2.3数轴(1)

合集下载

七年级数学上册2.3数轴(含答案)

七年级数学上册2.3数轴(含答案)

数轴【学习目标】1.理解数轴的概念及三要素,能正确画出数轴;2.能用数轴上的点表示有理数,初步感受数形结合的思想方法;3.能利用数轴比较有理数的大小.【要点梳理】要点一、数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)定义中的“规定”二字是说原点的选定、正方向的取向、单位长度大小的确定,都是根据需要“规定”的.通常,习惯取向右为正方向.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.要点二、数轴的画法(1)画一条直线(通常画成水平位置);(2)在这条直线上取一点作为原点,这点表示0;(3)规定直线上向右为正方向,画上箭头;(4)再选取适当的长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…要点诠释:(1)原点的位置、单位长度的大小可根据实际情况适当选取.(2)确定单位长度时根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点.要点三、数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如.要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)一般地,在数轴上表示的两个数,右边的数总比左边的数大.【典型例题】类型一、数轴的概念及画法例1.下列各图中,能正确表示数轴的是()A. B.C. D.【思路点拨】根据数轴的三要素:原点、正方向、单位长度,即可解答.【答案】D【解析】解:由数轴的三要素:原点、正方向、单位长度,可知D正确;故选:D.例2.一只蚂蚁沿数轴从点A向右直爬15个单位到达点B,点B表示的数为﹣2,则点A所表示的数为()A. 15B. 13C. -13D.-17【答案】D【解析】设点A 所表示的数为x ,x+15=﹣2,解得:x=﹣17,故选:D .举一反三:【变式】如图为北京地铁的部分线路.假设各站之间的距离相等且都表示为一个单位长.现以万寿路站为原点,向右的方向为正,那么木樨地站表示的数为________,古城站表示的数为________;如果改以古城站为原点,那么木樨地站表示的数变为________.【答案】3,-5,8类型二、利用数轴比较大小例3.在数轴上表示2.5,0,,-1,-2.5,,3有理数,并用“<”把它连接起来. 【思路点拨】根据数轴的三要素先画好数轴,表示数的字母要依次对应有理数,然后根据在数轴上表示的两个数,右边的数总比左边的数大,比较大小. 【答案与解析】如图所示,点A 、B 、C 、D 、E 、F 、G 分别表示有理数2.5,0,,-1,-2.5,,3.由上图可得:举一反三:【变式1】有理数a 、b 在数轴上的位置如图所示,下列各式不成立的是( )A .b ﹣a >0B .﹣b <0C .﹣a >﹣bD .﹣ab <0 【答案】D 【变式2】填空: 大于且小于的整数有______个; 比小的非负整数是____________. 【答案】11;0,1,2,3例4.若p ,q 两数在数轴上的位置如下图所示,请用“<”或“>”填空.34-11434-114312.5101 2.5344-<-<-<<<<763-767533①p______q;②-p______0;③-p______-q;④-p______q;【答案】>;<;<;>【解析】根据相反数的几何意义,将p,q,-p,-q均表示在数轴上,如下图:然后再根据数轴上右边的数比左边的数大,及原点右边的点表示大于0的正数,而原点左边的点表示小于0的负数,可得上述答案.【巩固练习】一、选择题1.如图所示的数轴中,画得正确的是( )2.下列说法正确的是( )A.数轴上一个点可以表示两个不同的有理数B.数轴上的两个不同的点表示同一个有理数C.有的有理数不能在数轴上表示出来D.任何一个有理数都可以在数轴上找到与它对应的唯一点3. 如图所示,在数轴上点A表示的数可能是()A.1.5 B.-1.5 C.-2.6 D.2.64.如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是()A.点B与点DB. 点A与点CC. 点A与点DD. 点B与点C5.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这条数轴上任意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是( )A.2002或2003 B.2003或2004C.2004或2005 D.2005或20066.北京、纽约等5个城市的国际标准时间(单位:小时)可在数轴上表示如图若将两地国际标准时间的差简称为时差,则()A.首尔与纽约的时差为13小时B.首尔与多伦多的时差为13小时C .北京与纽约的时差为14小时D .北京与多伦多的时差为14小时 二、填空题7.不大于4的正整数的个数为 . 8.数轴上到-3的距离等于2的数是 ________.9.数轴上点A 、B 的位置如图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为 .10.长为2个单元长度的木条放在数轴上,最多能覆盖 个整数点.11.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B间的距离是 .(用含m ,n 的式子表示)12.已知-1<a <0<1<b ,请按从小到大的顺序排列-1,-a ,0,1,-b 为__________. 三、解答题13.把下列各数在数轴上表示出来,并用“>”号把它们连接起来.14.某中学位于东西方向的人民路上,这天学校的王老师出校门去家访,她先向东走100米到聪聪家,再向西走150米到青青家,再向西走200米到刚刚家.(1)如果把这条人民路看作一条数轴,以向东为正方向,以校门口为原点.请你在这条数轴上标出他们三家与学校的大概位置(一格表示50米). (2)聪聪家与刚刚家相距多远?(3)聪聪家向西210米是体育场,体育场所在的点表示的数是多少?15.在数轴上有三个点A 、B 、C (如图).请回答:(1)写出数轴上距点B 三个单位的点所表示的数;(2)将点C 向左移动6个单位到达点D ,用“<”号把A 、B 、D 三点所表示的数连接起来; (3)怎样移动A 、B 、C 中的两个点才能使三个点所表示的数相同(写出一种移动方法即可).【答案与解析】一、选择题1.【答案】B【解析】A错,没有正方向;B正确,满足数轴的三要素;C错,负数排列错误;D错,单位长度不统一.2.【答案】D【解析】A、B、C都错误,因为所有的有理数都能在数轴上表示出来,但数轴上的点不都表示有理一个有理数在数轴上只有一个表示它的点.数轴上表示有理数的点一个点对应一个有理数.3.【答案】C【解析】:∵点A位于﹣3和﹣2之间,∴点A表示的实数大于﹣3,小于﹣2.4.【答案】C.5.【答案】C【解析】若线段AB的端点与整数重合,则线段AB盖住2005个整点;若线段AB的端点不与整点重合,则线段AB盖住2004个整点.可以先从最基础的问题入手.如AB=2为基础进行分析,找规律,所以答案:C.6.【答案】B【解析】本题以“北京等5个城市的国际标准时间”为材料,编拟了一道与数轴有关的实际问题.从选项上分析可得:两个城市之间相距几个单位长度,两个点之间的距离即为时差.所以首尔与纽约的时差为14小时,首尔与多伦多的时差为13小时,北京与纽约的时差为13小时,北京与多伦多的时差为12小时,因此答案:B.二、填空题7.【答案】4个.【解析】解:如图所示:由数轴上4的位置可知:不大于4的正整数有1、2、3、4共4个.故答案为:4个.8.【答案】-5或-1【解析】若该数在-3的左边,这个数为-3-2=-5;若该数在-3右边,则该数为-3+2=-1;所以答案为:-5或-1.9.【答案】-5【解析】首先确定C点应在原点的左边即为负数,又点A与点B之间的距离为4,再由对成性得:点C表示的数为-5.10.【答案】3【解析】如图所示:长为2个单元长度的木条放在数轴上,最多能覆盖3个整数点.11.【答案】n-m【解析】∵n>0,m<0.∴它们之间的距离为:n-m12.【答案】-b<-1<0<-a<1三、解答题13.【解析】解:在数轴上表示出来如图所示.根据这些点在数轴上的排列顺序,从右至左分别用“>”连接为: +2>>0>-1.5>-2>14.【解析】解:(1)如图所示:;(2)150+200=350(米);(3)体育场所在点所表示的数是100﹣210=﹣110. 15.【解析】 解:(1)因为点B 所表示的数是-2,则距点B 三个单位的点所表示的数有-2-3=-5,-2+3=1; (2)点C 向左移动6个单位到达点D ,则点D 表示的数为-3,所以-4<-3<-2. (3)把A 点向右移动2个单位,C 点向左移动5个单位.(答案不唯一)1121-32。

七年级数学2.3 数轴(第1课时)教案

七年级数学2.3 数轴(第1课时)教案

2.3数轴(第一课时)姓名:教学内容:2.3数轴(1)授课班级:备课人:备课时间:【目标导航】掌握数轴的三要素,能正确画出数轴,会用数轴上的点表示有理数和无理数,能说出数轴的点所表示的数,在探究数与数轴上的点的对应关系过程中,初步体会“数形集合”的思想。

教学过程:【问题导学】活动一:类别数轴阅读课本第18页例1前的内容。

完成下列问题:1、叫数轴。

叫数轴的三要素。

2、数轴上的点表示的实际意义是什么?+3用数轴上位于原点___边___个单位的点表示,-4用数轴上位于原点___边___个单位的点表示,原点右边个单位的点表示____,原点左边1.5个单位的点表示_____.3、例1下列图形是数轴的是()练习:下列图形不是数轴的是()活动二:数轴的画法1、画一条数轴2、例2:下面图中的是不是数轴?为什么?各需要补充什么才是数轴?练习:下列图中所画的数轴是否正确,如不正确指出错误的原因。

-2031210-2活动三:用数轴上的点表示有理数 例3:在数轴上表示下列各数:—3,0,412,—112,212,+7请同学们认真看课本第12—13页内容,思考:练习1:分别指出数轴上点A 、B 、C 、D 、E 所表示的数。

EDC BA -42、如图,在数轴上点A 可能表示( )A 、1.5B 、-1.5C 、2.5D 、-2.53、如图,数轴上的点A 向左移动2个单位长度得到点B ,则点B 表示的数是活动四:在数轴上画出无理数 1、画出面积为2的正方形边长2、画出圆周率【本课小结】【迁移应用】学习指导丛书9-10页 【教后反思】2.3数轴巩固练习(第一课时)姓名:一、判断下列说法是否正确(每题2分,共8分)1、数轴上的点表示一个数()2、数轴上表示3的点只有一个()3、数轴上到原点距离等于2个单位长度的点表示的数是2 ()4、-5可以用数轴上原点左边第5个单位长度的点表示()二、想一想、填一填(每题3分,共12分)1、数轴的三要素是2、在数轴上表示-5的点到原点的距离是3、在数轴上,离开原点4个单位长度的点表示的数是4、一跳蚤在一直线上从0开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,...依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是个单位。

2.3数轴(1)2013.09.06

2.3数轴(1)2013.09.06

,
②在A,C两点之间的整数有

例3.在数轴上画出表示下列各 数的点:
5,—3, 0 ,2 ,—1.5
-3 -2 -1 0 1 2 3 4 5
做一做
面积为2的正方形的边长a是无理数,如何在 数轴上画出表示a的点?
1.将边长为a的正方形放在数轴上(如图); 2.以原点为圆心,a为半径,用圆规画出数轴 上的一个点A.
8. 下列命题正确的是(B ) A:数轴上的点都表示整数。 B:数轴上表示5与-5的点分别在原点的
两侧,并且到原点的距离都等于5个 单位长度。 C:数轴包括原点与正方向两个要素。 D:数轴上的点只能表示正数和零。
7.数轴上有A、B两点,若点A对应的数是 -2且A、B两点的距离为4,则点B对应的 是________. 8.已知数轴上有A、B两点,A、B之间的距 离为1,点A与原点O的距离为3,那么点B对 应的数是________.
距原点的距离是 2个单位长度,表示6的点在 原点的 右 侧,距原点的距离是 6个单位长。度
2、判断 数轴上的两个点可以表示同一个有理数 (X)
3、填空: 在数轴上,表示数-2,2.6,
2 1 的点中,在原点左边的点有
4
1 5
,
0,
4
1 5
个.
,-1
5
4、在数轴上点A表示 - 4,如果把点A向右移动1.5个
点A就表示无理数a.
做一做
怎样用数轴上的点表示圆周率π? 1.画一个直径为1的圆片,将圆片上的点A放 在原点处; 2.把圆片沿数轴向右滚动一周,点A到达的位 置点A′表示的数就是π.
结论: 有理数和无理数都可以用 数轴上的点表示;
反过来,数轴上的任意一点都表 示一个有理数或无理数.

