2.1 随机变量及其分布

合集下载

随机变量及其分布

随机变量及其分布


p(xi)P{Xxi}, i1, 2,
(21)
则称{p(xi) i1 2 }为X的概率分布 有时也将p(xi)记为pi 用
下列表格形式来表示 并称之为X 的概率分布表
4
概率分布的性质
任何一个离散型随机变量的概率分布{p(xi)}必然满足下 列性质
1 p(xi)0 i1 2
(22)
((22))ii pp((xxi)i)11
事件的概率与密度函数的关系
(1)连续型随机变量X落于区间(a b]上的概率为
b
P{a X b} F(b) F(a)a f (x)dx
(2)连续型随机变量X落于点x上的概率为
P{Xx}0
(212)
(213)
19
例28 设X是在[a b]上等可能投点的位置 其分布函数为
0, F (x) bx1,aa ,
x
x
F(x) 0 F() lim F(x)1
若函数Fx)满足上述三
x
条性质 则它一定是某个随
(3)右连续性 F(x0)F(x) 机变量X的分布函数
10
三、分布函数
定义24(分布函数) 设X是一随机变量 则称函数
F(x)P{Xx} x( )
(29)
为随机变量X的分布函数 记作X ~F(x)
分布函数的性质 随机变量的分布函数必然满足下列性质
0 x1, x1.
14
四、离散型随机变量的分布函数
离散型随机变量的分布函数F(x)的共同特征是 F(x)是一 个阶梯形的函数 它在X的可能取值点处发生跳跃跳跃高度 等于相应点处的概率 而在两个相邻跳跃点之间分布函数值 保持不变
反过来 如果一个随机变量X的分布函数F(x)是阶梯型函 数 则X一定是一个离散型随机变量 其概率分布可由分布函 数F(x)惟一确定 F(x)的跳跃点全体构成X的所有可能取值 每 一跳跃点处的跳跃高度则是X在相应点处的概率

2.1随机变量及其概率分布

2.1随机变量及其概率分布

例1
袋中有3只红球, 只白球 从中任意取出3只球 只白球, 只球, 袋中有 只红球,2只白球,从中任意取出 只球, 只红球 写出所有的基本事件,并观察取出的3只球中的红 写出所有的基本事件,并观察取出的 只球中的红 球的个数. 球的个数. 我们将3只红球分别记作 只红球分别记作1, , 号 我们将 只红球分别记作 ,2,3号,2只白球分别 只白球分别 记作4,5号,则该试验的所有基本事件为: 记作 , 号 则该试验的所有基本事件为: )(1, , )( )(1, , ) (1,2,3)( ,2,4)( ,2,5) , , )( )(1, , )( )(1, , ) (1,3,4)( ,3,5)( ,4,5) , , )( )(2, , )( )(2, , ) (2,3,4)( ,3,5)( ,4,5) , , )( (3,4,5) , , )
例题分析:
例 4、同时掷两颗质地均匀的骰子, 、同时掷两颗质地均匀的骰子, 观察朝上一面出现的点数。求两颗骰 观察朝上一面出现的点数。 的概率分布, 子中出现的最大点数 X 的概率分布, 并求 X 大于 2 小于 5 的概率 P(2<X<5).
例题分析:
个灯泡, 例 5、已知盒中有 10 个灯泡,其 、 个正品, 个次品.需要从中 中 8 个正品,2 个次品 需要从中 取出 2 个正品,每次取出 1 个, 个正品, 取出后不放回, 取出后不放回,直到取出 2 个正 品为止.设 为取出的次数, 品为止 设ξ为取出的次数,求ξ 的分布列
此表称为随机变量X的概率分布表。它和① 此表称为随机变量 的概率分布表。它和①都叫做随 机变量X的概率分布。 机变量 的概率分布。
随机变量X的概率分布列:
X P x1 p1 x2 p2 … … xn pn

概率论与数理统计(茆诗松)第二章讲义(PDF)

概率论与数理统计(茆诗松)第二章讲义(PDF)

