初一一元一次方程所有知识点总结和常考题提高难题压轴题练习(含答案解析)
初一一元一次方程所有知识点总结和常考题提高难题压轴题练习(含答案解析)
初一一元一次方程所有知识点总结和常考题【知识点归纳】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次)的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。
注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。
⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。
二、等式的性质等式的性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等。
用式子形式表示为:如果a=b,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么错误!=错误!三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则〔依据分配律:a(b+c)=ab+ac 〕1。
括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1。
去分母(方程两边同乘各分母的最小公倍数)2。
去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4。
合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a(或乘未知数的倒数),得到方程的解x=错误!)。
六、用方程思想解决实际问题的一般步骤1。
审:审题,分析题中已知什么,求什么,找:明确各数量之间的关系;2. 设:设未知数(可分直接设法,间接设法), 表示出有关的含字母的式子;3. 列:根据题意列方程;4. 解:解出所列方程,求出未知数的值;5。
一元一次方程知识点及经典例题
一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c 为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。
方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。
人教版初中七年级数学上册第三章《一元一次方程》知识点总结(含答案解析)
人教版初中七年级数学上册第三章《一元一次方程》知识点总结(含答案解析)一、选择题1.(0分)已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①②B 解析:B【分析】①根据甲的工作量+乙的工作量+未完成的工作量=总的工作量,设x 小时后还有20个零件没有加工,据此列方程解答;②根据甲行驶的路程+乙行驶的路程=总路程+相遇后相距的路程,设x 小时后相遇后相距20km ,据此列方程解答;③依据甲乙行驶的路程和+甲先走的路程=总路程,设x 小时后相遇后,据此列方程解答; ④根据甲乙两人的距离+甲乙各自行驶的路程=总路程,设行驶x 小时,据此列方程解答即可.【详解】①设x 小时后还有20个零件没有加工,根据题意得,462060x x ++=,故①正确; ②设x 小时后相遇后相距20km ,根据题意得,466020x x +=+,故②错误; ③甲先走了20km 后,乙再出发,设乙出发后x 小时两人相遇,根据题意得,462060x x ++=,故③正确;④经过x 小时后两人相距60km ,根据题意得,462060x x ++=,故④正确. 因此,正确的是①③④.故选:B.【点睛】此题考查了一元一次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程. 2.(0分)小丽买了20支铅笔,店主给她8折优惠(即按标价的80%出售),结果共便宜了1.6元,则每支铅笔的标价是( )A .0.20元B .0.40元C .0.60元D .0.80元B解析:B【分析】设未知数,根据题意中的等量关系列出方程,然后求解.解:设每支铅笔的标价是x 元,根据题意得:20×(1-80%)x=1.6解得x=0.4故选:B .【点睛】本题考查一元一次方程的实际应用,此题要注意联系生活,知道八折就是标价的80%. 3.(0分)下列方程中,是一元一次方程的是( )A .243x x -=B .0x =C .21x y +=D .11x x -= B 解析:B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a≠0).【详解】解:A 、最高项的次数是2,故不是一元一次方程,选项不符合题意;B 、正确,符合题意;C 、含有2个未知数,故不是一元一次方程,选项不符合题意;D 、不是整式方程,故不是一元一次方程,选项不符合题意;故选:B .【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.(0分)若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6- B 解析:B【分析】由已知可得4x +=2,解方程可得.【详解】由已知可得4x +=2,解得x=-2.故选B.【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.5.(0分)关于y 的方程331y k +=与350y +=的解相同,则k 的值为( )A .-2B .34C .2D .43- C 解析:C【分析】分别解出两方程的解,两解相等,就得到关于k 的方程,从而可以求出k 的值.解第一个方程得:133k y -=, 解第二个方程得:53y =-, ∴133k -=53-, 解得:k=2.故选C .【点睛】 本题解决的关键是能够求解关于y 的方程,要正确理解方程解的含义.6.(0分)已知方程(1)30m m x -+=是关于x 的一元一次方程,则m 的值是( ) A .±1B .1C .-1D .0或1C 解析:C【分析】直接利用一元一次方程的定义进而分析得出答案.【详解】∵方程(1)30m m x -+=是关于x 的一元一次方程, ∴1m =,10m -≠,解得:1m =-.故选:C .【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键. 7.(0分)将方程2152132x x -+=-去分母,得( ) A .()()211352x x -=-+ B .416152x x -=-+C .416152x x -=--D .()()2216352x x -=-+ D 解析:D【分析】方程两边每一项都乘以6即可得.【详解】方程两边都乘以6,得:2(2x-1)=6-3(5x+2),故选D .【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.8.(0分)某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x天,则所列方程为()A.1146x x++=B.1146x x++=C.1146x x-+=D.111446x x+++= C解析:C【分析】首先要理解题意找出题中存在的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据题意我们可以设总的工作量为单位“1“,根据效率×时间=工作量的等式,分别用式子表示甲乙的工作量即可列出方程.【详解】设甲一共做了x天,则乙一共做了(x−1)天.可设工程总量为1,则甲的工作效率为14,乙的工作效率为16.那么根据题意可得出方程11 46x x-+=,故选C.【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程. 9.(0分)下列判断错误的是()A.若a=b,则a−3=b−3B.若a=b,则7a−1=7b−1C.若a=b,则ac2+1=bc2+1D.若ac2=bc2,则a=b D解析:D【解析】【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案.【详解】A. 若a=b,则a−3=b−3,正确;B. 若a=b,则7a−1=7b−1,正确;C. 若a=b,则ac2+1=bc2+1,正确;D. 