七年级数学上册2.3数轴学好数轴,用好数轴

七年级数学上册2.3数轴学好数轴,用好数轴

学好数轴,用好数轴数轴形象地反映了数与点之间的关系,实现了“数”与“形”的结合,它可以帮助我们直观地理解有理数的意义.因此,学习有理数,一定要学好数轴,用好数轴.一、学好数轴1、数轴的概念:略.2、数轴的画法:(1)直线一般画成水平的,通常取向右的方向为正方向;(2)将表示刻度的点用短竖线表示,相应的数如0、±1、±2、…写在数轴的下方;将需要在数轴上表示出的数或字母写在数轴的上方,相应的点表示为实心小圆点.例:在数轴上表示出下列各数:3-、0,1.5,113-.规范的表示如右图.3、学习数轴时应注意的问题:(1)画数轴时,原点、正方向和单位长度这三个要素缺一不可,以下几种画法都是错误的.(想一想:为什么?)(2)所有的有理数都可以用数轴上的点来表示,但反过来,数轴上的点并不都表示有理数.(还可以表示无理数,以后将学到)二、用好数轴1、利用数轴加深对有理数的认识(1)正确认识0随着负数的引进,数的范围扩大了,0除了表示一个也没有外,还是正数与负数的分界,它既不是正数也不是负数,它是整数.(2)正确认识整数在数轴上原点和单位长度整数倍的点表示的都是整数。

没有最小的整数,也没有最大的整数;最大的负整数是-1,最小的正整数是1.(3)正确理解正数、负数在数轴上,原点左边的所有点都表示负数,且越往左数越小;原点右边的所有点都表示正数,且越往右数越大.从数轴上可以看出,没有最小的负数,没有最大的负数,同样,没有最小的正数,也没有最大的正数.2、利用数轴探究问题例1 如图,在数轴上从-1到1有3个整数,它们是-1,0,1;从-2到2有5个整数,它们是-2,-1,0,1,2;……,则从-100到100有个整数。

析解:原点左边和右边各有100个整数,加上原点表示的0,共有201个整数.例2 已知数轴上的点A所表示的数是2,那么在数轴上到点A的距离是3的点所表示的数是.析解:在点A的左边和右边各有一个到它的距离等于3的点,因此符合条件的数有两个,分别是5和-1.由上面可以看出:有理数都可以用数轴上的点来表示,利用数轴可以加深对有理数的认识,解决与有理数有关的问题;反过来,通过对有理数的学习,又进一步加深了对数轴的理解和认识,这就是数学学习中重要的数形结合思想.在后面的学习中,我们还将利用数轴来学习相反数、绝对值的意义及比较两个有理数的大小,希望大家认真领会.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为( )A .54°B .64°C .74°D .26°2.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为 ( ) A .6B .7C .8D .93.如图,已知11(,)3A y ,2(3,)B y 为反比例函数1y x图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .1(,0)3B .4(,0)3C .8(,0)3D .10(,0)34.如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx+c 的大致图象为( )A .B .C .D .5.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°6.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C为»AB上一点(不与O、A两点重合),则cosC的值为()A.34B.35C.43D.457.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30°B.40°C.50°D.60°8.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE 的度数是()A.26°.B.44°.C.46°.D.72°9.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是().A .25︒B .30︒C .35︒D .40︒10.在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A′的坐标是( ) A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1)11.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个12.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD=∠ACB B .∠ADB=∠ABC C .AB 2=AD•ACD .AD ABAB BC= 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解, 则a 的取值范围是 ________.14.正多边形的一个外角是72o ,则这个多边形的内角和的度数是___________________. 15.如图,直线y =k 1x +b 与双曲线2k y=x交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <2k x+b 的解集是 ▲ .16.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n =_____.17.如图,在△ABC中,DE∥BC,1 = 2ADDB,则ADEBCEDV的面积四边形的面积=_____.18.如图,直线4y x=+与双曲线kyx=(k≠0)相交于A(﹣1,a)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.20.(6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 24 1每人月工资(元)21000 8400 2025 2200 1800 1600 950请你根据上述内容,解答下列问题:该公司“高级技工”有名;所有员工月工资的平均数x为2500元,中位数为元,众数为元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.21.(6分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图.九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校2000 名学生所捐图书的数量.22.(8分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?23.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F ,连接CF ,求证:AF=DC ;若AB ⊥AC ,试判断四边形ADCF的形状,并证明你的结论.24.(10分)如图,M 、N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M 、N 两点之间的直线距离,选择测量点A 、B 、C ,点B 、C 分别在AM 、AN 上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M 、N 两点之间的距离.25.(10分)如图,抛物线y =ax 2+bx+c (a >0)的顶点为M ,直线y =m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶.由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是_____.抛物线y =212x 对应的准蝶形必经过B (m ,m ),则m =_____,对应的碟宽AB 是_____.抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1.①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (x p ,y p ),使得∠APB 为锐角,若有,请求出y p 的取值范围.若没有,请说明理由.26.(12分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?27.(12分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】 【分析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数. 【详解】∵四边形ABCD 为菱形, ∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO , 在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA), ∴AO =CO , ∵AB =BC , ∴BO ⊥AC , ∴∠BOC =90°, ∵∠DAC =26°,∴∠BCA =∠DAC =26°, ∴∠OBC =90°﹣26°=64°. 故选B . 【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质. 2.A 【解析】试题分析:根据多边形的外角和是310°,即可求得多边形的内角的度数为720°,依据多边形的内角和公式列方程即可得(n ﹣2)180°=720°,解得:n=1. 故选A .考点:多边形的内角和定理以及多边形的外角和定理【解析】【分析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.【详解】Q 把11(,)3A y,2(3,)B y 代入反比例函数1y x = ,得:13y =,213y =, 11(,3),(3,)33A B ∴, Q 在ABP ∆中,由三角形的三边关系定理得:AP BP AB -<,∴延长AB 交x 轴于P',当P 在P'点时,PA PB AB -=,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y kx b =+,把A ,B 的坐标代入得:133133k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩, 解得:101,3k b =-=, 1215x ->∴直线AB 的解析式是103y x =-+, 当0y =时,103x =,即10(,0)3P , 故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.【解析】【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】∵a <0,∴抛物线的开口方向向下,故第三个选项错误;∵c <0,∴抛物线与y 轴的交点为在y 轴的负半轴上,故第一个选项错误;∵a <0、b >0,对称轴为x=2b a>0, ∴对称轴在y 轴右侧,故第四个选项错误.故选B .5.A【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.6.D【解析】【详解】如图,连接AB ,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴4 cos cos5OBC ABOAB=∠==.故选D.7.C【解析】【分析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC绕点C顺时针旋转得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故选C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.8.A【解析】【分析】先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.【详解】解:∵图中是正五边形.∴∠EAB=108°.∵太阳光线互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故选A.【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.9.B【解析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形, ∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.考点:3.线段垂直平分线性质;3.轴对称作图.10.D【解析】【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为12,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.11.C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.12.D【解析】【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2a ≥-【解析】【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】3122x a x x ->⎧⎨->-⎩①②, 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故答案是:a≥-2.【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤.. 14.540°【解析】【详解】根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和15.-2<x <-1或x >1.【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质. 不等式k 1x <2k x +b 的解集即k 1x -b <2k x的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y =k 1x -b 在双曲线2k y=x下方的自变量x 的取值范围即可.而直线y =k 1x -b 的图象可以由y =k 1x +b 向下平移2b 个单位得到,如图所示.根据函数2k y=x 图象的对称性可得:直线y =k 1x -b 和y =k 1x +b 与双曲线2k y=x的交点坐标关于原点对称. 由关于原点对称的坐标点性质,直线y =k 1x -b 图象与双曲线2k y=x图象交点A′、B′的横坐标为A 、B 两点横坐标的相反数,即为-1,-2. ∴由图知,当-2<x <-1或x >1时,直线y =k 1x -b 图象在双曲线2k y=x 图象下方. ∴不等式k 1x <2k x +b 的解集是-2<x <-1或x >1. 16.1【解析】【分析】 根据白球的概率公式44n +=13列出方程求解即可. 【详解】不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个, 根据古典型概率公式知:P (白球)=44n +=13. 解得:n=1,故答案为1.【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 17.18【解析】【分析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题. 【详解】解:∵DE∥BC,AD1=DB2,∴AD1= AB3,由平行条件易证△ADE~△ABC, ∴S△ADE:S△ABC=1:9,∴ADE S ADEBCED S ABC S ADE V VV V的面积四边形的面积=-=18.【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.18.(0,52).【解析】试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+52,则与y轴的交点为:(0,52).考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)m≥﹣;(2)m的值为2.【解析】【分析】(1)根据方程有两个相等的实数根可知△>1,求出m的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【详解】(1)由题意知,(2m+2)2﹣4×1×m2≥1,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m2,∵α+β+αβ=1,∴﹣(2m+2)+m2=1,解得:m1=﹣1,m1=2,由(1)知m≥﹣,所以m1=﹣1应舍去,m的值为2.【点睛】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=﹣,x1x2=是解答此题的关键.20.(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)y能反映该公司员工的月工资实际水平.【解析】【分析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(4)2500502100084003171346y ⨯--⨯=≈(元). y 能反映该公司员工的月工资实际水平.21.(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书.【解析】【分析】(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;(2)根据条形统计图求出捐4本的人数为,再画出图形即可;(3)用360°乘以所捐图书是6本的人数所占比例可得;(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可.【详解】(1)∵捐 2 本的人数是 15 人,占 30%,∴该班学生人数为 15÷30%=50 人;(2)根据条形统计图可得:捐 4 本的人数为:50﹣(10+15+7+5)=13; 补图如下;(3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为 360°×550=36°. (4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=15750, ∴全校 2000 名学生共捐 2000×15750=6280(本),答:全校2000 名学生共捐6280 册书.【点睛】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.22.(4)60;(4)作图见试题解析;(4)4.【解析】试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.试题解析:(4)被调查的学生人数为:44÷40%=60(人);(4)喜欢艺体类的学生数为:60-44-44-46=8(人),如图所示:全校最喜爱文学类图书的学生约有:4400×2460=4(人).考点:4.条形统计图;4.用样本估计总体;4.扇形统计图.23.(1)见解析(2)见解析【解析】【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形24.1.5千米【解析】【分析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC与△AMN中,305549ACAB==,151.89AMAN==,∴AC AM AB AN=,∵∠A=∠A,∴△ABC∽△ANM,∴AC AMBC MN=,即30145MN=,解得MN=1.5(千米) ,因此,M、N两点之间的直线距离是1.5千米. 【点睛】此题考查相似三角形的应用,解题关键在于掌握运算法则25.(1)MN 与AB 的关系是:MN ⊥AB ,MN =12AB ,(2)2,4;(2)①y =13x 2﹣2;②在此抛物线的对称轴上有这样的点P ,使得∠APB 为锐角,y p 的取值范围是y p <﹣2或y p >2.【解析】【分析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B (m ,m ),代入抛物线解析式进而得出m 的值,即可得出AB 的值;(2)①根据题意得出抛物线必过(2,0),进而代入求出答案;②根据y =13x 2﹣2的对称轴上P (0,2),P (0,﹣2)时,∠APB 为直角,进而得出答案. 【详解】(1)MN 与AB 的关系是:MN ⊥AB ,MN =12AB , 如图1,∵△AMB 是等腰直角三角形,且N 为AB 的中点,∴MN ⊥AB ,MN =12AB , 故答案为MN ⊥AB ,MN =12AB ;(2)∵抛物线y =212x 对应的准蝶形必经过B (m ,m ), ∴m =12m 2, 解得:m =2或m =0(不合题意舍去), 当m =2则,2=12x 2, 解得:x =±2, 则AB =2+2=4;故答案为2,4;(2)①由已知,抛物线对称轴为:y轴,∵抛物线y=ax2﹣4a﹣53(a>0)对应的碟宽在x 轴上,且AB=1.∴抛物线必过(2,0),代入y=ax2﹣4a﹣53(a>0),得,9a﹣4a﹣53=0,解得:a=13,∴抛物线的解析式是:y=13x2﹣2;②由①知,如图2,y=13x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,y p的取值范围是y p<﹣2或y p>2.【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.26.(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人.【解析】【分析】(1)根据条形统计图,求个部分数量的和即可;(2)根据部分除以总体求得百分比;(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解.【详解】(1)4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查.(2)最喜欢足球活动的有10人,10=20%50, ∴最喜欢足球活动的人占被调查人数的20%.(3)全校学生人数:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)则全校学生中最喜欢篮球活动的人数约为2000×1850=720(人). 【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.27.电视塔OC高为米,点P的铅直高度为)10013(米).【解析】【分析】过点P 作PF ⊥OC ,垂足为F,在Rt △OAC 中利用三角函数求出,根据山坡坡度=1:2表示出PB =x , AB =2x, 在Rt △PCF 中利用三角函数即可求解.【详解】过点P 作PF ⊥OC ,垂足为F .在Rt △OAC 中,由∠OAC =60°,OA =100,得OC =OA•tan ∠OAC =(米), 过点P 作PB ⊥OA ,垂足为B .由i =1:2,设PB =x ,则AB =2x .∴PF =OB =100+2x ,CF =﹣x .在Rt △PCF 中,由∠CPF =45°,∴PF =CF ,即100+2x =x , ∴x=1003 ,即PB=1003米.【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.。