第二章 随机变量及其分布上一章研究内容: 事件(集合A )→ 概率(数).本章将用函数研究概率,函数是数与数的关系,即需要用数反映事件——随机变量.事件(数)→ 概率(数).§2.1 随机变量及其分布2.1.1.随机变量的概念随机试验的样本点有些是定量的:如掷骰子掷出的点数,电子元件使用寿命的小时数.有些是定性的:如掷硬币正面或反面,检查产品合格或不合格.对于定性的结果也可以规定其数量性质:如掷硬币,正面记为1,反面记为0;检查产品,合格记为1,不合格记为0.随机试验中,可将每一个样本点ω 都对应于一个实数X (ω),称为随机变量(Random Variable ),常用大写英文字母X , Y , Z 等表示随机变量,而随机变量的具体取值通常记为小写英文字母x , y , z .对于随机变量首先应掌握它的全部可能取值:如掷硬币,⎩⎨⎧=反面正面,0,1X ,X 的全部可能取值为0, 1;掷两枚骰子,X 表示掷出的点数之和,X 的全部可能取值为2, 3, 4, … , 12 ;观察某商店一小时内的进店人数X ,X 的全部可能取值为0, 1, 2, … ;电子元件使用寿命,用X 表示使用的小时数,X 的全部可能取值为 ),0[∞+; 一场足球比赛(90分钟),用X 表示首次进球时间(分钟),若为0:0,记X = 100,X 的全部可能取值为 (0, 90 )∪{100};注意:1. 每个样本点都必须对应于一个实数,2.不同样本点可以对应于同一个实数,3.随机变量的每一取值或取值范围都表示一个事件.应掌握将随机变量的取值或取值范围描述为事件,又能将事件用随机变量表达的方法. 例 掷一枚骰子,用X 表示出现的点数,则 X = 1表示出现1点;X > 4表示点数大于4,即出现5点或6点;X ≤ 0为不可能事件.又出现奇数点,即X = 1, 3, 5;点数不超过3,即X ≤ 3. 例 X 表示商店一天中某商品的销售件数(顾客的需求件数), 则 X = 0表示没有销售;X ≤ 10表示销售不超过10件.又销售5件以上(不含5件)即X > 5;若该商店准备了a 件该商品,事件“能满足顾客需要”,即X ≤ a . 例 X 表示一只电子元件的使用寿命(小时), 则 X = 1000表示该元件恰好使用了1000小时,X ≥ 800表示该元件使用寿命在800小时以上. 例 90分钟足球比赛,X 表示首次进球时间(分钟),且0:0时,记X = 100, 则 X = 10表示上半场第10分钟首次进球.又上半场不进球即X > 45;开场1分钟内进球即X ≤ 1.如果随机变量X 的全部可能取值是有限个或可列个,则称为离散型随机变量.(注:可列个即可以排成一列,一个一个往下数,如非负整数0, 1, 2, 3, … )离散型随机变量的全部可能取值是实数轴上一些离散的点,而连续型随机变量的全部可能取值是实数轴上一个区间或多个区间的并,如电子元件使用寿命X (小时),全部可能取值是),0[∞+.下面按离散型和连续型分别进行讨论.2.1.2. 离散随机变量的概率分布列对于随机变量还应该掌握它的每一取值或取值范围表示事件的概率.定义 如果随机变量X 的全部可能取值是有限个或可列个,则称为离散型随机变量.设离散型随机变量X 的全部可能取值为x 1, x 2, …, x k , …,则X 取值x k 的概率p k = p (x k ) = P {X = x k }, k = 1, 2, …… 称为离散型随机变量的概率分布函数(Probability Distribution Function ,PDF ),简称概率分布或概率函数.直观上,又写为L LLL)()()(2121k kx p x p x p Px x x X 或 ⎟⎟⎠⎞⎜⎜⎝⎛L L L L)()()(~2121k k x p x p x p x x x X , 称为X 的概率分布列.如掷一枚骰子,X 表示出现的点数,X 的分布列为616161616161654321PX . 概率函数基本性质:(1)非负性 p (x k ) ≥ 0 , k = 1, 2, ……; (2)正则性1)(1=∑∞=k kxp .这是因为事件X = x 1 , X = x 2 , … , X = x k , … 是一个完备事件组, 故P {X = x 1} + P {X = x 2} + … + P {X = x k } + … = P (Ω) = 1,即p (x 1) + p (x 2) + … + p (x k ) + … = 1. 例 设盒中有2个红球3个白球,从中任取3球,以X 表示取得的红球数.求X 的分布列. 解:X 的全部可能取值0, 1, 2 ,样本点总数为1035=⎟⎟⎠⎞⎜⎜⎝⎛=n ,X = 0表示“取到3个白球”,所含样本点个数为1330=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有1.0101)0(==p , X = 1表示“取到1个红球2个白球”,所含样本点个数为612231=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有6.0106)1(==p , X = 2表示“取到2个红球1个白球”,所含样本点个数为322132=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有3.0103)2(==p . 故X 的分布列为3.06.01.0210P X.求离散型随机变量X 的概率分布步骤: (1)找出X 的全部可能取值,(2)将X 的每一取值表示为事件, (3)求出X 的每一取值的概率.例 现有10件产品,其中有3件不合格.若不放回抽取,每次取一件,直到取得合格品为止.用X 表示抽取次数,求X 的概率分布. 解:X 的全部可能取值1, 2, 3, 4 ,X = 1表示“第1次就取得合格品”,有107)1(=p , X = 2表示“第2次取得合格品且第1次是不合格品”,有30797103)2(=⋅=p , X = 3表示“第3次取得合格品且前两次是不合格品”,有12078792103)3(=⋅⋅=p , X = 4表示“第4次取得合格品且前三次是不合格品”,有1201778192103)4(=⋅⋅⋅=p , 故X 的分布列为120112073071074321PX . 例 上例若改为有放回地抽取,又如何? 解:X 的全部可能取值1 , 2 , … , n , … ,7.0107)1(==p ,21.0107103)2(=⋅=p ,7.03.0)3(2×=p ,…,7.03.0)(1×=−k k p ,…, 故X 的概率函数为L ,2,1,7.03.0)(1=×=−k k p k ;X 的分布列为LL L L 7.03.07.03.021.07.032112××−k PkX .例 若离散型随机变量的概率函数为kCk p =)(,k = 1, 2, 3, 4,且C 为常数. 求:(1)C 的值,(2)P {X = 3},(3)P {X < 3}.解:(1)由正则性知:1432)4()3()2()1(=+++=+++CC C C p p p p ,即11225=C ,故2512=C .(2)254)3(}3{===p X P , (3)25182562512)2()1(}3{=+=+=<p p X P . 2.1.3.随机变量的分布函数连续型随机变量在单个点取值概率为零,如电子元件使用寿命恰好为1000小时这个事件的概率就等于零,因此连续型随机变量不能考虑概率函数.为了用单独一个变量表示一个区间,特别地取区间 (−∞, x ].定义 随机变量X 与任意实数x ,称F (x ) = P {X ≤ x },−∞ < x < +∞为X 的累积分布函数(Cumulative Distribution Function ,CDF ),简称分布函数.P {a < X ≤ b } = P {X ≤ b } − P {X ≤ a } = F (b ) − F (a ),P {X > a } = 1 − P {X ≤ a } = 1 − F (a ),由概率的连续性知)0()(lim }{lim }{−==≤=<−−→→a F x F x X P a X P ax ax ,且P {X = a } = P {X ≤ a } − P {X < a } = F (a ) − F (a – 0),可见X 在任一区间上或任一点取值的概率都可用分布函数表示. 例 已知随机变量X 的分布列为3.05.02.0210PX ,求X 的分布函数.解:X 的全部可能取值为0, 1, 2,当x < 0时,F (x ) = P {X ≤ x } = P (∅) = 0, 当0 ≤ x < 1时,F (x ) = P {X ≤ x } = p (0) = 0.2,当1 ≤ x < 2时,F (x ) = P {X ≤ x } = p (0) + p (1) = 0.7, 当x ≥ 2时,F (x ) = P {X ≤ x } = P (Ω ) = 1,故⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.2,1,21,7.0,10,2.0,0,0)(x x x x x F若离散型随机变量的全部可能取值为x 1, x 2, ……,概率函数p (x k ) = p k ,k = 1, 2, ……,则分布函数∑≤=≤=xx kk xp x X P x F )(}{)(.且离散型随机变量的分布函数F (x )是单调不减的阶梯形函数,X 的每一可能取值x k 是F (x )的跳跃点,跳跃高度是相应概率p (x k ).例 已知某离散型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤−−<=,5,1,52,6.0,20,4.0,01,3.01,0)(x x x x x x F 求X 的分布列. 解:X 的全部可能取值是F (x )的跳跃点,即 −1, 0, 2, 5,跳跃高度依次为:p (−1) = 0.3 − 0 = 0.3; p (0) = 0.4 − 0.3 = 0.1; p (2) = 0.6 − 0.4 = 0.2; p (5) = 1 − 0.6 = 0.4.故X 的分布列为4.02.01.03.05201PX −.分布函数的基本性质:(1)单调性,F (x ) 单调不减,即x 1 < x 2时,F (x 1) ≤ F (x 2); (2)正则性,F (−∞) = 0,F (+∞) = 1;(3)连续性,F (x ) 右连续,即)()(lim 00x F x F x x =+→. 证:(1)当x 1 < x 2时,{X ≤ x 1} ⊂ {X ≤ x 2},有F (x 1) ≤ F (x 2);(2)F (−∞) = P {X < −∞} = P (∅) = 0,F (+∞) = P {X < +∞} = P (Ω ) = 1;(3)任取单调下降且趋于x 0的数列{x n },有}{}{}{lim 01x X x X x X n n n n ≤=≤=≤∞=∞→I ,根据概率的连续性知}{}{}{lim 01x X P x X P x X P n n n n ≤=⎟⎟⎠⎞⎜⎜⎝⎛≤=≤∞=∞→I ,即)()(lim 00x F x F x x =+→. 但F (x )不一定左连续,任取单调增加且趋于x 0的数列{x n },有}{}{}{lim 01x X x X x X n n n n <=≤=≤∞=∞→U ,得}{}{}{lim 01x X P x X P x X P n n n n <=⎟⎟⎠⎞⎜⎜⎝⎛≤=≤∞=∞→U , 故}{)(}{)(lim 0000x X P x F x X P x F x x =−=<=−→.2.1.4. 连续随机变量的概率密度函数离散型随机变量的全部可能取值是有限或可列个点,连续型随机变量的全部可能取值是实数区间.但连续型随机变量在单独一个点取值的概率为0,其概率函数无实际意义,对于连续随机变量通常考虑其在某个区间上取值的概率,这就需要讨论分布函数.连续型随机变量的分布函数是连续函数. 注意:概率为0的事件不一定是不可能事件.定义 随机变量X 的分布函数F (x ),若存在函数p (x ),使 ∫∞−=xdu u p x F )()(,则称X 为连续型随机变量,p(x )为X 的概率密度函数(可以理解为:p (u )为概率密度,p (u )du 为X 在该小区间内取值的概率,∫∞−x 为从−∞ 到x 无限求和.几何意义:在平面上作出密度函数p (x )的图形,则阴影部分的面积即为F (x )的值.密度函数基本性质:(1)非负性 p (x ) ≥ 0;(2)正则性 1)(=∫∞+∞−dx x p .因)()(x F du u p x =∫∞−,有1)()(=+∞=∫∞+∞−F dx x p .连续型随机变量的性质:设连续型随机变量X 的概率密度函数为p (x ),分布函数为F (x ),则有 (1)∫=−=≤<21)()()(}{1221x x dx x p x F x F x X x P ;(2)当p (x ) 连续时,p (x ) = F ′(x ); 因∫∞−=x du u p x F )()(,当p (x ) 连续时,有)(])([)(x p du u p x F x=′=′∫∞−(3)X 在单独一个点取值的概率为0,其分布函数为连续函数;(4)P {x 1 < X ≤ x 2} = P {x 1 ≤ X ≤ x 2} = P {x 1 < X < x 2} = P {x 1 ≤ X < x 2},即连续型...随机变量在某区间内的概率与区间开闭无关,离散型则不成立;(5)只在有限个点上取值不相同的密度函数对应于同一个分布函数,一般,只在概率为0的数集上取值不相同的密度函数都对应于同一个分布函数.例 设F (x ) = A + B arctan x 为某连续型随机变量X 的分布函数. 求:(1)A , B ; (2)}31{≤≤−X P ; (3)密度函数p (x ). 解:(1)由正则性 F (−∞) = 0,F (+∞) = 1,得:02π)arctan (lim =−=+−∞→B A x B A x ,12π)arctan (lim =+=++∞→B A x B A x ,故21=A ,π1=B ;(2)x x F arctan π121)(+=,得1274ππ1213ππ121)1()3(}31{=⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−⋅+−⎟⎠⎞⎜⎝⎛⋅+=−−=≤≤−F F X P . (3)密度函数)1π(1)()(2x x F x p +=′=.例 已知⎩⎨⎧<<−=,,0,10),()(32其它x x x C x p是某连续型随机变量X 的密度函数,求:(1)C , (2)}211{<<−X P , (3)分布函数F (x ).解:(1)由正则性:1)(=∫∞+∞−dx x p ,得1120)4131()43()(10431032==−−=−=−∫C C x x C dx x x C ,故C = 12;(2)165)641241(12)43(12)(12)(}211{2104321032211=−=−=−==<<−∫∫−x x dx x x dx x p X P ;(3)X 的全部可能取值为 [0, 1],分段点0, 1,当x < 0时,0)()(==∫∞−xdu u p x F ,当0 ≤ x < 1时,4304303234)43(12)(12)()(x x u u du u u du u p x F xxx−=−=−==∫∫∞−,当x ≥ 1时, 1)(12)()(132=−==∫∫∞−du u u du u p x F x,故⎪⎩⎪⎨⎧≥<≤−<=.1,1,10,34,0,0)(43x x x x x x F例 已知⎩⎨⎧<<−=,,0,11|,|)(其它x x x p是某连续型随机变量X 的密度函数,求分布函数F (x ).解:分段点−1, 0, 1,当x < −1时,0)()(==∫∞−xdu u p x F ;当−1 ≤ x < 0时, 212122)()()(22121x x u du u du u p x F xxx−=+−=−=−==−−∞−∫∫; 当0 ≤ x < 1时,21221022)()()(220212001x x u u udu du u du u p x F xxx+=++=+−=+−==−−∞−∫∫∫;当x ≥ 1时, 1)()()(101=+−==∫∫∫−∞−udu du u du u p x F x.故⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+<≤−−<=.1,1,10,21,01,21,0,0)(22x x x x xx x F§2.2 随机变量的数学期望对于随机变量,还应当掌握反映其平均值、分散程度等的指标,这就需要引入数学期望和方差等概念. 2.2.1.数学期望的概念例 甲、乙两个射击选手,在射击训练中甲射了10次,其中3次10环,1次9环,4次8环,2次7环;乙射了15次,其中2次10环,9次9环,2次8环,2次7环.问谁的表现更好? 分析:比较他们射中的平均环数甲共射中3 × 10 + 1 × 9 + 4 × 8 + 2 × 7 = 85环,平均每次射中5.81085=环; 乙共射中2 × 10 + 9 × 9 + 2 × 8 + 2 × 7 = 131环,平均每次射中73.815131=&环. 故乙的表现更好.一般地,若在n 次试验中,出现了m 1次x 1,m 2次x 2,…,m k 次x k ,(其中m 1 + m 2 + … + m k = n ),则平均值为∑==+++ki i i k k n mx n x m x m x m 12211L ,即平均值等于取值与频率乘积之和.因n 很大时,频率稳定在概率附近,即平均值将稳定在取值与概率乘积之和附近. 2.2.2.数学期望的定义定义 设离散型随机变量X 的分布列是⎟⎟⎠⎞⎜⎜⎝⎛L L L L )()()(~2121k kx p x p x p x x x X ,如果级数∑∞=1)(k k k x p x 绝对收敛,则称之为X 的数学期望(Expectation ),记为E (X ). 数学期望的实际意义是反映随机变量的平均取值,是其全部可能取值以相应概率为权数的加权平均.如X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛−2.04.01.03.04102,则E (X) = (−2) × 0.3 + 0 × 0.1 + 1 × 0.4 + 4 × 0.2 = 0.6. 例 某人有4发子弹,现在他向某一目标射击,若命中目标就停止射击,否则直到子弹用完为止.设每发子弹命中率为0.4,以X 表示射击次数,求E (X ). 解:先求X 的分布列,X 的全部可能取值为1, 2, 3, 4,X = 1,第一枪就命中, p (1) = 0.4;X = 2,第一枪没有命中,第二枪命中,p (2) = 0.6 × 0.4 = 0.24; X = 3,前两枪没有命中,第三枪命中,p (3) = 0.6 2 × 0.4 = 0.144; X = 4,前三枪没有命中, p (4) = 0.6 3 = 0.216.则X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛216.0144.024.04.04321,故E (X ) = 1 × 0.4 + 2 × 0.24 + 3 × 0.144 + 4 × 0.216 = 2.176.例 若X 的概率函数为L ,2,1,21)2(==⎟⎟⎠⎞⎜⎜⎝⎛−k kp k k,求E (X ). 解:因∑∑∞=∞=−=⋅−11)1(21)2(k kk k k k k 收敛但不是绝对收敛,故E (X ) 不存在.离散型随机变量的数学期望是取值乘概率求和:∑∞=1)(k k k x p x ,类似可定义连续型随机变量的数学期望是取值乘密度积分:∫+∞∞−dx x xp )(.