相等的全等三角形来证, 因此由作法知其判定依据是SSS ,即边边边公理.故答案为SSS.13.∠∠【解析】【详解】尺规作图的定义:只能用没有刻度的直尺和圆规作图,因此属于尺规作图的是∠、∠. 故答案为∠∠.14. 没有刻度的直尺 圆规【解析】【分析】根据尺规作图的概念进行回答即可.【详解】在几何里,把只用没有刻度的直尺和圆规画图的方法称为尺规作图.故答案为没有刻度的直尺,圆规.【点睛】牢记尺规作图的概念,尺规作图只允许使用两种工具:没有刻度的直尺和圆规. 15. ∠β; ∠α【解析】【详解】试题解析:(1)作,AOB β∠=∠(2)以OA 为一边,在AOB ∠的内部作,AOC α∠=∠ 则BOC ∠ 就是所求作的角(如图). 故答案为,.βα∠∠16.边边边定理证明两个三角形全等,则它们的对应角相等【解析】【分析】由作图过程可知,BE BM OC OD EM CD ====,根据边边边定理证明∆OCD∠∆BME ,可得FBE AOB ∠=∠.【详解】解:以B 点为圆心,OC 为半径画弧EM 交BO 于E,以E 点为圆心,DC 为半径画弧交弧EM 于N, 由此过程可知,BE BM OC OD EM CD ====∴ ∆OCD∠∆BME (SSS )∴FBE AOB ∠=∠故答案为边边边定理证明两个三角形全等,则它们的对应角相等【点睛】本题考查了作一个角等于已知角的作图依据,正确理解作图过程是解题的关键. 17.(1)图见解析;(2)20°.【解析】【分析】(1)按照要求进一步画出图形即可; (2)利用角平分线性质结合2AOE BOE ∠=∠得出==60COE BOE ∠∠°,然后进一步求解即可.【详解】(1)如图所示:(2)∠OE 平分BOC ∠,∠∠COE=∠BOE ,∠2AOE BOE ∠=∠,∠2AOE COE ∠=∠,∠+=180AOE COE∠∠°,∠2+=180COE COE∠∠°,∠==60COE BOE∠∠°,∠60AOB∠=︒,∠40AOD∠=︒,∠=604020BOD∠︒︒︒=-.【点睛】本题主要考查了角度的计算,熟练掌握相关概念是解题关键.18.(1)如图,见解析;(2)如图,见解析;(3)90°(4)20mm,20mm,相等的线段有AC=CG=AG=GB【解析】【分析】(1)按照题中要求用量角器作角;(2)按照题中要求用刻度尺作G点;(3)用量角器测量∠ACB的度数;(4)用刻度尺测量线段CG,AC的长,通过测量结果及已知条件找到图中相等的线段.【详解】解:(1)以B为顶点,BA为一边,在∠BAM同侧用量角器画∠ABN=30°,AM与BN相交于点C,如图;(2)用刻度在线段AB上取点G,使AG=20mm,点G即为AB的中点,如图;(3)用量角器测量∠ACB的度数,得∠ACB=90°;(4)用刻度尺测量线段CG=20mm,AC的长为20mm,∠AB=40mm,G为AB中点,∠AG=BG=20mm,∠AC=CG=AG=GB,即AC=CG=AG=GB.本题考查用量角器和刻度尺画图,掌握线段的比较与图形的作法是解答此题的关键. 19.见解析【解析】【分析】先作∠B=∠α,分别在∠B的两边上截取BA=a,BC=2a,连接AC,则△ABC即为所作.【详解】如图,先作∠B=∠α,分别在∠B的两边上截取BA=a,BC=2a,连接AC,则△ABC即为所求作.【点睛】考查了复杂作图,解题关键是掌握作一个角等于已知角的方法.20.(1)详见解析;(2)BC∠DE【解析】【分析】(1)利用基本作图作∠ADE=∠ABC,交AC于点E;(2)根据平行线的判断方法进行判断.【详解】解:(1)如图,∠ADE为所作;(2)BC∠DE.理由如下:∠∠ADE=∠ABC,∠BC∠DE.本题考查了作图-基本作图,解题的关键是熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).。
北师大版初中数学七年级下册《4.4 用尺规作三角形》同步练习卷(3)
北师大新版七年级下学期《4.4 用尺规作三角形》同步练习卷一.选择题(共10小题)1.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.2.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2B.图1与图2C.图1与图3D.图2与图3 3.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP4.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ5.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.6.如图,点C在∠AOB的OB边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧7.