当c=0时,若ac2=bc2,a就不一定等于b,故本选项错误;故选D.【点睛】此题考查等式的性质,解题关键在于掌握其性质定义.10.(0分)下列方程中,以x=-1为解的方程是()A.3x+12=x2−2B.7(x-1)=0 C.4x-7=5x+7 D.13x=-3A解析:A【解析】【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=-1分别代入四个选项进行检验即可.【详解】解:A、把x=-1代入方程的左边= -52=右边,左边=右边,所以是方程的解;B、把x=-1代入方程的左边=-14≠右边,所以不是方程的解;C、把x=-1代入方程的左边=-11≠右边,不是方程的解;D、把x=-1代入方程的左边=-13≠右边,不是方程的解;故选:A.【点睛】本题关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.二、填空题11.(0分)方程2243x-=的解是__________x=9【分析】根据解一元一次方程的步骤先去分母再移项合并同类项系数化为1即可求解;【详解】解:2x-6=122x=12+62x=18x=9故答案为x=9【点睛】本题考查解一元一次方程的步骤解题关键是解析:x=9【分析】根据解一元一次方程的步骤先去分母,再移项,合并同类项,系数化为1即可求解;【详解】解:224 3x-=2x-6=122x=12+62x=18x=9故答案为x=9.【点睛】本题考查解一元一次方程的步骤,解题关键是:移项变号.12.(0分)在等式“2×( )-3×( )= -15”的括号中分别填入一个数,使这两个数满足:互为相反数.则这两个数依次是______,____________.-33【分析】先设第一个空填m则第二个空就填-m最后形成一个方程接着解出方程进一步求出答案即可【详解】设第一个空填m则第二个空就填-m∴解得:∴故答案为:3【点睛】本题主要考查了一元一次方程的运用熟解析:-3, 3【分析】先设第一个空填m,则第二个空就填-m,最后形成一个方程,接着解出方程进一步求出答案即可.【详解】设第一个空填m ,则第二个空就填-m ,∴2315m m +=-,解得:3m =-,∴3m -=.故答案为:3-,3.【点睛】本题主要考查了一元一次方程的运用,熟练掌握根据题意设出未知数求解是解题关键. 13.(0分)一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.﹣【分析】利用新定义相伴数对列出方程解方程即可求出x 的值【详解】解:根据题意得:去分母得:15x+10=6x+6移项合并得:9x =﹣4解得:x =﹣故答案为:﹣【点睛】本题考查解一元一次方程正确理解相解析:﹣49. 【分析】 利用新定义“相伴数对”列出方程,解方程即可求出x 的值.【详解】 解:根据题意得:11235x x , 去分母得:15x+10=6x+6,移项合并得:9x =﹣4, 解得:x =﹣49. 故答案为:﹣49. 【点睛】本题考查解一元一次方程,正确理解“相伴数对”的定义是解本题的关键.14.(0分)一批玩具,如果3个小朋友玩1个,还剩2个玩具;如果2个小朋友玩1个,还有9人没有分到玩具.若设有x 个玩具,根据题意可列方程______.【解析】【分析】依据题意分析可得等量关系:两总分法实际上球的个数不变【详解】解:若设有个玩具由题意得【点睛】本题考查了一元一次方程的应用解答本题的关键是读懂题意找出等量关系列方程求解解析:3(2)29x x -=+【解析】【分析】依据题意分析,可得等量关系: 两总分法实际上球的个数不变.【详解】解:若设有x 个玩具,由题意得,3(2)29x x -=+【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.15.(0分)某中学组织学生为“希望工程”捐款,甲、乙两班一共捐款425元,已知甲班有50人,乙班比甲班少5人,而乙班比甲班平均每人多捐1元,则乙班平均每人捐款______元.5【解析】【分析】首先设乙班平均每人捐款x 元则甲班平均每人捐款(x-1)元根据题意可得等量关系:甲班的捐款+乙班的捐款=425元由等量关系列出方程即可【详解】解:设乙班平均每人捐款x 元由题意得:50解析:5【解析】【分析】首先设乙班平均每人捐款x 元,则甲班平均每人捐款(x-1)元,根据题意可得等量关系:甲班的捐款+乙班的捐款=425元,由等量关系列出方程即可.【详解】解:设乙班平均每人捐款x 元,由题意得:50(x-1)+(50-5)x=425,解得:x=5,答:乙班平均每人捐款5元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,表示出甲乙两班的捐款人数和人均捐款数,再根据捐款总数列出方程即可.16.(0分)(1)如果33x y -=,那么x =_________;(2)如果2m n =,那么3m =___________.-y 【解析】【分析】(1)根据等式性质2把等式两边都除以−3即可得到x =−y ;(2)根据等式性质2把等式两边都除以3即可得到【详解】(1)∵−3x =3y ∴x =−y ;故答案为:−y ;(2)∵∴;故答案解析:-y23n 【解析】【分析】(1)根据等式性质2把等式两边都除以−3即可得到x =−y ;(2)根据等式性质2把等式两边都除以3即可得到3m =23n .【详解】(1)∵−3x =3y ,∴x =−y ;故答案为:−y ;(2)∵2m n =, ∴3m =23n ; 故答案为:23n 【点睛】 本题考查了等式的性质:等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.17.(0分)若方程()||110a a x --=是关于x 的一元一次方程,则a =____________.【解析】【分析】先根据一元一次方程的定义列出关于a 的不等式组求出a 的值即可【详解】∵是关于x 的一元一次方程∴且解得a=-1故答案为:-1【点睛】本题考查的是一元一次方程的定义熟知只含有一个未知数(元解析:1-【解析】【分析】先根据一元一次方程的定义列出关于a 的不等式组,求出a 的值即可.【详解】∵()||110a a x --=是关于x 的一元一次方程, ∴1=a 且10a -≠,解得a=-1.故答案为:-1【点睛】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.18.(0分)完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元; 每件服装的利润为____________元.由此,列出方程_________________.解这个方程,得x =______________.因此每件服装的成本价是___________元.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可.【详解】每件服装的标价为:(1+40%)x ,每件服装的实际售价为:(1+40%)x×80%,每件服装的利润为:(1+40%)x×80%−x ,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.19.(0分)已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________.5【解析】【分析】此题用m 替换x 解关于m 的一元一次方程即可【详解】∵x =m ∴3m−2=2m+3解得:m =5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数解析:5【解析】【分析】此题用m 替换x ,解关于m 的一元一次方程即可.【详解】∵x =m ,∴3m−2=2m+3,解得:m =5.故答案为:5.【点睛】本题考查一元一次方程的解的定义.方程的解就是能够使方程左右两边相等的未知数的值.20.(0分)一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.7【解析】【分析】设其中的男生有x 人根据每位男生看到白色与红色的安全帽一样多可以表示出女生有(x-1)人再根据每位女生看到白色的安全帽是红色的2倍列方程求解【详解】设男生有x人则女生有(x−1)人根解析:7【解析】【分析】设其中的男生有x人,根据每位男生看到白色与红色的安全帽一样多,可以表示出女生有(x-1)人.再根据每位女生看到白色的安全帽是红色的2倍列方程求解.