实数复习课教案.
实数复习课(第一课时)教学设计
实数复习课(第一课时)教学设计【课题】苏科版数学八年级上册第四章实数复习课(第一课时)【教材简解】“实数”是八年级上册第四章内容,从有理数到实数是数的范围的一次重要的扩充,学生对实数的认识就由有理数的范围扩大到实数范围。
本章的概念多,并且比较抽象,但却是以后学习的基础,在初中数学中占有重要的地位,对今后学习数学有着重要的意义,是后面学习二次根式、一元二次方程以及解直角三角形等知识的基础,也为学习高中数学中不等式、函数以及解析几何等大部分知识作好准备。
【目标预设】1、经历小结与复习,建立本章知识框架图。
2、进一步复习本章知识,强调有关概念、运算的联系与区别及数的范围由有理数扩大到实数后,有关概念和运算的变化情况。
3、通过回顾与思考使学生能进一步掌握实数的相关知识并会灵活运用,体悟相关的数学思想方法。
4、培养学生的数学应用意识,提高学生分析解决问题的能力。
【重点、难点】1、重点:无理数、平方根、算术平方根、立方根及实数的定义与性质,以及实数的运算法则。
2、难点:利用平方根、算术平方根、立方根及实数运算法则解决问题。
【设计理念】复习课并非单纯的知识的重述,而应是知识点的重新整合、深化、升华。
教师在教学过程中应与学生积极互动、共同发展,处理好传授知识与培养能力的关系。
复习课应重视发展学生的数学思维能力,通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。
同时还应关注个体差异,要尽可能兼顾每一位不同学习层次的学生,要让每一个学生都有所得,满足不同学生的学习需要。
【设计思路】本节课的教学过程由创设情境,引入新课?D?D活动交流,互动探究?D?D知识深化,应用提高?D?D反思提炼,形成结构?D?D评价反馈,挑战自我五个环节构成,以学生活动为主线,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。
通过“做一做”、“议一议”、“练一练”、“想一想”、“试一试”等丰富数学活动的经历积累数学分析的经验,通过“合作与交流”让学生在活动中体验到知识的深化和分析数学问题的快乐,提升自我价值,体现学生的主体地位。
(完整版)《实数》复习课教案
《实数》复习课教案一、教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.二、教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.三、教学准备课件、计算器.四、教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ 师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗? 生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数02.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示.二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解) 1.求下列各数的平方根:(1)972;(2)25;(3)252⎪⎭⎫ ⎝⎛-. 师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根. 生:(1)是求925的平方根;(2)是求5的平方根;(3)是求254的平方根. 由学生独立完成.2.x 取何值时,下列各式有意义.(1)x -2; (2)12+x .师:a 在什么情况下有意义?生:对于a ,必须满足a ≥0,它才有意义,所以被开方数必须是非负数. (1)2-x ≥0;(2)x 2+1≥0.师:如何求出x 的范围呢?生:我们讨论后,得出如下结论:(1)x ≤2;(2)不论x 取什么实数,x 2≥0,x 2+1>0,即x 的取值范围是:x 为全体实数.3.求下列各数的值:(1)()23π-;(2)122+-x x (x ≥1).师:如何化简2a 呢?生:我们认为首先应考虑2a 中a 的范围.(1)当a ≥0时,2a =a ;(2)当a <0时,2a =-a .师:求下列各数的值,必须先确定a 的范围.生:因为3-π<0,所以()23π-=-(3-π)=π-3.师:如何化简122+-x x 呢?生:将122+-x x 化为2a 的形式,即()22112-=+-x x x再考虑x -1的范围,由学生独立完成.4.已知:|x -2|+3-y =0,求:x +y 的值.师:认真审题,考虑一下所给的这些数有什么特点.生:|x -2|和3-y 都是非负数.师:两个非负数的和可能是0吗?生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0. 由学生独立完成.师:哪些数为非负数呢?生:实数a 的绝对值,表示为|a |,|a |是非负数;实数a 的平方,表示为a 2,a 2是非负数;非负实数a 的算术平方根表示为a ,a 是非负数.师:非负数有什么特点?生:(1)几个非负数的和仍为非负数;(2)若几个非负数的和为0,则每一个非负数都必须为0.师:绝对值、平方数、算术平方根都是非负数,解题时要注意这一隐含条件,不可把0漏掉.5.计算:32725-+(精确到0.01). 师:无理数是开方开不尽的数,那么如何计算呢?生:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.因为精确到0.01,所以在计算过程中可用2.236代替、5,1.732代替3. 由学生独立完成.6.在实数2-、13.0 、3π、71、0.80108中,无理数的个数为_______个. 师:如何判断一个数是无理数?生:一个无理数不能表示成分数形式,或者说成数位无限,且不循环. 7.|x |<2π,x 为整数,求x师:|x |=2π,x 的值是多少?生:当x =2π,x =-2π时,|x |=2π,所以|x |<2π时,x =±2π.师:|x |=2π的含义?生:实数x在数轴上所对应点到原点的距离等于2π.师:|x|<2π的含义呢?生:实数x在数轴上所对应点到原点的距离小于2π.师:结合数轴,你能说出满足|x|<2π这一条件的点在数轴的什么位置上吗?生:→在如图所示的范围内,因为x为整数,所以x=6、5、4、3、2、1、0、-1、-2、-3、-4、-5、-6.师:非常好!三、查缺补漏,归纳提升.1.通过今天的探究学习,你们有哪些收获?2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题时经常会被用到.3.对于本章的内容你还有那些疑问?四、作业1.教科书第19页复习题A组五、板书设计第6章实数1.知识疏理2.巩固训练3.归纳提升六、教学反思(略)七、课堂小卷(1)填一填:1.16的平方根记作_______,等于________.16________.3.31-2-3(1)_______.55.两个无理数的和为有理数,这两个无理数可以是______和_______.6.若│x 2-则x=_______,y=_______.7.已知x 的平方根是±8,则x 的立方根是________.(2)选一选:8.4的平方根是( )A.2B.-2C.±29.下列各式中,无意义的是( )B. 10.下列各组数中,互为相反数的一组是( )A.-2与B.-2C.-2与-12D.│-2│与2 11. 下列说法正确的是 ( )A.1的平方根是1;B.1的算术平方根是1;C.-2是2的平方根;D.-1的平方根是-1(3)做一做:12. 求下列各数的平方根:(1)81;(2)1625;(3)1.44;(4)214; (513. 求下列各式中的x:①x 2=1.21; ②27(x+1)3+64=0.14. a≥0a 的算术平方根.由此你会求下列各式有意义时x 的取值范围吗?试试看:(1 (2; (3 (415.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b 的平方根.。
实数全章复习教学设计
师生共同总结
12分钟
10分钟
3分钟
5分钟
板
书
设
计
实数的复习
知识结构图
练习
课题
实数全章复习教者:焦博授课时间:2018.05.22
课时安排:1课时
教学
目标
本章知识多考查实数的有关概念及实数的性质和运算,
是初中数学的基础知识.