如图,作已知∠AOB的平分线OC,合理的顺序是()①作射线OC;②在OA、OB上分别截取ON,OM,使ON=OM;③分别以N,M为圆心,以大于NM为半径画弧,两弧在∠AOB内交于点C.A.①②③B.②①③C.②③①D.③②①8.如图,用尺规法作∠DEC=∠BAC,作图痕迹的正确画法是()A.以点E为圆心,线段AP为半径的弧B.以点E为圆心,线段QP为半径的弧C.以点G为圆心,线段AP为半径的弧D.以点G为圆心,线段QP为半径的弧9.画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS 10.小明在计算三角形面积时需要作出最长边的垂线段,下列作法正确的是()A.B.C.D.二.填空题(共10小题)11.如图,∠C=90°,根据作图痕迹可知∠ADC=°.12.下面是“作已知角的平分线”的尺规作图过程.已知:∠AOB.求作:射线OE,使OE平分∠AOB.作法:如图,(1)在射线OB上任取一点C;(2)以点O为圆心,OC长为半径作弧,交射线OA于点D;(3)分别以点C,D为圆心,OC长为半径作弧,两弧相交于点E;(4)作射线OE.所以射线OE就是所求作的射线.请回答:该作图的依据是.13.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.14.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=.15.如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.16.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为.17.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.18.数学活动课上,同学们围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”其中一位同学作出了如图所示的图形.你认为他的作法的理由有.19.如图,用直尺和圆规作一个角等于已知角,能得出的依据是.20.请你用三角板、圆规或量角器等工具,画∠POQ=60°,在它的边OP上截取OA=50mm,OQ上截取OB=70mm,连结AB,画∠AOB的平分线与AB交于点C,并量出AC和OC 的长.(结果精确到1mm,不要求写作法).三.解答题(共30小题)21.如图,已知线段DA与B、C两点,用圆规和无刻度的直尺按下列要求画图并计算:(1)画直线AB、射线DC;(2)延长线段DA至点E,使AE=AB(保留作图痕迹);(3)若AB=4cm,AD=2cm,求线段DE的长.22.如图,点C是线段AB的中点.(1)尺规作图:延长AB到D,使BD=AB(不写作法,保留作图痕迹).(2)若AC=2cm,求AD的长.23.如图,点A,B,C是平面上三个点.(1)按下列要求画图:①画线段AB;②画射线CB;③反向延长线段AB;④连接AC(2)请你测量点B到直线AC的距离,大约是cm.(精确到0.1cm)24.如图,已知△ABC,∠BAC=90°(1)尺规作图:作BC边的高AD(保留作图痕迹,不写作法);(2)求证:∠C=∠BAD25.尺规作图题(不写作图步骤,但保留作图痕迹).已知:如图∠MON(1)求作:∠MON的平分线OC.(2)根据作法,请说明所作的射线OC就是∠MON的平分线OC.26.如图,已知△ABC中,∠B>90°,请用尺规作出AB边的高线CD(请留作图痕迹,不写作法)27.已知:∠AOB及边OB上一点C.求作:∠OCD,使得∠OCD=∠AOB.要求:1.尺规作图,保留作图痕迹,不写作法;(说明:作出一个即可)2.请你写出作图的依据.28.按照下列要求画图并作答:如图,已知△ABC.(1)画出BC边上的高线AD;(2)画∠ADC的对顶角∠EDF,使点E在AD的延长线上,DE=AD,点F在CD的延长线上,DF=CD,连接EF,AF;(3)猜想线段AF与EF的大小关系是:;直线AC与EF的位置关系是:.29.用尺规作出△ABC的中线AD.30.如图,已知△ABC中,∠ACB>∠ABC,用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹)31.如图,已知∠AOB,求作∠ECF,使∠ECF=∠AOB.(要求:尺规作图,保留作图痕迹,不写作法)32.如图,平面上有三点A、B、C,(1)按下列要求画出图形:①、画直线AB;②、画射线AC;③连接BC;(2)写出图中有哪几条线段;(3)指出图中有几条射线,并写出其中能用字母表示的射线(不再添加字母).33.拿起圆规和直尺,耐心做一做,不写作法,保留作图痕迹.已知线段a、b,作线段AB=2a﹣b(要求:保留作图痕迹)34.(1)在方格纸上过点P作线段AB的平行线l;(2)在方格纸上以AB为边画一个正方形;(3)填空:若图中小方格的面积为1cm2,则(2)中所作正方形的面积=cm2.35.