原子物理知识点总结
大学原子物理知识点整理(二)2024
大学原子物理知识点整理(二)引言概述:原子物理是研究原子和原子核结构以及它们之间的相互作用的领域。
在大学物理学课程中,学生将学习有关原子物理的基本知识和概念。
本文将整理大学原子物理的知识点,帮助读者加深对这一领域的理解。
正文:一、原子的基本结构1. 原子的组成: 电子、质子和中子2. 布尔模型与量子力学模型的对比3. 原子的核外能级和核内能级4. 电子的波粒二象性和不确定性原理5. 原子的量子态和波函数描述二、能级和谱线1. 原子的能级和跃迁1.1 电子的能级和能级图1.2 能级跃迁的条件与选择定则2. 谱线的产生机制2.1 吸收谱线和发射谱线2.2 碰撞激发和辐射激发3. 原子的光谱和谱线的分类3.1 连续光谱、线状光谱和带状光谱3.2 原子谱、分子谱和固体谱4. 原子光谱的应用4.1 能级分析和元素识别4.2 光谱学在天文学和化学中的应用三、放射性和核衰变1. 放射性的定义和特性2. 放射性衰变的方式2.1 α衰变、β衰变和γ衰变2.2 波尔模型下的放射性衰变2.3 放射性衰变的速率和半衰期3. 放射性排放和辐射剂量3.1 放射性元素的排放方式3.2 辐射剂量和辐射安全4. 应用于医学和工业的放射性同位素 4.1 放射性同位素的检测和成像4.2 放射性同位素的治疗和工业应用四、原子核结构和核反应1. 原子核的组成和性质1.1 原子核的质量和电荷1.2 原子核的尺寸和稳定性2. 核反应和核能的产生2.1 反应堆和核武器的原理2.2 核聚变和核裂变的区别3. 核反应的速率和截面3.1 核反应截面的定义和测定3.2 反应速率方程和反应速率常数4. 放射性同位素的衰变4.1 α衰变、β衰变和γ衰变4.2 放射性同位素的半衰期和活度五、原子物理的前沿研究1. 量子力学和粒子物理学的交叉研究2. 原子和分子的控制和操控3. 高能粒子对物质的作用和产生的效应4. 新型材料和器件的研究和开发5. 双原子分子的电子结构和光谱研究总结:本文梳理了大学原子物理的知识点,包括原子的基本结构、能级和谱线、放射性和核衰变、原子核结构和核反应以及原子物理的前沿研究。
原子物理基本概念知识点总结
原子物理基本概念知识点总结一、引言原子物理是研究物质的基本粒子——原子及其核心的性质和相互作用规律的学科。
本文将对原子物理的基本概念进行总结,包括原子结构、核结构、粒子相互作用等方面的知识点。
二、原子结构1. 原子的组成原子由原子核和核外电子组成。
原子核是正电荷的集中体,由质子和中子组成;核外电子是负电荷的集中体,绕原子核运动。
2. 原子的大小原子的大小通常用原子半径来描述。
原子半径的大小与原子序数相关,同一周期元素的原子半径随着原子序数的增加而减小,同一族元素的原子半径随着原子序数的增加而增大。
3. 原子的质量原子的质量主要由原子核的质量决定。
原子核质量由质子和中子的质量之和决定,而电子质量较小可以忽略不计。
三、核结构1. 核的组成核由质子和中子组成,质子数决定元素的性质,中子数影响原子是否稳定。
2. 质子数和中子数元素的质子数即为其原子序数,不同元素的质子数不同。
同一元素的质子数在不同的原子中保持不变,但中子数可能不同,这样的原子称为同位素。
3. 核反应和放射性核反应是核内质子和中子的重新组合或分解过程,可以引起核能的释放,包括裂变和聚变两种形式。
某些核素具有不稳定性,会自发地发生放射衰变,释放出射线和粒子,这种性质称为放射性。
四、粒子相互作用1. 电磁相互作用电磁相互作用是电荷间的相互作用,包括静电力和电磁感应力。
原子核内的质子受到静电力的作用,使核能够保持稳定。
2. 核力和弱力核力是质子和质子,中子和中子之间的相互作用力,使得原子核内的粒子能够相互吸引,维持核的结构稳定。
弱力是一种负责放射性衰变的力,可以改变核粒子的类型。
3. 强力强力是原子核内质子和中子之间的相互作用力,是目前已知的最强的相互作用力,使得原子核内的质子和中子能够紧密结合。
五、结论通过本文的总结,我们对原子物理的基本概念有了更深入的了解。
原子结构、核结构和粒子相互作用是原子物理的重要内容,对于研究物质的特性和性质具有重要的意义。
原子物理知识点
考点一光电效应1.与光电效应有关的五组概念(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子。
光子是因,光电子是果。
(2)光电子的动能与光电子的最大初动能:只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功的情况,才具有最大初动能。
(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关。
(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量。
(5)光的强度与饱和光电流:频率相同的光照射金属产生光电效应,入射光越强,饱和光电流越大,但不是简单的正比关系。
2.对光电效应规律的理解1)光电效应中的“光”不是特指可见光,也包括不可见光。
2)能否发生光电效应,不取决于光的强度和光照时间而取决于光的频率。
任何一种金属都有一个截止频率,入射光的频率低于这个频率则不能使该金属发生光电效应。
3)光电效应的发生几乎是瞬时的。
4)五个关系:最大初动能与入射光频率的关系:E k=hν-W0(光电子的最大初动能与入射光的强度无关).最大初动能与遏止电压U c的关系:E k=eU c,U c可以利用光电管实验的方法测得.逸出功W0与极限频率νc的关系:W0=hνc。
