麦克斯韦方程组
麦克斯韦方程
麦克斯韦方程组是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一套偏微分方程。
它们描述了电场、磁场、电荷密度和电流密度之间的关系。
它包含四个方程:电荷如何产生电场的高斯定理;不存在的磁单极子的高斯定律;电流与变化的电场如何产生磁场的麦克斯韦安培定律以及变化的磁场如何产生电场的法拉第电磁感应定律。
从麦克斯韦方程中,我们可以推断出光波是电磁波。
麦克斯韦方程和洛伦兹力方程构成了经典电磁学的完整组合。
1865年,麦克斯韦建立了由20个方程和20个变量组成的原始方程
麦克斯韦方程组是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一套偏微分方程。
它们描述了电场、磁场、电荷密度和电流密度之间的关系。
它包含四个方程:电荷如何产生电场的高斯定理;不存在的磁单极子的高斯定律;电流与变化的电场如何产生磁场的麦克斯韦安培定律以及变化的磁场如何产生电场的法拉第电磁感应定律。
详细介绍
麦克斯韦方程是英国物理学家麦克斯韦在19世纪建立的描述电场和磁场的四个基本方程。
麦克斯韦方程
麦克斯韦方程
微分形式的方程通常称为麦克斯韦方程。
在麦克斯韦方程组中,电场和磁场是一个整体。
方程组系统而完整地推广了电磁场的基本规律,预测了电磁波的存在。
核心理念
麦克斯韦的旋涡电场和位移电流假说的核心思想是:变化的磁场激发旋涡电场,变化的电场激发旋涡磁场;电场和磁场不是彼此孤立的,而是相互联系,相互激发,形成统一的电磁场(这也是电磁波的形成原理)。
麦克斯韦进一步整合了电场和磁场的所有定律,建立了完整的电磁场理论体系。
电磁理论体系的核心是麦克斯韦方程组。
积分形式麦克斯韦方程组
积分形式麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本定律,由麦克斯韦(JamesClerk Maxwell)在19世纪提出的。
通常情况下,麦克斯韦方程组由四个方程组成,可以通过积分形式来表示。
第一个是麦克斯韦-高斯定理,它描述了电场与电荷分布之间的关系。
积分形式如下:∮E·dA=Q/ε₀其中,∮E·dA表示电场矢量E在闭合曲面上的面积分,Q表示曲面内包围的总电荷量,ε₀是真空电介质常数。
第二个方程是麦克斯韦定理,也称作法拉第电磁感应定律。
它描述了变化的磁场与电场之间的关系。
积分形式如下:∮B·ds = -d(∮E·dA)/dt其中,∮B·ds表示磁场强度B在闭合曲线上的线积分,∮E·dA表示电场E在曲面上的面积分,dt表示时间的变化。
第三个方程是安培定理,它描述了电流与磁场之间的关系。
积分形式如下:∮B·ds = μ₀(I + ε₀(d(∮E·dA)/dt))其中,∮B·ds表示磁场强度B在闭合曲线上的线积分,I表示穿过曲面的总电流,∮E·dA表示电场E在曲面上的面积分,μ₀是真空磁导率。
最后一个方程是连续性方程,它描述了电荷的守恒。
积分形式如下:∮J·dA = -dQ/dt其中,∮J·dA表示电流密度J在曲面上的面积分,dQ/dt表示电荷的变化率。
这四个方程组合起来形成了麦克斯韦方程组的积分形式。
这一组方程描述了电场与磁场之间的相互作用,以及电荷与电流的传播。
麦克斯韦方程组在电磁学的理论和实践中起到了重要的作用,它们是理解电磁现象和解决电磁问题的基础。
通过积分形式,我们可以对电磁场的特性和行为进行定量的分析和描述。
世界第一公式:麦克斯韦方程组
世界第一公式:麦克斯韦方程组麦克斯韦方程组,是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。
从麦克斯韦方程组,可以推论出光波是电磁波。
麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。
从这些基础方程的相关理论,发展出现代的电力科技与电子科技。
麦克斯韦1865年提出的最初形式的方程组由20个等式和20个变量组成。
他在1873年尝试用四元数来表达,但未成功。
现在所使用的数学形式是奥利弗·赫维赛德和约西亚·吉布斯于1884年以矢量分析的形式重新表达的。
在英国科学期刊《物理世界》发起的“最伟大公式”中,麦克斯韦方程组力压勾股定理,质能转换公式,名列第一。
这里,不细谈任何具体的推导和数学关系,纯粹挥挥手扯扯淡地说一说电磁学里的概念和思想。
1力、能、场、势经典物理研究的一个重要对象就是力force。
比如牛顿力学的核心就是F=ma这个公式,剩下的什么平抛圆周简谐运动都可以用这货加上微积分推出来。
但是力有一点不好,它是个向量vector(既有大小又有方向),所以即便是简单的受力分析,想解出运动方程却难得要死。
很多时候,从能量的角度出发反而问题会变得简单很多。
能量energy说到底就是力在空间上的积分(能量=功=力×距离),所以和力是有紧密联系的,而且能量是个标量scalar,加减乘除十分方便。
分析力学中的拉格朗日力学和哈密顿力学就绕开了力,从能量出发,算运动方程比牛顿力学要简便得多。
在电磁学里,我们通过力定义出了场field的概念。
我们注意到洛仑兹力总有着F=q(E+v×B)的形式,具体不谈,单看这个公式就会发现力和电荷(或电荷×速度)程正比。
那么我们便可以刨去电荷(或电荷×速度)的部分,仅仅看剩下的这个“系数”有着怎样的动力学性质。
也就是说,场是某种遍布在空间中的东西,当电荷置于场中时便会受力。
麦克斯韦方程组的基本概念