重点
难点
关键
常见的热门考点有平方根和立方根的概念、求法及应用,算术平方根的性质与应用,实数的分类、比较大小和运算
师生共同归纳
3分钟
10分钟
2分钟
1、算术平方根定义,平方根定义及性质;
2、立方根定义及性质;
3、实数的分类;
(二)评讲归纳
1.三个概念2.三条性质3.一种运算4.一个技巧
5.两种思想
开门见山,直接提出本节课复习主题
大屏幕出示学习目标,学生齐读,明确本节课的学习任务。
复习平方根,算术平方根,立方根及无理数的相关知识点。
找学生回答,教师出示大屏幕并总结
四、课堂小结
1、1.平方根及算术平方根定义;平方根性质;立方根定义及性质
2.实数分类
3.会应用相关知识点做题
五、目标检测
六.作业
注意一个正数的平方根有两个,且它们互为相反数.一个正数的算术平方根一定是正数,零的平方根和算数平方根均为零.
考查立方根运算,其中强调特殊的几个数的立方根。
主要考查实数的分类。
(三)、基础训练
1、分别求出下列各数的平方根和算术平方根:
(1)0.022 5;(2) ;(3)196.
2.(1)-8的立方根是;
(2)-0.027的立方根是;
八年级实数复习课教案
八年级实数复习课教案一、教学目标1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的概念。
(2)掌握实数的性质,如相反数、绝对值、平方等。
(3)学会运用实数解决实际问题。
2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。
(2)运用实例分析,培养学生解决实际问题的能力。
3. 情感态度与价值观:(2)培养学生团队协作精神,提高课堂参与度。
二、教学内容1. 实数的定义及分类(1)有理数:整数和分数的统称。
(2)无理数:不能表示为两个整数比的数。
2. 实数的性质(1)相反数:符号相反、绝对值相等的两个数。
(2)绝对值:数轴上表示一个数的点到原点的距离。
(3)平方:一个数与自身的乘积。
三、教学重点与难点1. 重点:实数的定义及分类,实数的性质。
2. 难点:实数在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解实数的定义、性质及分类。
2. 运用举例法,分析实数在实际问题中的应用。
3. 组织小组讨论,培养学生的团队协作能力。
五、教学过程1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。
2. 讲解实数的性质,如相反数、绝对值、平方等,并通过实例进行分析。
3. 练习巩固:布置练习题,让学生独立完成,检验对实数性质的理解。
4. 课堂小结:总结本节课所学内容,强调实数在实际问题中的应用。
5. 课后作业:布置课后作业,巩固实数的定义、性质及分类。
6. 课后反思:教师对课堂教学进行反思,针对学生的掌握情况,调整教学策略。
六、教学评价1. 评价目标:(1)学生能准确理解实数的定义及分类。
(2)学生能熟练运用实数的性质解决实际问题。
2. 评价方法:(1)课堂问答:检查学生对实数概念的理解。
(2)练习题:评估学生运用实数性质解决问题的能力。
(3)小组讨论:观察学生在团队中的参与程度和协作效果。
七、教学资源1. 教材:八年级数学教材。
2. 课件:实数复习的相关课件。
3. 练习题:针对实数性质的练习题。
《实数》复习课教案
《实数》期末复习教案二中苏元实验学校 陈颍【教学分析】《实数》一章概念较多,且比较抽象,主要是学生对于无理数的认知还缺乏实际经验的积累,算术平方根和平方根概念混淆。
本节为复习课,学生有一定的知识储备,但是预计因理解不到位容易出错,所以这节课定位在:帮助学生构筑知识体系,通过学生自主学习和合作学习暴露学习中的知识性问题,加强理解,归纳典型问题的方法,领会数学思想在解决问题中的作用。
【复习目标】1. 进一步巩固算术平方根,平方根,立方根和实数的的相关概念及性质2. 熟练用根号表示并求数的平方根,立方根3. 能进行实数的简单四则运算,对实数的大小进行比较4. 掌握估算的方法,加强估算能力的培养5. 领会分类思想、类比迁移、数形结合等数学思想方法的运用【教学重点】平方根、算术平方根、立方根及实数的概念与性质,以及实数的运算,大小比较【教学难点】平方根和实数的概念,对符号的认识【教学准备】学案【教学过程】环节一:引导回顾,构筑知识框架师:在《实数》这一章,我们认识了哪些关于数的新知识?学生回忆,师生共同构筑知识线:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ ⎩⎨⎧无理数有理数实数 (设计意图:本节概念较多,先建立知识框架,后面以题带点覆盖知识点)环节二:强化基础,巩固拓展,完善知识框架题组(一):基本概念过关先让学生独立思考完成,老师巡视发现问题,然后学生小组讨论交流,找出易错点,消化部分呈现问题,接着先请每个小组派代表展示错点,归纳总结易错点,师生一起归纳和完善知识体系。
1. 16的算术平方根是______________.2. 2)9(-的平方根是x , 64的立方根是y ,则y x +=________.3. 式子1-x 在实数范围内有意义,则x 的取值范围是________.4. 下列计算中:①2)7(-=-7;②2)2(2=-;③196=±14;④39-=-3;⑤25425=--;⑥2581-=59-;⑦)21)21(33±=,⑧5)5(2±=,正确的是 .(填序号即可) 5. 已知一个正数的平方根分别是13+a 和11+a ,则a 的值是_______.6. 下列实数:4-,3,113,2π,•7.1,38-,0.3737737773…(相邻两个3之间的7的个数逐次加1),其中属于无理数的是_____________________________________________________.7. 数轴上的点与______一一对应。
第六章实数复习课教学设计
第六章《实数》复习教学设计易门县十街中学白维肖一、教材分析1.地位和作用:本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算。
通过本章的学习,学生对数的认识就由有理数范围扩大到实数范围,本章之前的数学内容都是在有理数范围内讨论的,学习本章之后,将在实数范围内研究问题。
虽然本章的内容不多,篇幅不大,但在中学数学中占有重要的地位,本章内容不仅是初中阶段学习二次根式、一元一次方程以及解三角形等知识的基础,也是学习高中数学内容的基础。
2.考标要求:(1)对于算术平方根、平方根和立方根,应该重点考察算术平方根和平方根的概念之间的联系和区别(2)会判断一个无理数在哪两个相邻整数之间,比较实数大小,解决实际问题(3)对于实数运算,应把握教科书的要求,循序渐进,不考察复杂、繁琐的实数运算二、教学目标:1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;3.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.三、教学重、难点:1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.教学准备:多媒体课件、课本、笔记本5.两个无理数的和为有理数,这两个无理数可以是______和_______.6.若│x2-25│+3y =0,则x=_______,y=_______.7.已知x的平方根是±8,则x的立方根是________.成,各尽其能。
板书设计:教学反思:1、时间分配不合理,前面的第一环节,知识梳理所用的时间太长,15分钟左右,导致后面的环节,练习题有所遗漏,没有时间做。
2、对学生的关注还是不全面,没有关注到所有学生。
3、板书没有跟上知识点的呈现同步展示出来,是后面知识点复习完了,自己很生硬的加上去的,不利于学生知识的生成。
《实数(复习课) 》教案
复习专题一:平方根与算术平方根
1. 16的平方根是_
2.的算术平方根是___
3.化简:= _____
4.说出下列各式的值:
复习专题二:立方根的定义与性质
求下列各式的值
复习专题三:实数
1.的相反数是_____
2.比较大小:____3
3.计算:
巩-2和5x+6,求这个数?