光子频率一定时光照强度与光电流的关系:光照强度大→光子数目多→发射光电子多→光电流大.光子频率与最大初动能的关系:光子频率高→光子能量大→产生光电子的最大初动能大.(5)逸出功的大小由金属本身决定,与入射光无关。
(6)若入射光子的能量恰等于金属的逸出功W0,则光电子的最大初动能为零,入射光的频率就是金属的截止频率。
此,可求出截止频率。
时有hνc=W0,即νc=W0h考点二光电效应的图像问题1.解答光电效应有关图像问题的三个“关键”1)明确图像的种类。
原子物理知识点详细汇总
百度文库 - 让每个人平等地提升自我第一讲 原 子 物 理自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。
本章简单介绍一些关于原子和原子核的基本知识。
§ 原子1.1.1、原子的核式结构1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。
1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。
1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。
1、1.2、氢原子的玻尔理论 1、核式结论模型的局限性通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。
电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。
由此可得两点结论:①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。
原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。
如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。
为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。
原子物理 知识要点
原子物理 知识要点第一节 电子的发现与汤姆孙模型 1、阴极射线 2、汤姆孙的研究3. 汤姆生发现电子,根据原子呈电中性,提出了原子的葡萄干布丁模型。
第二节 原子的核式结构模型 1、粒子散射实验原理、装置 (1)粒子散射实验原理:(2)粒子散射实验装置 主要由放射源、金箔、荧光屏、望远镜几部分组成。
(3)实验的观察结果 入射的粒子分为三部分。
大部分沿原来的方向前进,少数发生了较大偏转,极少数发生大角度偏转。
2、原子的核式结构的提出三个问题:用汤姆生的葡萄干布丁模型能否解释粒子大角度散射?(1)粒子出现大角度散射有没有可能是与电子碰撞后造成的?(2)按照葡萄干布丁模型,粒子在原子附近或穿越原子内部后有没有可能发生大角度偏转?小结:实验中发现极少数粒子发生了大角度偏转,甚至反弹回来,表明这些粒子在原子中某个地方受到了质量、电量均比它本身大得多的物体的作用,可见原子中的正电荷、质量应都集中在一个中心上。
①绝大多数粒子不偏移→原子内部绝大部分是“空”的。
②少数粒子发生较大偏转→原子内部有“核”存在。
③极少数粒子被弹回 表明:作用力很大;质量很大;电量集中。
3、原子核的电荷与大小4.卢瑟福原子核式结构模型 第三节 波尔的原子模型卢瑟福原子核式结构学说与经典电磁理论的矛盾丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。
1、玻尔的原子理论(1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
这些状态叫定态。
(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为En )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即(h 为普朗克恒量)(本假设针对线状谱提出)(3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。
原子物理学知识要点总结
E s
仍与
j
有关。
能量E由
n, l , j 三个量子数决定。
碱金属原子能级的分裂 当
0
时,
1 j 2
当 0 时,
j
1 2
1 j 能级不分裂 2 2 *4 Rhc Z El , s 1 3 2n (l )(l 1) 2 Rhc 2 Z *4 El , s 1 3 2n l (l ) 2
第一章 原子的基本状况 主要内容:原子的质量和大小、原子的核式结构、α粒子散 射实验(重点)。 基本要求: (1)掌握估算原子大小的方法、理解原子量的定义和原子量、 原子质量的计算。 (2)了解汤姆逊模型的要点和遇到的困难;理解卢瑟福核式 结构的要点和提出核式结构的实验依据;
原子的质量
原子质量单位和原子量 各种原子的质量各不相同,常用它们的相对值原子量。 原子质量单位:
表
自旋多重度,表示原子态的多重数。对碱原子 2 s 1 S 态虽然是单层(重)能级,仍表示为:2 S
2
例: 3 2 P 表示: n 3, 1, j 3/ 2 的原子态,多重度:2 3/ 2
Li原子能级图(考虑精细结构,不包括相对论修正)
单电子辐射跃迁选择定则
1、选择定则 单电子辐射跃迁(吸收或发射光子)只能在下列条件下发生:
l
: 量子数亏损
能级图
0 5 4
s
=0 5 4 3 3
p =1 5 4 3
d =2 5 4
f =3 H 7 6 5 4 3
10000
柏 格 曼 系
20000 2
30000
2
40000
厘米-1
2
锂原子能级图
锂的四个线系
原子物理知识点总结
原子物理一、波粒二象性1、热辐射:一切物体均在向外辐射电磁波。