麦克斯韦方程组的基本概念麦克斯韦方程组是电磁学的基本方程组,由詹姆斯·克拉克麦克斯韦在19世纪提出,并成为电磁理论的基石。
通过麦克斯韦方程组,我们可以描述电磁场的行为以及电磁波的传播规律。
下面将介绍麦克斯韦方程组的四个基本方程和其含义。
一、麦克斯韦方程组的四个基本方程1. 电场高斯定律∮E•dA = ε0∫ρdV这个方程描述了电场通过一个闭合曲面的总电场通量与闭合曲面内的电荷量之间的关系。
其中,E表示电场强度,A为曲面面积,ε0为真空介电常数,ρ为闭合曲面内的电荷密度。
2. 磁场高斯定律∮B•dA = 0这个方程表明磁感应强度通过任何一个闭合曲面的总通量为零。
B表示磁感应强度,A为曲面面积。
根据此定律,我们得知磁单极不存在。
3. 法拉第电磁感应定律∮E•dl = - d(∫B•dA/dt)这个方程描述了磁场变化时所产生的感应电场与沿闭合回路的电场线积分之间的关系。
其中,E表示电场强度,dl表示回路长度元素,B表示磁感应强度,dA/dt表示面积变化率。
4. 安培环路定律∮B•dl = μ0∫J•dA + μ0ε0 d(∫E•dA/dt)这个方程描述了磁感应强度通过闭合回路的总积分与回路内电流和电场变化率的关系。
其中,B表示磁感应强度,dl表示回路长度元素,J表示电流密度,A表示曲面,E表示电场强度,μ0为真空磁导率。
二、麦克斯韦方程组的物理意义1. 电场高斯定律和磁场高斯定律表明了电场和磁场分别与其周围的电荷和磁荷分布有关。
它们是电场和磁场的基本描述方程,可用于计算电场和磁场的分布情况。
2. 法拉第电磁感应定律描述了磁场变化时所产生的感应电场。
它解释了电磁感应现象,如发电机的原理和电磁感应传感器的工作原理。
3. 安培环路定律描述了磁场随电流和电场变化的规律。
它是计算磁场分布和磁场与电流之间相互作用的重要工具。
三、麦克斯韦方程组的应用麦克斯韦方程组在电磁学和无线通信等领域有着广泛的应用。
1. 电磁波的传播麦克斯韦方程组预言了电磁波的存在以及其传播方式。
麦克斯韦方程组
麦克斯韦方程组维基百科,自由的百科全书麦克斯韦方程组(Maxwell's equations)是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组偏微分方程,描述电场、磁场与电荷密度、电流密度之间的关系。
它含有的四个方程分别为:电荷是如何产生电场的高斯定理;论述了磁单极子的不存在的高斯磁定律;电流和变化的电场是怎样产生磁场的麦克斯韦-安培定律,以及变化的磁场是如何产生电场的法拉第电磁感应定律。
从麦克斯韦方程组,可以推论出光波是电磁波。
麦克斯韦方程组和洛伦兹力方程共同形成了经典电磁学的完整组合。
1865年,麦克斯韦建立了最初形式的方程,由20个等式和20个变量组成。
他在1873年尝试用四元数来表达,但未成功。
当代使用的数学表达式是由奥利弗·赫维赛德和约西亚·吉布斯于1884年使用矢量分析的形式重新表达的。
概论麦克斯韦方程组乃是由四个方程共同组成的。
它们分别为▪高斯定律描述电场是怎样由电荷生成的。
更详细地说,通过任意闭合表面的电通量与这闭合表面内的电荷之间的关系。
▪高斯磁定律表明,通过任意闭合表面的磁通量等于零,或者,磁场是一个螺线矢量场。
换句话说,类比于电荷的磁荷,又称为磁单极子,实际并不存在于宇宙。
▪法拉第电磁感应定律描述含时磁场怎样生成电场。
许多发电机的运作原理是法拉第电磁感应定律里的电磁感应效应:机械地旋转一块条形磁铁来生成一个含时磁场,紧接着生成一个电场于附近的导线。
▪麦克斯韦-安培定律阐明,磁场可以用两种方法生成:一种是靠电流(原本的安培定律),另一种是靠含时电场(麦克斯韦修正项目)。
这个定律意味着一个含时磁场可以生成含时电场,而含时电场又可以生成含时磁场。
这样,理论上允许电磁波的存在,传播于空间。
▪一般表述在这段落里,所有方程都采用国际单位制。
若改采其它单位制,经典力学的方程形式不会改变;但是,麦克斯韦方程组的形式会稍微改变,大致形式仍旧相同,只有不同的常数会出现于方程的某些位置。
麦克斯韦方程组
麦克斯韦方程组麦克斯韦方程组是描述电磁场的四个基本方程,由苏格兰物理学家詹姆斯·克拉克·麦克斯韦在19世纪提出。
这四个方程求解了电磁场的本质,对于描述电磁波的传播以及电磁现象的研究起着重要的作用。
麦克斯韦方程组的第一个方程是高斯定律,它描述了电荷对电场产生的影响。
它的数学表达式为:∮E·dA = ε0∫ρdV其中,∮E·dA表示电场在截面A上的面积分,ε0为真空中的介电常数,ρ为电场中的电荷密度。
第二个方程是法拉第电磁感应定律,它描述了磁场通过闭合回路所产生的感应电场。
数学上可以表示为:∮B·dl = μ0(I + ε0d(∫E·dA)/dt)其中,∮B·dl表示磁场在环路l上的线积分,μ0为真空中的磁导率,I为环路中的电流强度,d(∫E·dA)/dt表示时间的变化率。
第三个方程是安培定律,它描述了环路中通过的电流对磁场产生的影响。
数学上可以表示为:∮B·dl = μ0I其中,∮B·dl表示磁场在环路l上的线积分,μ0为真空中的磁导率,I为环路中的电流强度。
最后一个方程是法拉第电磁感应定律的推广形式,也被称为麦克斯韦-安培定律。
它描述了变化的电场对磁场产生的影响,以及变化的磁场对电场产生的影响。
数学上可以表示为:∮E·dl = - d(∫B·dA)/dt其中,∮E·dl表示电场在环路l上的线积分,∮B·dA表示磁场通过闭合曲面的通量,d(∫B·dA)/dt表示时间的变化率。
