第5章 功能陶瓷材料
清华大学《工程材料》第5版教材简介
清华大学《工程材料》第5版教材简介《工程材料》第5版教材由清华大学材料学院朱张校教授、姚可夫教授主编,清华大学出版社出版。
《工程材料》第5版教材目录如下:绪论0.1中华民族对材料发展的重大贡献0.2材料的结合键0.3工程材料的分类第1章材料的结构与性能特点1.1金属材料的结构与组织1.2金属材料的性能特点1.3高分子材料的结构与性能特点1.4陶瓷材料的结构与性能特点第2章金属材料组织和性能的控制2.1纯金属的结晶2.2合金的结晶2.3金属的塑性加工2.4钢的热处理2.5钢的合金化2.6表面技术第3章金属材料3.1碳钢3.2合金钢3.3铸钢与铸铁3.4有色金属及其合金第4章高分子材料4.1工程塑料4.2合成纤维4.3合成橡胶第5章陶瓷材料5.1普通陶瓷5.2特种陶瓷第6章复合材料6.1复合材料的复合原则6.2复合材料的性能特点6.3非金属基复合材料6.4金属基复合材料第7章功能材料及新材料7.1电功能材料7.2磁功能材料7.3热功能材料7.4光功能材料7.5隐形材料及智能材料7.6纳米材料第8章零件失效分析与选材原则8.1机械零件的失效8.2机械零件失效分析8.3机械零件选材原则第9章典型工件的选材及工艺路线设计9.1齿轮选材9.2轴类零件选材9.3弹簧选材9.4刃具选材第10章工程材料的应用10.1汽车用材10.2机床用材10.3仪器仪表用材10.4热能设备用材10.5化工设备用材10.6航空航天器用材附录1金属材料室温拉伸试验方法新、旧国家标准性能名称和符号对照表附录2金属热处理工艺的分类及代号(摘自GB/T 12603—2005) 附录3常用钢的临界点附录4钢铁及合金牌号统一数字代号体系(摘自GB/T 17616—1998)附录5国内外常用钢号对照表附录6常用铝及铝合金状态代号与说明(摘编自GB/T 16475—2008)附录7若干物理量单位换算表附录8工程材料常用词汇中英文对照表参考文献本教材有以下特点:(1)体系科学合理,内容丰富新颖,实例丰富。
《生物材料学》医用生物材料 ppt课件
ppt课件
128
陶瓷材料的强度和断裂 陶瓷的结合键和晶体结构决定了陶瓷材料具有很高的抗压
强度,但抗拉强度和剪切强度却很低。
若设裂纹的长度为C,应力集中系数可根据Griffith公式得到:
c 2 C
r
式中,σ为垂直作用于此裂纹的平均应力;r为裂纹尖端处的曲
率半径;C为裂纹长度。由于裂纹尖端处的曲率半径很小。
5.1.5 其他医用金属材料
ppt课件
105
ppt课件
106
ppt课件
107
ppt课件
108
ppt课件
109
ppt课件
110
ppt课件
111
ppt课件
112
ppt课件
113
ppt课件
114
ppt课件
115
ppt课件
116
第五章 生物医用材料
5.2 医用陶瓷材料
ppt课件
117
图4-2 萤石的点阵结构
ppt课件
图4-3 刚玉的点阵结构
126
1.2 陶瓷的物理性能
• 陶瓷材料的机械性能
陶瓷材料的弹性变形 陶瓷材料的拉伸模量一般比金属的大得多,常相差数倍。
这主要是由于陶瓷材料由离子键和共价键组成有关。陶瓷材 料的弹性模量还与构成陶瓷材料的种类、分布比例、气孔率 和加工工艺等因素密切相关,尤其是陶瓷的工艺过程对陶瓷 材料的弹性模量有着很重要的影响。
等),考察材料的生物相容性。
ppt课件
5
耐腐蚀性能要求
金属材料的主要缺点是腐蚀问题。
长期浸泡在含有有机酸、碱金属或碱土金属离 子(Na+、K+、Ca2+)、Cl-离子等构成的恒温 (37℃)电解质的环境中,加之蛋白质、酶和 细胞的作用,其环境非常复杂,会对金属材料 产生腐蚀,腐蚀的产物可能是离子、氧化物、 氯化物等。
工程材料第二版习题解答
第一章材料的结构与性能一、材料的性能(一)名词解释弹性变形:去掉外力后,变形立即恢复的变形为弹性变形。
塑性变形:当外力去除后不能够恢复的变形称为塑性变形。
冲击韧性:材料抵抗冲击载荷而不变形的能力称为冲击韧性。
疲劳强度:当应力低于一定值时,式样可经受无限次周期循环而不破坏,此应力值称为材料的疲劳强度。
σ为抗拉强度,材料发生应变后,应力应变曲线中应力达到的最大值。
bσ为屈服强度,材料发生塑性变形时的应力值。
sδ为塑性变形的伸长率,是材料塑性变形的指标之一。
HB:布氏硬度HRC:洛氏硬度,压头为120°金刚石圆锥体。
(二)填空题1 屈服强度、抗拉强度、疲劳强度2 伸长率和断面收缩率,断面收缩率3 摆锤式一次冲击试验和小能量多次冲击试验, U型缺口试样和V型缺口试样4 洛氏硬度,布氏硬度,维氏硬度。
5 铸造、锻造、切削加工、焊接、热处理性能。
(三)选择题1 b2 c3 b4 d f a (四)是非题 1 对 2 对 3错 4错(五)综合题 1 最大载荷为2805.021038.5πσ⨯=F b断面收缩率%10010810010⨯-=-=A A A ϕ 2 此题缺条件,应给出弹性模量为20500MP,并且在弹性变形范围内。
利用虎克定律 320℃时的电阻率为13.0130℃时的电阻率为18.01二、材料的结合方式 (一)名词解释结合键:组成物质的质点(原子、分子或离子)间的相互作用力称为结合键,主要有共价键、离子键、金属键、分子键。
晶体:是指原子在其内部沿三维空间呈周期性重复排列的一类物质。
非晶体:是指原子在其内部沿三维空间呈紊乱、无序排列的一类物质。
近程有序:在很小的范围内(一般为几个原子间距)存在着有序性。
(二)填空题1 四,共价键、离子键、金属键、分子键。
2 共价键和分子键,共价键,分子键。
3 强。
4 强。
(三)选择题1 a2 b3 a(四)是非题1 错2 错3 对4 错(五)综合题1晶体的主要特点:○1结构有序;○2物理性质表现为各向异性;○3有固定的熔点;○4在一定条件下有规则的几何外形。
大学材料科学基础 第五章材料的相结构和相图(1)
弗兰克尔空位
肖脱基空位
2) 为了保持电中性,离子间数量不等的置换会 在晶体内部形成点缺陷。 如:2Ca2+→Zr4+ ,形成氧离子空缺。 3) 陶瓷化合物中存在变价离子,当其电价改变 时,也会在晶体中产生空位。 如:方铁矿中,部分Fe2+被氧化为Fe3+时, 2FeO+O → Fe2O3中,产生阳离子空缺。 同理,TiO2中,部分Ti4+被还原为Ti3+时,产 生阴离子空缺。 这种由于维持电中性而出现的空位,可以 当作电子空穴。欠缺或多出的电子具有一定的 自由活动性,因而降低了化合物的电阻。这种 现象在材料的电性能方面有重要意义。