2.已知2a-1的平方根是 ,3a+b的算数平方根是4,求a+2b的平方根。
达标测评:
(见试卷)
课堂小结:
作业策略
1.整理易错知识在笔记本上
2.复习试卷(四)
A,B层学生全部完成1
C层完成复习试卷中的填空、选择部分和解答题15-17
分层布置作业,让我们的学生在数学上有不同的进步
教学反思
温馨提示:
达标测评:
鼓励学生作答,抢答,激励每组的学生学习,树立学习数学的信心。
1.教师(在大屏幕)解读学习目标
2.在后板完整书写巩固提升1和2题,规范学生的书写,完善学生的思路
学习任务
课前准备:
做复习卡上的题目
预习交流:
各小组在组长的带领下,结合手抄报,练习册和教材回顾本章知识点,找出易错的问题与本组同学交流。把你组认为易错的问题写到后板,备展。
3、知识梳理,夯实基础 15’
4、巩固提升,拓展运用 15’
5、达标测评,小结作业 6’
课前准备:
学情预见:学生对实数这一章的知识点可能有些遗忘,解决问题时考虑的不全面。
方法指导:如有困难,可同本组学生交流探讨。
预习交流:
各小组在组长的带领下,结合手抄报,练习册和教材回顾本章知识点,找出易错的问题与本组同学交流。把你组认为易错的问题写到后板,备展。
实数(单元复习)标准教案
实数(单元复习)标准教案一、教学目标:1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的特点。
(2)掌握实数的性质,如相反数、绝对值、平方等。
(3)学会实数的运算方法,包括加、减、乘、除、乘方等。
2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。
(2)运用实数运算方法,培养学生解决实际问题的能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
二、教学重点与难点:1. 教学重点:(1)实数的定义及分类。
(2)实数的性质和运算方法。
2. 教学难点:(1)实数分类的理解和运用。
(2)实数运算的灵活应用。
三、教学过程:1. 导入新课:回顾实数的定义,引导学生思考实数的分类和性质。
2. 知识讲解:(1)讲解实数的分类,包括有理数和无理数。
(2)阐述实数的性质,如相反数、绝对值、平方等。
(3)介绍实数的运算方法,如加、减、乘、除、乘方等。
3. 例题解析:选取典型例题,讲解实数的运算方法和应用。
4. 课堂练习:设计练习题,让学生巩固实数的分类、性质和运算方法。
5. 总结提升:对本节课的内容进行总结,强调实数在数学中的重要性。
四、课后作业:1. 复习实数的定义、分类和性质。
2. 练习实数的运算方法,解决实际问题。
3. 总结实数在实际生活中的应用。
五、教学评价:1. 学生对实数的定义、分类和性质的掌握程度。
2. 学生实数运算方法的运用能力。
3. 学生解决实际问题的能力。
4. 学生对数学学科的兴趣和积极性。
六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究实数的性质和运算方法。
2. 通过小组讨论,培养学生合作学习的能力。
3. 利用信息技术辅助教学,如数学软件、网络资源等。
4. 设计富有挑战性的数学问题,激发学生的创新思维。
七、教学实践与拓展:1. 结合实际生活中的问题,让学生运用实数知识和方法解决问题。
2. 开展数学竞赛,提高学生的学习积极性。
八年级数学实数教案5篇
八年级数学实数教案5篇一节数学课不但要把该节的内容让学生能够接受,更重要的是启发学生去思考,引导学生从抽象的理论到实践的过程,对于方法的探索采用从特殊到一般的思想,下面是小编给大家整理的八年级数学实数教案5篇,希望大家能有所收获!八年级数学实数教案1一.教材分析1.教材的地位和作用本节课是北师大版实验教科书八年级上册第二章《实数》的第六节内容.在本节之前学生已学习了平方根.立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入.中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程.函数的基础.2.教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标).知识技能:(1)了解无理数和实数的概念以及实数的分类.(2)知道实数与数轴上的点具有一一对应关系.数学思考:(1)经历对实数进行分类的过程,发展学生的分类意识.(2)经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的.解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数.情感态度:(1)通过了解数系扩充体会数系扩充对人类发展的作用.(2)敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.3.教学重点.难点重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数.难点:用数轴上的点来表示无理数.二.学情分析在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算.课本对学生掌握实数要求不高.只要求学生了解无理数和实数的意义.但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识.本节主要引导学生熟知实数的概念和意义,为后面学习打下基础.三.教法学法分析:教法分析:根据本节课的教学内容和学生的实际水平,我采用的是引导发现法.类比法和多媒体辅助教学.(1)在教学中通过设置疑问,创设出思维情境,然后引导学生动脑.动手,使学生在开放.民主.和谐的教学氛围中获取知识,提高能力,促进思维的发展.(2)借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的.(3)教具:三角板.圆规.多媒体.学法分析:我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习.享受学习.因此,在本节课的教学中引导学生〝仔细看.动脑想.多交流.勤练习〞的学习,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们〝会观察〞.〝会类比〞.〝会分析〞.〝会归纳〞的能力.四.教程分析:针对本节教材的特点,我把教学过程设计为以下五个环节:北师大版八年级数学上册第二章《2.6实数》说课稿一.创设问题情景,引出实数的概念内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备.学生回答:无理数是无限不循环小数.带根号的数不一定是无理数.3.把下列各数分别填入相应的集合内.有理数集合.无理数集合,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念.教师引导学生得出实数概述并板书:有理数和无理数统称实数(realnumber).教师点明:实数可分为有理数与无理数.最后多媒体展示具体分类,并对有理数和无理数从小数的角度进行说明.二.议一议,1.在实数概念基础上对实数进行不同分类.无理数与有理数一样,也有正负之分,如是正的,是负的.教师提出以下问题,让学生思考:(1)你能把,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?正数集合:负数集合:(2)0属于正数吗?0属于负数吗?(3)实数除了可以分为有理数与无理数外,实数还可怎样分?意图:在实数概念形成的基础上对实数进行不同的分类.上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类.提醒学生分类可以有不同的方法,但要按同一标准不重不漏.让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数.0.负实数.2.了解实数范围内相反数.倒数.