定义 设连续型随机变量X 的密度函数为p (x ).如果广义积分∫+∞∞−dx x xp )(绝对收敛,则称之为X 的数学期望,记为E (X ).例 已知连续型随机变量X 的密度函数为⎩⎨⎧<<=.,0,10,2)(其它x x x p 求E (X ).解:32322)()(1310=⋅=⋅==∫∫∞+∞−x xdx x dx x xp X E . 例 已知X 的密度函数为⎩⎨⎧<<+=.,0,20,)(其它x bx a x p 且32)(=X E ,求a , b . 解:由正则性得122)2()()(2220=+=⋅+=+=∫∫∞+∞−b a x b ax dx bx a dx x p ,又32382)32()()()(20322=+=⋅+⋅=+==∫∫∞+∞−b a x b x a dx bx a x dx x xp X E ,故21,1−==b a . 例 已知X 的密度函数为+∞<<∞−+=x x x p ,)1π(1)(2,求E (X ).解:因+∞∞−+∞∞−+∞∞−+∞∞−+=⋅+=+=∫∫∫)1ln(π21)(21)1π(1)1π()(2222x x d x dx x x dx x xp 发散, 故E (X )不存在. 2.2.3.数学期望的性质设X 为随机变量,g (x ) 为函数,则称Y = g (X ) 为随机变量函数,Y 也是一个随机变量.下面不加证明地给出随机变量函数的数学期望计算公式.定理 设X 为随机变量,Y = g (X ) 为随机变量函数,则(1)若X 为离散型随机变量,概率函数为p(x k ), k = 1, 2, …,则∑∞===1)()()]([)(k k k x p x g X g E Y E ;(2)若X 为连续型随机变量,密度函数为p (x ),则∫+∞∞−==dx x p x g X g E Y E )()()]([)(.数学期望具有以下性质:(1)常数的期望等于其自身,即E (c ) = c ;(2)常数因子可移到期望符号外,即E (aX ) = a E (X );(3)随机变量和的期望等于期望的和,即E [g 1 (X ) + g 2 (X )] = E [g 1 (X )] + E [g 2 (X )]. 证明:(1)将常数c 看作是单点分布p (c ) = 1,故E (c ) = c p (c ) = c ;(2)以连续型为例加以证明,)()()()(X aE dx x xp a dx x axp aX E ===∫∫+∞∞−+∞∞−;(3)以连续型为例加以证明,∫∫∫+∞∞−+∞∞−+∞∞−+=+=+dx x p x g dx x p x g dx x p x g x g X g X g E )()()()()()]()([)]()([212121= E [g 1 (X )] + E [g 2 (X )].由性质(2)、(3)知随机变量线性组合的期望等于期望的线性组合,可见数学期望具有线性性质. 例 设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛−3.04.01.02.02101, 求E (2X +1),E (X 2).解:E (2X +1) = −1 × 0.2 + 1 × 0.1 + 3 × 0.4 + 5 × 0.3 = 2.6;E (X 2) = 1 × 0.2 + 0 × 0.1 + 1 × 0.4 + 4 × 0.3 = 1.8. 例 已知圆的半径X 是一个随机变量,密度函数为⎪⎩⎪⎨⎧<<=.,0,31,21)(其他x x p 求圆面积Y 的数学期望. 解:圆面积Y = π X 2,故3π1332π21π)(π)(3133122=⋅=⋅==∫∫∞+∞−xdx x dx x p x Y E . 例 设国际市场对我国某种出口商品的需求量X (吨)的密度函数为⎪⎩⎪⎨⎧<<=.,0,40002000,20001)(其他x x p 设每售出一吨,可获利3万美元,但若销售不出,每积压一吨将亏损1万美元,问如何计划年出口量,能使国家获利的期望最大.解:设计划年出口量为a 吨,每年获利Y 万美元.当X ≥ a 时,销售a 吨,获利3a 万美元;当X < a 时,销售X 吨,积压a − X 吨,获利3X − (a − X ) = 4X − a 万美元;即⎩⎨⎧<≤−≤≤==.2000,4,4000,3)(a X a X X a a X g Y则4000200024000200020003)2(2000120001320001)4()()()(aa a a x a ax x dx a dx a x dx x p x g Y E +−=⋅+⋅−==∫∫∫+∞∞− 8250)3500(10001400071000122+−−=−+−=a a a , 故计划年出口量为3500吨时,使国家获利的期望最大.§2.3 随机变量的方差与标准差数学期望反映平均值,方差反映波动程度.如甲、乙两台包装机,要求包装重量为每袋500克,现各取5袋,重量为甲:498,499,500,501,502; 乙:490,495,500,505,510.二者平均值相同都是500克,但显然甲比乙好.此时比较的是它们的偏差(即取值与平均值之差).偏差:甲:−2,−1,0,1,2;乙:−10,−5,0,5,10. 2.3.1.方差的定义定义 随机变量X 与其数学期望E (X ) 之差X − E (X ) 称为偏差.偏差有大有小,可正可负,比较时需要去掉符号,但绝对值函数进行微积分处理不方便,因此考虑偏差平方的数学期望.定义 随机变量X ,若E [X − E (X )]2存在,则称之为X 的方差(Variance ),记为Var (X ) 或D (X ).即Var (X ) = E [X − E (X )]2.显然方差Var (X ) ≥ 0,称)Var(X 为X 的标准差(Standard Deviation ).在实际问题中,标准差与随机变量有相同的量纲.方差与标准差反映波动程度.方差越大,取值越分散;方差越小,取值越集中. 例 设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛4.04.02.0321, 求E (X ), Var (X ).解:E (X ) = 1 × 0.2 + 2 × 0.4 + 3 × 0.4 = 2.2;Var (X ) = (−1.2)2 × 0.2 + (−0.2)2 × 0.4 + 0.82 × 0.4 = 0.56. 例 已知X 的密度函数为⎩⎨⎧<<=.,0,10,2)(其他x x x p求E (X ), Var (X ).解:32322)()(1310=⋅=⋅==∫∫∞+∞−x xdx x dx x xf X E ; 181949821949842)98382()()32()Var(1023410232=+−=⎟⎠⎞⎜⎝⎛+−=+−=−=∫∫∞+∞−x x x dx x x x dx x p x X .例 已知X 的全部可能取值为0, 1, 2,且E (X ) = 1.3,Var (X ) = 0.81.求X 的分布列.解:设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛c b a 210,由正则性得:a + b + c = 1,且E (X ) = 0 × a + 1 × b + 2 × c = b + 2c = 1.3,Var (X ) = (−1.3)2 × a + (−0.3)2 × b + 0.72 × c = 1.69a + 0.09b + 0.49c = 0.81, 解得a = 0.3,b = 0.1,c = 0.6,故X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛6.01.03.0210.2.3.2. 方差的性质方差具有以下性质:(1)方差计算公式:Var (X ) = E (X 2) − [E (X )]2; (2)常数的方差等于零,即Var (c ) = 0;(3)设a , b 为常数,则Var (a X + b ) = a 2 Var (X ). 证:(1)Var (X ) = E [X − E (X )]2 = E [X 2 − 2X ⋅ E (X ) + E (X )2] = E (X 2 ) − 2E (X ) ⋅ E (X ) + [E (X )]2.= E (X 2) − [E (X )]2;(2)Var (c ) = E [c − E (c )]2 = E (c − c )2 = E (0) = 0;(3)Var (a X + b ) = E [(a X + b ) − E (a X + b )]2 = E [a X + b − a E (X ) − b ]2 = a 2 E [X − E (X )]2 = a 2 Var (X ). 由性质(1),显然有以下推论:推论 对于随机变量X ,如果E (X 2) 存在,则E (X 2) ≥ [E (X )]2.以后常利用方差计算公式Var (X ) = E (X 2) − [E (X )]2计算随机变量的方差.通常用公式计算比直接用定义计算方差要方便. 例 设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛4.04.02.0321, 求Var (X ).解:前面已求得E (X ) = 2.2,因E (X 2) = 1 2 × 0.2 + 2 2 × 0.4 + 3 2 × 0.4 = 5.4, 故Var (X ) = E (X 2) − [E (X )]2 = 5.4 − 2.22 = 0.56. 例 已知X 的密度函数为⎩⎨⎧<<=.,0,10,2)(其他x x x p 求Var (X ).解:前面已求得32)(=X E , 因21422)(141022=⋅=⋅=∫x xdx x X E , 故1813221)]([)()Var(222=⎟⎠⎞⎜⎝⎛−=−=X E X E X . 对于随机变量X ,若方差Var (X ) 存在,且Var (X ) > 0.令)Var()(*X X E X X −=,有0)]()([)Var(1)]([)Var(1)Var()(*)(=−=−=⎟⎟⎠⎞⎜⎜⎝⎛−=X E X E X X E X E X X X E X E X E ; 1)Var()Var(1)](Var[)Var(1)Var()(Var *)Var(==−=⎟⎟⎠⎞⎜⎜⎝⎛−=X X X E X X X X E X X .称X *为X 的标准化随机变量.2.3.3. 切比雪夫不等式方差反映随机变量的分散程度,切比雪夫不等式给出其定量标准.切比雪夫不等式表明大偏差概率的上限与方差成正比.定理 设X 为随机变量,且方差Var (X ) 存在,则对于任何正数ε ,都有2)Var(}|)({|εεX X E X P ≤≥−.证明:以连续型随机变量为例证明,设X 的密度函数为p (x ),有∫≥−=≥−εε|)(|)(}|)({|X E x dx x p X E X P ,且∫∞+∞−−=−=dx x p X E x X E X E X )()]([)]([1)Var(22222εεε,故222|)(|22)Var()()]([)()]([}|)({|εεεεεX dx x p X E x dx x p X E x X E X P X E x =−≤−≤≥−∫∫∞+∞−≥−,得证.注:切比雪夫不等式的等价形式2)Var(1}|)({|εεX X E X P −≥<−.如随机变量X 的数学期望为E (X ) = 10,方差Var (X ) = 1,则由切比雪夫不等式可得43211}2|10{|}128{2=−≥<−=<<X P X P . 例 设随机变量X 的全部可能取值为),0[∞+,且数学期望E (X ) 存在,试证:对任何正数a ,都有)(1}{X E aa X P ≤≥. 证明:以连续型随机变量为例证明,设X 的密度函数为p (x ),有∫+∞=≥a dx x p a X P )(}{,且∫∫+∞+∞∞−==0)()(1)(1dx x p a x dx x xp a X E a ,故)(1)()(}{0X E adx x p a x dx x p a x a X P a =≤≤≥∫∫+∞+∞,得证.定理 设随机变量X 的方差存在,则Var (X ) = 0的充分必要条件是存在常数b ,使得X 几乎处处收敛于b ,即P {X = b } = 1.证:充分性,设存在常数b ,使得P {X = b } = 1,有P {X ≠ b } = 0,即E (X ) = b P {X = b } = b ,故Var (X ) = E [X − E (X )]2 = E (X − b )2 = 0 × P {X = b } = 0; 必要性,设X 的方差Var (X ) = 0,因事件U +∞=+∞→⎭⎫⎩⎨⎧≥−=⎭⎬⎫⎩⎨⎧≥−=>−11|)(|lim 1|)(|}0|)({|n n n X E X n X E X X E X ,则01)Var(lim 1|)(|lim 1|)(|}0|)({|21=⎟⎠⎞⎜⎝⎛≤⎭⎬⎫⎩⎨⎧≥−=⎟⎟⎠⎞⎜⎜⎝⎛⎭⎬⎫⎩⎨⎧≥−=>−+∞→+∞→+∞=n X n X E X P n X E X P X E X P n n n U , 可得P {| X − E (X )| > 0} = 0,即P {| X − E (X )| = 0} = 1,取b = E (X ),有b 为常数, 故P {X = b } = 1.注:如果P {X = b } = 1,记为X = b , a.e.(或a.s.),称为X = b 几乎处处成立(或几乎必然成立).这里,a.e.就是almost everywhere 的缩写,a.s.就是almost surely 的缩写.意味着不成立的情况是一个测度(或概率)等于零的集合(或事件).§2.4 常用离散分布对于一个给定的函数,只要满足概率函数的两条基本性质:非负性、正则性,都可以成为某个离散随机变量的概率函数.但绝大多数在实际工作中并不常见,下面是几种常用的概率函数. 2.4.1.两点分布与二项分布一.两点分布两点分布只可能在两个点取值,通常就是0或1.定义 随机变量的可能取值只有两个:0或1,且概率函数为p (0) = 1 − p ,p (1) = p , 其中0 < p < 1,称X 服从两点分布(Two-point Distribution )或0-1分布,记为X ~ (0-1).分布列为⎟⎟⎠⎞⎜⎜⎝⎛−p p110. 两点分布实际背景是一次伯努利试验.通常描述为:X 表示一次伯努利试验中事件A 发生的次数.非负性:p (0) = 1 − p > 0,p (1) = p > 0; 正则性:(1 − p ) + p = 1. 两点分布的数学期望为E (X ) = 0 × (1 − p ) + 1 × p = p .又因E (X 2 ) = 02 × (1 − p ) + 12 × p = p ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = p − p 2 = p (1 − p ).二.二项分布在n 重伯努利试验中,以X 表示事件A 的发生次数,则X 的全部可能取值为0, 1, 2, …, n ,且kn k p p k n k X P −−⎟⎟⎠⎞⎜⎜⎝⎛==)1(}{. 定义 若离散型随机变量X 的概率函数为kn k p p k n k p −−⎟⎟⎠⎞⎜⎜⎝⎛=)1()(, k = 0, 1, 2, …, n ;0 < p < 1, 则称X 服从二项分布(Binomial Distribution ),记为X ~ b (n , p ).二项分布的实际背景是n 重伯努利试验. 当n = 1时,二项分布就是两点分布.非负性:0)1()(>−⎟⎟⎠⎞⎜⎜⎝⎛=−kn k p p k n k p ; 正则性:1)]1([)1()(11=−+=−⎟⎟⎠⎞⎜⎜⎝⎛=∑∑=−=nnk k n k nk p p p p k n k p . 例 掷三枚硬币,X 表示正面朝上的次数,求X 的概率分布.解:X 的全部可能取值为0, 1, 2, 3 ,将掷每一枚硬币看作一次试验.每次试验两种结果:正面A ,反面A ;每次试验相互独立;每次试验概率5.0)(=A P . 即n 重伯努利试验,n = 3,5.0=p ,有X ~ b (3, 0.5),p (0) = 0.5 3 = 0.125,375.05.05.013)1(21=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 375.05.05.023)2(12=××⎟⎟⎠⎞⎜⎜⎝⎛=p , p (3) = 0.5 3 = 0.125.例 现有5台机床,每台机床一小时内平均开动18分钟,且是否开动相互独立,以X 表示同一时刻开动的机床数,求X 的概率分布.解:X 的全部可能取值为0, 1, 2, 3, 4, 5 ,将每台机床是否开动看作一次试验.每次试验两种结果:开动A ,不开动A ;每次试验相互独立;每次试验概率P (A ) = 0.3. 即n 重伯努利试验,n = 5,p = 0.3,有X ~ b (5, 0.3).p (0) = 0.7 5 = 0.16807,36015.07.03.015)1(41=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 3087.07.03.025)2(32=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 1323.07.03.035)3(23=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 02835.07.03.045)4(14=××⎟⎟⎠⎞⎜⎜⎝⎛=p , p (5) = 0.3 5 = 0.00243 .一般地,如果随机变量X 服从二项分布,概率函数值p (k ) 将随着k 的增加,先逐渐增加,达到最大值后,又逐渐减少.通常,一个随机变量X 的概率函数或密度函数的最大值点称为X 的最可能值.二项分布b (n , p )的最可能值为⎩⎨⎧+−++++=.)1(,1)1()1(,)1(],)1[(0是正整数时当或不是正整数时当p n p n p n p n p n k 这里[x ]表示不超过x 的最大整数.如[2.3] = 2,[3.14] = 3,[−1.2] = −2.证:若X ~ b (n , p ),有n k p p k n k n p p k n k p k n k kn k ≤≤−−=−⎟⎟⎠⎞⎜⎜⎝⎛=−−0,)1()!(!!)1()(, 则11)1()!1()!1(!)1()!(!!)1()(+−−−−+−−−−−=−−k n k k n k p p k n k n p p k n k n k p k p ⎟⎠⎞⎜⎝⎛+−−−⋅−−−=−−11)1()!()!1(!1k n p k pp p k n k n k n k)1()1()1()!()!1(!1+−−+⋅−−−=−−k n k k p n p p k n k n k n k , 当k < (n + 1) p 时,有p (k ) > p (k − 1);当k > (n + 1) p 时,有p (k ) < p (k − 1).如果(n + 1) p 不是正整数,取k 0 = [(n + 1) p ],有k 0 < (n + 1) p ,即p (k 0) > p (k 0 − 1);且k 0 + 1 > (n + 1) p ,即p (k 0 + 1) < p (k 0). 故p (k 0) 为最大值.如果(n + 1) p 是正整数,取k 0 = (n + 1) p ,即p (k 0) = p (k 0 − 1), 故p (k 0) 和p (k 0 − 1) 都是最大值.