3.陶瓷材料中的固溶方式
陶瓷材料——一般不具备金属特性,属无机非金属。 无机非金属化合物可以置换或间隙固溶的方式溶入其 它元素而形成固溶体,甚至无限固溶体,但是一般形 成有限固溶体。 如:Mg[CO3] → (Mg,Fe)[CO3] →(Fe,Mg)[CO3] →Fe[CO3] 菱镁矿 含铁菱镁矿 含镁菱铁矿 菱铁矿 不改变原来的晶格类型,晶格常数略有改变。
(3) 多为金属间或金属与类金属间的化合物, 以金属键为主,具有金属性,所以也称金属 间化合物。 (4) 晶体结构复杂。 (5) 在材料中是少数相,分布在固溶体基体 上,起到改善材料性能、强化基体的作用。 中间相可分为以下几类: 正常价化合物;电子化合物;间隙相;间隙 化合物;拓扑密堆相。
1. 正常价化合物 • 通常是由金属元素与周期表中第Ⅳ、Ⅴ、 Ⅵ族元素形成,它们具有严格的化合比, 成分固定不变,符合化合价规律,常具有 AB、AB2、A2B3分子式。 • 它的结构与相应分子式的离子化合物晶体 结构相同,如分子式具有AB型的正常价化 合物其晶体结构为NaCl型。正常价化合物 常见于陶瓷材料,多为离子化合物。如 Mg2Si、Mg2Pb、MgS、AuAl2等。 • 在合金材料中,起弥散强化的作用。
848材料科学基础大纲
848材料科学基础大纲目录1.引言2.第一章:材料科学概述-2.1材料的定义-2.2材料科学的研究内容3.第二章:晶体学基础-3.1晶体结构与晶体学-3.2晶体的多晶性与多晶材料4.第三章:晶界与位错-4.1晶界-4.2位错5.第四章:金属材料与合金-5.1金属晶体结构与性质-5.2金属合金的组织与性能6.第五章:陶瓷材料-6.1陶瓷材料的分类与特点-6.2陶瓷的合成与加工7.第六章:高分子材料-7.1高分子聚合物的基本概念与分类-7.2高分子的合成与加工8.第七章:复合材料-8.1复合材料的概念与分类-8.2复合材料的制备与性能9.结论引言材料科学作为一门以研究材料结构、性质和功能为基础的学科,研究的对象包括金属、陶瓷、高分子材料等各类材料。
本大纲将按照材料科学的基础内容,对848材料科学基础进行系统的介绍和概述。
第一章:材料科学概述2.1材料的定义材料是指构成物体的各种物质,包括晶体、非晶态、复合材料等多种形态。
材料的组成、结构和性质之间存在着密切的联系。
2.2材料科学的研究内容材料科学的研究内容主要包括材料结构、材料性能以及材料的制备与加工等方面。
通过对材料的研究和探究,可以深入了解材料的宏观和微观特性,为材料的应用提供基础和参考。
第二章:晶体学基础3.1晶体结构与晶体学晶体是具有长程有序结构的固体材料,晶体的结构决定了材料的性质和特点。
晶体学是研究晶体结构与性质的学科,通过对晶体结构的分析和研究,揭示了材料内部的微观世界。
3.2晶体的多晶性与多晶材料多晶材料是由多个晶粒组成的材料,晶粒之间存在着晶界。
晶界对材料的性能和力学行为有着重要的影响,多晶材料的研究对于材料的优化和改进具有重要意义。
第三章:晶界与位错4.1晶界晶界是晶体内部不同晶粒的交界面,晶界的存在对材料的性能和特性有着重要的影响。
通过研究晶界的结构和性质,可以了解晶界对材料性能的影响机制,并提出相应的改进策略。
4.2位错位错是晶体中的缺陷,是晶体结构的局部畸变。
陶瓷工艺学习题答案
一、绪论及陶瓷原料1、传统陶瓷和特陶的相同和不同之处?2、陶瓷的分类依据?陶瓷的分类?3、陶瓷发展史的四个阶段和三大飞跃?4、宋代五大名窑及其代表产品?5、在按陶瓷的基本物理性能分类法中,陶器、炻器和瓷器的吸水率和相对密度有何区别?6、陶瓷工艺学的内容是什么?7、陶瓷生产基本工艺过程包括哪些工序?8、列举建筑卫生陶瓷产品中属于陶器、炻器和瓷器的产品?9、陶瓷原料分哪几类?10、粘土的定义?评价粘土工艺性能的指标有哪些?11、粘土是如何形成的?高岭土的由来和化学组成;12、粘土按成因和耐火度可分为哪几类?13、粘土的化学组成和矿物组成是怎样的?14、什么是粘土的可塑性、塑性指数和塑性指标?15、粘土在陶瓷生产中有何作用?16、膨润土的特点;17、高铝质原料的特点和在高级耐火材料中的作用;18、简述石英的晶型转化在陶瓷生产中有何意义?19、石英在陶瓷生产中的作用是什么?20、各种石英类原料的共性和区别,指出它们不同的应用领域;21、长石类原料分为哪几类?在陶瓷生产中有何意义?22、钾长石和钠长石的性能比较;23、硅灰石、透辉石、叶腊石(比较说明)作为陶瓷快速烧成原料的特点;24、滑石原料的特点,为什么在使用前需要煅烧?25、氧化铝有哪些晶型?为什么要对工业氧化铝进行预烧?26、氧化锆有哪些晶型?各种晶型之间的相互转变有何特征?27、简述碳化硅原料的晶型及物理性28、简述氮化硅原料的晶型及物理性能。
二、粉体的制备与合成1、解释什么是粉体颗粒、一次颗粒、二次颗粒、团聚?并解释团聚的原因。
2、粉体颗粒粒度的表示方法有哪些?并加以说明。
3、粉体颗粒粒度分布的表示方法有哪些?并加以说明。
4、粉体颗粒粒度测定分析的方法有哪些?并说明原理。
5、粉体颗粒的化学表征方法有哪些?6、粉碎的定义及分类,并加以说明。
7、常用的粉碎方法有哪些?画出三种粉碎流程图。
8、机械法制粉的主要方法有哪些?并说明原理。
9、影响球磨机粉碎效率的主要因素有哪些?10、化学法合成粉体的主要方法有哪些?并说明原理。
人教版高中化学必修二课件 第5章 第三节 无机非金属材料(课件)
2.总结单质硅的性质。
(1)物理性质:晶体硅是一种带有金属光泽的灰黑色固体,熔点高、
硬度大、有脆性;其导电性介于导体和绝缘体之间,是良好的半导体
材料。
(2)化学性质:常温下单质硅的化学性质稳定,除氢氟酸和强碱外,
不与其他物质发生反应。
Si + 4HF
能。
一、硅酸盐材料
阅读教材,查阅资料,归纳常见的硅酸盐材料产品的原料、设备、
主要成分、性能和用途。
一、硅酸盐材料
1.普通玻璃以纯碱、石灰石和石英砂为原料,经混合、粉碎,在玻
璃窑中熔融,发生复杂的物理变化和化学变化而制得。你能写出发
生反应的化学方程式吗?