麦克斯韦方程组是电磁学的基础,它描述了电荷和电流对电磁场产生的影响,以及电场和磁场对电荷和电流产生的影响。
通过这四个方程,我们可以推导出电磁波的存在和传播,解释电磁感应现象,研究电磁场的性质。
麦克斯韦方程组的研究也对电磁学的发展做出了巨大的贡献。
麦克斯韦方程组的理论和实验研究为电磁学的发展奠定了基础。
麦克斯韦方程组的4个方程组
麦克斯韦方程组的4个方程组:麦克斯韦方程组是一套数学方程,可以用于描述物理系统行为而得到簡單的解決方案。
麦克斯韦方程组实际上是一组由腓力波亚斯不变式分解而成的偏微分方程组,其属于常微分方程,即当变量在单个连续的区间中,其导数是连续的时,就可以使用常微分方程来描述物理系统。
麦克斯韦方程组是一个4个方程的系统,下面就分别给出这4个方程组。
1.比热系数估计方程:$$\rho c_V \frac{\partial T}{\partial t} = \nabla\cdot(\kappa \nabla T) + q_e$$其中,ρ为物质密度,cV为比热容,T为温度,t为时间,Κ为热传导系数,qe为加热来源。
这个方程关系质点温度的变化与时间的变化,也就是说,当物质质点的温度发生变化时,它的一阶导数随着时间的变化而变化。
2.脉冲行为方程:$$\frac{\partial A}{\partial t}+c\frac{\partial A}{\partialx}=0$$这是一个简单的方程,它对应着某种脉冲性的行为。
当某个物质质点的变化和时间的变化满足这个方程式时,它的形成就是一个脉冲式的变化,也就是说,它会一直保持相同的速度,当它运动到一定距离时,它的变化就会停止。
3.热传导方程:$$\frac{\partial T}{\partial t}=\alpha \frac{\partial^2T}{\partial x^2}$$这个方程对应着温度在空间上的变化,也就是温差产生在空间之间,其变化是一种二阶导数式的变化,即当某个物质质点温度发生变化的时候,它的二阶导数会随着它的变化而发生变化。
α为热传导系数。
4.动量方程:$$\rho \frac{d\mathbf v}{dt}=-\nabla p+\mathbf f$$这个方程用于研究物体的动力学,换句话说,它可以用于描述物体的加速度和受力的变化与时间的变化。
Ρ为物质密度,∂v/∂t表示加速度,p为静压,f为外力。
麦克斯韦方程组
麦克斯韦方程组
麦克斯韦电磁场理论的基本思想是:相对时间变化的磁 场会激发感生电场,而相对时间变化的电场会激发磁场.根据 这一思想,如果在空间某一区域内有变化的电场(如电荷做加 速运动),那么在邻近区域内就会产生变化的磁场.这个变化的 磁场又会在较远处产生变化的感生电场.这样产生出来的电场 也是随着时间变化的,它必然要产生新的磁场.这样,在充满 变化的电场空间,同时也充满变化的磁场,两者相互联系、 相互转化.电场和磁场的统一体称为电磁场.前面讨论的静电场 和稳恒磁场都只不过是电磁场的两种特殊表现形式.
麦克斯韦方程组
这样,无论选择S1或S2作为以L为边界的曲面来计算H 的环流都得到相同的确定值,不会出现图10-26所示的矛盾 结果了.
对于任何电路,全电流永远是连续的.对图10-26中由S1 和S2组成的封闭曲面S来说,传导电流I流入S1而等量的位移 电流Id流出S2,所以
(10-24) 式(10- 24)就是全电流连续性方程.
激发磁场,位移电流也激发磁场.虽然两种电流的性质不同,但激发磁
场的性质却完全相同.
引入全电流定律,上述非稳恒电路中的矛盾就得到了解决.穿过图
10-26中以L为边界的曲面S1和S2的电流都应为全电流.在S1处位移电流 几乎为零,只剩下传导电流;而在S2处不存在传导电流,只有位移电 =I全=I
麦克斯韦方程组
图10- 27 电容器充、放电电路
麦克斯韦方程组
由此可见,导线中的传导电流I虽然在电容器极 板间中断了,可以替换它,可以等价地替换传导电 流密度j.若将电流的概念扩大,那么就解决了图1026所示电路中电流的连续性问题.
麦克斯韦提出,就电流的磁效应而言,变化的 电场也应该是一种电流.这种电流密度与电位移矢量 相联系,所以称为位移电流.
麦克斯韦方程组
Idl
dF
Idl
dF
F l dF l Idl B
B
B
例 求 如图不规则的平 面载流导线在均匀磁场中所受 的力,已知 B 和 I . 解 取一段电流元 Idl
y
dF
Idl
B
I dF Idl B o dFx dF sin BIdl sin dFy dF cos BIdl cos
0 di 0dr di dq dr , dB 2 2 a b 2r 4r 0 a b 0 ln B dB dr 4 a 4r a
(2)磁矩 m ,dq旋转 产生的磁矩
1 dm r di r 2 dr 2 a b 1 1 2 (a b) 3 a 3 m dm r dr 6 2 a (3)若 a >> b, 求 Bo 及 m 。 若 a>>b , AB 可看成点电荷i 2 q 2 b 1 2 0i 0b 2 a b. B0 , m a i 2 2a 4a
利用安培环路定理求无限长均匀密绕载流直螺线管 的磁场
例 5 有一无限长圆柱形导体和一无限长薄圆筒形导
体,都通有沿轴向均匀分布的电流,它们的磁导率都 为 0, 外半径都为R。今取长为 l,宽为 2R的矩形平面 ABCD 和 A`B`C`D`, AD及A`D` 正好在圆柱的轴线上。 问通过ABCD的磁通量大小是多少?通过A`B`C`D的磁 通量是多少?