2.3数轴1

2.3数轴1

1
1
做一做: 怎样用数轴上的点表示圆周率 π ?
-2 -1 o 1 2 3A’ 4
1.画一个直径为1的圆片,将圆片上的点A放在原点处; 2.把圆片沿数轴向右滚动一周,点A到达的位置点A′表示的数 就是π.
小结:
有理数与无理数都能用数轴上的点来表示. 反之,数轴上的任意一点都表示一个有理数
与无理数.它们是一一对应的!
第二章
初中数学 七年级(上册)
2.3 数轴(1)
情景导入 在小学里,我们会根据直线上的一个点的位置写 出合适的数,也会在直线上画出表示一个数的点. 试一试:把图中直线上的点所表示的数写在 相应的方框里.
像这样一条直线我们把它叫做数轴.
画数轴,认识数轴 312..取画把适一这当条长水直度平线为直上单线从位,原长并点度在向;这右在条的直直方线线向上上规从任定原取为点一正向点方右表向每示(隔用0箭, 一我头个们表单把示位这),长点向度称左取为的一原方点点向,O依规;次定表为示负1方, 2向, 3;······,从原点向 左每隔一个单位长度取一点,依次表示-1, -2, -3······
练一练 1.在数轴上,不在原点左边的点表示的数是( ) A.正数 B.负数 C.非正数 D.非负数
2.在数轴上有A、B两点,A点在原点的左边,而且距 离原点6个单位,则A点表示 ;B点与A点在原点 的两侧,而且相距10个单位,则B点表示 .
练一练
3.在数轴上,从表示2的点出发,先向右移动3个单位,
再向左移动6个单位,则终点表示的数是
.
4.一个蚂蚱在数轴上跳动,先从A点向左跳一个单位
到B点,然后由B点向右跳两个单位到C点. 如果C点
表示的数是-3,则A点表示的数是
.

2.3.1数轴(1)ppt课件

2.3.1数轴(1)ppt课件
-5 -4 -3 -2 -1 0 1 2 3 4 5 6
这条直线与温度计有共同点吗? 这条直线有什么特点吗?
做一做
像这样规定了原点、正方向和单
位长度的直线叫做数轴.
1.画一条水平直线,并在这条直线上取一点表
示0,我们把这个点称为原点;
2.规定直线上从原点向右为正方向(画箭头表 示),向左为负方向;
今天我们学习了什么?
1.你知道什么是数轴吗? 2.数轴上,会不会有两个点表示同一个有理数? 会不会有一个点表示两个不同的数?
c
0a
b
思考1:如图,分别指出数轴上点a、b、c所 表示数的是正数、负数还是0.
你能用“<”把a、b、c连起来吗?
思考2:
A
EB C
D
数轴上有A、B、C、D 、E点.
1.如果B表示原点,请写出A、C、D、E所表示的数. 2.如果E表示原点,请写出A、C、D、B所表示的数. 3.如果C表示-2,请写出A、B、D、E所表示的数.
30 25 20 15 10
5 0 -5 -10
30 25 20 15 10
5 0 -5 -10
30 25 20 15 10
5 0 -5 -10
温度计
学生观察温度计后回答下列问题:

25
25
②零下10℃怎样表示? 20
20
20
15
15
15
10
10
10
③0℃怎样表示?
A
EB C
D
-5 -4 -3 -2 -1 0 1 2 3 4 5 6
3.与点B相距2个单位点对应的数是多少?
面积为2的正方形的边长a是无理数,如何在数轴 上画出表示a的点? 你能数上轴画出表示-a的点?

七年级数学上册2.3数轴知识点解读

七年级数学上册2.3数轴知识点解读

《数轴》知识点解读知识点1 数轴(重点)1.数轴的概念画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度.规定直线上向右的方向为正方向,就得到数轴。