Na2CO3+SiO2
CaCO3+SiO2
Na2SiO3+CO2↑、
2.二氧化硅用来生产光导纤维。
四、新型无机非金属材料-新型陶瓷
随着人们对材料性能要求的不断提高,具有特殊功能的陶瓷材料
迅速发展,一系列新型陶瓷相继问世。
阅读教材,归纳常见的新型陶瓷的成分、性能和应用。
五、新型无机非金属材料-碳纳米材料
1.富勒烯是由碳原子构成的一系列笼形分子的总称,其中的C60是
第5章 化工生产中的重要非金
属元素
第三节 无机非金属材料
导入一
材料是人类赖以生存和发展的物质基础,人类使用的材料除了金属
材料,还有无机非金属材料等。
陶瓷、玻璃、水泥等传统无机非金属材料多为硅酸盐材料。
导入二
硅谷曾是美国新兴的高科技产业开发区,现在仍是美国的电子技
术研究中心和计算机与半导体工业生产的重要基地。电子工业能
有什么特点?其结构特点是怎样影响硅酸盐的性质的呢?
《功能陶瓷材料》PPT课件
精选ppt
24
• 在制备工艺上,突破了传统陶瓷以炉窑为主 要生产手段的界限,广泛采用真空烧结,保 护气氛烧结、热压、热静压等手段。
• 在性能上,特种陶瓷具有不同的特殊性质和 功能,如高强度、高硬度、耐腐蚀、导电、 绝缘以及在磁、电、光、声、生物工程各方 面具有的特殊功能,从而使其在高温、机械、 电子、宇航、医学工程各方面得到广泛的应 用。
• 陶瓷器即使在高温下仍保持坚硬、不燃、不生 锈,能承受光照或加压和通电,具有许多优良
性能
• 广义陶瓷定义为无机原料经过热处理后的“陶
瓷器”制品的总称
精选ppt
22
1.1 精细陶瓷定义与分类
• 相对这种用天然无机物烧结的传统陶瓷
➢精细陶瓷 (Fine Ceramics)又称先进陶瓷(Advan ced Ceramics): 以精制的高纯天然无机物或人工合成的 无机化合物为原料,采用精密控制的制 造加工工艺烧结,具有远胜过以往独特 性能的优异特性的陶瓷
(定义、分类、特性、制备方法、应用)
• 功能陶瓷材料
(电介质陶瓷、敏感陶瓷、磁性陶瓷、 超导陶瓷、生物陶瓷)
精选ppt
21
第一节 精细陶瓷
• 精细陶瓷作为仅次于金属、塑料的“第三类材 料”,正在越来越多地在结构材料方面崭露头
脚,成为现代工程材料的三大支柱之一
• 陶瓷原大多数指料
郑伟宏
精选ppt
1
1、陶瓷材料的发展概况
陶瓷在人类生活和社会建设中是不 可缺少的材料,它和金属材料、高分子 材料并列为当代三大固体材料。
精选ppt
2
我国的陶瓷研究历史悠久、成就辉煌, 它是中华文明的伟大象征之一,在我国 的文化和发展史上占有极其重要的地位。
陶瓷工艺原理_郑州大学中国大学mooc课后章节答案期末考试题库2023年
陶瓷工艺原理_郑州大学中国大学mooc课后章节答案期末考试题库2023年1.陶瓷材料的性能主要由其化学组成决定,与其显微结构关系不大。
参考答案:错误2.陶器的吸水率一般要低于瓷器的吸水率。
参考答案:错误3.陶瓷材料在常温下一般先发生塑性变形然后再发生断裂。
参考答案:错误4.关于陶瓷材料中裂纹产生的原因,下述说法正确的是:参考答案:陶瓷多相体热性质的不同引起裂纹_陶瓷晶体的生长缺陷会导致裂纹的形成_陶瓷材料的机械损伤与化学腐蚀形成表面裂纹5.陶瓷材料中玻璃相的组成、数量与坯料的组成密切相关,而受该陶瓷的烧成工艺影响则很小。
参考答案:错误6.陶瓷的显微结构主要由生产工艺决定,与其化学组成关系不大。
参考答案:错误7.采用陶瓷生产工艺,可以制备出高质量的大理石墙地砖。
参考答案:错误8.干燥缺陷是由不均匀收缩引起的内应力造成的。
参考答案:正确9.微波干燥是以微波辐射使生坯内极性强的分子,主要是水分子运动随交变电场的变化而加剧,发生摩擦而转化为热能使生坯干燥的方法。
参考答案:正确10.采用圆形的泥浆搅拌池比采用六角形的搅拌效果好。
参考答案:错误11.注浆成型是指在石膏模的毛细管力作用下,含有一定水分的粘土泥浆脱水硬化、成型的过程。
参考答案:正确12.对于普通陶瓷来说,所含的晶相越多、玻璃相越少,则强度越高。
参考答案:正确13.按照概念和用途,特种陶瓷又可进一步划分为:参考答案:结构陶瓷_功能陶瓷14.为了提高陶瓷坯料的可塑性,加入的最佳矿物原料是:参考答案:膨润土15.下列属于釉中网络形成剂的组分是:参考答案:二氧化硅16.陶瓷工业中常用的长石类型有钾长石、钠长石、钙长石和钡长石。
参考答案:错误17.陶瓷材料的相变增韧主要是利用单斜相ZrO2向四方相ZrO2的转变实现的。
参考答案:错误18.多晶陶瓷材料的强度随晶粒尺寸的增大而升高。
参考答案:错误19.在釉料配方中提高Na2O或CaO的含量可使釉的熔融温度降低。
第5章信息与电子用陶瓷3-PDF_图文.