【详解】设男生有x人,则女生有(x−1)人,根据题意得x=2(x−1−1)解得x=4x−1=3.4+3=7人.故答案为:7.【点睛】此题考查一元一次方程的应用,解题关键在于列出方程.三、解答题21.(0分)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?解析:(1)他们一共去了8个成人,4个学生;(2)按团体票购票更省钱【分析】(1)本题有两个相等关系:学生人数+成人人数=12人,成人票价+学生票价=400元,据此设未知数列方程组求解即可;(2)计算出按照团体票购买需要的钱数,然后与400元作对比即得答案.【详解】解:(1)设去了x个成人,y个学生,依题意得,1240400.5400x yx y+=⎧⎨+⨯=⎩,解得84xy=⎧⎨=⎩,答:他们一共去了8个成人,4个学生;(2)若按团体票购票,共需16×40×0.6=384(元),∵384<400,∴按团体票购票更省钱.【点睛】本题主要考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.22.(0分)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题:()1求小明原计划购买文具袋多少个?()2学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?解析:(1)小明原计划购买文具袋17个;(2)小明购买了钢笔20支,签字笔30支.【分析】(1)设未知数后可以根据等量关系“实际购买文具袋(比原计划多1个)的花费×0.85=原计划购买文具袋的花费-17”列方程求解;(2)设未知数后可以根据等量关系“钢笔和签字笔的总价×0.8(或80%)=272”列方程求解.【详解】解:()1设小明原计划购买文具袋x 个,则实际购买了()x 1+个,由题意得:()10x 108510x 17+⨯=-.. 解得:x 17=;答:小明原计划购买文具袋17个;()2设小明购买了钢笔y 支,则购买签字笔()50y -支,由题意得:()8y 650y 80%272⎡⎤+-⨯=⎣⎦,解得:y 20=,则:50y 30-=.答:小明购买了钢笔20支,签字笔30支.【点睛】本题考查一元一次方程的应用,根据题目中的等量关系设未知数列方程求解是解题关键. 23.(0分)公园门票价格规定如下表:50人.若两个班都以班为单位购票,则一共应付1240元,问:(1)如果两班联合起来,作为一个团体购票,可省多少元?(2)两班各有多少学生?(3)如果七(1)班单独组织去公园游玩,作为组织者的你将如何购票才最省钱?解析:(1)304元;(2)七(1)班有48人,七(2)班有56人;(3)买51张门票可以更省钱.【分析】(1)利用算术方法即可解答;(2)若设初一(1)班有x 人,根据总价钱即可列方程;(3)应尽量设计的能够享受优惠.【详解】(1)12401049304-⨯=(元),所以可省304元.(2)设七(1)班有x 人,则七(2)班有(104)x -人.由题意得1311(104)1240x x +-=或139(104)1240x x +-=,解得48x =或76x =(不合题意,舍去).即七(1)班有48人,七(2)班有56人.(3)由(2)可知七(1)班共48人,若买48张门票,共需4813624⨯=(元),若买51张门票,共需5111561⨯=(元),所以买51张门票可以更省钱.【点睛】本题考查了一元一次方程的应用.在优惠类一类问题中,注意认真理解优惠政策,审题要细心.24.(0分)市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元.(2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由.解析:(1)134元,520元;(2)54元;(3)见解析【分析】(1)先判断两次是否优惠,若优惠,在哪一档优惠;(2)用商品标价减去实际付款可求节省的钱数;(3)先计算两次物品合起来一次购买实际付款,在与134+466比较即可.【详解】解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品的标价超过了500元.设其标价x元,则500×0.9+(x-500)×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;故答案为:134元,520元;(2)134+520-134-466=54,所以省了54元;(3)两次物品合起来一次购买更节省.两次合起来一次购买支付500×0.9+(654-500)×0.8=573.2元,573.2<134+466=600,所以两次物品合起来一次购买更节省.【点睛】此题主要考查了一元一次方程的应用中实际生活中的折扣问题,关键是运用分类讨论的思想,分析清楚付款打折的两种情况.25.(0分)a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(-2)=32+2×3×(-2)=-3(1)试求(-2)※3的值(2)若1※x=3,求x的值(3)若(-2)※x=-2+x,求x的值.解析:(1)-8;(2)1;(3)65.【分析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.【详解】(1)(-2)※3=(-2)2+2×(-2)×3=4-12=-8;(2)∵1※x=3,∴12+2x=3,∴2x=3-1,∴x=1;(3)-2※x=-2+x,(-2)2+2×(-2)x=-2+x,4-4x=-2+x,-5x=-6,x=65.【点睛】此题考查有理数的混合运算,解一元一次方程,解题关键在于掌握运算法则.26.(0分)某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x=1.求a的值,并正确地解方程.解析:a=2,x=-3【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a的值,然后将a的值代入方程求解即可.【详解】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a=2代入21233x x a-+=-得:2x﹣1=x+2﹣6.解得:x=﹣3.【点睛】本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a)-2的解是解题的关键.27.(0分)全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学,问原有多少条船?解析:原有5条船.【分析】首先设原有x条船,根据“减少一条船,那么每条船正好坐9名同学;增加一条船,那么每条船正好坐6名同学”得出等式方程,求出即可.【详解】设原有x条船,如果减少一条船,即(x-1)条,则共坐9(x-1)人.如果增加一条船,则共坐6(x+1)人,根据题意,得9(x-1)=6(x+1).去括号,得9x-9=6x+6.移项,得9x-6x=6+9.合并同类项,得3x=15.系数化为1,得x=5.答:原有5条船.【点睛】此题主要考查了一元一次方程的应用,根据题意利用全班人数列出等量关系式是完成本题28.(0分)解下列方程:(1)15(x+15)=1231-(x-7).(2)2110121364x x x-++-=-1.解析:(1)x=-516;(2)x=16.【分析】(1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.【详解】解:(1)15(x+15)=1231-(x-7).去分母,得6(x+15)=15-10(x-7).去括号,得6x+90=15-10x+70.移项及合并同类项,得16x=-5.系数化为1,得x=-5 16.(2)2110121 364x x x-++-=-1去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12.去括号,得8x-4-20x-2=6x+3-12.移项,得8x-20x-6x=3-12+4+2.合并同类项,得-18x=-3.系数化为1,得x=16.【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.。
七年级上册数学一元一次方程知识点、题型归纳总结