这种辐射与温度有关。
故叫热辐射。
特点:1〕物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种波长的电磁波,但*些波长的电磁波辐射强度较强,*些较弱,分布情况与温度有关。
2〕温度一定时,不同物体所辐射的光谱成分不同。
2、黑体:一切物体在热辐射同时,还会吸收并反射一局部外界的电磁波。
假设*种物体,在热辐射的同时能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体叫做黑体(或绝对黑体)。
在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如,空腔壁上的小孔。
注意,黑体并不一定是黑色的。
热辐射特点 吸收反射特点一般物体 辐射电磁波的情况与温度,材料种类及外表状况有关 既吸收,又反射,其能力与材料的种类及入射光波长等因素有关黑体 辐射电磁波的强度按波长的分布只与黑体温度有关 完全吸收各种入射电磁波,不反射黑体辐射的实验规律:1〕温度一定时,黑体辐射的强度,随波长分布有一个极大值。
2〕温度升高时,各种波长的辐射强度均增加。
3〕温度升高时,辐射强度的极大值向波长较短方向移动。
4、能量子:上述图像在用经典物理学解释时与该图像存在严重的不符〔维恩、瑞利的解释〕。
普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.νεh =)1063.6(34叫普朗克常量s J h ⋅⨯=-。
由量子理论得出的结果与黑体的辐射强度图像吻合的非常完美,这印证了该理论的正确性。
5光电效应:在光的照射下,金属中的电子从金属外表逸出的现象。
发射出来的电子叫光电子。
光电效应由赫兹首先发现。
爱因斯坦指出:① 光的能量是不连续的,是一份一份的,每一份能量子叫做一个光子.光子的能量为ε=h ν,其中h=6.63×10-34 J ·s 叫普朗克常量,ν是光的频率;② 当光照射到金属外表上时,一个光子会被一个电子吸收,吸收的过程是瞬间的〔不超过10-9s 〕。
原子物理原子核的结构知识点总结
原子物理原子核的结构知识点总结原子物理是研究原子和原子核结构的科学,而原子核作为原子的核心部分,其结构及性质对于了解物质的本质和原子核反应具有重要意义。
本文将对原子核的结构知识进行总结,包括原子核的组成、质量数与原子序数、同位素和同位素符号、核子、核力、核衰变等内容。
1. 原子核的组成原子核是由质子和中子组成的。
质子带有正电荷,质量相对较大,中子不带电荷,质量与质子相似。
质子和中子统称为核子,它们以紧密排列的方式组成原子核。
2. 质量数与原子序数原子核的质量数是指原子核中质子和中子的总数,用字母A表示。
原子核的原子序数是指原子核中质子的个数,用字母Z表示。
质量数和原子序数可以唯一确定一个原子核的性质。
3. 同位素和同位素符号同位素是指原子核中质子数相同、中子数不同的核,它们具有相同的原子序数,但质量数不同。
同位素符号表示了一个特定的同位素,符号的左上角为质量数A,左下角为原子序数Z,符号中间为元素的化学符号。
4. 核子核子是组成原子核的基本粒子,包括质子和中子。
质子带有正电荷,其电荷量为基本电荷e,质子数决定了原子核的化学性质。
中子不带电荷,作为质子的“中性伴侣”,其主要作用是增加原子核的质量,稳定原子核的结构。
5. 核力核力是维持原子核的结构稳定的力。
核力是一种非常强大的力,仅作用于极短的距离,其作用范围约为10^-15米。
核力的作用是吸引核子之间的相互作用力,克服了质子之间的电磁排斥力,使得原子核能够保持稳定。
6. 核衰变核衰变是指原子核不稳定的情况下发生的放射性衰变现象。
核衰变可以分为α衰变、β衰变和γ衰变。
α衰变是原子核释放出一个α粒子,变为一个新的原子核。
β衰变分为β+衰变和β-衰变,其中β+衰变是质子转化为中子,同时放射出一个正电子和一个中微子;β-衰变是中子转化为质子,同时放射出一个电子和一个反中微子。
γ衰变是原子核释放出γ射线,不改变原子核的种类和质量。
总结:原子物理原子核的结构是一个复杂而重要的领域。
大学原子物理知识点整理(一)
大学原子物理知识点整理(一)引言概述:大学原子物理是一门研究微观世界的学科,涉及到原子结构、核物理、量子力学等内容。
本文将从五个大点来整理大学原子物理的知识点,包括原子结构、波粒二象性、量子力学基础、原子核物理和辐射与放射性。
原子结构:1. 原子的基本组成部分:质子、中子、电子。
2. 电子能级和轨道:描述了电子在原子周围的运动状态。
3. 泡利不相容原理:不同电子不能占据相同的量子态。
4. 电子云模型和概率密度图:描述了电子在原子周围空间的可能分布情况。
5. 光谱线和原子谱:不同原子在吸收和发射光线时产生的特征性谱线。
波粒二象性:1. 波粒二象性概述:粒子也具有波动性质,如电子的波动性质。
2. 德布罗意假设和德布罗意波长:描述了物质粒子的波动性。
3. 爱因斯坦光电效应:光子的行为可以解释光电效应现象。
4. 光谱线和量子力学:波粒二象性对光谱线解释的重要性。
5. 波包和干涉:波粒二象性在干涉现象中的应用。
量子力学基础:1. 核心概念:波函数、态、算符和测量。
2. 施密特正交化和归一化:展开波函数为正交归一化的基态。
3. 时间无关薛定谔方程:描述波函数随时间演化的方程。
4. 量子态和观测值:波函数幅值平方表示测量结果的概率。
5. 不确定性原理:测量位置和动量的不确定性的关系。
原子核物理:1. 核结构:质子和中子在原子核中的排布。
2. 核力:质子和中子之间的相互作用力。
3. 质子和中子的结合能:核反应中的能量变化。
4. 放射性衰变:有放射性核素的变化过程。