5.5 敏感陶瓷敏敏感陶瓷检测、控检测控制的对象(信息迅速增加。
信息的获取在各种类型的敏感元件中, 陶瓷敏感元件占有十分重要的地位。
在某些传感器中是关键材料之一敏感陶瓷在某些传感器中,是关键材料之5.5.1 概述一、敏感陶瓷的分类及应用敏感陶瓷是某些传感器中的关键材料之一。
敏感陶瓷多属半导体陶瓷 ,是继单晶半导体材料之后 ,又一类新型多晶半导体电子陶瓷。
其电阻率 =10‐ 10– 9 1010,半导体陶瓷多半用于敏感元件,所以常将半导体陶瓷称为敏感陶瓷。
根据某些陶瓷的电阻率、电动势等物理量对热、湿、光、电压及某种气体、某种离子的变化特别敏感这一特性,按其相应的特性,可把这些材料分别称作热敏、湿敏、光敏、压敏、气敏及离子敏感陶瓷。
此外还有具有压电效应的压力位置此外,还有具有压电效应的压力、位置、速度、声波敏感陶瓷,具有铁氧体性质的磁敏陶等瓷及具有多种敏感特性的多功能敏感陶瓷等。
这些敏感陶瓷已广泛应用于业检测控制这些敏感陶瓷已广泛应用于工业检测、控制仪器、交通运输系统、汽车、机器人、防止公害防灾公安及家用电器等领域、防灾、公安及家用电器等领域。
5.5.2 敏感陶瓷的结构与性能敏陶结构与性能传感器陶瓷常属半导体材料,检测到的信息(如温度、湿度等以电信号的形式输出。
半导体陶瓷一般是。
在正半导体陶瓷般是氧化物或复杂氧化物在常情况下陶瓷具有较宽的禁带(Ee ≥ 3eV,所以通常为绝缘体。
常为绝缘体要使这些绝缘体成为半导体,必须对绝缘体进行进行半导体化处理。
形成附加能级主要有两个途径:①添加能形成附加能级的杂质,即掺杂 ,②不含杂质的氧化物主要通过化学计量比偏离来形成, 即控制成分使其偏离化合物的化学计量,可以使传 ,并使其具备一定的性能。
统的绝缘陶瓷半导体化 ,并使其具备定的性能。
陶瓷是多相系统,通过人为掺杂, 造成晶粒表面的组分偏离 ;在晶界处产生异质相的析出、杂质的聚集晶格缺陷及晶格各向异性等这些杂质的聚集、晶格缺陷及晶格各向异性等。
清华大学工程材料第五版第五章
5.1 普通陶瓷
5.1.1 普通日用陶瓷
一、普通日用陶瓷的用途和特点
用粘土、石灰石、长石、石英等天然硅 酸盐类矿物制成。制造日用器皿和瓷器。
一般具有良好的光泽度、透明度,热稳 定性和机械强度较高。
日用器皿
艺术陶瓷
二、常用普通日用陶瓷
(1)长石质瓷 国内外常用的日用瓷,作 一般工业瓷制品。
(2)绢云母质瓷 我国的传统日用瓷。 (3)骨质瓷 主要作高级日用瓷制品。 (4)滑石质瓷 综合性能好的新型高质瓷。 (5)高石英质日用瓷 我国研制成功,石 英含量 ≥40%,瓷质细腻、色调柔和、透光 度好、机械强度和热稳定性好。
氧化铝陶瓷应用实例:
氧化铝陶瓷密封环
氧化铝陶瓷喷咀
二、氧化铍陶瓷
●导热性极好,很高的热稳定性,抗热冲 击性较高;
●消散高能辐射的能力强、热中子阻尼系 数大。
●强度低。
应用 氧化铍陶瓷制造坩埚,作真空陶瓷和 原子反应堆陶瓷,气体激光管、晶体管散热 片和集成电路的基片和外壳等。
三、氧化锆陶瓷
●熔点在2700 ℃以上,耐2300 ℃高温, 推荐使用温度2000 ℃~2200 ℃;
绝缘瓷瓶
改善工业陶瓷性能的方法: 加入MgO、ZnO、BaO、Cr2O3等或增加莫 来石晶体相,提高机械强度和耐碱抗力;
加入Al2O3、ZrO2等提高强度和热稳定性; 加入滑石或镁砂降低热膨胀系数;
加入SiC提高导热性和强度。
5.2 特种陶瓷
☆ 老师提示:重点内容
特种陶瓷也叫现代陶瓷、精细陶瓷。 特种陶瓷包括特种结构陶瓷和功能陶瓷两 大类,如压电陶瓷、磁性陶瓷、电容器陶瓷、 高温陶瓷等。 按陶瓷的主要组成分: 氧化物陶瓷、硼化物陶瓷、 氮化物陶瓷、碳化物陶瓷。
《陶瓷的连接》PPT课件
第五章 陶瓷材料的连接
主要内容
➢陶瓷材料的性能特点 ➢陶瓷连接的要求和存在的问题 ➢陶瓷材料的焊接性问题 ➢陶瓷材料的连接方法
1. 陶瓷材料概论
1.1 陶瓷概念
陶瓷的英文名为Ceramic,起源于希腊语Keramos(意为 陶器)
陶瓷是指以各种金属的氧化物、氮化物、碳化物、硅化 物为原料,经适当配料、成型和高温烧结等人工合成的无机 非金属材料。
➢ 应用: 可用做内燃机气缸内衬、活塞顶等 耐磨、耐腐蚀器件 模具 高温发热体材料,在空气中最高发热温度可达2200℃ 燃料电池材料等
3.1.3其他氧化物陶瓷 氧化镁陶瓷 氧化铍陶瓷
3.2 非氧化物陶瓷
非氧化物陶瓷与氧化物陶瓷的区别: ➢ 人工制备的 ➢ 烧结需在保护气氛中进行 ➢ 难熔、难烧结
氮化硅陶瓷
3.5~5
(4)高温强度高、蠕变抗力高 作为耐高温材料,已在工程中获得广泛应用
3.1 氧化物陶瓷
3.几种常用的结构陶瓷
氧化物陶瓷是指包含氧元素的陶瓷,包括由金属与 非金属元素的化合物构成的非均匀固体物质。主要由离 子键结合,也有一定成分的共价键。
最重要的氧化物陶瓷是几种简单类型的氧化物: AO,AO2,A2O3,ABO3和AB2O4等结构类型(A、B表 示阳离子)。
主要选择的中间层 ➢ 单一金属:Cu、Ni、Nb、Ti、W、Mo、铜镍合
金、合金钢 ➢ 两种不同的金属作为复合中间层,例如:Ni作为
塑性金属,W作为低线胀系数材料
中间层材料的预置方式: ➢ 金属铂片 ➢ 金属粉末:真空蒸发、离子溅射、化学气相沉积、
喷涂、电镀
中间层的影响:
➢ 中间层厚度增大,残余应力降低
表3-3 几种氧化物陶瓷的化学组成
陶瓷材料的烧结
晶格扩散率,Dl
晶界扩散率,Db 粘度,η 表面扩散率,Ds 晶格扩散率,Dl 蒸汽压差,Δp 气相扩散率,Dg
2013-7-29
河南省精品课程——陶瓷工艺原理
5.3.2晶粒过渡生长现象