(x R )2 2
Idl
r
B
dB
p *
o
R
I
B
dB
麦克斯韦方程组
在复数形式的电磁场定律中,由于复数场量和源量都只是空间位置的函数,在求解时,不必 再考虑它们与时间的依赖关系。因此,对讨论正弦时变场来说面采用复数形式的电磁场定律 是较为方便的。 注记 采用不同的单位制,麦克斯韦方程组的形式会稍微有所改变,大致形式仍旧相同,只是不同 的常数会出现在方程内部不同位置。 国际单位制是最常使用的单位制,整个工程学领域都采用这种单位制,大多数化学家也都使 用这种单位制,大学物理教科书几乎都采用这种单位制。其它常用的单位制有高斯单位制、 洛伦兹-赫维赛德单位制(Lorentz-Heavisideunits)和普朗克单位制。由厘米-克-秒制衍生 的高斯单位制,比较适合于教学用途,能够使得方程看起来更简单、更易懂。洛伦兹-赫维 赛德单位制也是衍生于厘米-克-秒制,主要用于粒子物理学;普朗克单位制是一种自然单位 制,其单位都是根据自然的性质定义,不是由人为设定。普朗克单位制是研究理论物理学非 常有用的工具,能够给出很大的启示。在本页里,除非特别说明,所有方程都采用国际单位 制。 这里展示出麦克斯韦方程组的两种等价表述。第一种表述如下:
注意: (1)在不同的惯性参照系中,麦克斯韦方程组有同样的形式。 (2)应用麦克斯韦方程组解决实际问题,还要考虑介质对电磁场的影响。例如在均匀各向同 性介质中,电磁场量与介质特性量有下列关系:
在非均匀介质中,还要考虑电磁场量在界面上的边值关系。在利用 t=0时场量的初值条件, 原则上可以求出任一时刻空间任一点的电磁场,即 E(x,y,z,t)和 B(x,y,z,t)。
1855年至 1865年,麦克斯韦在全面地审视了库仑定律、毕奥—萨伐尔定律和法拉第定律的 基础上,把数学分析方法带进了电磁学的研究领域,由此导致麦克斯韦电磁理论的诞生。 方程组成 麦克斯韦方程组乃是由四个方程共同组成的:[1] 高斯定律:该定律描述电场与空间中电荷分布的关系。电场线开始于正电荷,终止于负电荷。 计算穿过某给定闭曲面的电场线数量,即其电通量,可以得知包含在这闭曲面内的总电荷。 更详细地说,这定律描述穿过任意闭曲面的电通量与这闭曲面内的电荷之间的关系。 高斯磁定律:该定律表明,磁单极子实际上并不存在。所以,没有孤立磁荷,磁场线没有初 始点,也没有终止点。磁场线会形成循环或延伸至无穷远。换句话说,进入任何区域的磁场 线,必需从那区域离开。以术语来说,通过任意闭曲面的磁通量等于零,或者,磁场是一个 无源场。 法拉第感应定律:该定律描述时变磁场怎样感应出电场。电磁感应是制造许多发电机的理论 基础。例如,一块旋转的条形磁铁会产生时变磁场,这又接下来会生成电场,使得邻近的闭 合电路因而感应出电流。 麦克斯韦-安培定律:该定律阐明,磁场可以用两种方法生成:一种是靠传导电流(原本的 安培定律),另一种是靠时变电场,或称位移电流(麦克斯韦修正项)。 在电磁学里,麦克斯韦修正项意味着时变电场可以生成磁场,而由于法拉第感应定律,时变 磁场又可以生成电场。这样,两个方程在理论上允许自我维持的电磁波传播于空间。 麦克斯韦电磁场理论的要点可以归结为: ①几分立的带电体或电流,它们之间的一切电的及磁的作用都是通过它们之间的中间区域传 递的,不论中间区域是真空还是实体物质。 ②电能或磁能不仅存在于带电体、磁化体或带电流物体中,其大部分分布在周围的电磁场中。 ③导体构成的电路若有中断处,电路中的传导电流将由电介质中的位移电流补偿贯通,即全 电流连续。且位移电流与其所产生的磁场的关系与传导电流的相同。 ④磁通量既无始点又无终点,即不存在磁荷。 ⑤光波也是电磁波。 麦克斯韦方程组有两种表达方式。 1.积分形式的麦克斯韦方程组是描述电磁场在某一体积或某一面积内的数学模型。表达式 为:
麦克斯韦方程组
D=εE
B=μH
对于正弦时变场,可以使用复矢量将电磁场定律表示为复数形式。 麦克斯韦方程组复数形式:
▽·������ = −������������������(9) ������ =εE(10) B =μH(11) ������ = ������������ +������′(12)