如下图2.数轴的画法(1)画直线、定原点:通常原点选在直线中间,若问题中负数的个数较多时,原点选靠右些;正数的个数较多时,原点选的靠左些.(2)定方向:通常取原点向右的方向为正方向.(3)定单位长度:选取适当的长度(如0.5cm)为单位长度,若在数轴上表示是0.0001和-0.0004则可取一个单位长度为0.0001;在数轴上表示3000与-4000,则可规定一个单位长度为1000.(4)标数:在数轴上依次标出1,2,3,4,-1,-2,-3,-4等各点.3.任何一个有理数都可以用数轴上的一个点来表示.注意:(1)在取原点位置和确定单位长度时,要根据题目的不同特点,灵活选取.(2)所有的有理数都可以用数轴上的点来表示,但数轴上的点不都可以表示有理数.(今后要学的无理数也可以用数轴上的点来表示)【例1】指出下图中的数轴上各点表示的数.解析读出在数轴上的点表示的有理数分两步:(1)根据点在原点的左右边确定有理数的符合;(2)根据点与原点的距离确定数值.答案 A点表示-212;B点表示-1,C点表示0;D点表示2;E点表示212.【类型突破】画出数轴,并用数轴上的点来表示下列各数:+4,-2,-4.5,113,0.答案知识点2 有理数大小的比较(重点)利用数轴可比较有理数的大小,即(1)在数轴上表示的两个数,右边的数总比左边的数大.(2)由正数、负数、0在数轴上的位置可知:正数都大于0,负数都小于0,正数大于一切负数.提示:正负数的表示方法:因为正数都大于0,反过来,大于0的数都是正数,所以可用a>0表示a是正数;反之,知道a是正数也可以表示为a>0.同理,a<0表示a是负数;反之,a是负数也可以表示为a<0.【例2】将下列各数在数轴上描出其对应点,并用“<”将它们连接起来.-312,3,-2,32,-0.5,12,1,0.解析将给出的数在数轴上表示出来,再根据数轴上两个点表示的数,右边的总比左边的大的规律来比较大小.答案在数轴上表示如下图所示.用“<”连接为:113 320.5013 222-<-<-<<<<<方法总结:比较数的大小时,利用数轴,把这些数用数轴上的点来表示,根据右边的总比左边的大比较,这种方法是数学结合思想的初步运用.【类型突破】写出所以大于132-而小于314的整数 .答案 -3,-2,-1,0,12019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如图①,在边长为a 的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部分拼成一个梯形(如图②),利用这两个图形的面积,可以验证的等式是( )A .a 2+b 2=(a +b)(a -b)B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .a 2-b 2=(a +b)(a -b)2.某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x 元/kg ,加工后的单价是y 元/kg ,由题意,可列出关于x ,y 的方程组是( )A .()()120%300110%300240y xy x =-⎧⎪--=⎨⎪⎩B .()()120%300110%300240y xy x =-⎧⎪+-=⎨⎪⎩C .()()120%300110%300240y x y x =+⎧⎪+-=⎨⎪⎩D .()()120%300110%300240y x y x =+⎧⎪--=⎨⎪⎩3.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率为( ) A .12B .512C .13D .1124.如图,直线AB 和CD 相交于点O ,∠AOD 和∠BOC 的和为202°,那么∠AOC 的度数为( )A .89°B .101°C .79°D .110°5.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 斛,1 个大桶加上 5 个小桶可以盛酒 2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是( )A.5253x yx y+=⎧⎨+=⎩B.5352x yx y+=⎧⎨+=⎩C.5352x yx y+=⎧⎨=+⎩D.5=+352x yx y⎧⎨+=⎩6.下列命题是假命题的为()A.在同一平面内,不重合的两条直线不相交就平行B.若a2=b2,则a=bC.若x=y,则|x|=|y| D.同角的补角相等7.下列事件是不可能事件的是()A.投100次硬币正面都朝上B.太阳从西边升起C.一个星期有7天D.某次考试全班原来最后一名同学考试成绩为满分8.已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为()A.3 B.5 C.6 D.109.观察下列一组图形中的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是()A.31 B.46 C.51 D.6610.如图,直线//b,下列各角中与相等的是()A.B.C.D.二、填空题题11.计算225-()=_________.12.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.13.已知关于x 的不等式组0{321x a x -≥-≥-的整数解共有5个,则a 的取值范围是 .14.若||1m m =+,则2011(41)m +=________.15.若2225x kx ++是完全平方式,则k =__________.16.如图1是长方形纸袋,将纸袋沿EF 折叠成图2,再沿BF 折叠成图3,若∠DEF=α,用α表示图3中∠CFE 的大小为 _________ .17.分解因式:ab 2﹣4ab+4a= . 三、解答题 18.阅读材料:某些代数恒等式可用一些卡片拼成的图形的面积来解释.例如,图①可以解释2222()a ab b a b ++=+,因此,我们可以利用这种方法对某些多项式进行因式分解.根据阅读材料回答下列问题:(1)如图②所表示的因式分解的恒等式是________________________.(2)现有足够多的正方形和长方形卡片(如图③),试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的长方形(每两张卡片之间既不重叠,也无空隙),使该长方形的面积为2232a ab b ++,并利用你画的长方形的面积对2232a ab b ++进行因式分解.19.(6分)已知:如图1,AB ∥CD ,点E ,F 分别为AB ,CD 上一点.(1)在AB ,CD 之间有一点M (点M 不在线段EF 上),连接ME ,MF ,试探究∠AEM ,∠EMF ,∠MFC 之间有怎样的数量关系.请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明. (2)如图2,在AB ,CD 之间有两点M ,N ,连接ME ,MN ,NF ,请选择一个图形写出∠AEM ,∠EMN ,∠MNF ,∠NFC 存在的数量关系(不需证明).20.(6分)在如图所示的网格中,将△ABC 先向右平移4格得到△A 1B 1C 1,再将△A 1B 1C 1绕点A 1逆时针旋转90°得到△A 1B 1C 1,请依次画出△A 1B 1C 1和△A 1B 1C 1.21.(6分)先化简,再求值: (22(1)3(3)(3)(5)(2)x x x x x +--+++-,其中: 1)x =-.22.(8分)已知如图1,在ABC ∆中,AD 是BAC ∠的角平分线,AE 是BC 边上的高,30,70ABC ACB ∠=∠=.(1)求DAE ∠的度数.(2)如图2,若点F 为AD 延长线上一点,过点F 作FG BC ⊥于点G ,求AFG ∠的度数.23.(8分)某校组织七年级全体学生举行了“汉字听写”比赛,每位学生听写汉字39个,随机抽取了部分学生的听写结果,绘制成如下的图表. 组别 正确字数x 人数 A 0≤x <8 10 B 8≤x <16 15 C 16≤x <24 25 D 24≤x <32 m E32≤x <40n根据以上信息完成下列问题:(1)由统计表可知m+n= ,并补全条形统计图. (2)扇形统计图中“C 组”所对应的圆心角的度数是 .(3)已知该校七年级共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该年级本次听写比赛不合格的学生人数.24.(10分)如图,CE 平分ACD ∠,F 为CA 延长线上一点,FG CE 交AB 于点G ,100ACD ∠=,20AGF ∠=,求B 的度数.25.(10分)如图, △ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,垂足为点E.(1)求∠BAD的度数;(2)若BD=2 cm,试求DC的长度.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】根据左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),利用面积相等即可解答.【详解】∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),∴a2-b2=(a+b)(a-b).故选D.【点睛】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.2.D【解析】【分析】根据题意可以列出相应的方程组,从而可以解答本题. 【详解】解:由题意可得,()()120%300110%300240y x y x ⎧=+⎪⎨--=⎪⎩, 故选:D . 【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 3.D 【解析】 【分析】首先根据概率的定义公式,判断出m=5,n=60,即可得出P 为112. 【详解】根据概率的定义公式P(A)= m n得知,m=5,n=60 则P=560=112. 故答案为D. 【点睛】此题主要考查对概率定义的理解运用. 4.C 【解析】试题分析:根据对顶角相等及∠AOD 和∠BOC 的和为202°,即可求得结果. 由图可知∠AOD=∠BOC , 而∠AOD+∠BOC=202°, ∴∠AOD=101°,∴∠AOC=180°-∠AOD=79°, 故选C.考点:本题考查的是对顶角,邻补角点评:解答本题的关键是熟练掌握对顶角相等,邻补角之和等于180°. 5.B【解析】【分析】设一个大桶盛酒x斛,一个小桶盛酒y斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”即可得出关于x、y的二元一次方程组.【详解】设一个大桶盛酒x 斛,一个小桶盛酒y 斛,根据题意得:5352x yx y+=⎧⎨+=⎩,故选B.【点睛】根据文字转化出方程条件是解答本题的关键.6.B【解析】【分析】根据两直线的位置关系、等式的性质,同角的补角等知识进行判断即可.【详解】解:A、在同一平面内,不重合的两条直线不相交就平行,是真命题;B、若a2=b2,则a=b或a=﹣b,是假命题;C、若x=y,则|x|=|y|,是真命题;D、同角的补角相等,是真命题;故选B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.B【解析】【分析】不可能事件就是一定不会发生的事件,依据定义即可作出判断.【详解】A、投100次硬币正面都朝上,是随机事件,故本项错误;B、太阳从西边升起,是不可能事件,本项正确;C、一个星期有7天,是必然事件,本项错误;D、某次考试全班原来最后一名同学考试成绩为满分,是随机事件,故本项错误,故选:B.【点睛】本题考查不可能事件,解题的关键是熟练掌握不可能事件的定义.8.D【解析】【详解】∵四边形OPEF≌四边形ABCD∴PE=BC=10,故选D.【点睛】本题考查全等形的性质,对应边相等,对应角相等,能正确地找到对应边是解题的关键.9.B【解析】试题分析:由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n个图有1+1×3+2×3+3×3+…+3n个点.解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=1.故选B.考点:规律型:图形的变化类.10.C【解析】【分析】根据平行线的性质和对顶角的定义,即可解答.【详解】∵直线//b∴∠1=∠6(两直线平行,同位角相等)∴∠6=∠4(对顶角相等)故选:C.【点睛】此题考查平行线的性质,对顶角,解题关键在于掌握其性质定理.二、填空题题1152【解析】【分析】2(),再判断25-=-2525和.【详解】<因为252-=-=-()25255252【点睛】此题考查的是二次根式的性质和去绝对值.12.如果两个角互为对顶角,那么这两个角相等【解析】【分析】根据命题的形式解答即可.【详解】将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故答案为:如果两个角互为对顶角,那么这两个角相等.【点睛】此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.13.-3<a≤-1【解析】【详解】∵解不等式组得:a≤x≤1,∵不等式组的整数解有5个,∴整数解为:1,1,0,-1,-1,∴-3<a≤-1.故答案为-3<a≤-1.14.1-【解析】【分析】根据条件|m|=m+1进行分析,m 的取值可分三种条件讨论,m 为正数,m 为负数,m 为0,讨论可得m 的值,代入计算即可.【详解】解:根据题意,可得m 的取值有三种,分别是:当m >0时,则||1m m =+可转换为m=m+1,此种情况不成立.当m=0时,则||1m m =+可转换为0=0+1,此种情况不成立.当m <0时,则||1m m =+可转换为-m=m+1,解得,m=12-. 将m 的值代入,则可得(4m+1)2011=[4×(12-)+1]2011=-1. 故答案为:-1.【点睛】本题考查了含绝对值符号的一元一次方程和代数式的求值.解题时,要注意采用分类讨论的数学思想. 15.5±【解析】【分析】【详解】解:∵2225x kx ++是完全平方式,可能是完全平方和,也可能是完全平方差,∴222225(5)1025x kx x x x ++=±=±+,∴210k =±,∴5k =±.故答案为:±1.【点睛】解本题时需注意,一个完全平方式可能是“两个数的完全平方和”,也可能是“两个数的完全平方差”,解题时,两种情况都要考虑,不能忽略了其中任何一种.16.180°-3α.【解析】【分析】先根据进行的性质得AD ∥BC ,则∠BFE=∠DEF=α,根据折叠的性质,把如图1中的方形纸袋沿EF 折叠成图2,则∠MEF=α,把图2沿BF 折叠成图3,则∠MFH=∠CFM ,根据平行线的性质由FH ∥MG 得到∠MFH=180°-∠FMG ,再利用三角形外角性质得∠FMG=∠MFE+∠MEF=2α,则∠MFH=180°-2α,所以∠CFM=180°-2α,然后利用∠CFE=∠CFM-∠EFM 求解.【详解】如图:在图1中,∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠BFE=∠DEF=α,∵如图1中的方形纸袋沿EF 折叠成图2,∴∠MEF=α,∵图2再沿BF 折叠成图3,∴在图3中,∠MFH=∠CFM ,∵FH ∥MG ,∴∠MFH=180°-∠FMG ,∵∠FMG=∠MFE+∠MEF=α+α=2α,∴∠MFH=180°-2α,∴∠CFM=180°-2α,∴∠CFE=∠CFM-∠EFM=180°-2α-α=180°-3α.17.a (b ﹣1)1.【解析】ab 1﹣4ab+4a=a (b 1﹣4b+4)﹣﹣(提取公因式)=a (b ﹣1)1.﹣﹣(完全平方公式)故答案为a (b ﹣1)1.三、解答题18.(1)2222()a ab a a b +=+;(2)2232()(2)a ab b a b a b ++=++【解析】【分析】(1)根据面积的不同表示方法,列式可得结果;(2)根据所给式子可知有1张1号卡片,2张2号卡片,3张3号卡片,然后进行拼接,根据面积计算方法列式即可.