绝对值的意义:在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么.在实数范围内,相反数.倒数.绝对值的意义和有理数范围内的相反数.倒数.绝对值的意义完全一样.例如,和是互为相反数,和互为倒数.,,,.三.想一想让学生思考以下问题1.a是一个实数,它的相反数为,绝对值为;2.如果,那么它的倒数为.意图:从复习入手,类比有理数中的相关概念,建立实数的相反数.倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的让学生回答后,教师归纳并板书:实数a的相反数为,绝对值为,若它的倒数为(教师指明:0没有倒数)增加练习:(多媒体展示)第一组1.的绝对值是2.a是一个实数,它的绝对值是第二组:1.的相反数是,绝对值是2.绝对值等于的数是,3.的绝对值是4.正实数的绝对值是,0的绝对值是,负实数的绝对值是例题:求下列各数的相反数.倒数.绝对值(1)(2)(3)学生上黑板完成,教师巡视学生如何书写,对发现的问题及时处理,最后与学生共同纠正.明晰:实数和有理数一样,可以进行加.减.乘.除.乘方运算,而且有理数的运算法则与运算律对实数仍然适用.(媒体展示两个举例)四.议一议.探索用数轴上的点来表示无理数1.每个有理数都可以用数轴上的点表示,那么无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示.和这样的无理数的点吗?2.多媒体展示的做法和和的做法如图OA=OB,数轴上A点对应的数是多少?让学生充分思考交流后,引导学生达成以下共识:探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小.(1)A点对应的数等于,它介于1与2之间.(2)每一个有理数都可以用数轴上的点表示(3)每一个无理数都可以用数轴上的点来表示(4)每个实数都可以用数轴上的点来表示,每一个实数都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数.即实数和数轴上的点是一一对应的.(4)和有理数一样,在数轴上,右边的点比左边的点表示的数大.五.随堂练习(多媒体展示)第一组:判断题:①实数不是有理数就是无理数.②无理数都是无限不循环小数.③无理数都是无限小数④带根号的数都是无理数.⑤无理数一定都带根号.⑥两个无理数之积不一定是无理数.⑦两个无理数之和一定是无理数.⑧数轴上的任何一点都可以表示实数.第二组:1.判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数.2.求下列各数的相反数.倒数和绝对值:(1)(2)(3)3.在数轴上作出对应的点.意图:通过以上练习,检测学生对实数相关知识的掌握情况.六.小结1.实数的概念2.实数可以怎样分类3.实数a的相反数为,绝对值,若,它的倒数为.4.数轴上的点和实数一一对应.七.作业课本习题2.81.2.3题结束语:多媒体展示:人生的价值,并不是用时间,而是用深度去衡量的.——列夫托尔斯泰八.板书设计:实数1.实数的概念4.实数与数轴上的点的关系2.实数的分类5.例题3.实数a的相反数为,6.学生练习绝对值,若,它的倒数为八年级数学实数教案2学习目标1 了解无理数和实数的概念2会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小3了解实数范围内相反数和绝对值的意义学习重点正确理解实数的概念学习难点理解实数的概念问题用计算机把下列有理数写成小数的形式5?3,7,8,_90,9我们知道整数和分数统称有理数,所以任意一个有理数都可以写成有限小数或无限不循环小数的形式,反之,任何有限小数或无限小数也都是有理数.那么无限不循环小数叫什么呢?无理数:无限不循环小数叫做无理数.通过上两节课的学习,我们知道许多数的平方根或立方根都是无限不循环小数,例如 . .? . 等都是无理数,π=3.__926…也是无理数.实数:有理数和无理数统称为实数.有理数有限小数或无限小数依此分类实数无理数无限不循环小数像有理数一样,无理数也有正负之分,由于非0有理数和无理数都有3479_5 正负之分,所以依此分类为正实数正有理数正无理数实数0负有理数负实数负无理数例一.把下列各数填入相应的集合内0.6.-43.0.33. 0._ .π.(1)有理数集合:{}(2)无理数集合:{}(3)整数集合 :{}(4)分数集合:{}(5)实数集合:{}我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点来表示呢?事实上,每一个无理数都可以用数轴上的一个点表示出来.即数轴上的点有些表示有理数,有些表示无理数.当数从有理数扩充到实数后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示:反过来,数轴上的每一个点都表示一个实数.平面直角坐标系中的点与有序实数对之间也是一一对应的.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.当数从有理数扩充到实数以后,有理数关于相反数的绝对值的意义同样适合实数.(1)数a的相反数是-a,(a表示任何实数)(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.课堂小结1.这节课你学到的知识有2.这节课你的收获有3.这节课应注意的问题有练习题a1.若实数a满足a??1,则() A.a?0B.a?0C.a?0D.a?02.下列说法正确的是().A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限小数D.无理数是开方开不尽的数3.和数轴上的点一一对应的是()A 整数B 有理数C 无理数D 实数35?_4.绝对值等于的数是,的相反数是,?8的相反数是;1?2的相反数是_________________,绝对值是.5.如果一个实数的绝对值是3?7,那么这个实数是6.比较大小:-7?4八年级数学实数教案3教学难点:绝对值.教学过程:一. 复习:1.实数分类:方法(1) ,方法(2)注:有限小数.无限循环小数是有理数,可化为分数;无限不循环小数是无理数例1判断:(1) 两有理数的和.差.积.商是有理数;(2) 有理数与无理数的积是无理数;(3) 有理数与无理数的和.差是无理数;(4) 小数都是有理数;(5) 零是整数,是有理数,是实数,是自然数; (6) 任何数的平方是正数; (7) 实数与数轴上的点一一对应; (8) 两无理数的和是无理数. 例2下列各数中:-1,0, , ,1.1_0_ , , ,- , ,2, . 有理数集合{ …}; 正数集合{ …};整数集合{ …};自然数集合{…};分数集合{ …}; 无理数集合{ …};绝对值最小的数的集合{ …};2.绝对值: = (1) 有条件化简例3.①当1 ②a,b,c为三角形三边,化简③如图,化简 + . (2) 无条件化简 ;例4.化简解:步骤①找零点;②分段;③讨论.例5.①已知实数abc在数轴上的位置如图,化简|a+b|-|c-b|的结果为②当-3例6.阅读下面材料并完成填空你能比较两个数__和__的大小吗?为了解决这个问题先把问题一般化,既比较nn+1和(n+1)n的大小(的整数),然后从分析=1,=2,=3,....这些简单的情况入手,从中发现规律,经过规纳,猜想出结论.(1) 通过计算,比较下列①——⑦各组中两个数的大小(在横线上填〝 .=. 〞号〞)①_ _ ;②23 32;③34 43;④45 54;⑤56 65;⑥67 76⑦78 87(2)对第(1)小题的结果进行归纳,猜想出nn+1和(n+1)n的大小关系是(3)根据上面的归纳结果猜想得到的一般结论是: __ __练习:(1)若a -6,化简 ;(2)若a 0,化简(3)若 ;(4)若 = ;(5)解方程 ;(6)化简: .二. 小结:;三.作业:四.教后感:八年级数学实数教案41.体现了自主学习.合作交流的新课程理念.对于例题的处理,改变了传统的教学模式,采用了〝尝试—交流—讲评—讨论〞的方式,充分发挥学生的主体性.参与性.同样采用了〝尝试—发现—归纳〞的方式.