脑机接口技术综述

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脑机接口技术综述

标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

脑机接口技术的研究综述

摘要

脑机接口( Brain- Computer Interface, BCI)是在大脑和计算机或其他电子设备之间建立的不依赖于常规大脑信息输出通路(外周神经和肌肉组织)的一种全新通讯和控制技术。脑机接口作为当前神经工程领域中最活跃的研究方向之一,在生物医学、神经康复和智能机器人等领域具有重要的研究意义和巨大的应用潜力,近10年来,脑机接口技术得到了长足的进步和飞速的发展,应用领域也在逐渐扩大。本文概述了基于脑电信号( EEG )的BCI系统的组成和基本原理、涉及的关键技术和研究现状, 最后分析了脑-机接口技术目前存在的问题与应用前景。

关键词:脑机接口;脑电信号;特征提取;特征分类

一、引言

脑机接口是一种不依赖大脑外周神经与肌肉正常输出通道的控制系统,通过采集和分析人脑生物电信号,在人脑与计算机或其他电子设备间建立起直接交流和控制的通道,这样人就可以直接通过大脑来表达意愿或操纵设备,而不需要语言或肢体的动作[1-2]。研究和发展脑机接口技术可以帮助肌肉萎缩、脊髓损伤等神经肌肉方面的患者以及交流障碍者有效地完成对外界交流和控制[3]。

脑机接口技术形成于20世纪70年代,是一门涉及纳米技术、生物技术、信息技术、心理认知科学、计算机科学、生物医学工程和应用数学等多学科的交叉技术,20多年来,随着人们对神经系统功能认识的提高和计算机技术的发展,BCI技术的研究呈明显的上升趋势,特别是1999年和2002年两次BCI国际会议的召开为BCI技术的发展指明了方向。目前,BCI技术已引起国际上众多学科科技工作者的普遍关注,成为生物医学工程、计算机技术、通信等领域一个新的研究热点。BCI技术的核心是把用户输入的脑电信号转换成输出控制信号或命令的转换算法。BCI研究工作中相当重要的部分就是调整人脑和BCI系统之间的相互适应关系,也就是寻找合适的信号处理与转换算法,使得神经电信号能够实时、快速、准确地通过BCI系统转换成可以被计算机识别的命令或操作信号。BCI技术的发展目前还存在着很多问题,有待于更多的科技工作者致力于深入的研究。为促进BCI技术的发展,本文在查阅有关资料的基础上,对BCI的原理、结构做了较为详细的综述,并对其应用前景、存在的问题以及评价标准进行了探讨。

二.BCI系统的工作原理及其基本结构

BCI系统的工作原理

神经科学的研究表明,在大脑产生动作意识之后和动作执行之前,或者受试主体受到外界刺激之后,其神经系统的电活动会发生相应的改变.。神经电活动的这种变化可以通过一定的手段检测出来,并作为动作即将发生的特征信号.。通过对这些特征信号进行分类识别,分辨出引发脑电变化的动作意图,再用计算机语言进行编程,把人的思维活动转变成命令信号驱动外部设备,实现人脑在没有肌肉和外围神经直接参与的情况下对外部环境的控制.。这就是BCI的基本工作原理.。

脑机接口的基本结构

脑机接口技术是通过信号采集设备从大脑皮层采集脑电信号经过放大、滤波、A/D转换等处理转换为可以被计算机识别的信号,然后对信号进行预处理,提取特征信号,再利用这些特征进行模式识别,最后转化为控制外部设备的具体指令,实现对外部设备的控制。一个典型的脑机接口系统主要包含4个组成部分:信号采集部分、信号处理部分、控制设备部分和反馈环节[3]。其中,信号处理部分包括预处理、特征提取、特征分类3个环节。脑机接口的结构框图如图1 所示。

图1 脑机接口技术信号处理结构框图

1) 信号采集部分此部分负责通过相关设备采集大脑活动产生的电信号。目

前,对脑电信号的采集主要有2 种方法:侵入式和非侵入式。侵入式方法是将电极插入脑皮层下,该方法采集的大脑神经元上的脑电信号具有较高的精度,而且噪声较小。缺点是无法保证脑内的电极长时期地保持结构和功能的稳定,而且将电极植入脑皮层内存在安全问题。非侵入式方法测量的是头皮表面的脑电信号,通过将电极贴附在头皮上,就可直接获得人大脑活动产生的脑电信号,易采集,无创性等特点使之成为BCI技术研究的主要方向。

2) 信号处理部分脑电信号的处理主要包括预处理、特征提取和特征分类3 部分。预处理主要用于去除脑电信号中具有工频的杂波、眼电、心电以及肌电等信号的伪迹。特征提取的主要作用是从脑电信号中提取出能够反映受试者不同思维状态的脑电特征,将其转换为特征向量作为分类器的输入。特征提取是脑电信号处理中十分重要的一步,提取出的特征的好坏将直接影响脑电信号的识别率。特征分类主要是寻找一个以特征向量为输入的判别函数,并且该分类器能识别出不同的脑电信号。

3) 控制设备部分控制设备主要是把经过处理的脑电信号转换为外部设备的控制指令输出,从而控制外部设备实现与外界进行交互的目的。

4) 反馈环节反馈主要是把外部设备的运行情况等信息反馈给使用者,以便使用者能实时地调整自己的脑电信号。

三、基于EEG的脑机接口研究方法

人和动物的大脑,特别是皮层细胞,存在着频繁的自发电活动,无需任何外界刺激。从脑电极记录到的电位是对脑部大量神经元活动的反应,低至微伏级,这种电活动的电位随时间的波动称为脑电波(EEG) 。EEG反应了大脑组织的电活动及大脑的功能状态,脑的复杂活动反应在头皮上的电位活动就是EEG轨迹[ 5 ] 。所以理论上,人的意图通过脑电应该可以被探测识别出来。BCI的前驱曾经指出“在理论上,脑的感觉、运动及认知意识在自发EEG中应该是可辨识的”,,因此EEG成为BCI研究的首选工具。BCI技术就是要通过识别这种意图,将之表达为对外部设备的直接控制。由于脑电信号的本质还未知,难以确定一种特定的信号识别方法。假设脑电信号是线性的,那么大多数BC I使用的线性识别方法足以应用。反之,则线性识别算法对于希望被识别的信号可能是最糟糕的描述。但无论何种情况,BCI技术的首要任务就是从EEG中识别出人的主观操作意识,并将之表达为对外部设备的直接控制。

脑机接口研究中所使用的脑神经信号

⑴ P300 (诱发电位)

P300是一种事件相关电位(ERP),在时间相关刺激300~400ms后出现的正电

相关文档
最新文档