【详解】(1)根据面积的不同表示方法可得:2222()a ab a a b +=+;(2)此题画法不唯一,如下:2232()(2)a ab b a b a b ++=++.【点睛】本题考查了因式分解的几何背景,熟知用面积的不同表示方法进行验证是解答此题的关键.19.(1)∠EMF=∠AEM+∠MFC,∠AEM+∠EMF+∠MFC=360°(2)第一图数量关系:∠EMN+∠MNF-∠AEM-∠NFC=180°.第二图数量关系:∠EMN-∠MNF+∠AEM+∠NFC=180°.【解析】试题分析:(1)分点M在EF的左侧和右侧两种情况,当点M在EF的左侧时,如图,∠EMF=∠AEM+∠MFC,过点M作MP∥AB,可得AB∥CD∥MP,根据平行线的性质可得∠4=∠3,∠1=∠2,即可证得∠EMF =∠AEM+∠MFC;当点M在EF的右侧时,类比左侧的方法即可证得∠AEM+∠EMF+∠MFC=360°;(2)类比(1)的方法作平行线,利用平行线的性质即可解决.试题解析:(1)∠EMF=∠AEM+∠MFC.证明:过点M作MP∥AB.∵AB∥CD,∴MP∥CD.∴∠4=∠3.∵MP∥AB,∴∠1=∠2.∵∠EMF=∠2+∠3,∴∠EMF=∠1+∠4.∴∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°证明:过点M作MQ∥AB.∵AB∥CD,∴MQ∥CD.∴∠CFM+∠1=180°.∵MQ∥AB,∴∠AEM+∠2=180°.∴∠CFM+∠1+∠AEM+∠2=360°∵∠EMF=∠1+∠2∴∠AEM+∠EMF+∠MFC=360°.(2)第一图数量关系:∠EMN +∠MNF -∠AEM -∠NFC =180°.第二图数量关系:∠EMN -∠MNF +∠AEM +∠NFC =180°.点睛:本题主要考查了平行线的性质,正确的做出辅助线,熟练运用平行线的性质是解决本题的关键. 20.见解析【解析】【分析】首先确定A 、B 、C 三点向右平移4个单位的对应点位置,然后再连接即可;利用旋转的性质得出各对应点位置,再顺次连结即可求解.【详解】如图所示:△A 1B 1C 1和△A 1B 1C 1即为所求.【点睛】本题考查了作图﹣﹣平移变换、旋转变换,关键是正确确定组成图形的关键点平移和旋转后的对应点的位置.21.12【解析】【分析】首先利用完全平方公式、平方差公式以及整式乘法进行化简,然后将x=-1代入即可求出.【详解】解:原式()()22222139310x x x x x =++--++-222242327310x x x x x =++-+++-719x =+当1x =-时,原式71912=-+=.【点睛】此题主要考查利用完全平方公式、平方差公式进行运算,熟练掌握运算法则,即可解题.22.(1)20DAE ∠=°;(2) 20AFG ∠=.【解析】【分析】(1)根据30,70ABC ACB ∠=∠=求出BAC ∠,又因为AD 是BAC ∠的角平分线可求出BAD ∠,再根据已知求出AED ∠,根据三角形内角和公式即可求解DAE ∠;(2)根据FG BC ⊥,可证得FGD AED ∠=∠,所以//FG AE ,则有AFG DAE ∠=∠.【详解】解:(1)在ABC ∆中,30,70ABC ACB ∠=∠=,180BAC ABC ACB ∴∠=-∠-∠180307080=--= AD 平分BAC ∠11804022BAD CAD BAC ∴∠=∠=∠=⨯=, 在ABD ∆中,403070ADC BAD ABD ∠=∠+∠=+=AE ∵为三角形的高,90AED ∴∠=.在AED ∆中,180DAE ADE AED ∠=-∠-∠=180709020--=.(2)90FG BC FGD ⊥∴∠=90AED ∠=FGD AED ∴∠=∠//FG AE ∴AFG DAE ∴∠=∠由(1)可知20DAE ∠=20AFG ∠=.【点睛】本题考查了角平分线性质、三角形内角和定理及平行线的性质等知识点,主要考查学生的综合运用知识的能力.23.(1)50,补全条形图见解析;(2)90°;(3)450人.【解析】【分析】(1)根据统计图表,先求总人数,可以进一步求m,再求n 的值,并补全统计图;(2)先求C 组的百分比,再算圆心角;(3)先算出样本中的不合格率,再用样本中的不合格率去估计七年级的不合格率,从而估算出不合格人数.【详解】解:(1)由表格可知,B 组有15人,B 组所占的百分比是15%,∴调查的总人数为15÷15%=100(人),则D 组人数m=100×30%=30人,E 组人数n=100×20%=20人,所以m+n=20+30=50,补全条形图如下:(2)“C 组”所对应的圆心角的度数是25÷100×360°=90°,故答案为:90°;(3)估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人.【点睛】从统计图表中获取信息,结合统计表和扇形图,可以求出样本的容量,从而求出m ,n ;根据小组的百分比可以得到圆心角;用样本可以估计总体情况.解这些题关键要理解相关概念.24.30B ∠=【解析】【分析】根据角平分线的定义求出∠ACE ,再根据两直线平行,内错角相等可得∠AFG=∠ACE ,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式求出∠BAC,再根据邻补角的定义求出∠ACB,然后利用三角形的内角和定理列式计算即可得解.【详解】∵CE平分∠ACD,∴∠ACE=12×∠ACD=12×100°=50°,∵FG∥CE,∴∠AFG=∠ACE=50°,在△AFG中,∠BAC=∠AFG+∠AGF=50°+20°=70°,又∵∠ACB=180°−∠ACD=180°−100°=80°,∴∠B=180°−∠BAC−∠ACB=180°−70°−80°=30°.【点睛】此题考查三角形内角和定理,解题关键在于求出∠BAC.25.(1)30°;(2)1cm.【解析】【分析】(1)根据三角形内角和定理和等腰三角形的性质求出∠B=∠C=30°,根据垂直平分线的性质解答即可;(2)根据直角三角形中,30°角所对的直角边等于斜边的一半计算.【详解】解:(1)∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵DE是AB的垂直平分线,∴∠BAD=∠B=30°;(2)∵∠BAC=120°,∠BAD=30°,∴∠CAD=90°,又∠C=30°,∴CD=2AD=1.【点睛】本题考查的是线段的垂直平分线的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如图,已知AB∥CD∥EF,∠ABC=50°,∠CEF=150°,则∠BCE的值为().A.50°B.30°C.20°D.60°2.如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△A1B l C1的面积是14,那么△ABC的面积是()A.2 B.143C.3 D.723.已知点A(a,3),点B是x轴上一动点,则点A、B之间的距离不可能是()A.2 B.3 C.4 D.54.已知不等式3x﹣a≤0的正整数解恰是1,2,3,4,那么a的取值范围是()A.a>12 B.12≤a≤15 C.12<a≤15 D.12≤a<155.不等式2x31+≥的解集在数轴上表示为A. B. C. D.6.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有多少两?设银子共有x两,列出方程为()A .4879x x +=- B .4879x x +-=C .4879x x-=+ D .4879x x -+=7.下列各组线段能构成直角三角形的一组是( ) A .30,40,50B .7,12,13C .5,9,12D .3,4,68.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现在又有36张白铁皮.设用x 张制作盒身,y 张制作盒底可以使盒身和盒底正好配套,则所列方程组正确的( ) A .362540x y x y+=⎧⎨=⎩B .3622540x y x y +=⎧⎨⨯=⎩C .3625240x y x y +=⎧⎨=⨯⎩D .364025x y x y +=⎧⎨=⎩9.下列图案中,是轴对称图形的是( )A .B .C .D .10.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A .1313x x -<⎧⎨+<⎩B .1313x x -<⎧⎨+>⎩C .1313x x ->⎧⎨+>⎩D .1313x x ->⎧⎨+<⎩二、填空题题11.若a m =3,a n =2,则a m +n =_______;12.如图,AB ∥CD ,试再添一个条件,使∠1=∠2成立,_____、_____、_____(要求给出三个以上答案)13.如图,长方形ABCD 的周长为12,分别以BC 和CD 为边向外作两个正方形,且这两个正方形的面积和为20,则长方形ABCD 的面积是______.14.如图所示,已知点D E F 、、分别是AB BC CD 、、的中点,12DEF S ∆=厘米2,则ABC S ∆=___________平方厘米.15.若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则2--b a b =_____.16.甲、乙两个车间工人人数不等,若甲车间调10人给乙车间,则两车间人数相等;若乙车间调10人给甲车间,则甲车间现有的人数就是乙车间余下人数的2倍,设原来甲车间有x 名工人,原来乙车间有y 名工人,可列方程组为___________.17.如图,在围棋盘上有三枚棋子,如果黑棋①的位置用坐标表示为()0,1-,黑棋②的位置用坐标表示为()3,0-,则白棋③的位置用坐标表示为__________.三、解答题18.为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下: 课外阅读时间(单位:小时) 频数(人数) 频率 0<t≤2 2 0.04 2<t≤4 3 0.06 4<t≤6 15 0.30 6<t≤8 a 0.50 t >85b请根据图表信息回答下列问题:(1)频数分布表中的a=,b=;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?19.(6分)解不等式组()3264113x xxx①②⎧--≥⎪⎨-+>⎪⎩并将解集在数轴上表示出来.20.(6分)已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.21.(6分)某综合实践小组为了了解本校学生参加课外读书活动的情况,随机抽取部分学生,调查其最喜欢的图书类别,并根据调查结果绘制成不完整的统计表与统计图,请结合图中的信息解答下列问题.学生最喜欢的图书类别人数统计表图书类别画记人数百分比文学类艺体类正 5科普类正正一11 22%其它正正14 28%合计 a 100%(1)随机抽取的样本容量a为_________________________;(2)补全扇形统计图和条形统计图;(3)已知该校有600名学生,估计全校最喜欢文学类图书的学生人数.22.(8分)小辰想用一块面积为2100cm的正方形纸片,沿着边的方向裁出一块面积为290cm的长方形纸片,使它的长宽之比为5:3. 小辰能否用这张正方形纸片裁出符合要求的纸片?若能请写出具体栽法;若不能,请说明理由.23.(8分)如图,已知四边形ABCD,AD∥BC.点P在直线CD上运动(点P和点C,D不重合,点P,A,B不在同一条直线上),若记∠DAP,∠APB,∠PBC分别为∠α,∠β,∠γ.(1)如图1,当点P在线段CD上运动时,写出∠α,∠β,∠γ之间的关系并说出理由;(2)如图2,如果点P在线段CD的延长线上运动,探究∠α,∠β,∠γ之间的关系,并说明理由.(3)如图3,BI平分∠PBC,AI交BI于点I,交BP于点K,且∠PAI:∠DAI=5:1,∠APB=20°,∠I=30°,求∠PAI的度数.24.(10分)黄山位于安徽省南部,是世界文化与自然双重遗产,世界地质公园,国家AAAAA级旅游景区,全国文明风景旅游区示范点,中华十大名山,天下第一奇山.暑假期间,太和县某学校组织七年级学生到黄山游学,如果租用甲种客车2辆,乙种客车3辆,则可载180人,如果租用甲种客车3辆,乙种客车1辆,则可载165人.(1)请问甲、乙两种客车每辆分别能载客多少人?(2)若该学校七年级有303名学生参加这次游学活动,学校计划每辆车安排一名老师,老师也需一个座位.①现打算同时租甲、乙两种客车共8辆,请帮助学校设计租车方案.②旅行前,学校的一名老师由于特殊情况,学校只能安排7名老师,为保证所租的每辆车均有一名老师,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问学校的租车方案如何安排?25.(10分)如图,在等边ABC 中,边6AB =厘米,若动点P 从点C 开始,按C B A C →→→的路径运动,且速度为1厘米/秒,设点P 的运动时间为t 秒.(1)当3t =时,判断AP 与BC 的位置关系,并说明理由; (2)当PBC 的面积为ABC 面积的一半时,求t 的值;(3)另有一点Q ,从点C 开始,按C A B C →→→的路径运动,且速度为1.5厘米/秒,若P 、Q 两点同时出发,当P 、Q 中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ 把ABC 的周长分成相等的两部分.参考答案一、选择题(每题只有一个答案正确) 1.C 【解析】 【分析】 【详解】解:∵AB ∥CD ∥EF ,∴∠ABC=∠BCD=50°,∠CEF+∠ECD=180°; ∴∠ECD=180°-∠CEF=30°, ∴∠BCE=∠BCD-∠ECD=20°. 故选:C . 2.A 【解析】【分析】连接AB1,BC1,CA1,根据等底等高的三角形的面积相等求出△ABB1,△A1AB1的面积,从而求出△A1BB1的面积,同理可求△B1CC1的面积,△A1AC1的面积,于是得到结论.【详解】如图,连接AB1,BC1,CA1,∵A、B分别是线段A1B,B1C的中点,∴S△ABB1=S△ABC,S△A1AB1=S△ABB1=S△ABC,∴S△A1BB1=S△A1AB1+S△ABB1=2S△ABC,同理:S△B1CC1=2S△ABC,S△A1AC1=2S△ABC,∴△A1B1C1的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=7S△ABC=1.∴S△ABC=2,故选A.【点睛】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线把三角形进行分割是解题的关键.3.A【解析】【分析】根据题意可知点A在与x轴平行的直线y=1上运动,因为点B是x轴上一动点,所以点A、B之间的距离转化为点到直线的最小距离,最小距离为1.【详解】∵点A(a,1),∴点A在与x轴平行的直线y=1上运动,∵点B是x轴上一动点,∴点B 到直线y =1的最小距离为1, 故点A 、B 之间的距离不可能小于1, 故选:A . 【点睛】此题主要考查坐标与图形,解题的关键是理解两点之间的距离的定义. 4.D 【解析】 【分析】首先确定不等式组的解集,利用含a 的式子表示,再根据整数解的个数就可以确定有哪些整数解,然后根据解的情况可以得到关于a 的不等式,从而求出a 的范围. 【详解】不等式的解集是:x≤3a , ∵不等式的正整数解恰是1,2,3,4, ∴4≤3a<5, ∴a 的取值范围是12≤a <1. 故选D . 【点睛】本题考查了一元一次不等式的整数解,正确解出不等式的解集,正确确定3a的范围,是解决本题的关键.解不等式时要用到不等式的基本性质. 5.C 【解析】分析:解不等式2x 312x 132x 2x 1+≥⇒≥-⇒≥-⇒≥-不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此不等式x 1≥-在数轴上表示正确的是C .故选C . 6.D 【解析】 【分析】设银子共有x 两,根据“如果每人分七两,则剩余四两;如果每人分九两,则还差八两”及人的数量不变,即可得出关于x 的一元一次方程. 【详解】。