使学生清楚新旧知识的区别和联系.当然类比的对象也可能出现差异,这在进一步的类比有理数与数轴的关系时就表现出来了,有理数与数轴上的点不是一一对应的,而实数与数轴上的点是一一对应的.2.重视数学思想方法与算法算理的渗透,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类.辨析.归纳.化归等),通过让学生不断回顾有理数的相反数.绝对值.混合运算等知识,有意识地让学生类比旧知识,自主学习新知识,很好地发展了学生的类比能力.3.在本节课的设计中,注重引导学生参与探究.归纳(用自己的语言叙述)实数范围内的相反数.绝对值含义,以及实数范围内的混合运算法则.4. 注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听和接受别人的意见和建议.从课堂上学生的反映情况也看到了不足:1.学生自主探索的时间较少.对于学生,会对实数进行分类,没有大面积利用小组合作提高学生的积极性,有些面面俱到包揽太多,过于低估学生的学习能力,应给学生留有一定的学习空间.2.有些细节的重点地方忽略了,比如学生在表示出根号5,根号_等点时引导学生总结无理数也可在数轴上表示,此处如果再设计一问:反过来说,有理数把数轴填满了吗?引导学生回到本节课题实数与数轴的点一一对应. 3.分层教学对于不同层次的学生应该有不同的要求,在教学中应该多加注意,采取不同的评价方式,并且要有相应的激励方法,学生才能有热情去学习.数学课堂不应仅仅是学习的地方,更应是学生〝生活〞的乐园.让生活走进初中数学课堂,适应学生的学习生活和个性发展的需要,让所有的学生都能在数学课堂中接触生活.感悟生活,学习生活中必需的数学,才能更好地实践课改精神,推进高效课堂的进行.八年级数学实数教案5教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一.创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数.小数.分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数.零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二.讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.[生丙]由a2=2可判断a应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为_=1,_=4,32=9,…整数的平方越来越大,所以a应在1和2之间,故a不可能是整数.[生乙]因为,…两个相同因数的乘积都为分数,所以a不可能是分数.[师]经过大家的讨论可知,在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.2.做一做投影片§2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?[师]请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.[师]在这题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=_+_,即b2=5,则b是有理数吗?请举手回答.[生甲]因为_=4,32=9,4 5 9,所以b不可能是整数.[生乙]没有两个相同的分数相乘得5,故b不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.[师]大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆〝数〞,即〝宇宙间的一切现象都能归结为整数或整数之比〞,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三.课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米.宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=_+_,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.四.课堂小结1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.2.能判断一个数是否为有理数.五.课后作业:见作业本.§2.1 数怎么又不够用了(二)教学目标(一) 知识目标:1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.(二)能力训练目标:1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考.合作交流的意识和能力.2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.(三)情感与价值观目标:1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.教学重点1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学方法老师指导学生探索法教学过程一.创设问题情境,引入新课[师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.二.讲授新课1.导入:[师]请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?[生]因为a2大于1且a2小于4,所以a大致为1点几.[师]很好.a肯定比1大而比2小,可以表示为1 a 2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1._=1._,1._=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4 a 1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位.千分位上的数字. p=[生]因为1.4_=1.9881,1.4_=2._64,所以a应比1.41大且比1.42小,所以百分位上数字为1.[生]因为1.4_2=1.99__,1.4_2=1.993744,1.4_2=1.996569,1.4_2=1.999396,1.4_2=2.0__5,所以a应比1.4_大而比1.4_小,即千分位上的数字为4.[生]因为1.4__=1.99996_4,1.4_32=2.00_4449,所以a应比1.4_2大且比1.4_3小,即万分位上的数字为2.[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.[生]我的探索过程如下.边长a 面积S1 a2 p= 1 s 41.4 a 1.5 p= 1.96 s2.251.41 a 1.42 p= 1.9881 s2._641.4_ a 1.4_ p= 1.999396 s2.0__51.4_2 a 1.4_3 p= 1.99996_4 s2.00_4449[师]还可以继续下去吗?[生]可以.[师]请大家继续探索,并判断a是有限小数吗?[生]a=1.4_2_56…,还可以再继续进行,且a是一个无限不循环小数.[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)[生]b=2.236_7978…,还可以再继续进行,b也是一个无限不循环小数.[生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.2.无理数的定义请大家把下列各数表示成小数.3,,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.[生]3=3.0, =0.8, = ,,[生]3, 是有限小数, 是无限循环小数.[师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.。