晶粒的异常长大是指在长大速度较慢的细晶基体内有少部分区域快速 长大形成粗大晶粒的现象。
在烧结过程中发生异常长大与以下主要因素有关:
① 材料中含有杂质或者第二相夹杂物 ② 材料中存在高的各向异性的界面能,例如固/液界面 能或者是薄膜的表面能等 ③ 材料内存在高的化学不平衡性。
2013-7-29
河南省精品课程——陶瓷工艺原理
5.4 液相烧结过程与机理
液相烧结(Liquid Phase Sintering,简写为LPS)是指在烧结包含多种粉 末的坯体中,烧结温度至少高于其中的一种粉末的熔融温度,从而在烧结过 程中而出现液相的烧结过程。
2013-7-29
河南省精品课程——陶瓷工艺原理
二、热压装置和模具
(a)电阻间热式;(b)感应间热式; (c)电阻直热式;(d)感应直热式
2013-7-29 河南省精品课程——陶瓷工艺原理
三、热压烧结的驱动力 在热压烧结的初始阶段,假设所有粉体都是规则的球形颗粒立方堆积 在一起,则作用在颗粒接触面积上的有效压力为: Pappl. 2 s P2* r
热压技术已有70年历史,最早用于碳化钨和钨粉致密件的制备。 现在已广泛应用于陶瓷、粉末冶金和复合材料的生产。
2013-7-29
河南省精品课程——陶瓷工艺原理
一、热压烧结的优点 (1)所需的成型压力仅为冷压法的1/10 (2)降低烧结温度和缩短烧结时间,抑制了晶粒的长大。 (3)易得到具有良好机械性能、电学性能的产品。 (4)能生产形状较复杂、尺寸较精确的产品。 热压法的缺点是生产率低、成本高。
5章陶瓷材料
7.2 习
题
1.解释名词 超导、硬磁材料、形状记忆效应 2.综合分析题 1) 什么是功能材料?按性能通常分为哪几类 2) 磁功能材料分为哪几类?各有何应用? 3) 光功能材料分为哪几类?各有何应用?
纤维增强复合材料的复合原则是: 1)纤维增强相是主要承载体,应有高的强度和模量,且高 于基体材料; 2)基体相起粘接剂作用,应对纤维相有润湿性,基体相应 有一定塑性和韧性; 3)两者结合强度应适当高; 4)基体与增强相的热膨胀系数不能相差过大; 5)纤维相必须有合理的含量、尺寸和分布; 6)两者间不能发生有害的化学反应。
• 本章重点:在了解复合材料复合机制和原则基础上, 弄清复合材料比组成材料性能优越的原因,掌握常用 复合材料的性能,了解其应用。
习题
1.名词解释 纤维复合材料、玻璃钢、增韧陶瓷、硬质合金 2.填空题 1) 复合材料由(基体材料)相和(增强)相构成,(增强)相的(形状 )、 (数量)、(分布)及(制备过程)等对复合材料的性能有重要影响。 2) 结构复合材料是用于(结构零件 )的复合材料,最常用的是(纤维 增强聚合物基复合材料)。 3) 常用的纤维增强相有(陶瓷 )、(玻璃 )、( )、( )和( )。 4) 纤维增强相是复合材料中的( 主要承载体),因此其(强度)和(模 量)要高于基体材料。 5) 颗粒复合材料中基体相和颗粒相的作用分别是(承受载荷)和(阻 碍分子链或位错运动 )。
硼化物陶瓷包括硼化铬、硼化钼、硼化钛、硼化钨和硼化锆等, 具有高硬度,较好的耐化学浸蚀能力,熔点1800℃一2500 ℃ ,使用 温度1400 ℃ ,用于高温轴承、内燃机喷嘴,各种高温器件、处理熔 融非铁金属的器件等。 氮化物陶瓷中的氮化硅陶瓷是键能高而稳定的共价键晶体,硬度 高而摩擦系数低,有自润滑作用,是优良的耐磨减摩材料;氮化硅 的耐热温度比氧化铝低,而抗氧化温度高于碳化物和硼化物,1200 ℃以下具有较高的机械性能和化学稳定性,且热膨胀系数小、抗热 冲击,可作优良的高温结构材料,耐各种无机酸(氢氟酸除外)和碱 溶液浸蚀,是优良的耐腐蚀材料。 本章的重点是掌握特种陶瓷的性能特点、改善性能途径和应用。
功能材料学教案-第05章 形状记忆合金
第05章 形状记忆合金人们在研究近等原子比的Ti.Ni 合金时发现,原来弯曲的合金丝被拉直后,当温度升高 到一特定值时它又恢复到原来的形状。
人们把这种现象称为形状记忆效应(Shape Memory Effect, SME ),把具有形状记忆效应的合金称为形状记忆合金(Shape Memory Alloy, SMA )0形状记忆现象的发现最早可追溯到1932年,人们在研究Au-Cd (镉,音格)合金时, 第一次观察到马氏体能够随着温度的变化而连续地缩小和长大;到了 20世纪50年代初,美 国人分别在Au.Cd 和In.Tl (铭,音它)合金中观察到了形状记忆效应,但形状记忆效应一 直没有获得实际应用。
直到1963年,布赫列(WJ.Buehev )等人发现近等原子比的Ti-Ni 合金具有良好的形状记忆效应以后,TiNi 合金才作为实用的形状记忆合金进入了市场。
5.1形状记忆效应及其原理5.1.1两个术语——热弹性马氏体和应力弹性马氏体1. 热弹性马氏体(M —Ms ——A.——A f )热弹性马氏体是一种能够进行可逆转变的马氏体。
也就是说,冷却时,高温相(母相) 发生马氏体转变,形成马氏体;加热时,马氏体不会像钢铁中的马氏体那样发生分解,而是 直接转变为高温相(母相)。
它的另一个特点是,在冷却或加热过程中,马氏体会随着温度 的变化而连续地长大或收缩,母相与马氏体的相界而可进行弹性式的推移。
也就是说,马氏 体片能随温度下降逐渐长大;温度回升时,马氏体片又能随温度上升而逐渐缩小,通常把这 种马氏体就叫做热弹性马氏体。
大部分形状记忆合金的形状记忆机理与愁理性旦氐遂的可逆相变密切相关。
通常把高温 相向马氏体转变的开始和终了温度分别称为Ms 和M f ;把马氏体向高温相逆转变的开始和终 了温度分别称为A 和A”(As 一般总是高于A.通常才巴ArMs 称为相变温度滞后,热弹性 马氏体一般是相变温度滞后较小的马氏体,一般仅十几摄氏度至几十摄氏度。