七年级上册数学一元一次方程知识点、题型归纳总结(一)、方程的有关概念1. 方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程. (例1)3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. (例2)注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.(二)、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c(三)、移项法则:把等式一边的某项变号后移到另一边,叫做移项.(例3)(四)、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.(五)、解方程的一般步骤(例4)1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=b a). 一.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.二、一元一次方程的实际应用1. 和、差、倍、分问题:增长量=原有量×增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.例1:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?解:设x 年后,兄的年龄是弟的年龄的2倍,则x 年后兄的年龄是15+x ,弟的年龄是9+x .由题意,得2×(9+x )=15+x18+2x=15+x ,移向得:2x-x=15-18∴x=-3答:3年前兄的年龄是弟的年龄的2倍.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)1.一个数的3倍比它的2倍多10,若设这个数为x ,可得到方程__________.2. 用一根长80厘米的绳子围成一个长方形,且这个长方形的长比宽多10厘米,则这个长方形的长和宽各是_______、________.面积是_______.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.(2 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S ·h =h r 2π②长方体的体积 V =长×宽×高=abc例2 将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14).1. 一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝.3. 工程问题:工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=1例3. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?解:1. 甲、乙工程队从相距100m 的马路两端开始挖沟,甲工程队每天挖沟的进度是乙工程队的2倍少1m ,若5天完工,两队每天各挖几米?4.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.例4. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
初一七年级一元一次方程(含答案解析)
初一七年级一元一次方程(含答案解析)一.解答题(共30小题)1.解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).解一元一次方程参考答案与试题解析一.解答题(共30小题)1.解方程:2x+1=7考点:解一元一次方程.1184454专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1 合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.1184454专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.1184454专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.1184454专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.1184454专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.1184454专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.1184454专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.1184454专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.。
2021-2022学年初一数学:一元一次方程知识点总结+典型例题
初一数学:一元一次方程知识点总结+典型例题+真题演练一、等式和方程的概念1.等式:用等号来表示相等关系的式子,叫做等式.【例】1+2=3,x +1=5,a b c mxy n ++=+,s ab =都是等式.2.等式的分类:(1)恒等式:无论用什么数值代替等式中的字母都能成立的等式; (2)条件等式:只能用某些数值代替等式中的字母才能成立的等式; (3)矛盾等式:无论用什么数值代替等式中的字母都不成立的等式. 【例】①x x x 2=3+,3=3都是恒等式;②x +5=6是条件等式;③3=2,1+2=5,x x +1=-1都是矛盾等式. 3.等式的性质:(1)若a b =,则a c b c ±=±.等式两边都加上(或减去)同一个数(或式子),所得结果仍是等式.(2)若a b =,则ac bc =;若a b =且0c ≠,则a bc c=.等式两边都乘以(或除以)同一个数(除数不为0),所得结果仍是等式. (3)对称性:若a b =,则b a =.(4)传递性:若a b =,b c =,则a c =. 4.方程:含有未知数的等式,叫做方程. 注意:①方程中必须含有未知数;②方程是等式,但等式不一定是方程,例如1+2=3是等式而不是方程.【例】①x 2+1=3、x 2=9、x1=6都是方程;②x +1>2、1+2=3、y ≠6不是方程. 5.方程的解:使方程左、右两边相等的未知数的值,叫做方程的解. 【例】x =4是x +1=5的解. 6.解方程:求方程的解的过程.【注】解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.二、一元一次方程的概念和解法1.一元一次方程:只含有一个未知数,并且未知数的最高次数是1的整式方程,叫做一元一次方程.2.一元一次方程的判断:Step1:不化简,看是否是整式方程;Step2:化简,看是否满足()ax b a +=0≠0.【例】x 2+3=5,x =3,x x 3+2=5-1,x x x 22+2+1=-6都是一元一次方程;x +1>2、x 2+1=9、x x1+=1、x x 2+1=2+2都不是一元一次方程.3.一元一次方程的两种形式:最简形式:方程()ax b a =≠0的形式叫一元一次方程的最简形式. 标准形式:方程()ax b a +=0≠0的形式叫一元一次方程的标准形式.【例】x 3=5,x 2=7是一元一次方程的最简形式;x 2+1=0,x -4=0是一元一次方程的标准形式.4.解一元一次方程的一般步骤: (1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1.【例】解方程()xx +1-=22解:去分母,得:()x x +21-=4去括号,得:x x +2-2=4 移项,得:x x -2=4-2 合并同类项,得:x -=2 系数化为1,得:x =-2.下列各式中,哪些是等式?是等式的请指出类型.①x 4-3; ②1+5+7=13; ③y 1-7=22; ④x x 2=3+1; ⑤.≈314π;⑥x y +=5; ⑦a b 2+>0; ⑧x x 7+1=7-1; ⑨y 6-4; ⑩x x 22=.(1)若ma mb =,那么下列等式不一定成立的是( ).A .ma mb -6=-6B .a b =C .ma mb 11-=-22D .ma mb +8=+8(2)下列判断错误的是( )A .