实数复习教案
《实数》复习教案一、平方根、算术平方根和立方根1、 平方根与算术平方根的区别与联系:①定义上:如果一个数的平方等于a ,那么这个数叫做a 的平方根;其中正的平方根叫做算术平方根,0的平方根也是0。
②个数上:一个正数有两个平方根,它们互为相反数;而一个正数的算术平方根只有一个。
③表示法:正数a 的平方根表示为±a ;而算术平方根表示为a 。
2、 平方根与立方根:① 定义:如果一个数的平方等于a ,那么这个数叫做a 的平方根;如果一个数的立方等于a ,那么这个数叫做a 的立方根;② 个数上:一个正数有两个平方根,它们互为相反数;而一个正数只有一个立方根; ③ 范围上:只有非负数才有平方根,负数没有平方根;而正数有一个正的立方根,负数有一个负的立方根,0的立方根是0。
例1、①16的平方根是 ;算术平方根是 ;327的平方根是 ; ②若一个数的平方根等于它本身,则这个数是 ;若一个数的算术平方根等于它本身,则这个数是 ;若一个数的立方根等于它本身,则这个数是 ;二、二次根式的双重非负性:一是被开方数为非负数;二是算术平方根本身为非负数。
一个非负数的算术平方根是非负数;同样具有非负性的有绝对值、平方数。
几个非负数的和为0,当且仅当它们同时为0时成立。
如,c b a 02=++则有000===,c ,b a 。
例2、已知a ,b 都是实数,且,0262=-++b a 解关于x 的方程:1)2(2-=++a b x a 例3、若0)96(222=+---+-y y x x ,求y x 的值。
例4、已知实数a 、b 在数轴上位置如图:试化简:b a a +--2)1(例5、若m 、n 满足73=+n m ,且n m x 32-=试求x 的取值范围。
三、无理数的定义及范围的应用例6、已知有理数a 、b 满足a b a -+=-332235,试求a+b 的值。
例7、已知139+与139-的小数部分分别为x 、y ,求3x+2y 的值。
(完整版)实数复习课公开课教案
实数复习课教案活动目标1.复习平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.复习无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;3.复习数轴、相反数、绝对值的性质,并在实数范围内准确运用。
4. 能对实数进行运用和比较大小。
活动重点1. 平方根、立方根的概念、性质,会求一个实数的平方根、立方根。
2.对实数准确分类和比较大小。
活动难点:掌握实数的有关概念及会进行实数大小比较;会进行开平方和开立方运算,会求一个非负数的算术平方根;能够运用实数的有关性质解决问题教学准备课件、导学案活动过程一、 知识疏理(一) 平方根、算术平方根、立方根⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 设计意图:对比复习平方根、算术平方根、立方根让学生对知识之间的联系,进一步掌握它们之间的区别,达到正确求一个数的方根的目的。
一点一练我能行!1.明辩事非3是9的算术平方根 ( )0的平方根是0,0的算术平方根也是0 ( )(-2)2的平方根是2- ( )64的立方根是4± ( )-10是1000的一个立方根 ( )2.填一填25的平方根是 16的算术平方根是 27的立方根是______ 327 的平方根是_________3.火眼睛睛(1)A .3B .3-C .3±D . 9(2)下列说法中正确的是( )A .81的平方根是±3B .1的立方根是±1C .1=±1D .-5是5的平方根的相反数(3)下列式子中① 4是16的算术平方根,即4= ②4是16的算术平方根,即4=③-7是49的算术平方根,即7= ④7是(-7)²的算术平方根,即7= 其中正确的是( )A. ①③B. ②③C. ②④D. ①④(二)实数的分类、性质、比较大小、运算1.实数分类(按定义分和按正负分)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数0分类中特别强调无理数的形式针对练习:(2) 73是( ): A .无理数B .有理数C .整数D .负数1、在下列各数、、、、、、、、27111311010010001.672232.0051525354.0 π 中无理数的个数是( )A .2B .3C .4D .52、把下列各数填在相应的大括号内: 1010010001.2,64,333.3,14.3,,75,13---π 整数集合:{ ……};分数集合:{ ……};有理数集合:{ };无理数集合:{ }。
人教版七年级数学下册第六章实数复习课课程教学设计
第六章《实数》复习课授课方案授课方案思路《实数》是人教版数学七年级下册第六章的内容,本章的见解多,并且比较抽象,但倒是今后学习的基础。
学生已学完这一章,对各样见解和知识点有不同样程度的理解,可是理解的不透。
相当一部分同学基础知识差,学习能力衰,在见解的理解,思辨,逻辑推理上有待进一步的提高。
本节课教师釆用以引导为主,讨论为辅的启迪式授课,课前引导学生回首在本章中学习的主要内容,再经过小组间的合作与沟通,理顺知识的脉络和相互间的联系,最后由教师进行归纳和归纳,最后经过基础回回来提高学生的解题能力 .授课目标知识与技术1.认识算术平方根、平方根、立方根、无理数、实数的见解及实数的相反数、绝对值的意义,掌握其性质并会用运算法例进行计算 ;2.认识实数的分类,知道实数与数轴上的点一一对应,能求实数的相反数和绝对值;3.能用有理数估计一个无理数的大概范围 .过程与方法1.经过认识平方与开平方的关系,培养学生逆向思想能力;经过认识有理数与无理数的差异与联系,培养学生类比学习的能力 ;2.经过实数的运算练习,提学生的数学运算能力 . 经历能用有理数估计一个无理数的大概范围,培养学生的估计能力 ;3.认识实数与数轴上的点一一对应的关系;浸透数形结合思想 , 提高思想能力 .感神态度价值观进一步领悟知识点之间的联系,激发学生研究数学神奇的热情. 授课重点互为逆运算1.平方根、立方根的见解、性质,会求一个实数的平方根、立方根; 2.对实数正确分类和比较大小.授课难点利用平方根、算术平方根、立方根及实数运算法例的进行有关的计算,特别是平方根与算术平方根的不同样之处.授课方法四步复习法 .课时安排 1 课时.教具学具准备课件,复习导教课方案,直尺,圆规.一、【网络构造知识再现】互为逆运算开平方乘方开方开立方平方根立方根有理数实数实数运算无理数授课过程一、【以题点知内外夹攻】平方根 , 算术平方根的见解1.说出以下各数的平方根和算术平方根:(1)169(2 )0(3)214(4)10 2 (5)2725 9小结 : (1 )正数有 2 个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根 . (2)求一个数 a 的平方根的运算叫做开平方 .平方 x 2=a 开平方xa立方根的见解2.说出以下各数的立方根:(1) 0.008 ( 2 ) 0.21627 5 (3) (4) 1564 8小结 : (1) 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零 .(2) 求一个数 a 的立方根的运算叫开立方.立方 x 3=a 开立方x3 a平方根 , 算术平方根和立方根见解3. 说出以下各式的值:互为逆运算(1) 81 ( 2) ( 25)2 (3) 25 36(4)3 125 (5) 3 0.027 (6)125 38小结 : (1) a表示 a 的算术平方根 ; a表示 a 的算术平方根的相反数 ;a 表示a的平方根;(2) 3 a 表示a的立方根; 3 a 表示a的立方根的 a 相反数 .有理数、无理数和实数的见解4.把以下各数中 :3 2 ,,5 , 2 , 20 ,4 ,,5 , 3 8 ,2 3 0 0 .37377377739( 相邻两个 3 之间的 7 渐渐加 1 个) 有理数为__________ ;无理数为.