陶瓷材料
(5)用途不同。先进陶瓷因为优异的力、光、电、磁性能等, 被广泛应用于石油、化工、电子、航空航天、核动力、军 事、纺织、生物和汽车等诸多工业领域,传统陶瓷一般仅 限于日用和建筑使用。
6.2 先进陶瓷材料的分类
根据性能和应用不同,先进陶瓷材料可以分为结构陶 瓷、功能陶瓷和陶瓷涂层材料等。 结构陶瓷:在工程结构上使用的陶瓷称为结构陶瓷, 具有高温下强度和硬度高、蠕变小、抗氧化、耐腐蚀、耐 磨损、耐烧蚀等优越性能。 功能陶瓷:利用陶瓷具有的物理性能(电、磁、光、 压电、热释电等)制造的陶瓷材料称为功能陶瓷,也称为 电子陶瓷,它具有的物理性能差异很大。 陶瓷涂层材料:在生产中,几乎所有部件都可以用涂 层的办法来满足其对耐高温、耐化学腐蚀的要求,即加工 成陶瓷涂层材料。
在远古的石器时代,人类的祖先用天然的石头做成刀、 斧、针和武器。
在人类学会用火之后,人们用粘土加上水,合成泥, 捏成各种器皿的形状,然后在火中焙烧,得到了十分坚硬 的陶器。据考古学家分析,距今大约1万年前,就有陶器出 现。这是人类最早、最伟大的文明创造。恩格斯把陶器的 出现称为新石器时代开始的标志。
先进陶瓷与传统陶瓷的差别
(3)制备工艺不同。先进陶瓷必须加入添加剂才能进行干法 或湿法成型,烧结温度较高(1200 ℃ -2200℃),且需加 工后处理;而普通陶瓷烧结温度较低(900℃-1400℃)。 (4)品种不同。先进陶瓷除烧结体外,还有单晶、薄膜、纤 维、复合物;而传统陶瓷主要是天然硅酸盐矿物原体的烧 结体。
电瓷:主要由粘土、长石、石英(或铝氧原料)等 硅酸盐原料混合配制,经加工成形,在较高温度下 烧制而获得的无机绝缘材料。 序 分类 材料类别 主要适用范围
1
压制硅质瓷 低压绝缘子
硅质 低压绝缘子、一般高压绝缘子或 2 硅质瓷 瓷套 电瓷 3 高强硅质瓷 高压绝缘子或瓷套
第五章 稀土玻璃陶瓷和耐高温
二、稀土自动调光玻璃 含银的感光玻璃中添加氧化铈后对紫外线就产生敏感。 含铈和铕的玻璃的太阳镜,在阳光下自动变暗,在遮阴处又恢复原色。 三、稀土耐高温和耐辐射光学玻璃 在硅酸盐、硼酸盐或铅玻璃中,加CeO2大于2%作稳定剂,可制得耐辐射玻璃。 含CeO2玻璃在射线下,其透明度不受影响,因此可用于制造阴极射线管和反 应堆的玻璃罩及防核辐射光学仪器。 氧化钇中掺入10%氧化钍,经冷压成型后制成的玻璃,从可见光到红外都是透 明玻璃,并可在1900℃高温下使用,用于火箭,高温炉。
4.稀土氧化物陶瓷:透明氧化钇陶瓷是一种主成份为Y2O3ol)的ThO2,在氢气中 于2000℃高温烧成的透明多晶体。即使在远红外区仍有约80%的直线通过率, 是一种优良的高温红外材料和电子材料。在真空技术、仪器光学、红外光学及 陀螺仪等上有重要应用。 5.稀土超导陶瓷:REBa2 Cu3 O7-δ 是转变温度90K左右的新型高温超导材料, 自1986年问世以来得到世界各国的高度重视,其巨大应用前景为无能量损耗运 距离输电、大容量高效率的超导发电机和电动机、小型超高速的第五代计算机 等。 四、稀土阴极发射材料和发热材料 六硼化镧(LaB6 )阴极与钨阴极相比,具有发射电流大、寿命长、性能稳定 等优点,已成功用于等离子电源、扫描电镜、俄歇谱仪及电子探针等设备中。 铬酸镧(LaCrO3 )具有熔点高(2763K)、抗氧化、耐高温和良好导电性,用 它制作的发热体可使高温电阻炉温度高达2100K,成为科研和生产中的重要设 备。
则有效地提高了玻璃的透明度。
二、稀土着色剂 着色玻璃只所以能呈现某种颜色是由于它吸收了一定波长范围内的可见光。由于 稀土离子在光谱中有自己特有的吸收带,所以稀土加入玻璃中后,可改变可见光 的透光率或调整折射和色散指标,稀土铈、镨和钕的氧化物已用于有色玻璃生产 的有:
第五章 陶瓷材料的力学性能11
陶瓷材料的力学性能
引言
陶瓷广泛应用于我们的日常生活中,如建筑材料、饮 食餐具等以及国家战略战备设施,如武器装备、航天领 域上。 传统的陶瓷制品以天然粘土为原料,通过混料、成型、 烧结而成,性能特点是强度低,脆性高。 目前研究的陶瓷分为结构陶瓷和功能陶瓷。
结构陶瓷
主要利用的是材料的耐高温、强度、硬度、韧性、耐磨
(2)相变增韧
必要条件 有亚稳的四方氧化锆颗粒存在
t相的晶粒尺寸是影响 t-m相变的一个重要因素,Ms点随 晶粒尺寸的减少而降低。氧化锆的室温组织存在一个临 界粒径dc,ddc的晶粒室温下已经转变成m相;ddc的晶 粒冷却到室温仍保留为 t 相。所以只有 ddc 的晶粒才有 可能(但不一定)产生相变韧化作用。 当裂纹尖端应力场最高值一定的情况下,应力诱发 t-m 相变存在一个临界晶粒直径d1。只有d1ddc的晶粒才会 应 力 诱 发 相 变 ( stress induced phase transformation),即这部分晶粒才对相变韧化有贡献。
• 表5.2(P111)给出了试验规程及计算公式。 • 表5.4(P111)是劳氏硬度和维氏硬度的对比情况。
三、克劳维尔硬度
四、硬度与其它性能之间的关系
• 图5.5
五、陶瓷材料的表面接触特性
• 1、与金属材料相同,陶瓷材料表面也存在 局部微凸起,其外侧常有水蒸气或碳-氢化 合物形成的表面层,陶瓷材料表面加工还 可以产生显裂纹或其他缺陷。
• 图5.20。
(2)共价键型陶瓷材料
• 图5.21。
3、加载速率对陶瓷强度的影响
• 图5.22。
第五节 陶瓷材料的断裂韧性
一、陶瓷材料的断裂韧性
一、陶瓷材料的断裂韧性
二、陶瓷材料的断裂韧性的测定
功能材料介绍PPT