5. 核裂变和核聚变:核反应中核的变化和能量释放。
辐射与放射性:1. 辐射的种类:阿尔法射线、贝塔射线、伽马射线。
2. 辐射的危害和防护:辐射对生物体的影响和防护方法。
3. 放射性测量:测量放射线的强度和剂量。
4. 同位素和放射性定年:利用同位素的稳定性和放射性半衰期做年代测定。
5. 医学应用和核能利用:医学上的放射性应用和核能产生的利与弊。
总结:本文对大学原子物理的知识点进行了整理,包括原子结构、波粒二象性、量子力学基础、原子核物理和辐射与放射性五个大点。
中考原子物理知识点归纳
中考原子物理知识点归纳原子物理是物理学中研究原子结构和性质的分支学科,对于中考物理来说,原子物理的知识点主要包括原子结构、原子核结构、原子光谱以及原子的能级等。
以下是中考原子物理知识点的归纳:原子结构原子由原子核和电子组成。
原子核位于原子中心,由质子和中子组成,质子带正电,中子不带电。
电子围绕原子核运动,带负电。
原子核的体积很小,但质量很大,几乎集中了整个原子的质量。
原子核结构原子核由质子和中子组成,质子数决定了元素的类型。
质子数相同的原子称为同位素。
原子核的稳定性与核内质子和中子的比例有关,通常较重的元素更不稳定。
原子光谱原子光谱是原子吸收或发射光时所显示的谱线。
每种元素都有其特定的光谱线,这是由于电子在不同能级间跃迁时释放或吸收特定能量的光子造成的。
光谱分析是研究原子结构的重要手段。
原子的能级电子在原子内按照特定的能级排列,每个能级对应一定的能量。
电子在不同能级间的跃迁伴随着能量的吸收或释放。
能级的概念是量子力学的基础之一。
原子的电离当原子吸收足够的能量时,电子可以从原子中脱离出来,形成带正电的离子。
这个过程称为电离。
电离可以由热、光、电场等多种因素引起。
原子的结合能结合能是指将原子核中的核子(质子和中子)分离所需的能量。
结合能的大小与核子的排列方式有关,通常较重的原子核具有较高的结合能。
放射性衰变某些原子核不稳定,会通过放射性衰变释放能量,转变为更稳定的原子核。
放射性衰变有α衰变、β衰变等多种形式。
结束语原子物理学是物理学中一个重要的分支,它不仅帮助我们理解物质的基本组成和性质,还广泛应用于化学、生物学、医学和材料科学等领域。
掌握原子物理的基本概念和原理,对于深入理解自然界的微观现象具有重要意义。
原子物理知识点
原子物理知识点
1. 原子的组成:原子由质子、中子和电子组成;
2. 原子序数:原子核中质子的个数,也是元素在周期表上的位置;
3. 原子量:原子质量真实值的相对数,常用单位为原子质量单位(amu或u);
4. 原子能级:原子核外电子的能量状态,分为基态和激发态;
5. 原子的电子结构:电子分布在不同能级上的方式,遵循泡利不相容原理、洪特规则等规律;
6. 原子光谱:原子吸收或发射光线的分布规律,可用于分析元素组成和结构;
7. 原子反应:原子的核反应,包括裂变和聚变,释放能量;
8. 原子实验:常见的原子物理实验包括电子衍射、原子吸收光谱、光电效应等;
9. 原子化学:涉及原子的化学反应,包括化学反应动力学、催化、电化学等。
原子物理高考必背知识点归纳总结
原子物理高考必背知识点归纳总结在准备高考物理考试时,原子物理是一个重要的知识点。
了解原子结构、放射性衰变、核能和核辐射等内容,对于解答试题是至关重要的。
本文将对原子物理考点进行归纳总结,帮助考生系统地掌握这些知识。
一、原子结构1. 原子的组成:原子由电子、质子和中子组成。
电子带有负电荷,质量极小;质子带有正电荷,质量较大;中子不带电,质量与质子相近。
2. 原子核的结构:原子核由质子和中子组成,质子数决定了元素的属性。
3. 原子的电荷状态:正负电荷的数量相等时,原子呈中性;带有正电荷时,称为正离子;带有负电荷时,称为负离子。
二、放射性衰变1. 放射性衰变的概念:放射性衰变是指不稳定核自发地转变成稳定核的过程,伴随着放射性衰变产物的释放。
2. 放射性衰变的种类:包括α衰变、β衰变和γ衰变。
α衰变是指放射出α粒子,改变了核的质量数和原子序数;β衰变是指放射出β粒子,改变了核的质量数,但不改变原子序数;γ衰变是指放射出γ射线,不改变核的质量数和原子序数。
3. 放射性衰变的应用:放射性同位素在医学诊疗、工业上有广泛应用,如碘-131用于治疗甲状腺疾病,辐射消毒灯可用于杀菌消毒等。
三、核能1. 核反应的能量变化:核反应中,质量可以转化为能量。
根据爱因斯坦的质能方程E=mc²,质量变化Δm对应的能量变化ΔE=Δmc²。
2. 核聚变和核裂变:核聚变是指轻核聚合成重核的过程,如太阳能的产生;核裂变是指重核分裂成轻核的过程,如核电站的反应堆。
3. 核能的应用:核能可以用于发电、提供热能等,但同时也存在核废料处理和环境影响的问题,需要合理利用和管理。
四、核辐射1. 核辐射的定义:核辐射是指放射性核和高能粒子通过空气、物质等传播的现象。
2. 核辐射的种类:包括α粒子、β粒子、γ射线等。
α粒子带有正电荷,质量较大,穿透能力较弱;β粒子带有负电荷,质量比较小,穿透能力较强;γ射线为电磁辐射,穿透能力最强。
3-5原子物理知识点
波粒二象性 一、能量量子化1.热辐射:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。
(辐射强度按波长的分布情况随温度而有所不同;(热辐射不一定需要高温,任何温度下都能发生热辐射,只是温度低时辐射弱,温度高时辐射强.在一定温度下,不同物体所辐射的光谱的成分有显著不同.)2.黑体:某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。