在复数形式的电磁场定律中,由于复数场量和源量都只是空间位置的函数, 在求解时,不必再考虑它们与时间的依赖关系。因此,对讨论正弦时变场来说面 采用复数形式的电磁场定律是较为方便的。 麦克斯韦方程组的意义: (一)经典场论是 19 世纪后期麦克斯韦在总结电磁学三大实验定律并把它与力学 模型进行类比的基础上创立起来的。 但麦克斯韦的主要功绩恰恰使他能够跳出经 典力学框架的束缚:在物理上以"场"而不是以"力"作为基本的研究对象,在数学 上引入了有别于经典数学的矢量偏微分运算符。 这两条是发现电磁波方程的基础。 这就是说, 实际上麦克斯韦的工作已经冲破经典物理学和经典数学的框架,只是 由于当时的历史条件, 人们仍然只能从牛顿的经典数学和力学的框架去理解电磁 场理论。 (二) 我们从麦克斯韦方程组的产生,形式,内容和它的历史过程中可以看到: 第一,物理对象是在更深的层次上发展成为新的公理表达方式而被人类所掌握, 所以科学的进步不会是在既定的前提下演进的, 一种新的具有认识意义的公理体 系的建立才是科学理论进步的标志。第二,物理对象与对它的表达方式虽然是不 同的东西,但如果不依靠合适的表达方法就无法认识到这个对象的“存在” 。第 三, 我们正在建立的理论将决定到我们在何种层次的意义上使我们的对象成为物 理事实,,这正是现代最前沿的物理学所给我们带来的困惑。 (三) 麦克斯韦方程组揭示了电场与磁场相互转化中产生的对称性优美, 这种优美 以现代数学形式得到充分的表达。但是,我们一方面应当承认,恰当的数学形式 才能充分展示经验方法中看不到的整体性(电磁对称性);另一方面,我们也不应 当忘记,这种对称性的优美是以数学形式反映出来的电磁场的统一本质。因此, 我们应当认识到应在数学的表达方式中"发现"或"看出" 了这种对称性, 而不是从 物理数学公式中直接推演出这种本质。
均匀介质中麦克斯韦方程组
均匀介质中麦克斯韦方程组麦克斯韦方程组是经典电磁学的核心理论之一,它描述了电磁波在均匀介质中的传播特性。
在均匀介质中,麦克斯韦方程组可以表示为以下形式:1. 波动方程:▽²E -ω²μE = 0其中,E 表示电场强度,μ表示磁导率,ω表示角频率。
2. 磁场方程:▽²H -ω²μH = -jωμP其中,H 表示磁场强度,μ表示磁导率,ω表示角频率,j 表示虚数单位,P 表示电通量密度。
3. 电流密度方程:▽·J = ρ其中,J 表示电流密度,ρ表示电荷密度。
4. 电荷密度方程:▽·D = ρ其中,D 表示电位移矢量。
这些方程描述了电磁波在均匀介质中的传播过程,包括电场、磁场、电流和电荷等物理量的关系。
这些方程是非线性的,因此求解起来比较复杂。
为了求解这些方程,通常需要采用近似方法和数值计算技术。
求解麦克斯韦方程组时需要考虑边界条件。
在介质边界上,电场和磁场需要满足一定的连续性条件。
这些边界条件可以通过求解介质交界面的电磁场来得到。
另外,还需要考虑初始条件,即当时间t=0时,各个物理量的值。
初始条件可以根据实际情况进行设定。
麦克斯韦方程组在电磁波传播、电磁场理论、电磁兼容等领域有着广泛的应用。
通过求解麦克斯韦方程组,可以预测电磁波在介质中的传播特性、电磁场的分布以及电磁波的能量传输等。
这些预测结果可以为实际应用提供重要的参考依据。
在均匀介质中,麦克斯韦方程组的解具有一些重要的性质。
首先,电磁波的传播速度与介质的性质有关,介质的电导率、磁导率和介电常数等因素都会影响电磁波的传播速度。
其次,当频率较高时,电磁波的传播特性与低频时有所不同,例如折射率、反射率和散射率等都会发生变化。
此外,当电磁波在介质中传播时,会与介质中的原子和分子相互作用,导致电磁波的能量逐渐衰减。
这种衰减与介质的吸收系数有关,对于不同频率和不同介质的电磁波,其吸收系数也不同。
kcl kvl 麦克斯韦方程组
KCL(电流定律)和KVL(电压定律)是电路分析中的两个重要原理。
KCL(Kirchhoff's Current Law)指的是在一个节点(电流流入或流出的地方)的电流代数和为零,即电流的代数和在闭合电路中守恒。
KVL(Kirchhoff's Voltage Law)指的是在闭合的回路中,电压的代数和为零,即电压沿着闭合回路的总和等于零。
麦克斯韦方程组(Maxwell's equations)是描述电磁场行为的基本方程组。
它由麦克斯韦(James Clerk Maxwell)提出,并总结了电磁学的基本原理,包括电场和磁场之间的相互作用以及它们随时间和空间变化的规律。
麦克斯韦方程组包括四个方程:
1. 高斯定律(Gauss's Law):描述了电场通过闭合曲面的电通量与该曲面内嵌电荷的关系。
2. 麦克斯韦-法拉第定律(Faraday's Law):描述了磁场沿闭合回路的磁通量变化率导致的感应电场。
3. 安培定律(Ampere's Law):描述了穿过闭合曲面的电流与该曲面内的磁场之间的关系。
4. 电荷守恒定律(Charge Conservation Law):描述了电荷的守恒原理,即电荷不能被创建或销毁,只能转移。
这些方程组合起来形成了麦克斯韦方程组,是电磁学最关键的理论基础之一,并被广泛应用于电磁场分析和电磁波的研究。
麦克斯韦方程组
6. 局限性 (1)是在承认电荷连续分布基础上建立的宏观
经典理论,未和物质微观结构联系起来 . 1895年: 汤姆生发现电子 . 20 世纪初: 洛仑兹建立电磁现象微观理论
经典电子论
量子电磁理论
(2)不完全对称 ? 不存在磁单极 .
思考:如果存在磁单极,麦克斯韦方程如何修正 ?