现代社会对研制新一代材料提出了结构和功能相结 合的要求。即材料不仅能作为结构材料使用,而且具 有特殊功能或多种功能。同一构件、设备、器件可能 是结构材料和功能材料的结合。如航天航空器既有特 殊结构材料,又有特殊的功能材料。
分类: 很难有统一的认识,常见的分类方法有:
中国在商周处于青铜时代的鼎盛时期,湖北隋县出 土的编钟、西安青铜马车都反映当时中国冶金技术水 平和高超的制造工艺。
公元前13-14世纪,人类开始使用铁。3000年前的 铁器比青铜器更为普遍,人类开始进入铁器时代。
到春秋末期,中国的生铁技术遥遥领先于其他国家。 如生铁退火而制成的韧性铸铁以及生铁炼钢技术发明, 促进了当时生产力的大发展,对农业、水利和军事的 发展起到了极大的作用,推动了世界的文明与进步。
6、扩展功能材料的应用范围,尤其是尖端技术与民 用高技术领域中的应用。
Байду номын сангаас
2、材料的发展史
人类发展的历史证明,材料的发展导致时代变迁。 人类的历史曾以使用的主要材料来划分,如石器时代、 铜器时代和铁器时代等。
早在100万年前,人类开始使用石头做工具,使人 类进入旧石器时代。大约1万年前,人类能对石头进行 加工,使石头成为精制的器皿和工具,从而进入新石 器时代。在新石器时代,人类开始用毛皮遮身。8000 年前,中国开始用蚕丝做衣服。4500年前,印度人开 始种植棉花,这些都标志着人类使用材料促进人类文 明进步。此外,人类还使用竹、木、骨等原始天然材 料,不经或稍许加工而制成工具或用具。这是材料发 展的初始阶段,其特点是人类单纯选用天然材料。
人类还处于新石器时代,就已经发明了粘土成型, 在火烧固化而得到陶器,用作器皿或装饰品。陶器的 出现,是对人类文明的一大促进。在烧制陶器的过程 中,又偶然发现了铜和锡,实际上是铜和锡的氧化物 在高温下被碳还原的产物,进而生产出色泽鲜艳且能 浇铸的青铜,使人类进入青铜时代。这是人类较大量 使用金属的开始。希腊、印度、埃及和中国都在公元 前3000年左右进入青铜时代。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
义重大的里程碑。
釉
以石英、长石、硼砂、黏土等为原料制成
的东西,涂在瓷器、陶器外面,烧制后发出玻
璃光泽,可增加陶瓷的机械强度和绝缘性能。
瓷器烧成温度高,质地致密坚硬,表 面有光亮的釉彩。
随着科学进步与发展,由瓷器又衍生
出许多种类的陶瓷。
陶瓷都是以黏土为主要原料与其他天
然矿物原料经粉碎混炼—成形—煅烧等过
氧化物陶瓷在耐热性和硬度方面不能适应新的 用途
精细陶瓷的发展趋势是,原料由以氧化物为主 的氧化物陶瓷正转向非氧化物陶瓷(碳化物、 氮化物、硼化物等)
精细陶瓷材料的性能主要由材料的化学组 分和显微组织结构所决定 在化学组成确定后,工艺是控制显微组织 结构的主要手段 精细陶瓷材料的制备方法大致相同,但在 一些细节和技术上却有很大变化
硼化物合成法主要有:金属与硼直接化合法、 碳化硼法、碳还原法、金属还原法、气相沉积 法
氧化铝粉末的制备:
氧化铝是用途最广泛的氧化物陶瓷材料中的一种。 有7种晶型,常见有αβγ型 α-Al2O3又称刚玉,是最稳定的晶型,在自然界 存在的红宝石均属α-Al2O3
Al2O3粉末常用焙烧法制取,此外还有热分解法、
作为无机非金属材料重要组成部分的功能陶瓷、 电子陶瓷已经逐步成为高技术发展的重要关键 材料 研究开发功能陶瓷已引起世界各国的高度重视
精细陶瓷
(定义、分类、特性、制备方法、应用)
功能陶瓷材料
(电介质陶瓷、敏感陶瓷、磁性陶瓷、 超导陶瓷、生物陶瓷)
精细陶瓷作为仅次于金属、塑料的“第三类材 料”,正在越来越多地在结构材料方面崭露头 脚,成为现代工程材料的三大支柱之一 陶瓷原大多数指陶瓷器、玻璃、水泥和耐火砖 之类人们所熟悉的材料 陶瓷器即使在高温下仍保持坚硬、不燃、不生 锈,能承受光照或加压和通电,具有许多优良 性能 广义陶瓷定义为无机原料经过热处理后的“陶 瓷器”制品的总称
热压:
制备高强度、高密度的制品
如陶瓷刀具、压电陶瓷等
挤出:
适用于制备不能用压力发成型的陶瓷制品
注射:
制备特殊形状制品
注浆:
粉料中加入适量的水或有机液体,以及少量电解质 形成相对稳定的悬浮液,将悬浮液注入石膏模中, 让石膏模吸去水份,达到成型的目的
流延:
料浆用流延刮刀以一定厚度涂覆在基材薄膜上,干 燥固化后,从基材膜上揭下,制成生坯带
在制备工艺上,突破了传统陶瓷以炉窑为主要 生产手段的界限,广泛采用真空烧结,保护气 氛烧结、热压、热静压等手段。 在性能上,特种陶瓷具有不同的特殊性质和功 能,如高强度、高硬度、耐腐蚀、导电、绝缘 以及在磁、电、光、声、生物工程各方面具有 的特殊功能,从而使其在高温、机械、电子、 宇航、医学工程各方面得到广泛的应用。
液相法制备粉末可分为反应沉淀法、溶胶-凝胶
法两大类
溶胶-凝胶法是一种借助于胶体分散体系的制粉
方法。由于胶体粒径通常都是几十纳米以下,故
溶胶有透明性。胶体十分稳定,可使多种金属离 子均匀稳定地分布其中。胶体经脱水后就称为凝 胶,从而获得活性极高的超微粉。
气相法包括气相反应合成(又称气相沉淀法,CVD 法)、气相热分解法和蒸发-凝聚法等。 气相反应合成法,可生成薄膜、晶须、晶粒、颗 粒和超细颗粒 气相热分解法在制备金属超细粉末中应用非常普 遍,可制取Ni粉和Fe粉以及化合物粉末 蒸发-凝集法则是将原料用电弧或等离子流等加 热至高温,使之气化,接着在电弧焰和等离子焰 与冷却环境造成的较大温度梯度条件下急冷,凝 聚称微粒状物料的方法。
如氧化物陶瓷、压电陶瓷、金属陶 瓷等各种高温和功能陶瓷。