如X ~ B (3, 0.5),有(n + 1) p = 4 × 0.5 = 2是正整数,最可能值k 0 = 2或1;X ~ B (5, 0.3),有(n + 1) p = 6 × 0.3 = 1.8不是正整数,最可能值k 0 = [1.8] = 1.三.二项分布的数学期望和方差组合数公式⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−⋅−−⋅=−⋅=⎟⎟⎠⎞⎜⎜⎝⎛11)!()!1()!1()!(!!k n k n k n k n k n k n k n k n , (n ≥ k > 0). 二项分布b (n , p )的数学期望为∑∑∑=−−=−=−−⎟⎟⎠⎞⎜⎜⎝⎛−−=−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅⋅=−⎟⎟⎠⎞⎜⎜⎝⎛⋅=nk k n k n k kn k nk k n k p p k n np p p k n k n k p p k n k X E 1110)1(11)1(11)1()( = np [ p + (1 − p )]n − 1 = np .又因∑∑∑=−=−=−−⎟⎟⎠⎞⎜⎜⎝⎛⋅+−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅−=−⎟⎟⎠⎞⎜⎜⎝⎛⋅=nk k n k n k k n k nk k n k p p k n k p p k n k k p p k n k X E 002022)1()1(11)()1()( )()1(22)1()1()(22X E p p k n k k n n k k nk k n k+−⎟⎟⎠⎞⎜⎜⎝⎛−−−−⋅−=∑=− np p p k n pn n nk kn k +−⎟⎟⎠⎞⎜⎜⎝⎛−−−=∑=−−222)1(22)1( = n (n − 1) p 2 [ p + (1 − p )]n − 2 + np = (n 2 − n ) p 2 + np ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = (n 2 − n ) p 2 + np − (np )2 = − np 2 + np = np (1 − p ).2.4.2.泊松分布一.泊松分布泊松分布是一种理论推导的极限分布(成立的条件和推导过程见附录). 定义 若随机变量X 的概率函数为λλ−=e !)(k k p k, k = 0, 1, 2, …… ;λ > 0,则称X 服从参数为 λ 的泊松分布(Poisson’s Distribution ),记为X ~ P (λ).泊松分布的实际背景是已知平均发生次数为常数λ ,实际发生次数的概率分布.如足球比赛进球数,商店进店人数,电话接听次数等.非负性:λ > 0时,0e !>−λλk k;正则性:1e e e !=⋅=⋅−∞=−∑λλλλk kk .例 已知一场足球比赛的进球数X 服从参数λ = 2.3的泊松分布,求比分为0:0, 1:0以及总进球数超过5个的概率.解:因X ~ P(2.5),则3.2e !3.2)(−=k k p k , k = 0, 1, 2, …….比分0:0,即X = 0,100.0e e !03.2)0(3.23.20===−−p (查表);比分1:0,即X = 1,231.0100.0331.0e 3.2e !13.2)1(3.23.21=−===−−p (查表);总进球数超过5个,即X > 5,030.0970.01e !3.21e!3.2}5{53.263.2=−=−==>∑∑=−∞=−k k k k k k X P (查表). 例 已知某公用电话每小时内打电话的人数X 服从参数为λ = 8的泊松分布.求某一小时内无人打电话的概率,恰有10人打电话的概率,至少有10人打电话的概率.解:因X ~ P(8),有8e !8}{−==k k X P k . 无人打电话的概率0003.0e e !08}0{880====−−X P ,恰有10人打电话的概率099.0717.0816.0e !108}10{810=−===−X P (查表),至少有10人打电话的概率283.0717.01}9{1e !8}10{108=−=≤−==≥∑∞=−X P k X P k k (查表). 例 已知某商店一天中某种贵重商品的销售件数X 服从泊松分布P (7),问该商店每天应该准备多少件该商品才能以99.9%以上的概率满足顾客需要?解:设准备了a 件该商品,X ~ P(7),则7e !7)(−=k k p k .事件“满足顾客需要”,即X ≤ a ,有P {X ≤ a } ≥ 0.999,故查表可得a = 16. 泊松分布P (λ )的最可能值为⎩⎨⎧−=.,1,],[0是正整数时当或不是正整数时当λλλλλk 证:若X ~ P(λ),有L ,2,1,0,e !)(==−k k k p kλλ,故k k k k k k k k p k p k k k k−⋅−=⎟⎠⎞⎜⎝⎛−⋅−=−−=−−−−−−−−−λλλλλλλλλλe )!1(1e )!1(e)!1(e !)1()(111,当k < λ 时,有p (k ) > p (k − 1);当k > λ 时,有p (k ) < p (k − 1).如果λ 不是正整数,取k 0 = [λ ] ,有k 0 < λ ,即p (k 0) > p (k 0 − 1);且k 0 + 1 > λ ,即p (k 0 + 1) < p (k 0). 故p (k 0) 为最大值.如果λ 是正整数,取k 0 = λ ,即p (k 0) = p (k 0 − 1), 故p (k 0) 和p (k 0 − 1) 都是最大值. 二.泊松分布的数学期望和方差泊松分布P (λ )的数学期望为λλλλλλλλλλλ=⋅=−⋅=−=⋅=−∞=−−∞=−∞=−∑∑∑e e )!1(e e)!1(e!)(111k k k kk kk k k k X E ,即泊松分布的参数 λ 反映平均发生次数.又因)()!2(e e!e!)(e!)(222222X E k k k k k k k k X E k k k kk kk k+−⋅=⋅+⋅−=⋅=∑∑∑∑∞=−−∞=−∞=−∞=−λλλλλλλλλ= λ 2 e −λ ⋅ e λ + λ = λ 2 + λ ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = λ 2 + λ − (λ )2 = λ .三.二项分布的泊松近似二项分布与泊松分布的实际背景都是反映发生次数问题.下面的定理说明了二者之间的联系,泊松分布是二项分布的一种极限分布. 定理 (泊松定理)在n 重伯努利试验中,记事件A 在每次试验中发生的概率为与试验次数n 有关的数p n ,如果当n → +∞ 时,有n p n → λ ,则λλ−−+∞→=−⎟⎟⎠⎞⎜⎜⎝⎛e !)1(lim k p p k n k k n n k n n . 证:记λ n = n p n ,有λλ=+∞→n n lim ,因nk n n n kn n k n n n n n n p )(11)1(−−⋅−−−⎟⎠⎞⎜⎝⎛−+=⎟⎠⎞⎜⎝⎛−=−λλλλ,且e 1lim =⎟⎠⎞⎜⎝⎛−+−+∞→nnn n n λλ,λλ−=−−+∞→n k n n n )(lim , 则λλλλ−−−⋅−+∞→−+∞→=⎟⎠⎞⎜⎝⎛−+=−e 1lim )1(lim )(n k n n n n k n n n n n n p ,又因⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=+−−=⎟⎟⎠⎞⎜⎜⎝⎛n k n k n k k n n n k n k 1111!!)1()1(L L ,且11111lim =⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−+∞→n k n n L , 故⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−−=−⎟⎟⎠⎞⎜⎜⎝⎛−+∞→−+∞→n k n p p k n p p k n k n nk n k n k n n k n n 1111)1(!lim )1(lim L λλ−+∞→−+∞→+∞→=⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⋅−⋅=e !1111lim )1(lim !)(lim k n k n p k np k n k n n n k n n L . 此定理表明对于二项分布b (n , p ),当n 很大,p 很小时,可用泊松分布P (λ ) 近似,其中λ = n p .例 某地区每年人口意外死亡率为0.0001,现有60000人投保人身意外保险,求一年内因投保人意外死亡恰好赔付8人的概率以及赔付不超过5人的概率.解:设X 表示“一年内因投保人意外死亡而赔付的人数”,X ~ B (60000, 0.0001).则5999289999.00001.0860000}8{××⎟⎟⎠⎞⎜⎜⎝⎛==X P ,∑=−××⎟⎟⎠⎞⎜⎜⎝⎛=≤50600009999.00001.060000}5{k kk k X P , 但显然计算很繁琐,为便于计算,用泊松分布近似.因n = 60000很大,p = 0.0001很小,λ = np = 6,有)6(~P X &,故103.0744.0847.0e !86}8{68=−=≈=−X P ,446.0e !6}5{506=≈≤∑=−k k k X P .2.4.3. 超几何分布一.超几何分布在N 件产品中,有M 件次品,从中不放回地取n 件,以X 表示取得的次品数.设X 取值为k ,一方面,显然有k ≤ n 且k ≤ M ,即k ≤ min{n , M },另一方面,有k ≥ 0且n − k ≤ N − M ,可得k ≥ M + n − N ,即k ≥ max{0, M + n − N }.这样X 的全部可能取值为l , l + 1, …, L ,其中l = max{0, M + n − N },L = min{n , M },且⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛==n N k n M N k M k X P }{.定义 若随机变量X 的概率函数为⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=n N k n M N k M k p )(,k = l , l + 1, …, L ,l = max(0, n + M − N ),L = min(M , n ),M < N ,n < N , 则称X 服从超几何分布(Hypergeometric Distribution ),记为X ~ h (n , N , M ).超几何分布的实际背景是古典概型中的不放回抽样检验问题. 注:有放回检验抽样问题对应的是二项分布.非负性:0>⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛n N k n M N k M ;正则性:10=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛∑∑==n N n N n N k n M N k M n N k n M N k M Ll k L k .注:比较(1 + x )M(1 + x )N − M与(1 + x )N中x n的系数可以证明⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛∑=n N k n M N k M Ll k .例 一袋中有3个红球,2个白球,不放回地取出3个球,X 表示取得的红球数.求X 的概率分布.解:不放回抽样,N = 3,M = 2,n = 3,则X ~ h (3, 5, 3).故X 的全部可能取值为1, 2, 3, (l = max (0, n + M − N ) = 1,L = min(n , M ) = 3),3.0352213}1{=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==X P ,6.0351223}2{=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==X P ,1.0350233}3{=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==X P . 超几何分布h (n , N , M )的最可能值为⎪⎩⎪⎨⎧+++−++++++++++++=.21)1(,121)1(21)1(,21)1(],21)1[(0是正整数时当或不是正整数时当N M n N M n N M n N M n N M n k证:若X ~ h (n , N , M),有)!()!()!()!(!!1)(k n M N k n M N k M k M n N n N k n M N k M k p +−−−−⋅−⋅⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=, 故p (k ) − p (k − 1))!1()!1()!1()!1()!(!)!()!()!(!)!(!−+−−+−+−−⎟⎟⎠⎞⎜⎜⎝⎛−−+−−−−⎟⎟⎠⎞⎜⎜⎝⎛−=k n M N k n k M k n N M N M k n M N k n k M k n N M N M)]()1)(1[()!()!1()!1(!)!(!k n M N k k n k M k n M N k n k M k n N M N M +−−−+−+−+−−+−+−⎟⎟⎠⎞⎜⎜⎝⎛−=)]2()1)(1[()!()!1()!1(!)!(!+−+++−−+−+−⎟⎟⎠⎞⎜⎜⎝⎛−=N k n M k n M N k n k M k n N M N M .当21)1(+++<N M n k 时,有p (k ) > p (k − 1);当21)1(+++>N M n k 时,有p (k ) < p (k − 1). 如果21)1(+++N M n 不是正整数,取21)1[(0+++=N M n k ,有21)1(0+++<N M n k ,即p (k 0) > p (k 0 − 1);且21)1(10+++>+N M n k ,即p (k 0 + 1) < p (k 0).故p (k 0) 为最大值.如果21)1(+++N M n 是正整数,取21)1(0+++=N M n k ,即p (k 0) = p (k 0 − 1),故p (k 0) 和p (k 0 − 1) 都是最大值. 二.超几何分布的数学期望和方差超几何分布h (n , N , M )的数学期望为N nM n N k n M N k M N nM n N n N k n M N k M k M k n N k n M N k M k X E Ll k L lk L l k =⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅=∑∑∑===11111111)(, 又因∑∑∑===⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅−=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅=L lk L l k Ll k n N k n M N k M k n N k n M N k M k k n N k n M N k M k X E )()(222 ∑=+⎟⎟⎠⎞⎜⎜⎝⎛−−−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−−−⋅−=Llk X E n N n n N N k n M N k M k k M M k k )(22)1()1(22)1()1()(2N nM N N M M n n N nM n N k n M N k M N N M M n n Ll k +−−−=+⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅−−−=∑=)1()1()1(2222)1()1()1(, 故方差为)1())(()1()1)(1()]([)()Var(222222−−−=−+−−−=−=N N n N M N nM N M n N nM N N M n nM X E X E X . 为了便于记忆,可将超几何分布与二项分布的数学期望和方差进行比较.二项分布b (n , p ):数学期望E (X ) = np ,方差Var (X ) = np (1 − p );超几何分布h (n , N , M ):数学期望N M nX E =)(,方差11)Var(−−⎟⎠⎞⎜⎝⎛−=N n N N M N M n X ; 可见分布h (n , N , M )中的N M 相当于二项分布b (n , p )中的p ,方差修正因子为1−−N nN . 三.超几何分布的二项近似直观上,当抽样个数n 远小于M 及N − M 时,不放回抽样问题可近似看作有放回抽样问题,也就是此时超几何分布可用二项分布近似.定理 如果当N → +∞ 时,p NM→, (0 < p < 1),则k n k N p p k n n N k n M N k M −+∞→−⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛)1(lim . 证:因⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=+−−=⎟⎟⎠⎞⎜⎜⎝⎛N n N n N n n N N N n N n 1111!!)1()1(L L , 且⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛M k M k M k M k 1111!L ,⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−−−=⎟⎟⎠⎞⎜⎜⎝⎛−−−M N k n M N k n M N k n M N kn 1111)!()(L , 故⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−−−⋅⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−+∞→+∞→N n N n N M N k n M N k n M N M k M k M n N k n M N k M n k n k N N 1111!1111)!()(1111!lim lim L L L ⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−⋅⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⋅−⋅−=−+∞→N n N M N k n M N M k M N M N M k n k n nk n k N 111111111111)()!(!!lim L L L ⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−⋅⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⋅⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛=+∞→−+∞→N n N M N k n M N M k M N M N M k n N kn k N 111111111111lim 1lim L L L。