如图,已知△ABC,请作出该三角形的外接圆⊙O(要求尺规作图,保留作图痕迹,不要写作图过程).36.如图,在同一个平面内有四个点A、B、C、D.①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.37.如图,已知△ABC,请你作出AC边上的高和BC边上的高.38.尺规作图已知∠AOB,求作∠A′O′B′.使∠AOB=∠A′O′B′.(保留作图痕迹,不写作法)39.读句画图并填空:如图,点P是∠AOB外一点,根据下列语句画图,(1)过点P,作线段PC⊥OB,垂足为C;(2)过点P,作直线PD∥OB,交OA于D;(3)结合所作图形,若∠O=50°,则∠ADP=°.40.按要求用尺规作图并填空(保留作图痕迹):如图,点P是∠AOB边OA上一点.过点P作直线PC∥BO.你的作图方法使PC∥BO 的依据是.41.如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠A的平分线AD,交BC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加黑);(2)计算S△DAC:S△ABC的值.42.作图题(要求:用尺规作图,保留作图痕迹,不写作法和证明)已知:(如图)线段a和∠α,求作:△ABC,使AB=AC=a,∠A=∠α.43.已知∠AOC,请用尺规作图的方法作出该角的角平分线.44.已知:∠AOB,点P在OA上,请以P为顶点,P A为一边作∠APC=∠O.(不写作法,但必须保留作图痕迹)45.如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠A的平分线.(要求:不写作法,保留作图痕迹)46.如图,C是线段AB外一点,用圆规和直尺画图.(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.47.已知∠AOB,点P在OA上,请以P为顶点,P A为一边作∠APC=∠O(不写作法,但必须保留作图痕迹)问:(1)PC与OB一定平行吗?答:(2)简要说明理由:48.如图,△ABC,用尺规作图作角平分线CD.(保留作图痕迹,不要求写作法)49.已知∠AOB,用直尺和圆规作图:(1)作∠AOB的平分线;(2)过∠AOB边OA上一点P分别作边OA、OB的垂线.(不写作法,保留作图痕迹)50.利用尺规作图(保留作图痕迹即可):如图,在射线BC上,作线段BD,使BD=2AB;以点D为顶点,射线DC为一边,作∠EDC(两种情况),使∠EDC=∠ABC.北师大新版七年级下学期《4.4 用尺规作三角形》2019年同步练习卷参考答案与试题解析一.选择题(共10小题)1.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答【解答】解:∵四个选项中只有AD⊥BC,∴C正确.故选:C.【点评】本题考查的是作图﹣基本作图,熟记三角形高线的定义是解题的关键.2.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2B.图1与图2C.图1与图3D.图2与图3【分析】利用基本作图对三个图形的作法进行判断即可.【解答】解:根据基本作图可判断图1中AD为∠BAC的平分线,图2中AD为BC边上的中线,图3中AD为∠BAC的平分线.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了勾股定理和等腰三角形的性质.3.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP【分析】直接利用线段垂直平分线的性质得出AP=BP,进而利用三角形外角的性质得出答案.【解答】解:如图所示:MN是AB的垂直平分线,则AP=BP,故∠PBA=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠ABC.故选:B.【点评】此题主要考查了基本作图,正确得出AP=BP是解题关键.4.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【解答】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.【点评】此题主要考查了基本作图,正确掌握基本作图方法是解题关键.5.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.【分析】根据过直线外一点作已知直线的垂线作图即可求解.【解答】解:A、根据垂径定理作图的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;B、根据直径所对的圆周角是直角的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;C、根据相交两圆的公共弦的性质可知,CD是Rt△ABC斜边AB上的高线,不符合题意;D、无法证明CD是Rt△ABC斜边AB上的高线,符合题意.