小结 : 有限小数及无量循环小数正整整数数负整有理数数正分分数实数负分数正无理数无理数负无理数无量不循环小数开不尽方的数一般有三种情况含有的数有规律但不循环的无量小数用数轴上的点来表示的点实数5.在数轴上画出表示 2 , 2的点 .(提示:参看课本41 页“研究”,可否用两个面积为 1dm 2 的小正方形拼成一个面积为2dm 2的大正方形 ? 大正方形的边长就是小正方形的对角线长,即等于 _________. )小结 : 每一个实数都能够用数轴上的点来表示;反过来,数轴上的每一个点都表示一个实数 . 即:实数和数轴上的点是一一对应的.实数大小的比较6.比较以下各组数里两个数的大小:(1) 2 _____1.4;(2) 5 ____- 6 ;(3)-2_____3 3小结 : (1) 数轴上右边的数总比左边的数大;(2)正数大于所有负数和零,零大于所有负数,两个负数比较绝对值大的反而小.实数范围内的有关见解7.求以下实数的相反数和绝对值:(1).- 5 的相反数是 _____; - 5 的绝对值是 ________;(2) 32 的相反数是_____; 32 的绝对值是________.小结 : (1)a 的相反数 -a. (2)一个正数的绝对值是它的自己;一个负数的绝对值是它的相反数;零的绝对值是零.有关知识的综合运用8.依照条件求值:(1)已知 x y 0 ,求 x,y 的值;(2)已知 x - 2 y 3 0 ,求 x,y 的值 .小结 : (1) 任何非负数的和仍是非负数;(2) 若几个非负数的是 0,那么这几个非负数均为 0.实数的运算9. 计算: (1) (2)22532 ( 2 2 3) 3小结 : (1) 实数的运算律:加法互换律、加法结合率、乘法互换律、乘法结合律、乘法分派律 ;(2) 实数的运算法例:先算乘方和开方,再算乘和除,最后算加和减,有括号的先算括号里的 . 重申 : 先定符号再计算 .三、【错题积累】1.计算;(4 3 3 2) (3 3 2 2)错解:(43 32) (33 2 2) 7 5 55 25易错点:在进行计算时误认为x y x y正解 :小结:先去括号,尔后近似归并同类项同样,直接把被开方数同样的二次根式进行归并即可 .2. 计算:3 2 2 3 2 3错解:原式 2 3 2 3 3 2( 2 2 2) ( 3 3 3)2 3易错点:(1) 对绝值性质分不清 ,(2) 减去一个式子时没添上括号 ,(3) 计算时符号简单出错 .正解 :小结:依照去绝对值法例先把绝对值去掉 , 尔后去括号 , 再将二次根式进行归并 .3. 解方程 : (x2 2) 9错解:( x 2) 2 9x 2 3x 5易错点:在进行开平方运算( 求平方根 ) 时, 漏了一个负的平方根 . 正解 :小结 :开平方运算时,要正确依照求平方根性质进行开平方.。
实数复习教案
13.已知一个矩形的长为3cm,宽为2cm,试估算它的对角线长为_________(结果保留两个有效数字)。
14.当x=_________时,4- 的最小值是_________。
【答案】(1+3)×4
4+3×4
0×1+1×2+2×3+3×4
1+2+3+…+n
0×1+1×2+2×3++…+(n-1)×n
n(n+1)(n—1)
n(n+1)(2n+1)
例4已知x、y是实数,且 +(y2-6y+9)=0,若axy-3x=y,则实数a的值是()
A. B.- C. D.-4=0,且y-3=0,由此可求得x,y的值,将其代入axy-3x=y中,即求得a的值.
章节与主题
实数复习教案(2)
主备人
李淑梅
审核人
初二数学组
使用人
李淑梅
使用周次日期
12.3
:
本课时学习目标或学习任务
1平方根及立方根的概念及求法
2近似数的概念及按一定的要求取近似数
3实数的分类
本课时重点难点或学习建议
重点平方根及立方根的概念及求法
2近似数的概念及按一定的要求取近似数
难点近似数的概念及按一定的要求取近似数
【解答】 +(y-3)2=0
∴3x+4=0,y-3=0
∴x=- ,y=3.
∵axy-3x=y,
∴- ×3a-3×(- )=3
第六章实数复习课教案
第六章《实数》复习七( )班 姓名________座号:______ 第____小组一、自学范围:(P40-62)二、自学目标:1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,掌握实数的相反数和绝对值的意义;4.理解实数与数轴上的点一一对应,理解有理数的运算律适用于实数范围.教学重难点:1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.三、基础知识回顾:1、有理数(1) 有限小数:小数部分的位数是有限的小数。
(2) 无限循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。
例如: 0.333 …, 5.32727 …等等。
2、无理数(1)无理数:无限不循环小数叫做无理数。
(2)无理数的特征:1)无理数的小数部分位数不限;2)无理数的小数部分不循环,不能表示成分数的形式。
3、实数(1)实数的分类:(2)实数的性质:在实数范围内,相反数、绝对值、倒数的意义,和在有理数范围内是一样的。
数轴上的每一个点都可以用一个实数来表示;反过来,每一个实数都可以在数轴上找到表示它的点。
(实数与数轴上的点一一对应。
)(3)实数大小比较的方法:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数01)有理数大小的比较法则在实数范围内同样适用,即:法则1:在数轴上表示的两个实数,右边的数总比左边的数大。
法则2:正实数都大于0,负实数都小于0;正实数大于一切负实数;两个负实数,绝对值大的反而小。
2)平方比较法。
3)作差比较法。
(4)运算:有理数的运算法则,运算顺序,运算性质在实数中同样适用。
四、典型习题(一)、选择题1、下面几个数:-1.732 ,1.010010001…,,3π,,其中,无理数的个数有( )A 、1B 、2C 、3D 、42、4的平方根是( )A.2B.-2C.±2D.±2 3、下列说法中正确的是( )A 、的平方根是±3 B 、1的立方根是±1 C 、=±1 D 、是5的平方根的相反数 4、如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )A 、211B 、1.4C 、D 、 5、设,则下列结论正确的是( ) A. B. C. D.6.下列各式中,无意义的是( )A.-3B.3-C.2(3)-D.310-7、下列各组数中,互为相反数的一组是( )A.-2与2(2)-B.-2与38-C.-2与-12D.│-2│与2 8、 下列说法正确的是 ( )A 、的算术平方根是-3;B 、的平方根是±15.C 、当x=0或2时,D 、是分数(二)、填空题 9、36的平方根是 ;16的算术平方根是 ;10、8的立方根是 ;327-= ;11、37-的相反数是 ;绝对值等于3的数是12、3的倒数的平方是 ,2的立方根的倒数的立方是 。
实数复习教案
课题:《实数》小结与复习
绵阳高新区永兴中学陈锐
教学目标:
知识与技能:理解平方根、算术根、立方根的概念、符号、特征及他们间的区别
过程与方法:梳理本章知识,构建知识体系,培养归纳总结能力
情感态度价值观:培养良好的学习习惯,培养合作交流能力,激发专研精神教学重点:实数相关概念
教学难点:不同根的区别与联系,发展学生的数感和符号感
教具准备:多媒体课件
教学方法:合作交流
教学课时:1课时
教学过程:
一、基础概念的复习
1、算术平方根的定义及性质
2、平方根的定义及性质
3立方根的定义及性质
4、三种类型根的区别与联系
二、基础概念的运用
1、选择题、填空题的练习
2、被开方数及开方结果的取值范围
三、有理数的分类
1、分类方法
2、分类的运用练习
四、实数范围内的相关概念
相反数、绝对值
五、相关知识如何综合运用
六、实数的运算
1、先定符号再计算
2、加法结合律、加法交换律等运算律在无理数计算中也适用
七、课堂小结
通过本节课的复习,你有什么收获?