概率论与数理统计-随机变量及其分布

概率论与数理统计-随机变量及其分布


直接对上式求导有
二、连续型随机变量函数的分布
81
例 18

二、连续型随机变量函数的分布
82
定理 1
定理 2
83
总结/summary
离散型随机变量:分布律
分 二项分布、泊松分布、几何
随 布 分布
机 变
函 数
连续型随机变量:密度函数
量 均匀分布、指数分布、正态
分布
随机变量函数的分布
84
谢谢观赏
46
47
目录/Contents
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
48
目录/Contents
2.3 常用的连续型随机变量
一、均匀分布 二、指数分布 三、正态分布
一、均匀分布
49
一、均匀分布
50
一、均匀分布
51
一、均匀分布
15
定义3
(1)非负性 (2)规范性
三、离散型随机变量及其分布律
16
换句话说,如果一个随机变量只可能取有限个 值或可列无限个值, 那么称这个随机变量为(一维) 离散型随机变量.
一维离散型随机变量的分布律也可表示为:
三、离散型随机变量及其分布律
17
例2

三、离散型随机变量及其分布律
18

四、连续型随机变量及其密度函数
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
73
目录/Contents
2.4 随机变量函数的分布 一、离散型随机变量函数的分布 二、连续型随机变量函数的分布

《概率论与数理统计》第二章 随机变量及其分布

《概率论与数理统计》第二章 随机变量及其分布

两点分布或(0-1)分布
对于一个随机试验,如果它的样本空间只包含两个
元素,即Ω={ω1,ω2},我们总能在Ω上定义一个服从 (0-1)分布的随机变量
来描述这个随机X试验X的(结)果 。10,,当当
1, 2.
例如,对新生婴儿的性别进行登记,检查产品的质量 是否合格,某车间的电力消耗是否超过负荷以及前面多 次讨论过的“抛硬币”试验等都可以用(0-1)分布的随 机变量来描述。(0-1)分布是经常遇到的一种分布。
设随机变量X只可能取0与1两个值,它的分布律是 P{X=k}=pk(1-p)1-k,k=0,1 (0<p<1), 则称X服从(0-1)分布或两点分布。
(0-1)分布的分布律也可写成
X
0
1
pk
1-p
p
二项分布与伯努利试验
考虑n重伯努里试验中,事件A恰出现k次的概率。 以X表示n重伯努利试验中事件A发生的次数,X是一个 随机变量,我们来求它的分布律。X所有可能取的值为o, 1,2,…,n.由于各次试验是相互独立的,故在n次试 验中,事件A发生k次的概率为
X
x1
x2

xn

pk
p1
p2

pn

在离散型随机变量的概率分布中,事件 “X=x1”, “X=x2”....“X=xk”,...构成一个完备事件 组。因此,上述概率分布具有以下两个性质:
(1) pk 0, k 1, 2,L
(2) pk 1
k
满足上两式的任意一组数 pk , k 1, 2,L 都可以成为 离散型随机变量的概率分布。对于集合xk , k 1, 2,L
P{ X
k}
20 k
(0.2)k

高中数学 第2章 概率 2.1 随机变量及其概率分布讲义 苏教版选修2-3-苏教版高二选修2-3数学

高中数学 第2章 概率 2.1 随机变量及其概率分布讲义 苏教版选修2-3-苏教版高二选修2-3数学

2.1 随机变量及其概率分布学习目标核心素养1.了解取有限值的离散型随机变量及其分布列的概念,了解分布列刻画随机现象的重要性,会求某些简单离散型随机变量的分布列.(重点、难点)2.掌握离散型随机变量分布列的性质,掌握两点分布的特征.(重点)1.通过对离散型随机变量的学习,提升数学抽象素养.2.借助随机变量的分布列,提升逻辑推理素养.1.随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X,Y,Z(或小写希腊字母ξ,η,ζ)等表示.思考1:随机变量是自变量吗?[提示] 不是,它是随试验结果变化而变化的,不是主动变化的.思考2:离散型随机变量的取值必须是有限个吗?[提示] 不一定.离散型随机变量的取值可以一一列举出来,所取值可以是有限个,也可以是无限个.2.概率分布列假定随机变量X有n个不同的取值,它们分别是x1,x2,…,x n,且P(X=x i)=p i,i=1,2,…,n,①则称①为随机变量X的概率分布列,简称为X的分布列.称表X x1x2…x nP p1p2…p np i(i =1,2,…,n)满足条件:①p i≥0(i=1,2,…,n);②p1+p2+…+p n=1.思考3:在离散型随机变量分布列中,每一个可能值对应的概率可以为任意的实数吗?[提示] 错误.每一个可能值对应的概率为[0,1]中的实数.思考4:离散型随机变量的分布列中,各个概率之和可以小于1吗?[提示] 不可以.由离散型随机变量的含义与分布列的性质可知不可以.思考5:离散型随机变量的各个可能值表示的事件是彼此互斥的吗?[提示] 是.离散型随机变量的各个可能值表示的事件不会同时发生,是彼此互斥的.3.两点分布如果随机变量X的分布表为X 10P p q其中0<p<1,q=1-p,这一类分布称为0­1分布或两点分布,并记为X~0­1分布或X~两点分布.1.掷均匀硬币一次,随机变量为( )A.掷硬币的次数B.出现正面向上的次数C.出现正面向上的次数或反面向上的次数D.出现正面向上的次数与反面向上的次数之和B[掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.A项中,掷硬币的次数就是1,不是随机变量;C项中的标准模糊不清;D项中,出现正面向上的次数和反面向上的次数的概率的和必是1,对应的是必然事件,所以不是随机变量.] 2.设离散型随机变量ξ的分布列如下:ξ-1012 3P 0.100.200.100.200.40 Pξ0.40 [P(ξ<1.5)=P(ξ=-1)+P(ξ=0)+P(ξ=1)=0.10+0.20+0.10=0.40.] 3.设某项试验的成功率是失败率的2倍,用随机变量X描述一次试验成功与否(记X=0为试验失败,记X=1为试验成功),则P(X=0)等于________.1 3[设试验失败的概率为p,则2p+p=1,∴p=13.]随机变量的概念【例1】(1)国际机场候机厅中2019年5月1日的旅客数量;(2)2019年1月1日至5月1日期间所查酒驾的人数;(3)2019年6月1日某某到的某次列车到站的时间;(4)体积为1 000 cm3的球的半径长.[思路探究] 利用随机变量的定义判断.[解] (1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)列车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.随机变量的辨析方法(1)随机试验的结果具有可变性,即每次试验对应的结果不尽相同.(2)随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.1.(1)下列变量中,是随机变量的是________.(填上所有正确的序号)①某人掷硬币1次,正面向上的次数;②某音乐歌曲《小苹果》每天被点播的次数;③标准大气压下冰水混合物的温度;④你每天早晨起床的时间.(2)一个口袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X,则X的可能取值构成集合________.事件{X=k}表示取出________个红球,________个白球,k=0,1,2,3,4.(1)①②④(2){0,1,2,3,4} k4-k[(1)①②④中每个事件的发生是随机的,具有可变性,故①②④是随机变量;标准大气压下冰水混合物的温度为0 ℃,是必然的,不具有随机性.(2)由题意可知,X的可能取值为0,1,2,3,4.{X=k}表示取出的4个球中含k个红球,4-k个白球.]随机变量的分布列及应用【例2】ξ表示取出的3只球中的最大,写出随机变量ξ的概率分布.[思路探究] 由本例中的取球方式可知,随机变量ξ与球的顺序无关,其中球上的最大只有可能是3,4,5,可以利用组合的方法计算其概率.[解] 随机变量ξ的可能取值为3,4,5.当ξ=3时,即取出的三只球中最大为3,则其他两只球的编号只能是1,2,故有P(ξ=3)=C22C35=110;当ξ=4时,即取出的三只球中最大为4,则其他两只球只能在编号为1,2,3的3只球中取2只,故有P(ξ=4)=C23C35=310;当ξ=5时,即取出的三只球中最大为5,则其他两只球只能在编号为1,2,3,4的4只球中取2只,故有P(ξ=5)=C24C35=610=35.因此,ξ的分布列为ξ34 5P11031035利用分布列及其性质解题时要注意以下两个问题:(1)X的各个取值表示的事件是互斥的.(2)不仅要注意∑i=1np i=1,而且要注意p i≥0,i=1,2,…,n.2.设随机变量ξ的概率分布为P⎝⎛⎭⎪⎫ξ=k5=ak(k=1,2,3,4,5).求:(1)常数a的值;(2)P ⎝ ⎛⎭⎪⎫ξ≥35; (3)P ⎝ ⎛⎭⎪⎫110<ξ<710.[解] 题目所给的ξ的概率分布表为ξ 15 25 35 45 55 Pa2a3a4a5a(1)由a +2a +3a +4a +5a =1,得a =15.(2)P ⎝ ⎛⎭⎪⎫ξ≥35=P ⎝ ⎛⎭⎪⎫ξ=35+P ⎝ ⎛⎭⎪⎫ξ=45+P ⎝ ⎛⎭⎪⎫ξ=55=315+415+515=45或P ⎝⎛⎭⎪⎫ξ≥35=1-P ⎝⎛⎭⎪⎫ξ≤25=1-⎝ ⎛⎭⎪⎫115+215=45.(3)因为110<ξ<710,所以ξ=15,25,35.故P ⎝ ⎛⎭⎪⎫110<ξ<710=P ⎝ ⎛⎭⎪⎫ξ=15+P ⎝ ⎛⎭⎪⎫ξ=25+P ⎝ ⎛⎭⎪⎫ξ=35=a +2a +3a =6a =6×115=25.随机变量的可能取值及试验结果[1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?[提示] 可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X ,则X 可取哪些数字? [提示] X =0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?[提示] “ξ≥4”表示出现的点数为4点,5点,6点.【例3】 写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6X卡片中任取2X,所取卡片上的数字之和.[思路探究] 分析题意→写出X可能取的值→分别写出取值所表示的结果[解] (1)设所需的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)(2)设所取卡片上的数字和为X,则X=3,4,5, (11)X=3,表示“取出标有1,2的两X卡片”;X=4,表示“取出标有1,3的两X卡片”;X=5,表示“取出标有2,3或标有1,4的两X卡片”;X=6,表示“取出标有2,4或1,5的两X卡片”;X=7,表示“取出标有3,4或2,5或1,6的两X卡片”;X=8,表示“取出标有2,6或3,5的两X卡片”;X=9,表示“取出标有3,6或4,5的两X卡片”;X=10,表示“取出标有4,6的两X卡片”;X=11,表示“取出标有5,6的两X卡片”.用随机变量表示随机试验的结果问题的关键点和注意点(1)关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果.(2)注意点:解答过程中不要漏掉某些试验结果.3.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)在2018年大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.[解] (1)X可能取值0,1,2,3,4,5,X=i表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标;当ξ=1时,表明该射手在本次射击中击中目标.1.本节课重点是随机变量的概念及随机变量的分布列及其性质,以及两点分布,难点是随机变量的取值及概率.2.判断一个试验是否为随机试验,依据是这个试验是否满足以下三个条件:(1)试验在相同条件下是否可以重复;(2)试验的所有可能结果是否是明确的,并且试验的结果不止一个;(3)每次试验的结果恰好是一个,而且在一次试验前无法预知出现哪个结果.3.本节课的易错点:在利用分布列的性质解题时要注意:①X=xi的各个取值所表示的事件是互斥的;②不仅要注意i=1np i=1,而且要注意0≤p i≤1,i=1,2,…,n.1.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.( )(2)在概率分布列中,每一个可能值对应的概率可以为任意的实数.( )(3)概率分布列中每个随机变量的取值对应的概率都相等.( )(4)在概率分布列中,所有概率之和为1.( )[解析] (1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)×因为在概率分布列中每一个可能值对应随机事件的概率均在[0,1]X围内.(3)×因为分布列中的每个随机变量能代表的随机事件,并非都是等可能发生的事件.(4)√由分布列的性质可知,该说法正确.[答案] (1)√(2)×(3)×(4)√2.下列叙述中,是随机变量的为( )A.某人早晨在车站等出租车的时间B.把一杯开水置于空气中,让它自然冷却,每一时刻它的温度C.射击十次,命中目标的次数D .袋中有2个黑球,6个红球,任取2个,取得1个红球的可能性 C [根据随机变量的含义可知,选C.] 3.随机变量η的分布列如下:则x 0 0.55 [由分布列的性质得 0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55.] 4.袋中有相同的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量X 为此时已摸球的次数,求随机变量X 的概率分布列.[解] 随机变量X 可取的值为2,3,4, P (X =2)=C 12C 13C 12C 15C 14=35;P (X =3)=A 22C 13+A 23C 12C 15C 14C 13=310;P (X =4)=A 33C 12C 15C 14C 13C 12=110;所以随机变量X 的概率分布列为:。