这时,陶瓷研究进入第二个阶段—
—先进陶瓷阶段。
先进陶瓷(Advanced ceramics)又称现代陶瓷,
是为了有别于传统陶瓷而言的。
先进陶瓷有时也称为精细陶瓷(Fine Ceramics)、 新型陶瓷(New Ceramics)、特种陶瓷(Special Ceramics)和高技术陶瓷(High-Tech. Ceramics)等。
在先进陶瓷阶段,陶瓷制备技术飞速发展。
在成形方面,有等静压成形、热压注成形、注
射成形、离心注浆成形、压力注浆成形等成形方法; 在烧结方面,则有热压烧结、热等静压烧结、
反应烧结、快速烧结、微波烧结、自蔓延烧结等。
在先进陶瓷阶段,采用的原料已不再使用或
很少使用黏土等传统原料,而已扩大到化工原料
和合成矿物,甚至是非硅酸盐、非氧化物原料, 组成范围也延伸到无机非金属材料范围。
精细陶瓷的种类繁多,按照化学组成可分为:氧 化物陶瓷和非氧化物陶瓷
精细பைடு நூலகம்瓷组织结构特点:陶瓷的结合键一般为强
固的离子键和共价键;显微组织的不均匀性和复
杂性
精细陶瓷的性能特点:
熔点高、密度小 化学稳定性好,抗腐蚀、抗氧化 高强度、高刚度、高硬度、耐磨损 具有一定的热强性(抗蠕变等) 绝缘性、压电性、半导体性、磁性等电特性 生物体适应性、催化剂等生物化学、化学的功能 光学功能及其他一些特殊功能 韧性、塑性很小,塑性变形能力差,易发生脆性破坏 加工成型性能较差
宽度、第二相分布、气孔尺寸、缺陷尺寸等均在
纳米量级的尺度上。
纳米陶瓷是当今陶瓷材料研究中一个 十分重要的发展趋向,它将促使陶瓷材料
的研究从工艺到理论、从性能到应用都提
高到一个崭新的阶段。
随着现代通讯、计算机、微电子、激光、机器 人制造、生物工程以及核技术等高技术领域的 飞速发展,对于功能陶瓷的要求愈来愈高
远在几干年前的新石器时代,我们的祖先就 已经用天然黏土作原料,塑造成各种器皿,再在
火堆中烧成坚硬的可重复使用的陶器,由于烧成
温度较低,陶瓷仅是一种含有较多气孔、质地疏 松的未完全烧成制品。
以后大约在2000年前的东汉晚期,人们 利用含铝较高的天然瓷土为原料,加上釉的 发明,以及高温合成技术的不断改进,使陶 瓷步入瓷器阶段,这是陶瓷技术发展史上意
成型方法 干压 压力法
溶剂体积 有机物体 成型压力 成型坯体 分数/% 积分数/% MPa 形状 0~4 1~2 10~50
等静压
热压
0~4
0 30~40 0 40~60 40~60 30~50
1~2
0 5~10 5~10 30~40 1~2 1~2 20~30
50~300
20~35 1~10 1~70 10~150 0.1~4 0.1~4 -
1、陶瓷材料的发展概况
陶瓷在人类生活和社会建设中是不 可缺少的材料,它和金属材料、高分子 材料并列为当代三大固体材料。
我国的陶瓷研究历史悠久、成就辉煌, 它是中华文明的伟大象征之一,在我国
的文化和发展史上占有极其重要的地位。
陶瓷的研究进程分为三个阶段
新石器时代 先进陶瓷阶段 纳米陶瓷阶段
新石器时代
主要由化合或还原-化合法、自蔓延高温合成法、 固相热分解法 多数元素直接合成法实际上是金属元素的燃烧,是 强烈的放热化学反应。利用这种反应热形成自蔓延 的燃烧过程制取化合物粉末,就称为自蔓延高温合 成法。 自蔓延高温合成法对于合成复杂氧化物有优势 3Cu+2BaO2+0.5Y2O3→YBa2Cu3O7-X ↓ O2
常用的机械制粉法为:滚动球磨、振动球磨搅动(高纯)球磨 和气流粉碎等。
工艺简单、成本低,但难于制取1μm以下的微细粉末
合成法
合成法是由离子、原子、分子通过反应、成核和 成长、收集后处理等手段获取微细粉末 此法是制取精细陶瓷的最常用方法,此法能制得 纯度高、均匀性好、颗粒微细(1微米以下)的 粉末 合成法的特点是纯度、粒度可控,均匀性,颗粒 微细;并可以实现颗粒在分子级水平上的复合、 均化 通常化学合成法包括固相法、液相法和气相法 制得粉末纯度高、均匀性好、颗粒细微(1μm以
简单 复杂 柱状 复杂 复杂 复杂 薄膜
塑性充模 30~40 塑性 挤出 注射 压滤 浆料 注浆 流延
干压:
适用于建筑陶瓷
优点:工艺简单,成型速度快,产量大
缺点:不能制备复杂形状的制品
等静压成型:
仅适用于具有对称结构的陶瓷制品 从各个方向加压,坯体密度分布均匀,压坯强度高, 烧结体积变化小,成品性能高
程制成的。 如常见的日用陶瓷、建筑陶瓷、电 瓷等传统陶瓷。
由于陶瓷的主要原料取之于自然界
的硅酸盐矿物(如黏土、长石、石英等),
所以可归为硅酸盐类材料和制品。 从原始瓷器的出现到近代的传统陶 瓷,这一阶段持续了四千余年。
先进陶瓷阶段
20世纪以来,随着人类对宇宙的探索、原子
能工业的兴起和电子工业的迅速发展,从性质、 品种到质量等方面,对陶瓷材料均提出越来越高 的要求。从而,促使陶瓷材料发展成为一系列具 有特殊功能的无机非金属材料。
相对这种用天然无机物烧结的传统陶瓷
精细陶瓷 (Fine Ceramics)又称先进陶瓷 (Advanced Ceramics): 以精制的高纯天然无机物或人工合成的 无机化合物为原料,采用精密控制的制
造加工工艺烧结,具有远胜过以往独特
性能的优异特性的陶瓷
在原料上,突破了传统陶瓷以粘土为主要原料 的界限,特种陶瓷一般以氧化物、氮化物、硅 化物、硼化物、碳化物等为主要原料。 在成分上,传统陶瓷的组成由粘土的成分决定, 所以不同产地和炉窑的陶瓷有不同的质地。由 于特种陶瓷的原料是纯化合物,因此成分由人 工配比决定,其性质的优劣由原料的纯度和工 艺,而不是由产地决定。
此时可认为,广义的陶瓷概念已
是用陶瓷生产方法制造的无机非金属