故选:D.【点评】此题考查了作图﹣基本作图,关键是熟练掌握作过直线外一点作已知直线的垂线的方法.6.如图,点C在∠AOB的OB边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【分析】根据作一个角等于已知角的步骤即可得.【解答】解:作图痕迹中,弧FG是以点E为圆心,DM为半径的弧,故选:D.【点评】本题主要考查作图﹣尺规作图,解题的关键是熟练掌握作一个角等于已知角的尺规作图步骤.7.如图,作已知∠AOB的平分线OC,合理的顺序是()①作射线OC;②在OA、OB上分别截取ON,OM,使ON=OM;③分别以N,M为圆心,以大于NM为半径画弧,两弧在∠AOB内交于点C.A.①②③B.②①③C.②③①D.③②①【分析】根据角平分线的尺规作图的步骤解答即可得.【解答】解:作已知∠AOB的平分线OC,合理的顺序是:②在OA、OB上分别截取ON,OM,使ON=OM;③分别以N,M为圆心,以大于NM为半径画弧,两弧在∠AOB内交于点C.①作射线OC;故选:C.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握利用尺规作图作角平分线的步骤.8.如图,用尺规法作∠DEC=∠BAC,作图痕迹的正确画法是()A.以点E为圆心,线段AP为半径的弧B.以点E为圆心,线段QP为半径的弧C.以点G为圆心,线段AP为半径的弧D.以点G为圆心,线段QP为半径的弧【分析】根据作一个角等于已知角的作法即可得出结论.【解答】解:先以点A为圆心,以任意长为半径画弧,分别交AC,AB于点Q,P;再以点E为圆心,AQ的长为半径画弧,交AC于点G,再以点G为圆心,PQ的长为半径画弧.故选:D.【点评】本题考查的是作图﹣基本作图,熟知作一个角等于已知角的基本步骤是解答此题的关键.9.画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS【分析】先证明三角形全等,再利用全等的性质证明角相等.【解答】解:从画法①可知OA=OB,从画法②可知CM=CN,又OC=OC,由SSS可以判断△OMC≌△ONC,∴∠MOC=∠NOC,即射线OC就是∠AOB的角平分线.故选:A.【点评】本题考查作图﹣基本作图、全等三角形的判定和性质,解题的关键是灵活应用所学知识解决问题,属于基础题.10.小明在计算三角形面积时需要作出最长边的垂线段,下列作法正确的是()A.B.C.D.【分析】根据最长边上的高在三角形内部,即过最长边所对的角的顶点,作对边的垂线,垂足在最长边上即可得.【解答】解:最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上,故选:C.【点评】本题考查了三角形高的画法.当三角形为锐角三角形时,三条高在三角形内部;当三角形是直角三角形时,两条高是三角形的直角边,一条高在三角形内部;当三角形为钝角三角形时,两条高在三角形外部,一条高在内部.二.填空题(共10小题)11.如图,∠C=90°,根据作图痕迹可知∠ADC=70°.【分析】根据作图痕迹可知:AD平分∠CAB,再由直角三角形性质可得∠CAB的度数,最后由三角形的外角可得结论.【解答】解:∵∠C=90°,∠B=50°,∴∠CAB=40°,由作图痕迹可知:AD平分∠CAB,∴∠DAB=20°,∴∠ADC=∠DAB+∠B=20°+50°=70°,故答案为:70.【点评】本题考查了基本作图﹣角平分线,三角形外角的性质和直角三角形的性质,熟练掌握角平分线的基本作图是关键.12.下面是“作已知角的平分线”的尺规作图过程.已知:∠AOB.求作:射线OE,使OE平分∠AOB.作法:如图,(1)在射线OB上任取一点C;(2)以点O为圆心,OC长为半径作弧,交射线OA于点D;(3)分别以点C,D为圆心,OC长为半径作弧,两弧相交于点E;(4)作射线OE.所以射线OE就是所求作的射线.请回答:该作图的依据是四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线..【分析】依据作图痕迹可得四边形OCED是菱形,再根据菱形的性质,即可得到OE平分∠AOB.【解答】解:如图所示,连接DE,CE,∵OD=DE=EC=OC,∴四边形OCED是菱形(四条边都相等的四边形是菱形),∴OE平分∠AOB(菱形的每一条对角线平分一组对角),故答案为:四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线.【点评】本题主要考查了基本作图依据菱形的性质,解题时注意:四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角.13.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上).