2.1随机变量及其分布

2.1随机变量及其分布

只有两种对立结果: 对于贝努利试验, “A发生” 与“A不发生” 设事件A发生的概率为 p ( 0 p 1 ) 则事件 A 发生的概率为 q 1 p 令X表示 一次贝努利试验中, A发生的次数, 即
1 X 0
A发生 A不发生

X P
0
1
1 p
p
称X服从0—1分布.
例 一批产品, 次品率为 15%, 从中随机抽取一个
(2) { x1 , x2 ,..., xk ,...} x1 x2 ... xk ...
1 P ( ) P x1 x2 ... xk ... p{ X x1 } p{ X x2 } ... p{ X xk } ...
“ X 在 A 中取值”,即“X A ” 的概率为
P{ X A } pk
xk A
投中后 例 某人投篮, 命中率为 0.7, 规则是: 或投了4次后 就停止投篮,设 X 表示 “此人投 篮 求 的次数”, X 的概率分布. 解
X pk
1
2
3
4
0.7 0.21
i 设 Ai 表示 “第i 次投中篮框” (, 1,2,3,4 ) A1 , A2 , A3 , A4 相互独立.
3 6 1 6
x 1
1 x 0 0 x 1
x1

1
0
1
随机变量的分布函数 F ( x ) 具有如下性质: (1) 0 F ( x ) 1, x
(2) F ( x ) 是 x 的 单调不减函数. 即
a b 时, F (a ) F (b)
p1 P{ X 1} P ( A1 ) 0.7 p2 P{ X 2} P ( A1 A2 ) P ( A1 ) P ( A2 ) 0.3 0.7 0.21

2.1随机变量及其概率分布

2.1随机变量及其概率分布


上述现象有哪些共同特点?
2.1随机变量及其概率分布
学习目标:
理解随机变量的概念并会求其概率分布.
自学指导:
1,什么是随机变量?随机变量通常怎样表示? 2,怎样表示随机变量X的概率分布? 3,什么是0-1分布?它有什么特点?
自学检测:
P48 练习 1
建构数学
一般地,如果随机试验的结果, 可以用一个变量来表示,那么这样的 变量叫做随机变量。
例2 从装有6只白球和4只红球的口袋中任取一只 球,用X表示”取到的白球个数”,即
1,当取到白球时, X 0,当取到红球时, 求随机变量X的概率分布.
X
数学运用 例3 同时掷两颗质地均匀的骰子, 观察 朝上一面出现的点数,求两颗骰子中出现 的最大点数X的概率分布,并求X大于2小 于5的概率P(2<X<5)。
(1, 6),(2,6),(3,6),(4,6), (5,6), (6, 6)(6,5), (6, 4),(6,3),(6, 2), (6,1)
9
11
分层训练:
必做题 P48 练习 3 选做题 P52 习题 1 思考题 在例3中,求两颗骰子出现最小点数 Y的概率分布. 作业 P52 习题 2
那么: 用怎样的数学模型刻画上述问题? 如何运用这些数学模型解决相关的实际问题?
第二章:概率
问题情境
1、 在一块地里种下10棵树苗,成活的 棵数X是0,1,2,… ,10中的某个数; 2、抛掷一颗骰子,向上的点数Y是1,2, 3,4,5,6中的某个数; 3、新生婴儿的性别,抽查的结果可能是 男,也可能是女。如果将男婴用0表示,将 女婴用1表示,那么抽查的结果Z是0或1中的 某个数;
(2)一实验箱中装有标号为1,2,3,3, 4的五只白鼠,从中任取一只,记取到 的白鼠的标号为Y,则随机变量Y的可能 取值有哪些?

§2.1随机变量与分布函数

§2.1随机变量与分布函数

第二章随机变量及其分布本章内容§2.1 随机变量与分布§2.2 重要概率分布本章提要(略,见大纲)§ 2.1随机变量与分布函数正确理解对概率论研究和发展起重大推动作用的两个最基本概念: “随机变量”和“分布函数”.2.1.1 随机变量和分布函数的定义和分类1.rv和df的定义定义2.1.1 设(Ω, ℱ,P)为概率空间, X为Ω上的实值函数,满足对任意的 x∈R, (X≤x):={ω : X(ω) ≤x}∈ℱ则称X为随机变量,简记rv. 而称实变量的实值函数F X( x):= P(X≤x), x∈R为X的分布函数,简记df.2. rv与df的关系rv给定则df是存在且唯一决定的.3. rv和df的分类定义2.1.2 至多取可列多个值的rv [或相应的F(x)],称为离散型的. 设{x i}是rv X可能取的值的全体,p i := P (X = x i ), i =1,2,…(,n )称实数列{p i }为离散型X 的分布. 称两行矩阵⎟⎟⎠⎞⎜⎜⎝⎛⋅⋅⋅⋅⋅⋅)()(2121n n p p p x x x为X 的分布列. 其中最后一列表示列数为有限的n 或为可列无穷多的情形.定义2.1.3 在一个有限或无限区间取值的rv X ,如存在非负可积函数f (x ) 使X 在(−∞ , x ] 的概率可写成R x dy y f x X P x X P x F xX ∈∀=≤<−∞=≤=∫∞−,)()()()(则称X [或F (x )]为连续型的,称f (x )为X [或F (x )]的概率密度函数,简记为 pdf . 也常记为 f X (x ).2.1.2 分布函数, 分布和密度函数 1. 离散型和连续型df例2.1.1 本节引例中,如该厂生产的电子元件的等级数Y 有分布列图2.1.2 离散型分布函数图象⎟⎟Y ~⎠⎞⎜⎜⎝⎛1.06.03.0321.求Y 的df【 】⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.31329.0213.010)(y y y y y F Y例2.1.2 设X 的pdf 为,)(x f X = ⎩⎨⎧∈−其它0],()/(1b a x a b ,求X 的df .【⎪⎩⎪⎨⎧≥<≤−−<=bx b x a a b ax a x x F X 1)(.】 2. df 的基本性质性质1 rv X 的df F(x ) 有下述基本性质: F 1) 非降性,即 F(x ) ≤ F(y ), ∀ x < y ; F 2) 边界极端性,即F(+∞) := lim x →∞ F ( x ) =1, F(−∞) := lim x → −∞ F ( x ) =0; F 3) 右连续性,即 F(x +0) : = )()(lim x F y F x y =↓.性质2 (存在定理) 满足性质F 1)至F 3)的任意一个实变量的实值函数, 都可作为一个df .性质3 df 的凸组合, 还是df , 即如F i (x )是df , i =1,2,…,n , 则对任意实数=1, 仍是df .∑==≥n i i i a n i a 1,,...,2,1,0∑==n i i i x F a x F 1)(:)(2.2.3. 分布与密度函数的性质性质1 (基本性质) 分布{p i }满足,,0i p i ∀≥且1=∑i i p而pdf 满足f (x ) ≥ 0, ∀ x , 且R ∈∫∞+∞−dy y f )(=1 .性质2 1) 对离散型rv ,如其分布为 {p i } 则F X (x ) =R x p i xx i i ∈∀∑≤,:2) 对有 pdf f (x ) 的连续型rvX , F X (x ) =R x dy y f x ∈∀∫∞−,)(性质3 1) 凡离散型rv 有最可能值,即存在x m ,rv X 取该值的概率不小于取其它值的概率:P(X =x m ) =p m ≥ p m , ∀ i .2) 连续型分布取任意一固定值的概率为零,即对每个固定的实数x , P(X =x ) =0.f (x )d x 为X 在x 点微分邻域的概率. 由此∫∫==∈],()()(]),((b a X ba X dx x f dx x fb a X P .对更一般的实数集合D 有 ∫=∈D X dx x f D X P )()([ 例题精选 ]z分布与df 的概念例2.1.3 将3个球逐个随机放入4个分别编号为1、2、3和4的盒子.令X 是“有球盒子的最小号码”,求X 的分布列.【⎟⎟⎠⎞⎜⎜⎝⎛64/1464/7364/19264/371】 例2.1.4 设rvX 的pdf 为 ,k 使得⎪⎩⎪⎨⎧∈∈=,0]6,3[9/2]1,0[3/1)(其它若若x x x f 若3/2)(=≥k X P , 则k 的取值范围是_________.【[1, 3] 】z分布与df 的性质例2.1.5 试确定值, 使下一函数为pdf , .a )()(),1()1(3x I e a x f x ∞−−=例2.1.6 设F i (x )是X i 的df , i =1,2, 为使F (x )= aF 1(x )−bF 2(x )是df ,下列给定各组数值中应取A) a = 3/5, b = −2/5. B)a = 2/3,b = 2/3. C) a = −1/2, b =3/2. D) a =1/2, b = −3/2.z综合题例2.1.7 设某电子元件寿命的pdf 为 )100()(2>=x I xa x f1) 试确定a 值;2) 某台设备装有三个这种电子元件. 问在开始使用的150小时中它们中恰有一个要替换和至少有一个要替换的概率各是多少?【 1) .100,100)(11002====∫∫∞∞∞−a adx x a dx x f 故2) 每个元件的寿命有两个可能结果:大于或不大于150小时,即可看为Ber-E ,从而三个元件中寿命小于150小时(因此要替换)的个数,服从二项分布B(3, p ), 其中31]1[100100)(1001501501002150=⋅===∫∫∞−x dx x dx x f p .因此, 使用到150小时它们中恰有一个要替换的概率44.09432313)1(2213≈=⎟⎠⎞⎜⎝⎛××=−p p C .“至少有一个要替换”概率是 701.027193213≈=⎟⎠⎞⎜⎝⎛−.】§2.2 重要概率分布本节从两类随机试验, Poisson 流和误差问题,介绍几类最重要的rv 及其分布. 掌握这些重要分布的定义、性质、产生的背景以及它们间关系.2.2.1 重要分布的产生与定义 1. Bernoulli 试验及有关分布 1) Bernoulli 分布2) n 重Ber-试验及其产生的B(n , p ) 3) 可列重Ber-试验及其产生的Ge(p ) 2. Poisson 流及有关分布 1) Poisson 流与Poisson 定理定理2.3.1(Poisson ) 设,],0(t ξ t ≥ 0 是Poisson 流,则存在某正数λ,使)()(],0(k P t p t k ==ξ = ,)(tk e k t λλ−!k = 0, 1,...Poisson 定理中的λ称为强度. 2). Poission 流产生离散型的P(λ)分布 3) Poisson 流产生的连续型分布:Ex(λ)误差问题产生的分布:U(a ,b )与N(μ, σ 2)2.2.2 重要分布间的关系和性质 1. 重要分布间的关系2.重要分布的性质性质1 重要离散型分布的最可能值设X ~ B(n , p ), 则X 的最可能值是 [(n +1)p ] . 如 (n +1)p 是整数,则[(n +1)p ]−1=np -q 也是最可能值. 这里 [⋅]为取整函数.设X ~ Ge( p ), 则X 的最可能值是1.设X ~ P(λ), 则X 的最可能值在[λ];如λ=[λ],即λ是正整数时,则λ−1也是最可能值.性质2 B(n , p )的Poisson 逼近.定理2.3.1 (Poisson 逼近) 设∼B (n ,),即对固定的n 次试验中,每次试验成功的概率是. 又设存在极限n X n p n p n n np ∞→lim =λ > 0,则对任意非负整数k , 有P(=k )=n X k n n kn k n p p C −−)1(→∞→!−n e k k,λλ.性质3 几何分布和指数分布的无记忆性:几何分布和指数分布的都有无记忆性: 当 X ~ Ge(p ) 时P(X >n +k | X >n ) = P(X >k ). 反之,有无记忆性的离散型分布,必为几何分布.当X ~ Ex(λ)时P(X >s +t |X >s ) = P(X >t ),0 ≤ s ,0 < t .反之,有无记忆性的连续型分布,必为指数分布.均匀分布和正态分布的性质性质4 1) 遵从[a , b ]上均匀分布的rv 的均匀性, 使其值落在[a , b ]内任一子区间的概率与此子区间长度成正比. 精确地说)/()()(a b D L D X P −=∈, 其中L(D)表D 的长度, 而D 是[a , b ]的任意一个(开、闭或半开半闭)子区间, 也可以是一些子区间的并集.2) 正态分布的对称性, 使pdf 是关于直线x = μ 对称的,),;(σμμφx −= ),;(σμμφx +.由此, ),;(σμμx −Φ= 1 − ),;(σμμx +Φ.性质5 正态分布的其它性质1) ),;(σμφx >0,任意阶导函数 , ∀ n ,存在且连续. ),;()(σμφx n 2) ),;(σμφx 在 (−∞, μ )中单调升,在 x = μ 处达极大值 1/ (σπ2),而在 (μ, ∞) 时下降. 参数μ 决定它的对称位置;σ越大pdf越平缓(参看图2.2.7), 概率分布越分散.3) 如X ~ N(μ, σ 2)则其标准化σμ/)(*−≡X X ~ N(0, 1). 4) 3σ法则. 正态变量离中心位置μ的距离超过 3σ 的概率不到千分之三,依此在正态性统计判别和产品质量管理中形成很有用的3σ法则.性质 6 独立和的分布与分布的可加性可加性的证明方法:(1). 由分布产生的背景, 立即可得上述结论: 例如 B(n ,p )、F(r ,p )和Γ(r ,p )的可加性(当r 为正整数时), 以及关于Ge(p )、Ex(λ)的结论.(2). 利用全概率公式, 例如 B(n ,p )、F(r ,p )、P(λ)和Γ(r ,p )的可加性;(3). 利用求独立和的df 或者密度的卷积公式[ 典型例题 ]例 2.2.1 设某车间需要安排维修工人负责对一批相同型号设备进行保全维修,有两种建议方案.方案A :1人维修固定的20台. 方案B :3人维修固定的80台. 设每台设备的故障率为0.01,哪种方案较好,即出现设备需要维修而得不到维修(维修人员正忙于其它设备的维修)的概率较小?解 Y n : n 台中的故障数, 则 Y n ~B(n , p ),0169.01)1()0(1)1(1912020202020≈−−==−=−=>=pq C qY P Y P Y P p a用Poisson 近似,λ = 0.2, 则 0175.02.012.02.0≈×−−=−−e e p a0091.0e !)01.080(1)3(30.01)(8080≈×−≈>=∑=×i -i b i Y P p . p b > p a , 方案B 较好.例2.2.2 一大批产品,其次品率为p ,采取下列方法抽样检查:抽样直至抽到一个次品时为止,或一直抽到10个产品时就停止检查. 设X 为停止检查时抽样的个数. 求X 分布列.【,】9....,,2,1,)(1===−k p q k X P k 9)10(q X P ==例2.2.3 (非中心的指数分布) 设某流水线上一类电子元件寿命(小时)X 的pdf 为 )()()10(a x I e x f x X >=−−λλ, 其中λ>0是常数. 试求常数a ; 如令y=x −a , 将作平移, 得到新的函数是否仍然为)(x f Xpdf ? 能判断它是什么类型分布吗?例2.2.4 已知X ~ . ),(2σμN 1) 求P(a ≤X ≤ b );2) 设 μ=20,σ2=402,求P(|X | ≤ 20)的值,并找点x 0, 使P(X > x 0 )= 0.05.【()(σμσμ−Φ−−Φa b ;1587.05.0)1()0(−=−Φ−Φ=0.3413, x 0=85.6】例2.2.5 对某射手打靶考核,有两次命中6环以下(不含6环)时,立即淘汰出局. 如果此射手每次命中6环及其以上的概率是0.8, 则他在第4次射击后即被淘汰的概率是 .【p 2 := P(X = 2) =, p = 0.2】 2421214−−−qp C。