=
∫V
ρdV
环路定理
∫r
H
L
⋅
d
r l
r
= ∫S ( j +
∂
r D
∂t
)
⋅
d
r S
∫r
E
(1)
⋅
r dl
=
0
L
∫ ∫ r
E
(2)
⋅
r dl
=
−
∂Br
⋅
r dS
L
∂t
∫ ∫ r
E
=
r E⋅
r E
(1)
+
r dl = −
r E
(2)
r
∂B
⋅
r dS
L
S ∂t
麦克斯韦方程组
积分形式
∫SDr
r ⋅ dS
=
dF r
m
Fm =
q =
vv
×
v B
v Idl
×
v
dFm
v B
v M
=
v Pm
×
v B
第12章
1. 感应电动势的计算
ε = − dψ m
dt
= − N dφm
dt
ε动 = ∫
(vv
麦克斯韦方程组五个公式和含义
麦克斯韦方程组及其含义麦克斯韦方程组是电磁学中的基本方程组,它描述了电磁场的运动规律和电磁辐射现象。
麦克斯韦方程组包含了五个基本公式,分别是麦克斯韦方程的四个方程和库仑定律。
1. 麦克斯韦方程的四个方程1.1. 麦克斯韦第一定律(电荷守恒定律)[ = ]麦克斯韦第一定律描述了电场()的散度和电荷密度()之间的关系。
它表明,电场的散度等于单位体积内的电荷密度与真空介电常数(_0)的比值。
1.2. 麦克斯韦第二定律(电磁感应定律)[ = 0]麦克斯韦第二定律说明了磁感应强度()的散度为零。
这意味着在没有磁荷存在的情况下,磁感应线不会产生起始或终止于某个点的情况。
1.3. 麦克斯韦第三定律(安培定律)[ = -]麦克斯韦第三定律指出了电场()的旋度与磁感应强度的时间导数之间的关系。
它表明,电场的旋度等于磁场随时间变化的负导数。
1.4. 麦克斯韦第四定律(法拉第电磁感应定律)[ = _0 + _0_0 ]麦克斯韦第四定律描述了磁感应强度()的旋度和电流密度()以及电场的时间导数之间的关系。
它表示,磁感应强度的旋度等于电流密度和电场随时间变化的贡献之和。
2. 库仑定律库仑定律描述了电荷之间的相互作用,是电磁学的基本定律之一。
[F = ]其中,(F)表示电荷之间的力,(q_1)和(q_2)分别表示两个电荷的电荷量,(r)表示两个电荷之间的距离,(_0)为真空介电常数。
库仑定律表明两个电荷之间的力与它们的电荷量成正比,与它们之间的距离的平方成反比。
这个定律是电磁场力学的基础,它解释了电磁相互作用现象。
总结麦克斯韦方程组是电磁学中非常重要的方程组,它描述了电磁场的运动规律和电磁辐射现象。
其中麦克斯韦方程的四个方程描述了电场和磁场的分布和变化规律,库仑定律则描述了电荷之间的相互作用。
通过这些方程,我们可以深入理解电磁场的本质以及电磁现象的产生和变化过程。
麦克斯韦方程组
㈠麦克斯韦方程组描述无源情况下,变化电场与变化磁场之间关系的两个方程分别是t B E ∂-∂=⨯∇/t D H ∂∂=⨯∇/ (4-3-1)如果交变电磁场是时谐场,即电矢量和磁矢量可以写成如下形式:jwt r E t r E )(),(=jwt r H t r H )(),(= (4-3-2)则(4-3-1)式在无源,无损耗和各向同性的非磁介质的情况下可以写成H j E ωμ-=⨯∇E j H ωε=⨯∇ (4-3-3)式中,ε和μ分别是介质的介电常数及磁导率。
20n εε=;n 是介质的折射率;磁导率0μμ≈。
在平面波导中,存在着沿z 方向的一个行波,而在xy 平面内,由于宽度(y 方向)远大于厚度(x 方向),平板波导的光只在一个方向上(x 方向)受到限制,波导的几何结构及折射率沿y 方向是不变的。
因此,相应的光场的电矢量和磁矢量不沿y 方向变化。
上面的),(t r E 和),(t r H 可以分别写成)(),(),(z t j y x E t r E βω-=)(),(),(z t j y x H t r H βω-= (4-3-4)式中β是沿z 方向的传播常数。
将(4-3-4)式的E 与H 代入(4-3-3)式中,并展开运算,注意到0/=∂∂y ,就可以得到电磁场中各分量之间的关系x y H E ωμβ-=y z x H j x E E j ωμβ=∂∂+/z y H j x E ωμ-=∂∂/x y E H ωεβ=z y E j x H ωε=∂∂/ (4-3-5)yz x E j x H H j ωεβ-=∂∂+/以上6个方程,包含了两组独立的方程组,一组含有y E ,x H ,z H ,另一组含有y H ,x E ,z E 。
第一组因为电场只有横向分量,所以称为TE 波,第二组则是磁场只含有横向分量,所以称为TM 波。
根据这些分量的相互关系,只要知道部分分量就可以将其他分量求出。
麦克斯韦方程
麦克斯韦方程麦克斯韦方程组(英语:Maxwell's equations),是英国物理学家詹姆斯·克拉克·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。
它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律。
从麦克斯韦方程组,可以推论出电磁波在真空中以光速传播,并进而做出光是电磁波的猜想。
麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。
从这些基础方程的相关理论,发展出现代的电力科技与电子科技。
麦克斯韦在1865年提出的最初形式的方程组由20个等式和20个变量组成。
他在1873年尝试用四元数来表达,但未成功。