(黑体实际上是不存在的,只是一种理想情况;黑体看上去不一定是黑的;黑体同其他物体一样也在辐射电磁波,黑体的辐射规律最为简单,黑体辐射强度只与温度有关.)3.黑体辐射的实验规律①一般材料的物体,辐射电磁波的情况,除与温度有关外,还与材料的种类及表面状况有关.②黑体辐射电磁波的强度按波长的分布只与黑体的温度有关。
随着温度的升高,一方面,各种波长的辐射强度都有增加另一方面,辐射强度的极大值向波长较短的方向移动.4.②维恩公式:在短波区与实验非常接近,在长波区则与实验偏离很大.③瑞利(金斯)公式:在长波区与实验基本一致,但在短波区与实验严重不符,由理论得出的荒谬结果被称为“紫外灾难”.5.(1)普朗克的假说:能的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.(2)能量子公式:ε=h ν,其中ν是电磁波的频率,h 称为普朗克常量h =6.626×10-34J ·s.(一般取h =6.63×10-34J ·s)(3)能量的量子化:在微观世界中能量是量子化的,或者说微观粒子的能量是分立的.这种现象叫能量的量子化.(4)①借助于能量子的假说,普朗克得出了黑体辐射的强度按波长分布的公式,与实验符合之好令人击掌叫绝.②普朗克在1900年把能量子列入物理学,正确地破除了“能量连续变化”的传统观念,成为新物理学思想的基石之一。
二、光的粒子性6.光电效应:当光线照射在金属表面时,金属中有电子逸出的现象,称为光电效应。
原子物理前三章总结知识点
原子物理前三章总结知识点第一章:原子结构原子是物质的基本单位,由原子核和围绕核运动的电子构成。
原子核由质子和中子组成,质子带正电荷,中子不带电荷。
电子带负电荷,其质量远小于质子和中子。
根据量子力学的原理,电子围绕原子核运动的轨道是分立的,不同轨道对应不同能级,每个轨道能容纳不同数量的电子。
原子的质量主要来自于原子核,而原子的大小和化学性质则主要由外部的电子决定。
第二章:原子核的特性原子核是原子的中心部分,其质子数和中子数决定了元素的化学性质和同位素的特性。
原子核的直径约为10^-15米,其密度非常大,几乎占据整个原子的质量。
原子核的质子数和中子数决定了原子的质量数,而元素的化学性质主要由其质子数决定。
原子核还具有强相互作用力和弱相互作用力,它们决定了原子核的稳定性和放射性衰变特性。
第三章:基本粒子的性质在原子物理中,我们还需要了解一些基本粒子的性质。
目前已知存在六种夸克,它们是构成质子和中子的基本粒子。
另外,还存在三种带电轻子,它们是电子、μ子和τ子。
此外,还存在四种中微子,它们几乎没有质量和电荷,对弱相互作用起主要作用。
基本粒子的性质对于我们理解物质的基本结构和相互作用有重要意义。
总结以上讨论,原子物理是一门涉及原子和基本粒子结构、性质及相互作用的重要学科。
通过对原子结构、原子核的特性和基本粒子的性质的研究,我们可以更深入地了解物质的本质和相互作用规律。
这对于解决一些基本问题,如能源供给、材料制备和环境保护等具有重要意义。
希望通过学习原子物理的知识,我们能更好地理解自然界的规律,推动科学技术的发展和人类社会的进步。
原子物理知识点
原子物理知识点原子物理指的是关于原子和分子的物理学研究。
原子是由带有正电荷的原子核和带有负电荷的电子组成的,其大小约为 10^-10 米。
原子物理研究的主要内容包括原子结构、核物理,以及原子和分子的物理和化学性质等方面。
1. 原子结构原子的结构主要由原子核和电子组成。
原子核由带有正电荷的质子和带有负电荷的中性子组成,质子和中性子合称为核子。
中性的原子核直径约为 10^-15 米,比原子半径约大10^4 倍。
电子是质量极小的粒子,其轨道围绕在原子核外部,根据波粒二象性理论可以将电子看做既有粒子特征,也有波动特征的物体。
电子的轨道可以用量子力学的波函数来描述,其中每个轨道对应一定的能量,越靠近原子核的轨道能量越低。
原子结构的核心概念是能级,即原子中的电子具有可以带有的能量级别。
2. 原子核物理原子核中带有正电荷的质子之间的相互作用力是比较复杂的,其力源来自于电荷和核力。
电荷相互作用力是简单的静电相互作用,但是在α衰变中,则是核力从中发挥作用,并且质子与中性子的相互作用也需要核力的作用。
此外,核力对于比质子和中子的数量更大的物体来说也非常重要。
核物质的质量密度所需要距离或所占的体积十分的小,因此核物质对于能量传输具有高度的效率。
核物理学中的原子核反应是指两个或多个原子核相互作用以形成新型核的过程。
这类反应可以具有放出大量的核能,可以用于核能的利用。
3. 原子和分子的物理和化学性质原子和分子在物理和化学性质上都具有非常关键的作用。
许多材料的不同物理性质,通常可以通过原子和分子之间的相互作用来解释并预测。
例如,材料的熔化温度和固化温度、晶体的结构和性质、某些分子的光学性质等。
在化学过程中,原子和分子参与了大量的化学反应过程。
化学反应通常涉及原子之间的共用电子对,所谓的化学键。
不同的元素之间的结合方式可以改变物质的性质和成分。
例如,将氧气和氢气转化为水,可以使能量在不同的形式之间传递。
同时,原子和分子之间的化学反应也广泛地应用于多种工程和生物学领域。
原子物理知识点总结全
原 子 物 理一、卢瑟福的原子模型——核式构造1.1897年,_________发现了电子.他还提出了原子的______________模型.2.物理学家________用___粒子轰击金箔的实验叫__________________。