概率论§2.1 随机变量-§2.2离散型随机变量

概率论§2.1 随机变量-§2.2离散型随机变量

0, w = (b1 , b2 ), (b1 , b3 ), (b2 , b3 ) 1, w = (a1 , b1 ), (a1 , b2 ), (a1 , b3 ) X = X (w ) = (a2 , b1 ), (a2 , b2 ), (a2 , b3 ) 2, w = (a1 , a2 )
18
分布函数的性质
(1) F(x)是x的不减函数 ,即
x1 x2 , F ( x1 ) F ( x2 )
(2)
F ( ) = lim F ( x ) = 0
x
F ( ) = lim F ( x ) = 1
x
理解:当x→+时,{X≤x}愈来愈趋于必然事件. (3)右连续性: 对任意实数 x0 ,
P ( X x ) = 1 P ( X x ) = 1 F ( x );
21
例1 设F1 ( x )与F2 ( x )分别为随机变量X 1与X 2
的分布函数,为了使 ( x ) = aF1 ( x ) bF2 ( x ) F
是某一随机变量的分布函数,则下列各组值 中应取(A)
3 2 ( A) a = , b = 5 5
连续型随机变量
如:“电视机的使用寿命”,实际中常遇到 的 24 “测量误差”等。
§2.2 离散型随机变量及其分布
定义 如果随机变量X 只取有限个或可列无限 多个不同可能值,则称X 为离散型随机变量. 例如, 抛一枚硬币,X 可取0,1有限个值。 可知X为一个离散型随机变量。 例如,电话交换台一天内接到的电话个数
F ( x0 0) = lim F ( x ) = F ( x0 )
x x0
19
如果一个函数满足上述三条性质,则一 定是某个随机变量 X 的分布函数。也就是说, 性质(1)-(3)是判别一个函数是否是某个随机 变量的分布函数的充分必要条件。

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]

pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32

2.1 随机变量及其概率分布(2)

2.1  随机变量及其概率分布(2)

2.1随机变量及其概率分布(2)教学目标:1.正确理解随机变量及其概率分布列的意义;2.掌握某些较复杂的概率分布列.教学重点:求解随机变量的概率分布.教学难点:求解随机变量的概率分布.教学方法:问题链导学.教学过程:一、问题情境1.随机变量及其概率分布的概念是什么?2.求概率分布的一般步骤有哪些?3.练习:(1)写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.①一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数为X;②盒中有6支白粉笔和8支红粉笔,从中任意取3支,其中所含白粉笔的支数为X;③从4张已编号(1号~4号)的卡片中任意取出2张,被取出的卡片编号数之和为X.(2)袋内有5个白球,6个红球,从中摸出两球,记1⎧⎨⎩X两球全红=两球非全红.求X的分布列.二、学生活动1.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.①一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数为X;②盒中有6支白粉笔和8支红粉笔,从中任意取3支,其中所含白粉笔的支数X;③从4张已编号(1号~4号)的卡片中任意取出2张,被取出的卡片编号数之和X.2.袋内有5个白球,6个红球,从中摸出两球,记1⎧⎨⎩X两球全红=两球非全红.求X的分布列.三、数学应用1.例题.例1同时掷两颗质地均匀的骰子,观察朝上一面出现的点数.求两颗骰子中出现的最大点数X的概率分布,并求X大于2小于5的概率P(2<X<5).思考在例1中,求两颗骰子出现最小点数Y的概率分布.例2从装有6个白球、4个黑球和2个黄球的箱中随机地取出两个球,规定每取出一个黑球赢2元,而每取出一个白球输1元,取出黄球无输赢,以X 表示赢得的钱数,随机变量X可以取哪些值呢?求X的分布列.例3袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时即止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止时所需要的取球次数.(1)求袋中原有白球的个数;(2)求随机变量ξ的概率分布;(3)求甲取到白球的概率.2.练习:课本第52页练习第3题.四、要点归纳与方法小结本节课学习了以下内容:1.随机变量及其分布列的意义;2.随机变量概率分布的求解.。

数学:2.1离散型随机变量及其分布列

数学:2.1离散型随机变量及其分布列
若用η表示所含次品数,η有哪些取值? η可取 0件、1件、2件、3件、4件,共5种结果
思考:把一枚硬币向上抛,可能会出现哪几种结果?能 否用数字来刻划这种随机试验的结果呢?
ε=0,表示正面向上; ε=1,表示反面向上 说明:
(1)任何一个随机试验的结果我们可以进行数量化; (2)同一个随机试验的结果,可以赋不同的数值.
则 P(1) 1
6
P(4) 1
6
P(2) 1
6
P(5) 1
6
P(3) 1
6
P(6) 1
6

12
34
5
6
1
1
1
1
1
1
P6
6
6
6
6
6
⑴列出了随机变量 的所有取值. ⑵求出了 的每一个取值的概率.
二、离散型随机变量的分布列
1、设随机变量 的所有可能的取值为 x 1,x2,x 3,,x i,,xn 的每一个取值 x i (i1,2,,n)的概率为 P(xi)pi,则称表格
表示 的分布列
2.概率分布还经常用图象来表示. 可以看出 的取值
p
范围是{1,2,3,4,5,6},
0.2
它率取都每 是一1 个。值的概
0.1
6

O 1 2 3 4 5 6 78
1、离散型随机变量的分布列完全描述了由这个随机 变量所刻画的随机现象。
2、函数可以用解析式、表格或图象表示,离散型随 机变量可以用分布列、等式或图象来表示。
3
4
12
例 5、在掷一枚图钉的随机试验中,令
1,针尖向上 X 0,针尖向下 如果会尖向上的概率为p,试写出随机变量X的分布列 解:根据分布列的性质,针尖向下的概率是(1—p),于是, 随机变量X的分布列是:

概率论与数理统计2.1随机变量的分布与数字特征

概率论与数理统计2.1随机变量的分布与数字特征

对于任意的实数 x1, x2 (x1< x2) ,有:
P{x1 X x2} P{X x2} P{ X x1}
X
F ( x2 ) F ( x1 ).
o
x1
x2
x
随机变量的分布函数定义了事件域σ(X)上的一个概
率测度。分布函数也为随机变量的统计规律性提供了
直观的描述。
例8
等可能地在数轴上的有界区间[a,b]上投点,记X为 落点的位置(数轴上的坐标),求随机变量X的分布 函数
例2
掷一颗骰子,用 X 表示出现的点数。则 X 就是一 个随机变量.它的取值为1,2,3,4,5,6。则
X 4表示掷出的点数不超过 4 这一随机事件;
X 取偶数表示掷出的点数为偶数这一随机事件.
在同一个样本空间上可以定义不同的随机变
例量如.我们可以定义:
Y
1 0
出现偶数点 出现奇数点
Z
1 0
点数为 6 点数不为 6
例4
观察某生物的寿命(单位:小时),用Z表示该生
物的寿命。则 Z 就是一个随机变量。它的取值为 所有非负实数。
Z 1500
表示该生物的寿命不超过1500小时这一随机事
件.
Z 3000
表示该生物的寿命大于 3000小时这一随机事件.
注意 Z 的取值是无界的区间 个!
二、离散型随机变量的概率分布
离散型随机变量的定义 如果随机变量 X 的全部不同取值是有限个或可列无 穷多个,则称 X 为离散型随机变量。 离散型随机变量的概率分布
第 2 章 随机变量的分布与数字特征
§2.1 随机变量及其分布 §2.2 随机变量的数字特征 §2.3 常用的离散型分布 §2.4 常用的连续型分布 §2.5 随机变量函数的分布

随机变量及其分布函数

随机变量及其分布函数
说明 (1) 分布函数主要研究变量在某一区间内取值的概 率情况. 率情况.
( 2)分布函数 F ( x ) 是 x 的一个普通实函数 .
五、分布函数的性质
(1) 0 ≤ F( x) ≤ 1, x ∈ (−∞, ∞);
(2) F( x1 ) ≤ F( x2 ), ( x1 < x2 );
证明
由 x1 < x 2 ⇒ { X ≤ x1 }⊂ { X ≤ x2 },
x < −1, 0, P { X = −1}, − 1 ≤ x < 2, 得 F ( x) = P { X = −1} + P{ X = 2}, 2 ≤ x < 3, 1, x ≥ 3.
0, 1 , 4 即 F ( x) = 3 , 4 1, x < 1, − 1 ≤ x < 2, 2 ≤ x < 3, x ≥ 3.
二、引入随机变量的意义 有了随机变量,随机试验中的各种事件, 有了随机变量 随机试验中的各种事件, 随机试验中的各种事件 就可以通过随机变量的关系式表达出来. 就可以通过随机变量的关系式表达出来 如:单位时间内某电话交换台收到的呼 叫次数用X表示 它是一个随机变量. 表示, 叫次数用 表示,它是一个随机变量 事件{收到不少于 次呼叫 事件 收到不少于1次呼叫 ⇔{ X 收到不少于 次呼叫} {没有收到呼叫 没有收到呼叫} 没有收到呼叫
≥ 1}
{X= ⇔ 0}
可见, 可见,随机事件这个概念实际上是包 容在随机变量这个更广的概念内. 容在随机变量这个更广的概念内 也可以 说,随机事件是从静态的观点来研究随机 现象,而随机变量则是一种动态的观点, 现象,而随机变量则是一种动态的观点, 就象数学分析中常量与变量的区别那样. 就象数学分析中常量与变量的区别那样

《概率论与数理统计》第二章 随机变量及其分布教案

《概率论与数理统计》第二章 随机变量及其分布教案

第二章随机变量及其分布§2.1随机变量及其分布教学目的要求:使学生掌握随机变量、离散型随机变量、连续型随机变量的概念及其分布,会应用这些概念、分布求分布列.教材分析:1.概括分析:概率论所要考察的是与各种随机现象有关的问题,并通过随机试验从数量的侧面来研究随机现象的统规律性.为此,就有必要把随机试验的每一个可能的结果与一个实数联系起来.随机变量正是为适应这种需要而引进的。