若a b =,则ac bc -3=-3B .若a b =,则a bc c 22=+1+1C .若x =2,则x x 2=2D .若x x 2=2,则x =2(3)给出下列等式:①若a b =,则ac bc =;②若ac bc =,则a b =;③若a b =,则a b x x 22=+1+1,④如果a b 3=2+5,那么a b 25=+33.其中正确的有________.下列式子:①x x 3+2=5-1;②213⎛⎫-+=1 ⎪24⎝⎭;③x 2+35≤;④y y 2-1=2;⑤x y 2+7=365,其中是方程的是___________.(填序号)(1)下列等式:①x x +4=4+;②x1=2;③x x -4=4-;④()x x x x 2+=+2+3;⑤||x 2=3.其中是一元一次方程的有________.例题1例题2例题3例题4(2)若k kx k 3-2+2=3是关于x 的一元一次方程,则k =_______.(3)若方程||()a a x -1-2+3=0是关于x 的一元一次方程,则a =__________.(4)若方程()m x mx x 22-1-+8=是关于x 的一元一次方程,则代数式||m m 2006--1的值为( )A .1或-1B .1C .-1D .2(1)若x =2是方程x x a 3-4=-2的解,则a a201120111+的值是_________.(2)如果关于x 的一元一次方程()||m x m +2-4+8=0的解是x =0,则m 的值______.(3)如果方程||()m m x m n -1=+2是关于x 的一元一次方程,且x n =是它的解,则n m -=______.解方程:(1)()()x x x 3-2+1=-2-1(2)()()x x x 3-7-1=3-2+3(3)x x 2+15-1-=136(4)x x 1-4-1=-123(5)225353x x x ---=-(6)()()x x x 112⎡⎤+1-=+1⎢⎥233⎣⎦例题5例题6解方程:(1)..x x 4-15-2=305(2)......x x x 04+09003+002-5-=050032(3)....x x 2-03+04-=10503y ⎧⎫11⎡11⎤⎛⎫-3-3-3=1⎨⎬ ⎪⎢⎥2222⎝⎭⎣⎦⎩⎭例题7 例题8真题演练一.选择题(共16小题)1.(2021•株洲)方程﹣1=2的解是()A.x=2B.x=3C.x=5D.x=6 2.(2019•南充)关于x的一元一次方程2x a﹣2+m=4的解为x=1,则a+m的值为()A.9B.8C.5D.4 3.(2021•温州)解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x 4.(2020秋•海淀区校级期末)下列各式进行的变形中,不正确的是()A.若3a=2b,则3a+2=2b+2B.若3a=2b,则3a﹣5=2b﹣5C.若3a=2b,则D.若3a=2b,则9a=4b5.(2021春•射洪市期末)下列等式变形正确的是()A.由a=b,得4+a=4﹣b B.如果2x=3y,那么C.由mx=my,得x=y D.如果3a=6b﹣1,那么a=2b﹣16.(2021春•卧龙区期末)解方程时,小刚在去分母的过程中,右边的“﹣1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是()A.x=﹣3B.x=﹣2C.D.7.(2020秋•海淀区校级期末)下列等式变形正确的是()A.若4x=2,则x=2B.若4x﹣2=2﹣3x,则4x+3x=2﹣2C.若=1,则3(3x+1)﹣2(1﹣2x)=1D.若4(x+1)﹣3=2(x+1),则4(x+1)﹣2(x+1)=38.(2021•杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则()A.60.5(1﹣x)=25B.25(1﹣x)=60.5C.60.5(1+x)=25D.25(1+x)=60.59.(2019•杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=7210.(2021•武汉)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是()A.8(x﹣3)=7(x+4)B.8x+3=7x﹣4C.=D.=11.(2021•南充)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x元,则可列方程为()A.10x+5(x﹣1)=70B.10x+5(x+1)=70C.10(x﹣1)+5x=70D.10(x+1)+5x=7012.(2021•绵阳)近年来,网购的蓬勃发展方便了人们的生活.某快递分派站现有包裹若干件需快递员派送,若每个快递员派送10件,还剩6件;若每个快递员派送12件,还差6件,那么该分派站现有包裹()A.60件B.66件C.68件D.72件13.(2021•吉林)古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.若设这个数是x,则所列方程为()A.x+x+x=33B.x+x+x=33C.x+x+x+x=33D.x+x+x﹣x=33 14.(2021•牡丹江)已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店()A.不盈不亏B.盈利20元C.盈利10元D.亏损20元15.(2021春•新蔡县期末)已知k为整数,关于x的方程(k+2)x=3有正整数解,则满足条件的k的值有()A.1个B.2个C.3个D.无数多个16.(2021春•灌云县期末)如图,是由7块正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为()A.63B.72C.99D.110二.填空题(共10小题)17.(2021•重庆)若关于x的方程+a=4的解是x=2,则a的值为.18.(2019•济南)代数式与代数式3﹣2x的和为4,则x=.19.(2019•呼和浩特)关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,则其解为.20.(2021春•兴隆县期末)鸡和兔共有100只,鸡的脚比兔的脚多80只,则鸡有.21.(2021•大连)我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.”若设有牧童x人,根据题意,可列方程为.22.(2021•扬州)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马天追上慢马.23.(2021•烟台)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为.24.(2021•陕西)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为.25.(2021春•盐池县期末)定义一种新的运算:a☆b=2a﹣b,例如:3☆(﹣1)=2×3﹣(﹣1)=7,那么若(﹣2)☆b=﹣16,那么b=.26.(2021春•宛城区期末)“从甲地到乙地,长途汽车原需行驶7个小时,开通高速公路后,路程缩短了30千米,车速平均每小时增加了30千米,结果只需4小时即可到达.”三位同学根据题意,分别获得如下数量关系:①设汽车原来的速度为x千米/小时,则7x﹣30=4(x+30);②设甲、乙两地之间的高速公路的路程为y千米,则﹣30=;③设甲、乙两地之间的普通公路的路程为s千米,则=﹣30.你认为其中正确的数量关系序号为.三.解答题(共14小题)27.(2021•广元)解方程:+=4.28.(2020•凉山州)解方程:x﹣=1+.29.(2021春•沐川县期末)解方程:.30.(2021春•淮阳区校级期末)解方程:﹣1=.31.(2020•杭州)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.32.(2021春•曹县期末)某天,信美超市用360元钱按批发价从水果批发市场购买了苹果和香蕉共200kg,然后按零售价出售,苹果和香蕉当天的批发价和零售价如下表所示:品名苹果香蕉批发价(单位:元/kg) 2.0 1.5零售价(单位:元/kg) 2.4 1.8(1)这一天该超市购买苹果和香蕉各多少kg?(2)如果苹果和香蕉全部以零售价售出,该超市当天卖这些苹果和香蕉共赚了多少钱?33.