八、板书
第六章实数
1、知识梳理
2、巩固练习
3、归纳提升
九、课后反思
本节课要突出本章重要的数学思想:类比和数形结合。
让学生通过知识的系统化、条理化,进一步建构数学体系。
实数复习课教案人教版
教师:学生:时间:年月日段一、授课目的与考点分析:教材分析:本章是学二次根式,一元二次方程的知。
在中招考中多以填空、形出,有的与后知合出。
本章的概念多,并且比抽象,但却是以后学的基,一定要好好掌握。
复目:. 一步稳固数的定性及其运算律。
. 熟使用算器求一些数的估算。
. 能运用数的运算解决的,提高知的用能力。
重点、点. 重点是无理数、平方根、算平方根、立方根及数的定与性,以及数的运算算法。
. 点是利用平方根、算平方根、立方根及数运算法的行有关算目,特是平方根与算平方根的不同之。
二、授课内容:复习内容数的用.无理数的引入。
无理数的定无限不循小数。
算平方根定如果一个非数x的平方等于那么个非数x就叫做a的算平方根,,即x2a a,算平方根非数a0正数的平方根有2个,它互相反数平方根0的平方根是0数没有平方根2.无理数的表示定:如果一个数的平方等于a,即x2a,那么个数就叫做a的平方根,a正数的立方根是正数立方根数的立方根是数0的立方根是0定:如果一个数x的立方等于a,即x3a,那么个数x就叫做a的立方根,3a.*常的无理数有哪些:①开不尽方的数:2、3;②特殊的无理数:π、⋯⋯;③符合形式的无理数:2,π。
概念有理数和无理数统称实数正数有理数分类或0无理数负数3.实数及其相关概念绝对值、相反数、倒数的意义同有理数实数与数轴上的点是一一对应实数的运算法那么、运算规律与有理数的运算法那么运算规律相同。
(a)2a(a0);a2|a|a(a0),.算数平方根的根本性质:a(a0);ab a b(a0;b0);a a(a0;b0).b b考点总结〔〕平方根、算术平方根的概念及表示方法例.的算术平方根是〔、、、±、〕析解:由算术平方根的意义可知答案为〔〕.方法点拨:一个数的平方根有两个,它们互为相反数,正的那一个是算术平方根。
例.的平方根是析解:的平方根实际上就是的平方根,所以答案为±.误点警示:此题中要注意的平方根与的平方根区别.拓展练习:.的平方根是..求以下各式中的...±.±5()〔〕〔〕2=;〔〕2-=.〔〕平方根、算术平方根的性质例.a2,那么(a2)2;析解:因为a2,所以<,所以(a2)22aa2aa(0)方法点拨:|a|对此公式的理解和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数复习
教学目标
1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;
2.会用计算器进行数的加、减、乘、除、乘方及开方运算;
3.了解无理数的意义,会对实数进行分类,掌握实数的相反数和绝对值的意义;
4.理解实数与数轴上的点一一对应,理解有理数的运算律适用于实数范围.
教学重难点:
1.平方根和算术平方根的概念、性质,无理数与实数的意义;
2.算术平方根的意义及实数的性质.
一、基础知识
1、有理数
(1) 有限小数:小数部分的位数是有限的小数。
(2) 无限循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。
例如:0.333 …, 5.32727 …等等。
2、无理数
(1)无理数:无限不循环小数叫做无理数。
(2)无理数的特征:
1)无理数的小数部分位数不限;
2)无理数的小数部分不循环,不能表示成分数的形式。
3、实数
有理数和无理数统称为实数。
(1)实数的分类:
(2)实数的性质:在实数范围内,相反数、绝对值、倒数的意义,和在有理数范围内是一样的。
数轴上的每一个点都可以用一个实数来表示;反过来,每一个实数都可以在数轴上找到表示它的点。
(实数与数轴上的点一一对应。
)
(3)实数大小比较的方法:
1)有理数大小的比较法则在实数范围内同样适用,即:
法则1:在数轴上表示的两个实数,右边的数总比左边的数大。
法则2:正实数都大于0,负实数都小于0;正实数大于一切负实数;两个负实数,绝对值大的反而小。
2)平方比较法。
3)作差比较法。
(4)运算:有理数的运算法则,运算顺序,运算性质在实数中同样适用。
二、典型例题
例1.下面几个数: ,1.010010001…,
,3π,,,其中,无理数的个数有( )A 、1 B 、2 C 、3 D 、4
练习:1、在-1.732,2,π, 3.4
1 ,2+3,3.212212221…,3.14这些数中,无理数的个数为( ).A.5 B.
2 C.
3 D.4
2、下列实数
317,π-,3.14159 8,32721中无理数有( ) A.2个 B.3个 C.4个 D.5个
3.数3.14, 2 ,π,0.323232…,17
,9 中,无理数的个数为( ) A.2个 B .3个 C .4个 D .5个
例2.x 取何值时,下列各式有意义.
(1)x -2; (2)12+x ;
. 例3 已知322+-+-=x x y ,求x y 的值;
例4.求下列各数的平方根,算术平方根:
(1)972;(2)25;(3)252⎪⎭
⎫ ⎝⎛-. 例5.31-23(1)-
)0(233<•-a a a =________.
练习: 1、36的平方根是 ;16的算术平方根是 ;
2、8的立方根是 ;327-= ;
3、37-的相反数是 ;绝对值等于3的数是
4、3的倒数的平方是 ,2的立方根的倒数的立方是 。
523的相反数是 ,23-的相反数的绝对值是 。
627726-的相反数之和的倒数的平方为 。
7.64的平方根是 ,立方根是 .
8.51-的相反数是 ,绝对值是 . 9.若==x x 则6 .
10.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是
11.当10≤≤x 时,化简__________12=-+x x ;
例6.已知22(4)20,()y x y x y z xz -++++-=求的平方根。
例7. 点A 在数轴上表示的数为
,点B 在数轴上表示的数为,则A ,B 两点的距离为______
练习:1、如图,数轴上表示1,
的对应点分别为A ,B ,点B 关于点A 的对称点为C ,
则点C 表示的数是( ).
A .-1
B .1-
C .2-
D .-2 2、已知实数、、在数轴上的位置如图所示:
化简 例10、414、226、15三个数的大小关系是( ) A.414<15<226; B. 226<15<414;
C.414<226<15 ;
D. 226<414<15
3:比较大小:2113532 23
例11 化简计算
(1) 233221-+-+- (2)23325332
(3)22)7()3(+-; (4)3)33232(⨯++-; 五、课后练习
一、填一填:
1.16的平方根记作_______,等于________.
2.16的值为________.
4.两个无理数的和为有理数,这两个无理数可以是______和_______.
5.若│x 2-25│+3y -=0,则x=_______,y=_______.
6.已知x 的平方根是±8,则x 的立方根是________.
二、选一选:
7.4的平方根是( )
A.2
B.-2
C.±2
D.±2
8.下列各式中,无意义的是( )
A.-3
B.3-
C.2(3)-
D.310-
9.下列各组数中,互为相反数的一组是( )
A.-2与2(2)-
B.-2与38-
C.-2与-12
D.│-2│与2 10. 下列说法正确的是 ( )
A.1的平方根是1;
B.1的算术平方根是1;
C.-2是2的平方根;
D.-1的平方根是-1
三、做一做:
12.判断下列说法是否正确
(1)的算术平方根是-3; (2)的平方根是±15.
(3)当x=0或2时,
(4)是分数。