3.实验结果: 绝大局部α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____.4.实验的启示:绝大多数α粒子直线穿过,说明原子部存在很大的空隙; 少数α粒子较大偏转,说明原子部集中存在着对α粒子有斥力的正电荷;极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式构造:卢瑟福依据α粒子散射实验的结果,提出了原子的核式构造:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转.例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,以下四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D.α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式构造模型。
如图1-1所示表示了原子核式构造模型的α粒子散射图景。
图中实线表示α粒子的运动轨迹。
其中一个α粒子在从a 运动到b 、再运动到c 的过程中〔α粒子在b 点时距原子核最近〕,以下判断正确的选项是〔 〕 A .α粒子的动能先增大后减小B .α粒子的电势能先增大后减小C .α粒子的加速度先变小后变大D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级1.玻尔提出假说的背景——原子的核式构造学说与经典物理学的矛盾:⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式构造将是不稳定的,而事实上是稳定的.⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。
原子物理e
选修3-5原子物理知识点一、量子理论的建立黑体和黑体辐射1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε= hν。
h为普朗克常数〔6.63×10-34〕2、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。
3、黑体辐射:黑体辐射的规律为:温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动。
〔普朗克的能量子理论很好的解释了这一现象〕二、光电效应光子说光电效应方程1、光电效应〔说明光子具有能量〕〔1〕光的电磁说使光的波动理论不能解释光电效应的现象。
在光〔包括不可见光〕的照射下从物体发射出电子的现象叫做光电效应,发射出来的电子叫光电子。
光电效应现象:在光的照射下,金属中的电子从外表逸出的现象,发射出来的电子叫光电子.2.光电效应的产生条件:入射光的频率大于金属的极限频率.3.光电效应的四个规律(1)每种金属都有一个极限频率,入射光的频率必须大于截止频率或极限频率才能产生光电效应.低于截止频率时不能发生光电效应.(2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大.(3)光电效应的发生几乎是瞬时的,一般不超过10-9 s.(4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比4光电流与饱和光电流.①入射光强度:单位时间内入射到金属外表单位面积上的能量.频率一定时,光强越大,光子数越多.②光电流:光电子在电路中形成的电流.光电流有最大值,未到达最大值以前,其大小和光强、电压都有关,到达最大值以后,光电流和光强成正比.③饱和光电流:在一定频率与强度的光照射下的最大光电流,饱和光电流不随电路中电压的增大而增大爱因斯坦光电效应方程1.光子说:在空间传播的光是不连续的,而是一份一份的,每一份叫作一个光的能量子,简称光子,光子的能量ε=hν.其中h=6.63×10-34 J·s.(称为普朗克常量)2.逸出功W0:使电子脱离某种金属所做功的最小值.3.最大初动能:发生光电效应时,金属外表上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值.4.遏止电压与截止频率(1)遏止电压:使光电流减小到零的反向电压U.(2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率.5.爱因斯坦光电效应方程(1)表达式:E k=hν-W0.(2)物理意义:金属外表的电子吸收一个光子获得的能量是hν,这些能量的一局部用来克服金属的逸出功W 0,剩下的表现为逸出后光电子的最大初动能E k =12m e v 2e .6.光电效应方程及其图象分析1.三个关系式(1)爱因斯坦光电效应方程:E k =hν-W 0. (2)最大初动能与遏止电压的关系:E k =eU c .(3)逸出功与极限频率、极限波长λ0的关系:W 0=hν0=h cλ0.图象名称 图线形状 由图线直接(间接) 得到的物理量 最大初动能E k 与入射光频率ν的关系图线①极限频率:图线与ν轴交点的横坐标νc②逸出功:图线与E k 轴交点的纵坐标的值W 0=|-E |=E ③普朗克常量:图线的斜率k =h 颜色相同、强度不同的光,光电流与电压的关系①遏止电压U c :图线与横轴的交点②饱和光电流I m :电流的最大值③最大初动能:E Km =eU c颜色不同时,光电流与电压的关系①遏止电压U c1、U c2②饱和光电流 ③最大初动能E k1=eU c1,E k2=eU c2遏止电压U c 与入射光频率ν的关系图线①截止频率νc :图线与横轴的交点②遏止电压U c :随入射光频率的增大而增大③普朗克常量h :等于图线的斜率与电子电量的乘积,即h =ke .(注:此时两极之间接反向电压)照射光⎩⎨⎧强度——决定着每秒钟光源发射的光子数频率——决定着每个光子的能量E =hν光电子⎩⎪⎨⎪⎧每秒钟逸出的光电子数——决定着光电流的大小光电子逸出后的最大初动能12m e v 2三、康普顿效应〔说明光子具有动量〕1、1918-1922年康普顿在研究石墨对X 射线的散射时发现:光子在介质中和物质微粒相互作用,可以使光的传播方向发生改变,这种现象叫光的散射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子物理一、波粒二象性1、热辐射:一切物体均在向外辐射电磁波.这种辐射与温度有关。