(2021•台州)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.34.(2021•陕西)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.35.(2021春•闵行区期末)甲、乙两人从相距42千米的两地同时相向出发,3小时30分钟后相遇.如果乙先出发6小时,那么在甲出发1小时后与乙相遇,求甲、乙两人的速度.36.(2019•安徽)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?37.(2021•桂林)为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?38.(2021春•玉屏县期末)某中学组织一批学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆300元,60座客车租金为每辆400元,问:(1)这批学生的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位学生都有座位,应该怎样租用才合算?39.(2019•黄石)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?40.(2021春•香坊区校级期末)如图,在数轴上有A、B两点,点C是线段AB的中点,AB =12,OA=8.(1)求点C所表示的数;(2)动点P、Q分别从A、B同时出发,沿着数轴的正方向运动,点P、Q的运动速度分别是每秒3个单位和每秒2个单位(当P与Q相遇,运动停止),点M是线段PQ的中点,设运动时间为t秒,请用含t的式子表示CM的长;(3)在(2)的条件下,试问t为何值时,CM=PC.。
七年级上期末复习《第三章一元一次方程》知识点+易错题(含答案)
2019年七年级数学上册期末复习一元一次方程知识点+易错题一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
部编数学七年级上册专题09一元一次方程章末重难点题型(12个题型)(解析版)含答案
专题09 一元一次方程章末重难点题型(12个题型)一、经典基础题题型1 方程与一元一次方程的辨别题型2 利用一元一次方程的定义和方程的解求值题型3等式的性质及应用题型4 一元一次方程中的同解问题题型5 方程的特殊解问题(求参数的值)题型6 解方程题型7 含参数的一元一次方程题型8 一元一次方程中的错解和遮挡问题题型9 一元一次方程中的新定义问题题型11 一元一次方程中的整体换元题型12 一元一次方程中的实际应用二、优选提升题题型1 方程与一元一次方程的辨别例1.(2022·吉林·大安市七年级期末)下列各式中,是一元一次方程的是()A.x+2y=5B.x2+x-1=0C.1xD.3x+1= 10【点睛】本题主要考查了一元一次方程的定义,熟记一元一次方程的定义是解题的关键.变式1.(2022·河南三门峡·七年级期末)在①21x +;②171581+=-+;③1112x x -=-;④23x y +=中,方程共有( )A .1个B .3个C .2个D .4个变式2.(2022·广东湛江·七年级期末)下列各式中,不是方程的是( )A .2a a a+=B .23x +C .215x +=D .()2122x x +=+【答案】B【分析】根据方程的定义(含有未知数的等式称为方程)依次进行判断即可.【详解】解:根据方程的定义可得:A 、C 、D 选项均为方程,选项B 不是等式,所以不是方程,故选:B .【点睛】题目主要考查方程的定义,深刻理解方程的定义是解题关键.题型2 利用一元一次方程的定义和方程的解求值【解题技巧】依据一元一次方程的定义,x 的次数为1,系数不为0方程的解:解方程就是求出使方程中等号左右两边相等的未知数的值,这个值叫方程的解.例1.(2022·河南郑州·七年级期末)若使方程(2)1m x +=是关于x 的一元一次方程,则m 的值是( )A .2m ¹-B .0m ¹C .2m ¹D .2m >-【答案】A【分析】根据一元一次方程的定义:只含有一个未知数,未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程进行求解即可.【详解】解:∵方程()21m x +=是关于x 的一元一次方程,∴20m +¹即2m ¹-.故选:A .【点睛】本题主要考查了一元一次方程的定义,解题的关键在于能够熟练掌握一元一次方程的定义.变式1.(2022·福建泉州·七年级期末)若3x =是关于x 的方程5ax b -=的解,则622a b --的值为( )A .2B .8C .-3D .-8【答案】B 【分析】将x =3代入ax -b =5中得3a -b =5,将该整体代入6a -2b -2中即可得出答案.【详解】解:将x =3代入ax -b =5中得:3a -b =5,所以6a -2b -2=2(3a -b )-2=2×5-2=8.故选:B .【点睛】本题考查了一元一次方程的解,求代数式的值,熟练掌握整体法是解题的关键.变式2.(2022·河南南阳·七年级期末)若()110m x -+=是关于x 的一元一次方程,则m 的值可以是______(写出一个即可)【答案】2(答案不唯一)【分析】只含有一个未知数,并且未知数的次数是一次的整式方程叫一元一次方程,利用一元一次方程的定义得出10m -¹,即可得出答案.【详解】解:()110m x -+=Q 是关于x 的一元一次方程,10m \-¹,解得1m ¹,m \的值可以是2.故答案为:2(答案不唯一).【点睛】此题主要考查了一元一次方程的定义,正确掌握一元一次方程定义是解题关键.题型3 等式的性质及应用【解题技巧】等式的性质1:等式两边加同一个数(或式子)结果仍得等式;等式的性质2:等式两边乘同一个数或除以一个不为零的数,结果仍得等式.例1.(2022·海南·七年级期末)已知a b =,根据等式的性质,可以推导出的是( )A .21a b +=+B .33a b -=-C .232a b -=D .a b c c=例1.(2022·四川成都·八年级期末)某小组设计了一组数学实验,给全班同学展示以下三个图,其中(a )(b )中天平保持左右平衡,现要使(c )中的天平也平衡,需要在天平右盘中放入砝码的克数为( )A .25克B .30克C .40克D .50克【答案】C 【分析】由图(a )和图(b )可得5个黑三角和5个黑圆共重150克,从而1个黑三角和1个黑圆共重30克,由此可计算出1个黑三角重20克,1个黑圆重10克,可计算出此题结果.【详解】设一个黑三角重a 克,一个黑圆重b 克,由题意,得5(a +b )=150,解得a +b =30,由图(a )得,a +2(a +b )=80,即a +2×30=80,解得a =20,∴b =30-20=10,∴a +2b =20+10×2=20+20=40,故选:C .【点睛】此题考查了利用等式的性质和方程解决实际问题的能力,关键是能根据题意列出关系式,利用等式的性质进行计算.例2.(2022·江苏泰州·七年级期末)已知方程x -2y =5,请用含x 的代数式表示y ,则y =_______.题型4 一元一次方程中的同解问题解题技巧:通过前一个方程求得x 的值并代入后一个方程,转化为含另一未知数的方程、例1.(2022·黑龙江大庆·期末)关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍,则m 的值为( )A .12B .14C .14-D .12-【答案】C变式1.(2022·辽宁大连·七年级期末)如果方程24=x 与方程的解相同,则k 的值为( )A .2B .C .4D .【答案】C【分析】解方程2x =4,求出x ,根据同解方程的定义计算即可.【详解】解:∵2x =4,∴x =2,∵方程2x =4与方程3x +k =-2的解相同,∴3×2+k =10解得,k =4,故选:C .【点睛】本题考查的是同解方程,掌握一元一次方程的解法是解题的关键.变式2.(2022·山东烟台·期末)若关于x 的方程()3212x k x -=+的解与关于x 的方程()821k x -=+的解互为相反数,则k =______.310x k +=2-4-题型5 方程的特殊解问题(求参数的值)解题技巧:求含参数一元一次方程的逆过程例1.(2022·河南安阳·七年级期末)关于x 的方程的解是正整数,则整数k 可以取的值是__________.