现在所使用的数学形式是奥利弗·赫维赛德和约西亚·吉布斯于1884年以矢量分析的形式重新表达的。
麦克斯韦方程组乃是由四个方程共同组成的:.高斯定律:该定律描述电场与空间中电荷分布的关系。
电场线开始于正电荷,终止于负电荷(或无穷远)。
计算穿过某给定闭曲面的电场线数量,即其电通量,可以得知包含在这闭曲面内的总电荷。
更详细地说,这定律描述穿过任意闭曲面的电通量与这闭曲面内的电荷之间的关系。
..高斯磁定律:该定律表明,磁单极子实际上并不存在。
所以,没有孤立磁荷,磁场线没有初始点,也没有终止点。
磁场线会形成循环或延伸至无穷远。
换句话说,进入任何区域的磁场线,必需从那区域离开。
以术语来说,通过任意闭曲面的磁通量等于零,或者,磁场是一个无源场。
..法拉第感应定律:该定律描述时变磁场怎样感应出电场。
电磁感应是制造许多发电机的理论基础。
例如,一块旋转的条形磁铁会产生时变磁场,这又接下来会生成电场,使得邻近的闭合电路因而感应出电流。
..麦克斯韦-安培定律:该定律阐明,磁场可以用两种方法生成:一种是靠传导电流(原本的安培定律),另一种是靠时变电场,或称位移电流(麦克斯韦修正项)。
麦克斯韦的四个方程
麦克斯韦的四个方程
麦克斯韦的四个方程,也被称为麦克斯韦方程组,是电磁学的基础,
它们描述了电荷、电场、磁场、电流和电磁波之间的关系。
这四个方
程的发现是麦克斯韦在19世纪中叶的一项伟大成就,被广泛运用于电子技术和通信领域,是电磁学的基础公式。
麦克斯韦的四个方程分别是“高斯定律”、“安培定律”、“法拉第
电磁感应定律”和“电磁场的非齐次波动方程”。
高斯定律描述了电
场起源和分布,它告诉我们电场是由电荷产生的,并且与电荷的数量
和分布有关。
安培定律描述了磁场的起源和分布,它告诉我们磁场是
由电流产生的,并且与电流的数量和分布有关。
法拉第电磁感应定律
描述了电磁感应的过程,它告诉我们磁场的变化会引起电场的变化,
并且能够产生电磁感应现象。
电磁场的非齐次波动方程描述了电磁波
的传播方式和特性,它告诉我们电磁波是由电场和磁场相互作用产生的,并且在空间中以波动的形式传播。
麦克斯韦的四个方程在电磁学中起着非常重要的作用,它们不仅能够
被用来解释电磁现象,还能够指引工程师们设计电子设备和电信系统。
例如,在通信领域,它们被用来设计更加高效的无线电波天线、创建
更加精确的卫星导航系统和改善无线电信号传输技术,为人们的通信
提供更加便利的方式。
总之,麦克斯韦的四个方程是电磁学中的基础公式,它们描述了电磁波的起源和传播,被广泛应用于通信领域和电子技术中。
我们在日常生活中所使用的通信技术和设备,都离不开麦克斯韦的四个方程。
因此,深入理解和掌握这些方程对于我们的生活和工作成为十分重要的一环。
麦克斯韦方程组
§11.3 麦克斯韦方程组主要内容:一与变化电场相联系的磁场二麦克斯韦方程组三电磁波麦克斯韦在分析电磁感应现象后,提出了“涡旋电场”的概念,总结出变化磁场激发电场所遵循的规律。
从对称性考虑,变化的电场会不会激发磁场呢?在分析传导电流激发磁场所遵循的安培环路定理后,他又提出“位移电流”假说,对安培环路定理进行了修改和扩充,总结出变化电场激发磁场所遵循的规律,并在此基础上用一组方程概括了电磁场的全部规律。
C安培环路定理:=⋅⎰Ll d H=∑ii I ⎰⎰⋅SSd j 安培环路定律的局限性11.3.1与变化电场相联系的磁场LS 1S 2S 1:以L 为边界的任意曲面:S 2:以L 为边界的任意曲面:⎰=⋅1S CC I S d j⎰=⋅2S C0S d j? 位移电流麦克斯韦大胆假设:思路: 非稳态→q 变化→电场E.D 变化变化的电场也产生磁场!?=q 传导电流S q dSσ=⋅⎰⎰2D σ=d dq I dt=S q D dS=⋅⎰⎰22S =⎰⎰S D dSdt⋅=⎰⎰2——非稳恒情况下,安培环路定理不成立2P 12r Lσ+σ-Ep 12 r 2归纳麦克斯韦方程组的积分形式:⎰⎰⎰⎰⎰=⋅V0SVd 1S d E ρε 0S d B S=⋅⎰⎰S d tBt d d l d E SL⋅∂∂-=-=⋅⎰⎰⎰Φ]S d tDS d j [l d B SSC 0L⋅∂∂+⋅=⋅⎰⎰⎰⎰⎰μ通量11.3.2 麦克斯韦方程组麦克斯韦方程组积分形式和微分形式dVS d D V0S⎰⎰=⋅ρS d t D S d J l d H SS 0L⋅+⋅=⋅⎰⎰⎰∂∂S d t B l d E SL ⋅-=⋅⎰⎰∂∂0S d B S=⋅⎰积分形式一有限区域∇∇∇⨯∇微分形式位移电流与涡旋电场的假设导致麦克斯韦提出电磁波的预言,20年后赫兹用实验证实了电磁波的存在.电磁波的能流密度--玻印廷矢量:HE S ⨯=E xH可确定传播方向u11.3 电磁波简述一基本性质1. 电磁波是横波2. E与H同步变化(同相位)二电磁波波谱无线电波和微波:用于远洋长距离通讯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设极板面积为S´, 某时刻极板上的
S2 L S'
S1
自由电荷面密度
为,则 D
I
j
R
I
S´面电位移通量: D DS S
dD d (S) dq I
dt
dt dt
----电位移通量随时间的变化率
等于导线中的传导电流
充放DI引t电电D 入::--d-位-dD位Dt移tD移电00电流与与流S:电电密DtI场场度D同反djSD向d向dtIDjjj DDR与与SS2'jj同同L I向向S1 t