【分析】只要证明直线AB是线段PQ的垂直平分线即可.【解答】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵P A=AQ,PB=QB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.【点评】本题考查作图﹣基本作图,解题的关键是理解到线段两个端点的距离相等的点在线段的垂直平分线上,属于中考常考题型.14.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=125°.【分析】根据角平分线的作法可得AD平分∠CAB,再根据三角形内角和定理可得∠ADB 的度数.【解答】解:由题意可得:AD平分∠CAB,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°﹣20°﹣35°=125°.故答案为:125°.【点评】此题主要考查了角平分线的作法以及角平分线的性质,熟练根据角平分线的性质得出∠ADB度数是解题关键.15.如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为100°.【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【解答】解:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;在△ADC中,∠B=60°,∠CAD=20°,∴∠ADB=100°,故答案是:100.【点评】本题综合考查了作图﹣﹣复杂作图,直角三角形的性质.根据作图过程推知AG 是∠CAB平分线是解答此题的关键.16.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为115°.【分析】利用角平分线的作法可得出答案.【解答】解:∵根据作法可得AG是∠CAB的角平分线,∴∠DAC=∠CAB=×50°=25°,∴∠ADB=∠DAC+∠ACD=25°+90°=115°故答案为:115°.【点评】本题主要考查了基本作图,解的关键是熟记角平分线的作法.17.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线..【分析】通过作图得到CA=CB,DA=DB,则可根据线段垂直平分线定理的逆定理判断CD为线段AB的垂直平分线.【解答】解:∵CA=CB,DA=DB,∴CD垂直平分AB(到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线.)故答案为:到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线..【点评】本题考查了基本作图:基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.18.数学活动课上,同学们围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”其中一位同学作出了如图所示的图形.你认为他的作法的理由有到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【分析】把过一点作已知直线的垂线转化为作已知线段的垂直平分线.【解答】解:他的作法的理由有到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.故答案为到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【点评】本题考查了基本作图:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.19.如图,用直尺和圆规作一个角等于已知角,能得出的依据是SSS.【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.【解答】解:在△ODC和△O′D′C′中,,∴△ODC≌△O′D′C′(SSS),故答案为:SSS.【点评】此题主要考查了基本作图,以及全等三角形的判定,关键是掌握作一个角等于已知角的方法.20.请你用三角板、圆规或量角器等工具,画∠POQ=60°,在它的边OP上截取OA=50mm,OQ上截取OB=70mm,连结AB,画∠AOB的平分线与AB交于点C,并量出AC和OC 的长.(结果精确到1mm,不要求写作法).【分析】利用三角板的60度角作∠POQ=60°,然后利用刻度尺在它的边OP上截取OA=50mm,OQ上截取OB=70mm,连结AB;利用三角板的30度角即可作出∠AOB的平分线,然后利用刻度尺测量AC和OC的长.【解答】解:如图所示:测量得:AC=26 mm,OC=50 mm.