【答案】3【分析】把含x 的项合并,化系数为1求x ,再根据x 为正整数求整数k 的值.【详解】解:移项、合并,得,解得:,∵x 为正整数,k 为整数,∴解得k=3.故答案为:3.【点睛】本题考查一元一次方程的解.关键是按照字母系数解方程,再根据正整数解的要求求整数k 的值.变式1.(2022·上海金山·八年级期末)如果关于x 的方程ax =b 无解,那么a 、b 满足的条件()A .a =0,b =0B .a ≠0,b ≠0C .a ≠0,b =0D .a =0,b ≠0【答案】D【分析】根据方程无解,可知含x 的系数为0,常数不为0,据此求解.【详解】解:∵关于x 的方程ax =b 无解,∴a =0,b ≠0,故选:D .【点睛】本题考查一元一次方程的解,理解方程无解时含x 的系数为0,常数项不为0是解题关键.变式2.(2022·湖南)关于x 的方程(a +1)x =a ﹣1有解,则a 的值为( )A .a ≠0B .a ≠1C .a ≠﹣1D .a ≠±1【答案】C【分析】根据一元一次方程有解,可得一元一次方程的系数不能为零,可得答案.【详解】根据一元一次方程有解,可得一元一次方程的系数不能为零,可得答案.21x kx +=21x kx -=-12x k=--2=-1k -解:由关于x 的方程(a +1)x =a ﹣1有解,得a +1≠0,解得a ≠﹣1.故选:C .【点睛】本题考查了一元一次方程有解的条件,利用了一元一次方程的系数不能为零.变式3.(2022·黑龙江大庆·期末)关于x 的方程()()2153a x a x b -=-+有无穷多个解,则a b -=______.题型6 解方程【解题技巧】解含有括号的一元一次方程:一般方法是由内到外逐层去括号,但有时这样做不一定能简化运算。
一元一次方程知识点和常考题型解析
一元一次方程知识点和常考题型一知识点复习巩固知识点一:一元一次方程及解的概念1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.注意:方程要化为最简形式,且一次项系数不能为零。
2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)2、解一元一次方程的一般步骤:常用步骤具体做法依据注意事项去分母在方程两边都乘以各分母的最小公倍数等式基本性质2 防止漏乘(尤其整数项),注意添括号;去括号一般先去小括号,再去中括号,最后去大括号去括号法则、分配律注意变号,防止漏乘;移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项等式基本性质1 移项要变号,不移不变号;要变号)合并同类项 把方程化成ax =b(a ≠0)的形式合并同类项法则计算要仔细,不要出差错; 系数化成1 在方程两边都除以未知数的系数a ,得到方程的解x = 等式基本性质2 计算要仔细,分子分母勿颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用: ①a ≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b ≠0时,方程无解。
知识点三:列一元一次方程解应用题1、列一元一次方程解应用题的一般步骤:(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系。
(完整版)一元一次方程(知识点+典型试题)附答案
第五章 一元一次方程第1——2课时 一元一次方程相关概念及解法一、知识梳理1.等式及其性质⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2.方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3.解一元一次方程的步骤①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.4.易错知识辨析(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.二、课堂精讲例题(一)一元一次方程的定义 例题1若3223=+-k kxk是关于x 的一元一次方程,则k =_______.【难度分级】:A 类【选题意图】(对应知识点):本题主要考查学生对一元一次方程的定义的理解。
【解析】:该方程为一元一次方程,则必须满足⎩⎨⎧=-≠1230k k ,由3223=+-k kxk是关于x 的一元一次方11230==-≠k k k 解得且 【搭配课堂训练题】 (A )1.若()521||=--m x m 是一元一次方程,则m =(B )2.下列方程中,属于一元一次方程的是( )A 、x -3B .012=-xC 、2x -3=0D 、x -y =3 (二)方程的解例题2.已知关于x 的方程3x +2a =2的解是a -1,则a 的值是( ) A .1 B .53 C .51D .-1 【难度分类】:A 级【分析】:方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等 【答案】:根据题意得:3(a -1)+2a =2,解得a =1 故选A .【点评】:本题主要考查了方程解的定义,已知a -1是方程的解实际就是得到了一个关于a 的方程.【搭配课堂训练题】(A )1.方程2x +a -4=0的解是x =-2,则a 等于( ) A .-8 B .0 C .2 D .8(B )2.已知关于x 的方程4x -3m =2的解是x =m ,则m 的值是( ) A .2 B .-2 C .72 D .72- (三)解方程例题3若2005-200.5=x -20.05,那么x 等于( )A .1814.55B .1824.55C .1774.55D .1784.55 【难度分级】:A 类【选题意图】(对应知识点):本题主要考查学生解一元一次方程。
初一上册一元一次方程内容总结及试题分析
初一数学七年级上册第三章一元一次方程主要内容:3.1 从算式到方程3.1.1 一元一次方程3.1.2 等式的性质3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程主要知识点:1、方程只含一个未知数,未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。
2、实际问题——设未知数,列方程——一元一次方程。
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
3、等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c=b±c4、等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;如果a=b(c≠0),那么a/c=b/c5、像上面那样把等式一边的某项变号后移到另一边,叫做移项。
去括号1回归于实际问题,检验考试导向:1、中考所占比重:中考试题中分值约为1-3分2、中考常考题型:主要以选择和填空题为主,极少出现简答题3、考察内容:①方程及方程解的概念;②根据题意列一元一次方程;③解一元一次方程。
题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。
试题归类解析:选择题归类分析:题型二:判定是不是一元一次方程应用题归类分析:1.和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现. 例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?分析:等量关系为:设1990年6月底每10万人中约有x人具有小学文化程度。
最新七年级一元一次方程专题练习(解析版)
一、初一数学一元一次方程解答题压轴题精选(难)1.对于任意有理数,我们规定 =ad-bc.例如 =1×4-2×3=-2(1)按照这个规定,当a=3时,请你计算(2)按照这个规定,若 =1,求x的值。