随机变量实质上是定义在样本空间Ω={e}上的一个实值单值函数X(e).从此,对随机事件的研究转变为对随机变量的研究,通过随机变量将各个事件联系起来,进而去研究随机试验的全部结果.而且,随机变量的引入,使我们有可能借助于微积分等数学工具,把研究引向深入.2.教学重点:随机变量、离散型随机变量、连续型随机变量的概念及其分布函数.3.教学难点:求随机变量分布函数.教学过程:在第一章里,我们研究了随机事件及其概率,可以会注意到,在某些例子中,随机事件和实数之间存在着某种客观的联系.例如,在伯努利概型这一节中,曾经讨论过“在n 重伯努利试验中,事件A 出现k 次”这一事件的概率,如果令ξ=n 重伯努利试验中事件A 出现的次数则上述“n 重伯努利试验中事件A 出现k 次”这个事件就可以简单地记作(ξ=k),从而有P(ξ=k)=⎪⎪⎭⎫ ⎝⎛k n p k q n-k.并且ξ所有可能取到的数值也就是试验中事件A 可能出现的次数:0,1,…,n.在另一些例子中,随机事件与实数之间虽然没有上述那种“自然的”联系,但是我们常常可以人为地给它们建立起一个对应关系.例如抛掷一枚均匀的硬币,可能出现正面,也可能出现反面,现在约定若试验结果出现正面,令η=1,若试验结果出现反面,令η=0,这时就有:{试验结果出现正面}=(η=1),{试验结果出现反面}=(η=0).在上述例子中,对每一个试验结果ω,自然地或人为地对应着一个实数X(ω),这与高等数学中熟知的“函数”概念本质上是一致的.只不过在函数概念中,函数f(x)的自变量是实数x,而在X(ω)的自变量是样本点ω.因为对每一个试验结果ω,都有实数X(ω)与之对应,所以,X(ω)的定义域是样本空间,显然值域是实数域.显然,一般来讲此处的实数X 值将随ω的不同而变换,它的值因ω的随机性而具有随机性,我们称这种取值具有随机性的变量为随机变量。

概率论与随机过程:2-1 随机变量及其分布函数

概率论与随机过程:2-1 随机变量及其分布函数

例3 设有函数 F(x)
F(x)
sin
x 0
0 x
其它
试说明F(x)能否是某个r.v 的分布函数.
解: 注意到函数 F(x)在[ 2, ]上下降,
不满足性质(1),故F(x)不能是分布函数.
或者
F() lim F(x) 0 x
不满足性质(2), 可见F(x)也不能是r.v 的 分布函数.
练:设连续型随机变量X的分布函数为
第二章教学计划(第1次课)
教学内容:
1.随机变量及其分布函数; 2.离散型随机变量及其分布。 教学目的及目标:
1.理解随机变量、分布函数、分布律的概念; 2.能对实际问题建立适当的随机变量,会求其分布函数; 3.能熟练求离散型随机变量的分布律,熟练掌握三种重要的
离散型分布; 4. 熟练掌握分布函数、分布律的性质及二者间的关系,并能熟
随机变量概念的产生是概率论发展史上的重大 事件. 引入随机变量后,对随机现象统计规律的研 究,就由对事件及事件概率的研究转变为对随机变 量及其取值规律的研究.
事件及 事件概率
随机变量及其 取值规律
对于随机试验,要求能够定义适当的随机变量表示 试验结果。
(*)例3: 考虑“测试灯泡寿命”这一试验。试验结 果本身是用数字描述的,令X表示灯泡的寿命 (以小时计),则X是随机变量,定义域为样本 空间 ={t|t≥0},值域为RX=[0,+∞)。 {X<500}:“任取出的灯泡的寿命小于500小时”;
随机变量的分布:对一个随机变量的统计规律性
的完整描述。
2、引入随机变量的意义
随机变量实际上就是定义域为事件域,值 域为实数集或其子集的一种实值函数.
ω.
X(ω)
Ω
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 用X表示出现废品的情况, 则它只能取0或1两个 值. ―X=0‖表示“产品为合格”, ―X=1 ‖ 表示“产品 为废品”, 则概率分布表如下
X
0
1
P
0.95
0.05
即P(X =0)=0.95, P(X =1)=0.05, 或可写为: P(X =k)=0.05k0.951-k (k=0,1)
11
两点分布
在讨论随机试验结果时,总可以用一个变量的取 值来表示.这种用来表示随机事件的变量,由于他 的取值与某随机事件对应,能否取到某值是随机 会而定的,我们称之为随机变量.
随机变量是研究随机现象的一个重要工具,也是 概率论的一个基本概念.
随机变量
定义2.1.1(随机变量):假如一个变量在数轴上的 取值依赖于随机现象的基本结果,则称此变量为 随机变量,常用大写字母X、Y、Z等表示,其取值 用小写x、y、z等表示.
26
注意
由连续型随机变量定义可知: 对任何实数c,P(X=c)=0.即:连续型随机变量取任 何一个数值的概率都为零。
8
课堂练习
检查下面的数列是否能组成一个概率分布
(1)p1(x)
x
2
2
,
x 1,2,3,4
x2 (2) p2 (x) 25 , x 0,1,2,3,4
(3) p3(x) 2 x , x 1,2, , n,
9
例题与解答
袋中有5张卡片,其中标有数字2的有1张,标有数 字1及3的卡片各有两张。从袋中一次随机抽取3张, 用X表示取到的3张卡片上的最大数字。求X的分布。
例1: 在掷一枚骰子试验中,试用随机变量表示 (1)―掷出点数恰好为1”;(2)―掷出点数为偶数”; (3)―掷出的点数不小于4”这些随机事件.
解:设X为掷出骰子的点数,易知X的一切可能取 值为1, 2, 3, 4, 5和6(每次抛掷前不能预知究竟会出 现几点,故它取值具有随机性),则X是一随机变量. (1) {X=1}可表示“掷出点数恰好为1‖的随机事件. (2) {X=2k, k=1,2,3}可表示“掷出的点数为偶数”. (3) {X4}可表示“掷出的点数不小于4".
为 pqi1 p p 1
i1
1 q p
19
几何分布描述的典型问题
假定一个试验成功的概率概率为p(0<p<1),不断重
复试验(p始终不变),直到首次成功为止,用随机变
量X表示试验的次数。则X的分布就是几何分布:
P(X =i)=p(1-p)i-1
(i=1,2,…)。
上述问题就是几何分布的经典模式。根据实际情况, 可以对试验成功做各种合理解释,如:“投篮命 中”、“抽检合格”、“碰上好运”等等,只要满 足模式的条件,便可套用它解决问题了。
25
均匀分布
f(x)
a<X从均匀分布;记作 X~U(a, b) 。
0a b x
•区间[a由,b前]上例a任,可何b知]一上,个均子匀区分间布取随值机的变概量率的,概与率意该义子是区,间长它度在成取正比值
,与子区间在[a,b]中位置无关, 比例系数恰好是1/(b-a)。
(4)设一台电视机的使用寿命为T小时,则T的一切可能取值 为[0,+)中的任意实数,显然T是一个随机变量;{ T >10000} 即表示“该电视机的使用寿命超过10000小时”的随机事件.
随机变量的分类
按随机变量的取值情况,可将其分为两类: (1) 离散型随机变量:只可能取有限个或无限可列
个值。 (2) 非离散型随机变量:可能取任何实数,情况较
U
A
.B
P ( A) A的 面 积 P(B) B的面积 0
U的面积
U的面积
区域A是有无数点组成的,能否用点
的概率来度量事件A的概率?不能!
22
连续型随机变量与概率密度
定义2.1.3:对于随机变量X,若存在非负可积函数 f(x),(-<x<+),使对任意实数a,b (a<b)都有
则称X为连续型随机变量, f(x)为X的概率密度函 数,简称概率密度或分布密度。简记为X~ f(x), (-<x<+)。
P(X =i)=p(1-p)i-1
(i=1,2,…)
18
几何分布
上例中,随机变量X的分布为
P(X =i)=p(1-p)i-1 (i=1,2,…)
这类分布称几何分布,此时也称随机变量服从几何分布。
这是因为:
p(1-p)i-1恰是几何级数 pqi1, (q p 1)的通项
i 1
这种几何级数的级数和,显然
20
例题与解答
例5 盒内装有外形与功率均相同的15个灯泡, 其中10 个螺口, 5个卡口, 现在需用1个螺口灯泡, 从盒中任取 一个, 如果取到卡口灯泡就不再放回去. 求在取到螺 口灯泡前已取出的卡口灯泡数X的分布.( 几何分布?)
解 “x=0‖表示第一个就取到了螺口灯泡, ―x=1‖ 表示 第一个取到卡口而第二个才取到螺口灯泡, …因此 P(X=0)=10/15=2/3 P(X=1)=(5/15)(10/14)=5/21
X
0
1
2
3
P
0.1 0.6 0.1 0.2
p
X的概率分布图:
x 15
例题与解答
例3 用随机变量描述掷一颗骰子的试验情况 解 令X表示掷一颗骰子出现的点数, 它可取1到6共6
个自然数, 相应的概率都是1/6, 列成概率分布表和概 率分布图如下: (离散型均匀分布特例)
X1 2 3 4 5 6
P 1/6 1/6 1/6 1/6 1/6 1/6
对连续型随机变量而言,概率 的几何意义是分布密度函数曲线 下方的面积 。
23
概率密度函数的两个性质
连续型的概率非负性和概率完备性表现为 (1)非负性 :f(x) 0,(- <x< +);
(2)正则性: f (x)dx=1.
f(x)
f ( x)dx 1
0
x
24
例题与解答
例6 若X有概率密度 试求f(x)和P{cX d},其中[c,d][a,b]。 解
2.1 随机变量及其分布
一、随机变量的概念 二、离散型随机变量 三、连续型随机变量 四、随机变量的分布函数
随机变量的概念
通过对随机试验的观察和研究,可以发现有不少 试验结果是直接用数值形式表示的,如骰子的点 数、射击命中次数、灯泡的寿命等;而另外有些试 验结果虽然没有用数值表示,但也可将其与某确定 的数字对应起来,如抛硬币出现的“正面”或“ 反面”现象,可以分别计为“1"和“0"。
P
x
16
例题与解答
例4 社会上定期发行某种奖券, 每券1元, 中奖率为p, 某 人每次购买1张奖券, 如果没有中奖下次再继续购买1张 , 直到中奖为止. 求该人购买次数X的分布.
解 “X =1‖表示第一次购买的奖券中奖, 依题意: P(X =1)=p ―X=2‖表示购买两次奖券, 但第一次未中奖, 其概率为 1-p, 而第二次中奖, 其概率为p. 由于各期奖券中奖与否 相互独立, 所以: P(X =2)=(1-p)p; ―X=i‖表示购买i次, 前i-1次都未中奖, 而第i次中奖, 所以: P(X =i)=(1-p)i-1p 由此,得到X的概率函数为:
复杂。 而非离散型随机变量中最常用的为连续型随机变量
(它的值域是一个或若干个区间)。 今后我们主要研究离散型和连续型随机变量。
6
离散型随机变量的概率分布
定义2.1.2:如果随机变量X只能取有限个或可列个可 能值,这些取值依次记为x1, x2,…, xn …,且这些不同 取值的概率是确定的,记pn=P(X =xn) (n=1,2,…);则称X 为离散型随机变量,而这组概率pn称为随机变量X的 概率函数,又称X的概率分布、分布律、分布列。 其中 {X = x1}, {X = x2}, …, {X = xn}, …构成一完备事 件组。因此概率函数具有如下性质:
解: (1)记硬币正面朝上事件为X=1,正面朝下事件为X=0;则 易知X为随机变量;{X=1}即表示 “抛硬币恰好正面向上”.
(2)设抽检出的不合格品数为Y,则Y的一切可取值为0,1,2, ...,n,显然Y是一个随机变量;{Y2}即表示“不合格品不超 过2个”事件.
(3)设某十字路口一分钟内经过的车辆数目为Z,则Z的一切 可取值为: 1,2,...,n, ...,显然Z是一个随机变量;{Z > 1}即表示 “一分钟内经过的车辆数目超过1辆”事件.
解:X只能取2或3两个值.
P( X
2)
1 C3
5
1 10
P( X 3) 1 P( X 2)
P(X
3)
C
1 2
C
2 3
C
2 2
C
1 3
C3 5
9 10
更简单
因此,X的分布列为
X23
P 0.1 0.9
10
例题与解答
例1 一批产品的废品率为5%, 从中任意抽取一个进 行检验, 用随机变量X来描述废品出现的情况. 并写 出X的分布.
解 令“X=k"与产品为"k等品"(k=1,2,3)相对应, ―X=0"与产品为"废品"相对应. X是一个随机变量, 它可以取0,1,2,3这4个值. 依题意, P(X=0)=0.1 P(X=1)=0.6 P(X=2)=0.1 P(X=3)=0.2 则可列出概率分布表并画出概率分布图:
14
续上页(概率分布表及概率分布图) X的分布律:
{ X=1 }={ B1B2A1,B1B2A2,B1B3A1, B1B3A2,B2B3A1,B1B2A2 }
{ X=2 }={ B1A1A2,B2A1A2,B3A1A2 } 概率值:P(X=0)=1/10,P(X=1)= 6/10, P(X=2)=3/10。
相关文档
最新文档