2.3数轴(1)

2.3数轴(1)

2.3数轴(1)班级姓名完成时间:19︰25——20︰00一、选择题:1.在数轴上,原点及原点右边的点所表示的数是()A.负数 B.非负数 C.非正数 D.正数2.下面给出的4条“数轴”,正确的是()3.在数轴上距原点4个单位长度的点所表示的数是()A.4 B.-4 C.4或-4 D.2或-24.在数轴上表示数-3,0,2.5,0.4的点中,不在原点右边的有()A.0个 B.1个 C.2个 D.3个5.学校、书店和图书馆坐落在一条南北走向的大街上,书店位于学校南边200米处,图书馆位于学校北边100米处,小红从学校沿街向南走了50米,接着又向南走了150米,此时,小红的位置在()A.书店 B.学校 C.图书馆 D.学校南100米二、填空题:6.数轴上一个点表示的数为4,这个点向左移动5个单位后所表示的数是_______.7.距原点3个单位长度的点有____个,它所表示的有理数是_________.8.在数轴上,点A表示的数是1,那么在数轴上与A相距3个单位长度的点表示的数是______. 9.在数轴上位于-2.1与4.5之间的点表示的整数有:___________.三、解答题:10.在数轴上分别表示出下列各数:(1)0,-2,-3.5,14,2.5(2)100, 20, -200, -120,50(3)-0.01,-0.03,0.02,0.0311.在数轴上,点A 表示-6,点B 表示+4,请你将线段AB 五等分,在线段上从左向右依次得点C 、D 、E 、F ,请画出来,再写出点C 、D 、E 、F 各表示什么数.12.利用数轴填空:(1)数轴上,在原点左边且离原点3个单位长度的点表示的数是______;距离原点4个单位长度的点表示的数是_______;点A 表示的数是-1,则距离A 点2个单位长度的数是_________.(2)在数轴上表示整数的点称为整数点.某数轴的单位长度是1厘米,若在这个数轴上画一条长为2012厘米的线段AB ,则AB 盖住的整数点最多有 个.13.如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A →B(+1,+3);从C 到D 记为:C →D(+1,-2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A →C(______,______); C →B(______,______).(2)若这只甲虫去Q 处的行走路线依次为:A →M(+2,+2),M →N(+2,-1),N →P(-2,+3),P →Q(-1,-2),请依次在图上标出点M 、N 、P 、Q 的位置.书写评价 优 良 中 差 成绩评价 优 良 中 差 批改时间。

苏科教版七年级数学上第二章 2.3数轴专题训练(一)(含答案)

苏科教版七年级数学上第二章 2.3数轴专题训练(一)(含答案)

数轴专题训练(一)班级姓名得分一、选择题1.在数轴上到原点距离等于3的数是()A. 3B.C. 3或D. 不知道2.若数轴上表示-1和3的两点分别是点A和点B,则点A和点B之间的距离是()A. B. C. 2 D. 43.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A. B.C. D.4.下列选项中正确表示数轴的是()A. B. C. D.5.在数轴上,到表示1的点的距离等于6的点表示的数是()A. B. 7 C. 或7 D. 56.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A. B. 6 C. 0 D. 无法确定7.数轴上点A表示a,将点A沿数轴向左移动3个单位得到点B,设点B所表示的数为x,则x可以表示为A. B. C. D.8.若数轴上点A、B分别表示数2、-2,则A、B两点之间的距离可表示为()A. B. C. D.二、填空题9.数轴上,将表示的点向右移动3个单位后,对应点表示的数是______ .10.如图,点O,A在数轴上表示的数分别是0,l,将线段OA分成1000等份,其分点由左向右依次为M1,M2 (999)将线段OM1分成1000等份,其分点由左向右依次为N1,N2 (999)将线段ON1分成1000等份,其分点由左向右依次为P1,P2 (999)则点P314所表示的数用科学记数法表示为______.11.数a、b在数轴上对应点的位置如图所示,则①a ______ 0,②b ______ 0,③a ______ b(填“>”、“<”或“=”)12.如果在数轴上A点表示-2,那么在数轴上与点A距离3个长度单位的点所表示的数是______.13.若点A表示数-3,将点A向左移动1个单位长度,再向右移动5个单位长度,那么终点表示的数是______.14.将数轴上一点P先向右移动3个单位长度,再向左移动5个单位长度,此时它表示的数是4,则原来点P表示的数是______.15.点A在数轴上的位置如图所示,则点A表示的数的相反数是______.16.将数轴上表示-1的点A向右移动5个单位长度,此时点A所对应的数为______.三、解答题17.点A、B在数轴上的位置如图所示:(1)点A表示的数是______,点B表示的数是______;(2)在原图中分别标出表示+1.5的点C、表示-3.5的点D;(3)在上述条件下,B、C两点间的距离是______,A、C两点间的距离是______.18.(1)画出数轴,并在数轴上画出表示下列各数的点:-4.5,-2,3,0,4;(2)用“<”号将(1)中各数连接起来;(3)直接填空:数轴上表示3和表示1的两点之间的距离是______,数轴上A点表示的数为4,B点表示的数为-2,则A、B之间的距离是______.19.如图,数轴上点A对应的有理数为20,点P以每秒2个单位长度的速度从点A出发,点Q以每秒4个单位长度的速度从原点O出发,且P,Q两点同时向数轴正方向运动,设运动时间为t秒.(1)当t=2时,P,Q两点对应的有理数分别是______,______,PQ=______;(2)当PQ=10时,求t的值.20.已知|a|=2,|b|=2,|c|=3,且有理数a,b,c在数轴上的位置如图所示,计算a+b+c的值.21.在数轴上表示下列各数:0,-4.2,,-2,+7,,并用“<”号连接.22.如图,已知A,B分别为数轴上的两点,点A表示的数是-30,点B表示的数是50.(1)请写出线段AB中点M表示的数是______.(2)现有一只蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁Q恰好从点A出发,以每秒2个单位长度的速度沿数轴向右移动,设两只蚂蚁在数轴上的点C相遇.①求A、B两点间的距离;②求两只蚂蚁在数轴上的点C相遇时所用的时间;③求点C对应的数是多少?(3)若蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左运动,同时另一只蚂蚁恰好从A点出发,以每秒2个单位长度的速度沿数轴也向左运动,设两只蚂蚁在数轴上的D点相遇,求D点表示的数是多少?23.已知,A、B在数轴上对应的数分别用a、b表示,且(a-20)2+|b+10|=0,P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离;(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数;(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…….点P 能移动到与A或B重合的位置吗?若不能,请直接回答;若能,请直接指出,第几次移动,与哪一点重合.24.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:______ B:______;(2)观察数轴,与点A的距离为4的点表示的数是:______;(3)若将数轴折叠,使得A点与-3表示的点重合,则B点与数______表示的点重合.答案1、C2、D3、B4、D5、C6、B7、A8、B9、110、3.14×10-7 11、<;>;<12、-5或1 13、1 14、6 15、-2 16、417、(1)-2;3;(2)如图,(3)1.5;3.518、(1)如图:;(2)-4.5<-2<0<3<4;(3)2;6.19、(1)24,8,16;20、a+b+c=2-2+3=3.21、-4.2<-2<0<<<+7.22、(1)10;(2)①A、B两点间的距离为:50-(-30)=80,②两只蚂蚁在数轴上的点C相遇时所用的时间为:80÷(3+2)=16(秒),③点C对应的数是:50-16×3=2;(3)D点表示的数是:50-[50-(-30)]÷(3-2)×3=-190.26、(1)1 ,-2.5 ;(2)5或-3 ;(3)0.5 .第一章:有理数单元练习2一、选择题1.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A. 千克B. 千克C. 千克D. 千克2.在数轴上与表示-3的点距离等于5的点所表示的数是()A. 1B. 2和8C.D. 和23.如图示,数轴上点A所表示的数的绝对值为()A. 2B.C.D. 以上均不对4.下列两个数互为相反数的是()A. 和B. 3和C. 和D. 8和5.有理数的大小关系如图所示,则下列式子中一定成立的是()A. B. C. D.6.如果a与3互为倒数,那么a是()A. B. 3 C. D.7.在0,-1,0.5,(-1)2四个数中,最小的数是()A. 0B.C.D.8.已知|a|=6,|b|=4,且a<b,则a+b的值为()A. B. 或 C. D. 以上都不是9.计算-42的结果等于()A. B. 16 C. D. 810.按括号内的要求用四舍五入法取近似数,下列正确的是()A. 精确到个位B. 精确到十分位C. 精确到D. 精确到11.地球距太阳的距离是150000000km,用科学记数法表示为1.5×10n km,则n的值为()A. 6B. 7C. 8D. 9二、填空题12.有理数a、b、c在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|=______.13.已知|a+1|+|b+3|=0,则a=______,b=______.14.相反数等于本身的数有______ ,倒数等于本身的数有______ ,奇次幂等于本身的数有______ ,绝对值等于本身的数有______ .15.如图,下面表格给出的是国外四个城市与北京的时差(带“+”表示同一时刻比北京时间早的时数),如果现在悉尼时间是下午6时,则伦敦时间是______ .16.用四舍五入法取近似数:0.27853≈______(精确到0.001).17. - 的倒数的绝对值为______ ;平方得的数是______ .18.若整式7a-5与3-5a互为相反数,则a的值为______.19.在数轴上把表示-5的点A沿数轴移动6个单位后得到点B,则B所表示的数为______ .三、解答题20.计算(1)20-(-7)-|-2|(2)(-54)÷(+9)-(-4)×(-)(3)( - + )×(-36)(4)(-1)3×[2-(-3)2].21.如果a,b互为倒数,c,d互为相反数,且m的绝对值是1,求代数式2ab-(c+d)+m的值.22.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负)(1)根据记录的数据可知该厂这周实际生产自行车多少辆?(2)生产量最多的一天比生产量最少的一天多生产多少量?(3)该厂实行每周计件工资制,每生产一辆可得60元,若超额完成任务,则超出部分每辆另奖15元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?23.请根据图示的对话解答下列问题.求:(1)a,b的值;(2)8-a+b-c的值.24.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?答案和解析1.【答案】D【解析】解:∵25+0.25=25.25;25-0.25=24.75,∴合格的面粉质量在24.75和2.25之间,故选:D.根据有理数的加法法则可求25+0.25;根据有理数的加法法则可求25-0.25,进而可得合格面粉的质量范围,进而可得答案.本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.2.【答案】D【解析】【分析】本题考查数轴,解题的关键是明确题意,列出相应的关系式.根据题意可以得到在数轴上与表示-3的点距离等于5的点所表示的数,从而可以解答本题.【解答】解:在数轴上与表示-3的点距离等于5的点所表示的数是:-3+5=2或-3-5=-8,即在数轴上与表示-3的点距离等于5的点所表示的数是2或-8.故选D.3.【答案】A【解析】解:由数轴可得,点A表示的数是-2,∵|-2|=2,∴数轴上点A所表示的数的绝对值为2,故选:A.根据数轴可以得到点A表示的数,从而可以求出这个数的绝对值,本题得以解决.本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,会求一个数的绝对值.4.【答案】C【解析】解:A、-的相反数是,故选项错误;B、3的相反数的是-3,故选项错误;C、-2.25和2互为相反数,故选项正确;D、8的相反数是-8,8=-(-8),故选项错误.故选:C.此题依据相反数的概念作答.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.考查了相反数,此题关键是看两个数是否“只有符号不同”,并注意分数与小数的转化.5.【答案】C【解析】【分析】此题主要考查了有理数的大小比较及绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.【解答】解:∵a<b<0<c,但是a+b+c>0不一定成立,∴选项A不正确;∵a<b<0<c,但是|a+b|<c不一定成立,∴选项B不正确;∵a<b<0<c,∴|a-c|=c-a=|a|+c,∴选项C正确;∵a<b<0<c,∴-b<-a,∵|b-c|=c-b,|c-a|=c-a,∴c-b<c-a,∴|b-c|<|c-a|,∴选项D不正确.故选C.6.【答案】D【解析】解:由a与3互为倒数,得a是,故选:D.根据乘积为1的两个数互为倒数,可得答案.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.7.【答案】B【解析】解:根据有理数比较大小的方法,可得-1<0<0.5<(-1)2,∴在0,-1,0.5,(-1)2四个数中,最小的数是-1.故选:B.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.8.【答案】B【解析】解:∵|a|=6,|b|=4,且a<b,∴a=-6,b=4或a=-6,b=-4,则a+b=-2或-10,故选B.利用绝对值的代数意义求出a与b的值,即可确定出a+b的值.此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.9.【答案】A【解析】解:-42=-16,故选:A.根据有理数的乘方法则求出即可.本题考查了有理数的乘方,能区分-42和(-4)2是解此题的关键.10.【答案】C【解析】【分析】此题考查有理数的近似数的求法,根据j精确度利用四舍五入法确定近似数.关键是认清精确度,精确到哪一位,就从下一位看起进行四舍五入即可.【解答】解:A. 403.53≈404(精确到个位),故选项错误;B. 2.604≈2.6(精确到十分位),故选项错误;C.0.0234≈0.0(精确到0.1),故选项正确.故选C.11.【答案】C【解析】【分析】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于150000000有9位,所以可以确定n=9-1=8.【解答】解:150 000000=1.5×108.即n=8.故选C.12.【答案】b+2c【解析】解:从数轴可知:c<0<a<b,|c|>|a|,∴c-a<0,∴-|c-a|+|b|+|a|-|c|=c-a+b+a+c=b+2c,故答案为:b+2c.根据数轴得出c<0<a<b,|c|>|a|,求出c-a<0,再去掉绝对值符号合并同类项即可.本题考查了整式的加减,数轴的应用,注意:整式的加法实质就是合并同类项.13.【答案】-1 -3【解析】解:∵|a+1|+|b+3|=0,∴a+1=0,b+3=0.解得:a=-1,b=-3.故答案为:-1;-3.由非负数的性质可知a=-1,b=-3.本题主要考查的是非负数的性质,掌握非负数的性质是解题的关键.14.【答案】0;±1;±1,0;非负数【解析】【分析】本题考查了倒数,利用了相反数的定义、倒数的定义、绝对值的性质.依据相反数的特殊定义:零的相反数是零;倒数的定义:乘积为1的两个数互为倒数;奇次幂的性质:正数的奇次幂是正数,负数的奇次幂是负数;绝对值的法则:正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数求解。