故叫热辐射.特点:1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种波长的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与温度有关。
2)温度一定时,不同物体所辐射的光谱成分不同。
2、黑体:一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。
若某种物体,在热辐射的同时能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体叫做黑体(或绝对黑体)。
在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如,空腔壁上的小孔.热辐射特点吸收反射特点一般物体辐射电磁波的情况与温度,材料种类及表面状况有关既吸收,又反射,其能力与材料的种类及入射光波长等因素有关黑体辐射电磁波的强度按波长的分布只与黑体温度有关完全吸收各种入射电磁波,不反射黑体辐射的实验规律:1)温度一定时,黑体辐射的强度,随波长分布有一个极大值。
2)温度升高时,各种波长的辐射强度均增加。
3)温度升高时,辐射强度的极大值向波长较短方向移动。
4、能量子:上述图像在用经典物理学解释时与该图像存在严重的不符(维恩、瑞利的解释)。
普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.νεh=)1063.6(34叫普朗克常量sJh⋅⨯=-.由量子理论得出的结果与黑体的辐射强度图像吻合的非常完美,这印证了该理论的正确性.5光电效应:在光的照射下,金属中的电子从金属表面逸出的现象.发射出来的电子叫光电子。
光电效应由赫兹首先发现。
爱因斯坦指出:① 光的能量是不连续的,是一份一份的,每一份能量子叫做一个光子.光子的能量为ε=h ν,其中h=6。
63×10-34 J ·s 叫普朗克常量,ν是光的频率;② 当光照射到金属表面上时,一个光子会被一个电子吸收,吸收的过程是瞬间的(不超过10-9s ).电子在吸收光子之后,其能量变大并向金属外逃逸,从而产生光电效应现象;③ 一个电子只能吸收一个光子,不会有一个电子连续吸收多个光子的情况,该过程需要克服金属内部原子束缚做功(逸出功W 0,其大小与金属材料有关),然后才有可能从金属表面飞出。
因此在只有当一个光子能量较大时,电子才会将其吸收并从金属内部飞出,否则电子无法克服原子束缚从金属中逸出。
由能量守恒可得光电效应方程: 0W h E k -=ν④ 决定能否发生光电现象的决定因素是极限频率而不是光的强度。
光的强度只会影响从金属中逸出的电子数目。
能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(极限频率).截止频率的大小与金属种类有关。
光的强度:单位时间内垂直照射到金属表面单位面积上入射光中光子总数目.若ν≥c ν,无论光照强度如何也会有光电效应现象产生若ν<c ν,则无论怎样增加光照强度,也不会有光电效应产生知识拓展之光电管的伏安特性曲线:在光照条件不变时,若正向电压升高,则电路中的光电流会随之变大,当正向电压调到某值后电路中的电流不再增加,该电流叫饱和电流。
饱和电流大小反映了入射光的强度(光子数目)。
在光照条件不变时,若反向电压升高,则电路中的光电流会随之变小,当反向电压达到某值后,电路中的电流变为零,这个电压叫遏止电压。
遏止电压只与入射光频率有关.e W e hU c 0-=ν0(W h E k -=ν由)得出和00W h eU E eU c k c -=-=-ν6. 康普顿效应:由于光在介质中与物质微粒相互作用,光的传播方向发生改变的现象,叫光的散射。
在光的散射中,除了有与入射光波长相同的成分外,还有波长更长的光成分,这种现象叫康普顿效应。
康普顿借助于爱因斯坦的光子理论,从光子与电子碰撞的角度对此实验现象进行了圆满地解释:他认为这种现象是由光量子和电子的相互碰撞引起的.光量子不仅具有能量,而且具有某些类似力学意义的动量,在碰撞过程中,光子把一部分能量传递给电子,减少了它的能量,由能量子公式νεh =可知光的频率减小。
再由λν=c 知波长变长。
总结: 1)由光电效应和康普顿效应知光子具有粒子性. 能量νεh =,动量λh p = (由2mc E =得λλννh h c E mc ===)2)光子既具有波动性又具有粒子性,叫光的波粒二象性。
大量光子易显示出波动性(概率波),少量光子易显示出粒子性。
波粒二象性中所说的波是一种概率波,对大量光子才有意义。
波粒二象性中所说的粒子,是指其不连续性,是一份能量。
● 个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性。
● ν高的光子容易表现出粒子性;ν低的光子容易表现出波动性。
● 光在传播过程中往往表现出波动性;在与物质发生作用时往往表现为粒子性。
● 由光子的能量νεh =,光子的动量λh p =也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ。
由以上两式和波速公式λν=c 还可以得出:pc =ε。