D 0r E , B 0r H , j E
根据麦克斯韦方程组、电磁场量之 间关系式、初始条件及电磁场量的 边界条件,可以确定任一时刻介质 中某一点的电磁场
放 电
I过
电路中电流仍可视
R
程
为保持连续。
任取一环绕导线的闭
合曲线L,以L为边界
可以作S1和S2 两 个曲
面
对S1曲面
H dl I L
对S2曲面
H dl 0
L
S2 L
S1
I
j
I
R
----稳恒电流磁场的安培环路定律
对于非稳恒情形不再适用
dS
----全电流定律
H dl
j dS
D
L
s
s t
对前述的电容器:
dS
I
j
S2 L
S'
I
S1
R
L
H
dl
II,D,取取SS12曲曲面面
而
ID
dD dt
dS dq
dt dt
两极板间的电场可视
R
为均匀分布 两板间位移电流
E
ID
d D dt
S
dD dt
R20
dE dt
3.14(0.1)2 8.851012 1012
0.28A
根据对称性,以两板中心连线为圆
心、半径为r作一闭合圆形环路,L
为边界; 由全电流定律
S2 L
S'
I
D
)
dS
S1
S1
t
S2
t
全电流
Si
பைடு நூலகம்
j
jD
dS
永远是连续的
二、安培环路定律的普遍形式
以全电流替代传导电流,则可以将
安培环路定律推广到非稳恒的一般
情况
L
H
dl
S
I
j
I
D
dS S
D t
有变化的电场和变化的磁场
麦
克 斯 韦
S
D dS E dl
q0 d
vdV
m B
dS
L
dt
s t
方
程 组
SB
dS
H dl
L
0
I
I
D
S
j
dS
S
D t
dS
物理意义:
方程1:电 场的高斯定理
L Hr dl
dD dt
Hr 2r
0
d dt
E
S
R
dS
r
0
dE dt
r 2
Br
0Hr
00
2
r
dE dt
当r=R时
R
BR
00
2
R
dE dt
1 4 107 8.851012 0.11012
D dS
R
D
dS
dt dt S
D
S t
S j dS S t dS
S S
即
j dS
D
dS
(
j
D
)
S t
dS
0
(
j
t
D
)
dS
I
j
R
(j
I
即对同一环路L,H 的环流是唯一的
讨论:
a、位移电流的引入,深刻揭示了电 场和磁场之间的内在联系,反映了 自然现象的对称性。
b、法拉弟电磁感应定律表明变化的 磁场能产生涡旋电场,位移电流的 观点说明变化的电场能产生涡旋磁 场。
c、电场和磁场的变化永远互相联系 着,形成了统一的电磁场
说明:
a、位移电流与传导电流的区别:
2
5.6107 T
§14-2 麦克斯韦方程组
1、对 静电 场和稳恒磁场
DdS
S
q0 静电场的高斯定理
E dl 0
S B dS 0
S H dl
S
静电场的环路定律
稳恒磁场的高斯定理
I
稳恒磁场的安培环 路定律
2、空间既有静电场和稳恒磁场,又
L H d l I I D S j dS
D
dS
S t
变化的电场产生变化的磁场
麦克斯韦方程组的微分形式
D
E
B
t
B 0
H
j
D
t
在线性各向同性介质中,电磁场量
之间有如下的关系
等于该闭合曲面内电量
的减少:
Ij
S2 L
S'
S1
I
j dS dq dt R S
----电荷守恒定律的数学表达式
S j dS dq dt
S2 L
S1
由高斯定理:
Ij S' I
S D dS q
dq d
S D dS q0
任何闭合曲面的电位移通量只与 该闭合曲面内自由电荷有关。
方程E 2 d:l 法 拉d弟m电磁 感应B定 d律S
L
dt
s t
变化的磁场产生变化的(涡旋)电场。
方程3:磁场的高斯定理
SB dS 0
方程4:安培环路定律
结论:
a、引入位移电流ID, 中断的传导电流 I
Ij
S2 L
S'
S1
I
由位移电流ID接替, R
于是,电路中的电流将保持连续。
b、传导电流和位移电流之和称为全 电流(IR=I+ID)。
c、对任何电路来说,全电流永远是 连续的。
证明结论(C) :
单位时间内流出闭合曲
面S(S =S1+S2)的电量
传导电流表示有电荷作宏观定向运
动,而位移电流只表示电场的变化
jD
D t
0
E t
P t
jD
D t
0
E t
P t
传导电流通过导体时产生焦耳热, 位移电流在导体中没有这种热效应
b、
ID与
H
方向成右手螺旋关系
c、位移电流可存在于一切有电场变 化的区域中(如真空、介质、导体)
例14、半径R=0.1m的两块导体圆板, 构成空气平板电容器。充电时,极 板 间 的 电 场 强 度 以 dE/dt=1012Vm-1s-1 的变化率增加。求两极板间的位移 电流ID;距两极板中心连线为r(r<R) 处的磁感应强度Br和r=R处的磁感应 强度BR(忽略边缘效应)
解:忽略边缘效应,
I j
R
Ij
R
充
I
电 过 程
放 电
I过
程
如果把电路中的传
D
导电流 I 和电容器
内电场( D )的变化 I j
联系起来一起考虑, R
充
I
电 过 程
并把电容器两极板
间电位移通量的变 化看作相当于某种 电流在流动,则整个
D
Ij
第十四章 麦克斯韦方程 电磁场理论基础
问题:
变化的磁场可以产生(涡旋)电场
d
B
L E K d l dt
S
t
dS
变化的电场能产生磁场吗?
§14-1 位移电流
一、 位移电流
导线中存在非稳 恒的传导电流
电容器两极板间 无传导电流存在
----整个电路的传 导电流不连续