2.3 数轴 (1)

2.3 数轴  (1)

②零下10℃怎样表示?
③0℃怎样表示?
20 15 10 5 0 -5
-10
如果我们将温度计水平放置,那么水 银柱的顶端向右移动时,温度 ,对应 的数值 . 我们发现:每一个温度,都有一个相 应点与之对应,反过来,每一个水银柱的 顶端都有一个温度相对应.
-10
-5
25
30
20
15
10
0
5
试一试
把直线上的点所表示的数写在相应的方框里:
有理数和无理数都可以用数轴上的点来表示;方过 来,数轴上的任意一点都表示一个有理数或无理数.
今天我们学习了什么?
1.你知道什么是数轴吗? 2.数轴上,会不会有两个点表示同一个有理数? 会不会有一个点表示两个不同的数?
c 0 a b
思考1:如图,分别指出数轴上点a、b、c所 表示数的是正数、负数还是0. 你能用“<”把a、b、c连起来吗?
-5 -4 -3 -2 -1 0 1
2 3 4 5
6
这条直线与温度计有共同点吗?
这条直线有什么特点吗?
做一做
像这样规定了原点、正方向和单 位长度的直线叫做数轴. 1.画一条水平直线,并在这条直线上取一点表 示0,我们把这个点称为原点;
2.规定直线上从原点向右为正方向(画箭头表 示),向左为负方向;
30 25 20 15 10 5 0 -5 -10
30 25 20 15 10 5 0 -5 -10
30 25 20 15 10 5 0 -5 -10
温度计
学生观察温度计后回答下列问题: ①零上5℃怎样表示?
30 25 30 25 20 15 10 5 0 -5 -10 30 25 20 15 10 5 0 -5 -10

七年级数学上册-2.3数轴(1)课件-北师大版

七年级数学上册-2.3数轴(1)课件-北师大版

-3
-2
-1

3
0
12
1.5
3
4
5
5
注意:有理数都可以用数轴上的点表示.
练习 1,在所画数轴上画出表示下列各数的点: -1.5 , 4, 0, -3, 2 1
3
-5 -4 -3 -2 -1 0 1 2 3 4 5
2,指出数轴上的点A,B,C,D,E所表示的有理数.
AB
C DE
-5 -4 -3 -2 -1 0 1 2 3 4 5
正数集合:
… 负数集合:

整数集合:

正分数集合:

负分数集合:
… 有理数集合:…来自空题:1、如果上升3米记作+3米,那么下降5米记作 ,既 不上升也不下降记作 。
2、-15人表示 缺少劳动力15人,那么+25人表示 ;
3、产值增加-5万元的意义是

4、在有理数中非正数包括

5、飞机上升6000米后又上升了-2000米,飞机实际上升 了 米;
例1 如图,指出数轴上的点A,B,C,D表示
的数.
C
D
B
A
-5 -4 -3 -2 -1 0 1 2 3 4 5
解:点A,B,C,D表示的数分别是
5 , 1.5 , -5 , -1.5
例2 在数轴上画出表示下列各数的点.
2,
-1.5,
0,
1.5,
3 5
,

3
1 2
解:
31 2
-1.5
0
2
-5
-4
3,数轴上原点左边的点表示_负___数,原点 右边表示的数是__正___数, _原_点__表示0.

苏科版七年级数学上册《2.3.1数轴》说课稿

苏科版七年级数学上册《2.3.1数轴》说课稿

苏科版七年级数学上册《2.3.1数轴》说课稿一. 教材分析苏科版七年级数学上册《2.3.1数轴》这一节的主要内容是数轴的定义、性质和应用。

数轴是数学中一种重要的工具,它可以帮助我们更好地理解和解决数学问题。

在本节课中,学生将通过学习数轴的基本概念和性质,掌握数轴的画法和应用,为今后的数学学习打下坚实的基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,他们已经学习了有理数和实数的概念,对数学符号和运算有一定的了解。