7. 德布罗意提出: 任何运动着的物体都有一种波与之对应,这种波叫德布罗意波,又叫物质波。
物质波对应的两个量:hεν= p h =λ 特点是波长短,不易观察。
注: 1)一切运动的物体都具有波动性; 2)德布罗意波是一种概率波;3)该假说是光子的波粒二象性在一切物质上的推广。
8. 不确定性关系: π4h p x =∆⋅∆ 此式反映微观粒子的坐标和动量不能同时测准。
二、原子结构1、普吕克尔发现阴极射线。
汤姆孙通过进一步研究,发现这些阴极射线是一些带负电粒子。
称为电子.这使人们认识到原子有复杂结构.他通过电子在电场和磁场中的偏转测出比荷。
汤姆孙还提出原子的枣糕模型,又叫汤姆孙模型(错误)。
后来密立根通过油滴实验测出电子的电荷量e 。
所有带电体的带电量均是e 的整数倍。
即电荷是量子化的。
2、卢瑟福通过α粒子散射实验提出原子核式结构模型.⑴用α粒子轰击金箔现象:绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,只有少数α粒子发生了较大的偏转。
这说明原子的正电荷和质量一定集中在一个很小的核上。
(注:实验需在真空中进行)⑵卢瑟福由α粒子散射实验提出原子的核式结构,即在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。
由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10—15m 。
3、氢原子光谱: 实验表明:1)不同元素的原子产生的明线光谱是不同的。
某种物质的原子可由其明线光谱加以鉴别,因此称某种元素原子的明线光谱的谱线为这种元素原子的特征谱线. 2)各种原子的吸收光谱中的每一条暗线都跟该原子的明线光谱中的一条明线相对应。
即某种原子发出的光与吸收的光的频率是特定的,因此吸收光谱中的暗线也是该元素原子的特征谱线。
3)明线光谱和吸收光谱均可用于鉴别和确定物质的组成成分,这叫光谱分析.其优点是灵敏度高。
4)氢原子光谱在可见光区域的谱线满足经验公式:叫里德伯常量其中1-722m 1010.1R ...5,4,3),121(1⨯==-=n n R λ玻尔原子模型:氢原子的明线光谱用经典物理无法得到解释,按经典理论,原子应是一个不稳定系统,因为按经典理论,绕核运转的电子不断向外辐射能量,电子将逐渐接近原子核,最后落入原子核内部,原子消失,而实际上原子是一个很稳定的系统。
于是玻尔提出:①电子轨道的量子化: ...3,2,1,12==n r n r n ,r 1=0.53×10-10m.即原子中电子在库仑引力的作用下,绕原子核作圆周运动,电子运行轨道的半径不是任意的。
电子在这些轨道的运行是稳定的,不产生电磁辐射。
②能量量子化:...),3,2,1(21==n nE E n 注:基态能量E=-13.6eV 。
当电子在不同的轨道运行时,原子处于不同的状态中,具有不同的能量,这些量子化的能量值叫能级,原子中这些具有确定能量的稳定状态叫定态,能量最低的状态叫基态(最稳定的状态),其他状态叫激发态。
量子力学体系状态发生跳跃式变化的过程叫跃迁。
③电子从某一轨道跃迁到另一轨道上时,原子也便从某一能级跃迁到另一能级,同时这个原子便吸收或放出一个光子.光子的能量等于两能级的能量差,n m E E h -=ν。
光谱发射光谱连续光谱连在一起的光带,由连续分布的一切波长的光(一切单色光)组成。
炽热的固体、液体,高压气体光谱为连续谱。
不能用于光谱分析。
明线光谱 分立的亮线,是由游离状态的原子发射的,也叫原子光谱。
稀薄气体光谱或金属蒸气发射光谱均为明线状谱。
吸收光谱连续谱中出现的暗线。
是由高温物体发出的白光通过温度较低的物质时,某些波长的光被该物质吸收后产生的。
如太阳光谱就是太阳内部发出的强光经温度较低的太阳大气层时产生的吸收光谱(连续谱的背景下出现一些不连续的暗线)。
12345-13.6-3.4-0.85-0.54-1.51∞n E /e V 0注: 1) 原子能量包括原子核与电子具有的电势能和电子运动的动能. 2) n=1对应于基态,n →∞对应于原子的电离. 3)原子从基态跃迁到激发态时要吸收能量,从激发态跃迁到基态要以光子的形式放出能量.需要注意的是使原子从基态跃迁到激发态的粒子可以是光子,也可以是实体粒子(例如电子)。
若是光子,则务必要满足光子的能量等于两能级差;若是实体粒子,则只要满足该粒子的能量大于等于两能级差即可。
另外使原子电离的光子或实体粒子的能量只要大于或等于该能级差即可。
4)对于一个原子和一群原子而言,一个处于量子数为n 的氢原子最多可以辐射出(n —1)条光谱线。
一群处于量子数为n 的氢原子可能辐射出的光谱条数为2)1(2-=n n C n 。
5) 玻尔理论的成功与局限性。
成功:引进了量子理论(不连续性)成功解释氢光谱的规律.是对卢瑟福原子模型的进一步完善。
局限:保留了过多的经典物理理论,在解释其他原子的光谱上都遇到很大的困难。
另外,玻尔理论对氢光谱的解释:1)对巴耳末公式的解释,经过推导证明氢原子光谱的巴耳末系是电子从n=3,4,5等能级跃迁到n=2能级时辐射出来的.2)对稀薄气体导电时辉光现象的解释,通常情况下原子处于基态,气体导电管中的原子受到高速运动的电子撞击,有可能跃迁到激发态,处于激发态的原子是不稳定的,会自发的向低能级跃迁,最终回到基态,放出光子,形成辉光现象。
3)对特征谱线的解释,由于原子的能级是分立的,所以原子向低能级跃迁时放出的光子能量也是分立的,故原子的发射光谱只有一些分立的亮线。
原子核1、天然放射现象: 放射性元素自发的发出射线的现象。
由贝克勒尔发现.使人们认识到原子核也有复杂结构.物质发射射线的性质叫放射性。