【点评】本题考查了利用三角板作图,理解三角板的特点是关键.三.解答题(共30小题)21.如图,已知线段DA与B、C两点,用圆规和无刻度的直尺按下列要求画图并计算:(1)画直线AB、射线DC;(2)延长线段DA至点E,使AE=AB(保留作图痕迹);(3)若AB=4cm,AD=2cm,求线段DE的长.【分析】(1)根据几何语言画出对应几何图形;(2)利用圆规截取AE=AB;(3)计算DA和AE的和即可.【解答】解:(1)如图,直线AB、射线DC为所作;(2)如图,点E为所作;(3)DE=DA+AE=DA+AB=2+4=6,即线段DE的长为6cm.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).22.如图,点C是线段AB的中点.(1)尺规作图:延长AB到D,使BD=AB(不写作法,保留作图痕迹).(2)若AC=2cm,求AD的长.【分析】(1)在AB的延长线上截取BD=AB即可;(2)根据中点的定义先求出AB,再求出AD的长.【解答】解:(1)如图所示:(2)∵点C是线段AB的中点,AC=2cm,∴AB=4cm,∵BD=AB,∴AD=8cm.【点评】本题考查了作图﹣基本作图:作一条线段等于已知线段,线段中点的定义等知识,作出点D是解题的关键.23.如图,点A,B,C是平面上三个点.(1)按下列要求画图:①画线段AB;②画射线CB;③反向延长线段AB;④连接AC(2)请你测量点B到直线AC的距离,大约是 1.5cm.(精确到0.1cm)【分析】(1)根据线段和射线的画法进行画图即可;(2)直线外一点到直线的垂线段的长度,叫做点到直线的距离.【解答】解:(1)如图所示:(2)根据测量可得,点B到直线AC的距离,大约是1.5cm,故答案为:1.5.【点评】本题主要考查了基本作图以及点到直线的距离.解决问题的关键是掌握线段和射线的概念.24.如图,已知△ABC,∠BAC=90°(1)尺规作图:作BC边的高AD(保留作图痕迹,不写作法);(2)求证:∠C=∠BAD【分析】(1)直接利用过直线外一点作已知垂线的作法得出答案;(2)利用直角三角形的性质结合垂线的定义得出答案.【解答】(1)解:如图所示:AD即为所求;(2)证明:∵∠BAC=90°,∴∠BAD+∠CAD=90°,∵AD是△ABC的高,AD⊥BC,∴∠CDA=90°,在Rt△CAD中,∠C+∠CAD=90°,∴∠C=∠BAD.【点评】此题主要考查了基本作图以及直角三角形的性质,正确掌握基本作图方法是解题关键.25.尺规作图题(不写作图步骤,但保留作图痕迹).已知:如图∠MON(1)求作:∠MON的平分线OC.(2)根据作法,请说明所作的射线OC就是∠MON的平分线OC.【分析】(1)根据角平分线的尺规作图可得;(2)连接OC、BC、AC,利用“SSS”证明△OAC≌△OBC可得.【解答】解:(1)如图,射线OC是∠MON的平分线,(2)证明:如图,连接OC、BC、AC,根据作法可得BC=AC,OA=OB,在△OAC和△OBC中,∵∴△OAC≌△OBC(SSS),∴∠AOC=∠BOC,即射线OC是∠MON的平分线.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及全等三角形的判定与性质.26.如图,已知△ABC中,∠B>90°,请用尺规作出AB边的高线CD(请留作图痕迹,不写作法)【分析】延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB 的延长线于点M和点N,再作线段MN的垂直平分线CD即可.【解答】解:延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB的延长线于点M和点N,再作线段MN的垂直平分线CD,如下图所示:【点评】本题考查作图﹣基本作图,掌握作垂直平分线的基本步骤为解题关键.27.已知:∠AOB及边OB上一点C.求作:∠OCD,使得∠OCD=∠AOB.要求:1.尺规作图,保留作图痕迹,不写作法;(说明:作出一个即可)2.请你写出作图的依据.【分析】(1)以点C为顶点,作∠OCD=∠COA,交AO于点D;(2)作一个角等于已知角的依据为SSS.【解答】解:(1)如图所示,∠OCD即为所求;(2)作图的依据为SSS.【点评】本题主要考查了基本作图,解决此类题目的关键是熟悉基本几何图形的性质,基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.28.按照下列要求画图并作答:如图,已知△ABC.(1)画出BC边上的高线AD;(2)画∠ADC的对顶角∠EDF,使点E在AD的延长线上,DE=AD,点F在CD的延长线上,DF=CD,连接EF,AF;(3)猜想线段AF与EF的大小关系是:AF=EF;直线AC与EF的位置关系是:AC∥EF.【分析】(1)直接利用钝角三角形高线的作法得出答案;(2)利用圆规与直尺截取得出E,F位置进而得出答案;。