但是,对于数轴这一概念,他们可能是初次接触,因此需要通过实例和活动来帮助他们理解和掌握。

此外,学生可能对于数轴的应用场景和实际意义有一定的好奇心和求知欲,教师可以抓住这一点,激发学生的学习兴趣。

三. 说教学目标1.知识与技能:学生能够理解数轴的定义和性质,学会画数轴,掌握数轴的应用。

2.过程与方法:通过观察、实践、探究和合作,学生能够培养数形结合的思想,提高解决问题的能力。

3.情感态度与价值观:学生能够体验数学与生活的联系,增强对数学的兴趣和信心。

四. 说教学重难点1.重点:数轴的定义、性质和应用。

2.难点:数轴的画法和数轴上的点的表示方法。

五. 说教学方法与手段本节课采用讲授法、演示法、实践法、讨论法等多种教学方法,结合多媒体课件和教具,引导学生主动探究,合作学习。

六. 说教学过程1.导入:通过一个实际问题,引发学生对数轴的思考,激发学习兴趣。

2.讲解:讲解数轴的定义、性质和画法,引导学生理解并掌握数轴的基本概念。

3.实践:学生动手画数轴,练习表示数轴上的点,巩固所学知识。

4.应用:通过实例,讲解数轴在实际问题中的应用,让学生体会数轴的意义。

5.讨论:学生分组讨论,分享学习心得和解决问题的方法。

6.总结:对本节课的内容进行总结,强调数轴的重要性和应用价值。

七. 说板书设计板书设计简洁明了,突出数轴的核心概念和性质,包括数轴的定义、性质、画法和应用。

通过板书,学生可以一目了然地了解数轴的基本知识。

七年级数学上册 2.3 数轴 学习数轴应注意的三个方面素材 (新版)苏科版

七年级数学上册 2.3 数轴 学习数轴应注意的三个方面素材 (新版)苏科版

学习数轴应注意的三个方面数轴在有理数的学习中起着重要的作用.它是学习、理解相反数、绝对值的重要工具.正确理解数轴,并能利用数轴解决问题是数形思想的重要表达.一.数轴的理解数轴是一条特殊的直线,在这条直线上规定了原点、正方向和单位长度.理解数轴应把握以下三点:〔1〕数轴是一条特殊的直线,但直线不是数轴;〔2〕数轴有三个重要特征:①有原点〔表示数0的点〕;②正方向〔向右的方向〕;③单位长度;〔3〕数轴上的原点的位置、单位长度都是根据实际问题需要规定的,在同一条数轴上的单位长度应一致.二.数轴的画法正确画一条数轴的步骤可概括为:一画、二取、三选、四标.一画,就是先画一条直线,一般画成水平的直线;二取,就是在直线上选取适当的点,用它来它来表示0,称为原点;三选,就是选择向右的方向为正方向,用箭头表示出来,并选取适当的长度作为长度单位;四标,就是从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;从原点向左,每隔一个单位长度取一点,依次表示-1,-2,-3,….如图1,就是一条数轴.但数轴的单位选取要根据实际情况,灵活处理.如要在数轴上表示-0.1,0.2等小数,那么单位长度可选长一些,可用1cm代表一个单位长度;要在数轴上表示-100,-300等数时,那么单位长度可取小一些,如用1cm长度表示100.图1例1指出图2 中哪些不是数轴吗?并指出你判断的理由.(1) (2)(3)(4)分析:在画数轴时,常出现以下几种错误:①没有方向;②没有原点;③单位长度不统一;④标数不按顺序.而(1)中恰好是第①种错误;(2)恰好是第②错误;(3)恰好是第③种错误;(4)恰好是第④种错误.所以(1),(2),(3),(4)都不是数轴.三、数轴的应用1.利用数轴上点可以表示任意一个有理数.但并不是所有数轴上的点都表示有理数.随着学习的深入,你会认识到这一点的.2.利用数轴可以比拟两个有理数的大小.在数轴上右边的表示的数总比左边的大,正数都大于0,负数都小0,正数大于一切负数.3.利用数轴可以理解相反数的意义.在数轴上符号相反,且到原点距离相等的点所表示的数,互为相反数,如-2和2.4.利用数轴可以理解绝对值的几何意义:数轴上表示点a的数与原点的距离叫点a 的绝对值.例2在数轴上表示 3,1,-0.5, 0的相反数,并将它们的相反数按从小到大的顺序用“<〞表示出来.解析:依据题意,建立如图3所示的数轴,在数轴上分别表示出-3,-1,0.5,0,从数轴观察得到:-3<-1<0<0.5.图3例3写出数轴上符合以下条件的点所表示的数.(1)与原点的距离为3个单位长度的点所表示的数;(2)假设点A所表示的数是1,与点A的距离是是3个单位长度的点所表示的数.解析:根据题意建立如图4数轴.(1)从数轴上很容易观察到与原点3个单位长度的点所表示的数有两个,分别为3,-3;(2)与点A距离为3个单位的点有两个,这两个点所表示的数分别是-2和4.图4。

苏科版数学七年级上册2.3.1《数轴》教学设计

苏科版数学七年级上册2.3.1《数轴》教学设计

苏科版数学七年级上册2.3.1《数轴》教学设计一. 教材分析《数轴》是苏科版数学七年级上册第2章3节1课时的一节课程。

数轴是数学中的重要概念,是实数与几何相结合的桥梁。

通过数轴,学生可以直观地理解实数的大小关系,掌握绝对值的概念,以及解决不等式和方程等问题。

本节课的内容为数轴的定义、特点、表示方法以及数轴上的基本运算。

二. 学情分析七年级的学生已经具备了一定的几何知识和代数知识,但对数轴的理解还需要通过具体的实例和操作来逐步建立。

学生在学习本节课时,需要具备观察、思考、操作和表达的能力。

同时,学生应能够通过数轴解决实际问题,培养运用数学解决问题的能力。

三. 教学目标1.理解数轴的定义和特点,掌握数轴上的表示方法。

2.掌握数轴上的基本运算,包括绝对值、加减法、比较大小等。

3.能够运用数轴解决实际问题,培养运用数学解决问题的能力。

4.培养学生的观察、思考、操作和表达的能力。

四. 教学重难点1.数轴的定义和特点。

2.数轴上的基本运算,包括绝对值、加减法、比较大小等。

3.运用数轴解决实际问题。

五. 教学方法1.情境教学法:通过具体的情境和实例,让学生直观地理解数轴的概念和应用。

2.操作教学法:让学生通过实际的操作,如画数轴、标数值等,加深对数轴的理解。

3.问题驱动法:通过提出问题,引导学生思考和探索,培养学生的解决问题能力。

六. 教学准备1.教学课件:制作数轴的图片和动画,帮助学生直观地理解数轴的概念。

2.练习题:准备一些数轴相关的练习题,用于巩固所学知识。

3.教学用具:如直尺、铅笔等,用于学生实际操作。

七. 教学过程1.导入(5分钟)利用数轴的图片和动画,引导学生思考数轴是什么,数轴有什么特点。

通过引导学生观察和描述,激发学生的学习兴趣。

2.呈现(10分钟)介绍数轴的定义和特点,如数轴是一条直线,有一个原点,有一个正方向和一个负方向等。

同时,介绍数轴上的表示方法,如数值的表示、符号的表示等。

3.操练(10分钟)让学生实际操作,如画数轴、标数值等。

七年级数学上册 2.3 数轴 例说“数轴”的五大功能素材 (新版)苏科版

七年级数学上册 2.3 数轴 例说“数轴”的五大功能素材 (新版)苏科版

例说“数轴”的五大功能大家知道,我们把规定了原点、正方向、单位长度的直线叫做数轴.“数轴”是初中数学中联系数与形的第一座“桥梁”.下面将它的功能归纳如下,供同学们学习时参考!一、利用数轴可以直观地表示有理数任何一个有理数都可以用数轴上的一个点来表示,最常见的是这两类问题:⑴已知数轴上的点读出所表示的数;⑵把有理数用数轴上的点表示出来.例1:如图1所示,指出由A 、B 、C 、D 、E 各点分别表示什么数?解:点A 表示数2.5,点B 表示数-3.5,点C 表示数0,点D 表示数1,点E 表示数-2.二、利用数轴可以形象解释相反数只有符号不同的两个数互为相反数,如果我们利用数轴来认识相反数,则十分形象直观. 在数轴上,表示一对相反数的两个点同时具备两个条件:(1)到原点的距离相等;(2)分别位于原点的左右两侧.如图1中的-2和2,它们互为相反数,在数轴上位于原点的两侧,并且与原点的距离相等.三、利用数轴可以准确地比较有理数的大小在数轴上表示的两个数,右边的数总比左边的数大.根据这一特点可把要比较的有理数在数轴上表示出来,通过数轴上比较两数的大小.例2:根据图2所示,试判断c b a ,,的大小.解:因为在数轴上表示的数,右边的数总比左边的数大,所以数c b a ,,的大小关系是b c a <<.四、利用数轴可以帮助我们理解绝对值的意义一个数a 的绝对值,就是在数轴上表示这个数的点离开原点的距离.而距离至少为0,所以绝对值就一定是非负数,即a ≥0.绝对值与离开原点的距离有关,不论在正半轴还是负半轴,离开原点越远则这个数的绝对值越大. -5 -4 -3 -2 -1 0 1 2 3 4 5 • • • • • A D C E B 图1a cb A C B• • • 图2例3:已知有理数a 、b 、c 在数轴上的位置如图3所示,化简a b a c b c -+-+-.解:由数轴可知:0a b c <<< 所以a b b a -=-,a c c a -=-,b b =-,c c =所以原式=()()b a c a b c -+---=b a c a b c -+---=-2a .五、利用数轴分析物体运动的实例可以非常直观地获得物体运动后的结果例4:小强从A 地向东走10米,然后折回向西走3米,又折回向东走6米,问此时小强在A 地的哪个方向上?距离是多少?解:我们借助数轴,把实际问题转化为数学知识模型,先画出如图4所示的数轴,以A 点为原点.观察数轴可知:小强实际走的路线是A→D→B→C,我们可以把小强行走的过程想象为A 点在数轴上移动的过程:A 点向右移动10个单位长度,得到表示10的点D ,接着向左移动3个单位长度,得到表示7的点C ,所以此时小强在A 地的正东方向,距离A 点13米.图3 图4。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题
2.3数轴(1)
学习目标理数和无理数,能说出数轴上(表示有理数、无理数)的点所表示的数。
学习内容
1.联系生活经验,观察温度计上刻度表示温度的特征,尤其体会负温度所表示的天气状况,引导学生从温度计上得到启发,抽象出数轴。
由温度计中得到启发,能否用直线上的点表示正数、0和负数?
5.随堂练习
一、填空或选择:
1.下面说法中正确的是( )
A.数轴是一条规定了原点、正方向和单位长度的射线;
B.离原点近的点所对应的有理数较小;
C.任意有理数都可以在数轴上表示;
D.数轴上离原点的距离是3个单位的点表示的数一定是3。
2.在数轴上,原点及原点右边的点表示的数是()
A.正数B.负数C.整数D.非负数
3.数轴上表示-3的点在原点侧,表示-4.5的点在原点的侧,表示-4.5的点与表示-3的点相距个单位长度。
4.数轴上的点A、B分别表示-1和数2,点C表示线段AB的中点,则点C表示的数是。
5.数轴上-1所对应的点为A,将A点向右平移4个单位长度再向左平移6个单位长度,则此时A点到原点的距离为。
6.在数轴上,到原点距离等于3.5个单位长度的点表示的数是。
二、解答题:
7.(1)在数轴上表示出下列各数:-4,3,-1.5, ,0,
(2)根据数轴,指出若将-4所对应的点移到3所对应的点需要向右平移几个单位长度?
8.小明的家(记为A)与他上学的学校(记为B),书店(记为C)依次座落在一条东西走向的大街上,小明家位于学校西面150米处,书店位于学校东面60米处,小明从学校沿这条向东走了30米,接着又向西走了80米到达D处,以学校为原点,试用数轴表示上述A、B、C、D的位置。
例2.如图,指出数轴上点A、B、C表示的数:
例3.在数轴上画出表示下列各数的点
2,-1.5,0,- ,1.5,-
5.拓展延伸:
请利用数轴回答下列问题:
(1)在数轴上,到原点的距离为5的点有______个,它们表示的数是________;
(2)在数轴上,到原点的距离小于3的点表示的整数是;
(3)在数轴上,点M表示数2,那么与点M相距4个单位的点表示的数是___________。
2.通过猜想、实验、讨论画出数轴;
3.数轴的描述性定义:
规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:
4、例题:
例1.判断下列数轴的画法是否正确,若不正确,请指出错误原因
1 2 3 4 5
-1 -2 -30 1 2 3
-2 -1 0 1
3 2 10 -1 -2-3
-3 -2 -10 1 2 3
相关文档
最新文档