【答案】(1)解:当a=3时,=2a×5a-3×4=10a2-12=10×32-12=90-12=78(2)解:∵ =1∴4(x+2)-3(2x-1)=1去括号,可得:4x+8-6x+3=1移项,合并同类项,可得:2x=10,解得x=5【解析】【分析】(1)根据规定先求出的表达式,再化简,然后把a=3代入求值即可;(2)根据新定义的规定把=1的右式化成整式,然后去括号、移项、合并同类项,x项系数化为1即可解出x.2.某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.(1)一天中制衣所获利润P是多少(用含x的式子表示);(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.(3)一天当中安排多少名工人制衣时,所获利润为11806元?【答案】(1)解:由题意得,P=25×4×x=100x.故答案是:100x;(2)解:由题意得,Q=[(150−x)×30−6x]×2=9000−72x.故答案是:(9000−72x);(3)解:根据题意得解得答:应安排100名工人制衣.【解析】【分析】(1)根据一天的利润=每件利润×件数×人数,列出代数式;(2)安排x名工人制衣,则织布的人数为(150-x),根据利润=(人数×米数-制衣用去的布)×每米利润,列代数式即可;(3)根据总利润=11806,列方程求解即可.3.仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”,反之,“有限小数或无限小数均可化为分数”.例如: =1÷4=0.25; = =8÷5=1.6; =1÷3= ,反之,0.25= = ;1.6= = = .那么,怎么化成分数呢?解:∵ ×10=3+ ,∴不妨设 =x,则上式变为10x=3+x,解得x= ,即 = ;∵ = ,设 =x,则上式变为100x=2+x,解得x= ,∴ = =1+x=1+ =(1)将分数化为小数: =________, =________;(2)将小数化为分数:=________;=________。
初一数学七上一元一次方程所有知识点总结和常考题型练习题
一元一次方程知识点一、一元一次方程(1)含有未知数的等式是方程。
(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
(3)求出使方程左右两边的值相等的未知数的值,叫做方程的解。
二、等式的性质(1)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b ,那么a ±c=b ±c.(2)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
如果a=b ,那么ac=bc;如果a=b 且c ≠0,那么c b c a.(3)等式两边不能都除以0,即0不能作除数或分母。
三、解一元一次方程1、合并同类项与移项(1)合并同类项的依据:乘法分配律。
合并同类项的作用:是一种恒等变形,起到“化简”的作用。
(2)把等式一边的某项变号后移到另一边,叫做移项。
(3)移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a (a 是常数)的形式。
2、去括号与去分母(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。
(2)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(3)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.四、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并同类项(把方程化成ax = b (a ≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=a(b).五、实际问题与一元一次方程(1)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。
(2)工作量=人均效率×人数×时间。
(3)增长量=原有量×增长率,现有量=原有量+增长量(4)利润=售价-成本;售价=进价+进价×利润率;(5)路程=时间×速度(6)利息=本金×利率×期数,利息税=利息×税率一元一次方程练习一、选择题1.解方程-3x+5=2x-1, 移项正确的是( )A.3x-2x=-1+5B.-3x-2x=5-1C.3x-2x=-1-5D.-3x-2x=-1-52.下列方程变形正确的是( )A . 由-2x=6, 得x=3B . 由-3=x +2, 得x=-3-2C . 由-7x +3=x -3, 得(-7+1)x=-3-3D . 由5x=2x +3, 得x=-13.已知当x=2,y=1时,代数式kx -y 的值是3,那么k 的值是( )A .2B .-2C .1D .-14. 方程21312--+x x =1去分母正确的是( ) A.2(2x+1)-3(x-1)=1 B.6(2x+1)-6(x-1)=1C.2x+1-(x-1)=6D.2(2x+1)-3(x-1)=65.当3x-2与31互为倒数时,x 的值为( ) A. 31 B.35 C.3 D. 53 6. 某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x 公顷旱地改为林地,则可列方程( )A. 54−x=20%×108B. 54−x=20%×(108+x)C. 54+x=20%×162D. 108−x=20%(54+x)7. 学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )(A )25台 (B )50台 (C )75台 (D )100台8.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元。
七年级数学上册第三单元《一元一次方程》-解答题专项知识点总结(答案解析)(1)
一、解答题1.已知关于x的方程:2(x﹣1)+1=x与3(x+m)=m﹣1有相同的解,求以y为未知数的方程3332my m x--=的解.解析:214y=-.【分析】根据方程可直接求出x的值,代入另一个方程可求出m,把所求m和x代入方程3,可得到关于y的一元一次方程,解答即可.【详解】解:解方程2(x﹣1)+1=x得:x=1将x=1代入3(x+m)=m﹣1得:3(1+m)=m﹣1解得:m=﹣2将x=1,m=﹣2代入33 32my m x --=得:3(2)2332y----=,解得:214y=-.【点睛】本题考查了含分母的一次方程,属于简单题,正确求解方程是解题关键.2.解方程:2x13+=x24+-1.解析:x=-2.【分析】按去分母,去括号,移项,合并同类项,系数化为1的步骤进行求解即可.【详解】去分母得:4(2x+1)=3(x+2)-12,去括号得:8x+4=3x+6-12,移项得:8x-3x=6-12-4,合并同类项得:5x=-10,系数化为1得:x=-2.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.3.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.解析:(1)方案一省钱;(2)见解析;(3)见解析.【分析】(1)分别按两种方案结合已知数据计算、比较即可得到结论;(2)分别根据两种方案列出对应的表达式并化简即可;(3)按以下三种方式分别计算出各自所需费用并进行比较即可:①全按方案一购买;②全按方案二购买;③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子.【详解】(1)当x=100时,按方案一购买所需费用为:100×200=20000(元);按方案二购买所需费用为:100×(200+80)×80%=22400(元),∵20000<22400,∴方案一省钱;(2)当x>100时,按方案一购买所需费用为:100×200+80(x﹣100)=80x+12000(元);按方案二购买所需费用为:(100×200+80x)×80%=64x+16000(元),答:方案一、方案二的费用为:(80x+12000)元、(64x+16000)元;(3)当x=300时,①全按方案一购买:100×200+80×200=36000(元);②全按方案二购买:(100×200+80×300)×80%=35200(元);③先按方案一购买100张课桌,同时送100把椅子;再按方案二购买200把椅子,100×200+80×200×80%=32800(元),∵36000>35200>32800,∴先按方案一购买100张桌子,同时送100把椅子;再按方案二购买200把椅子最省.【点睛】(1)读题题意,弄清各数据间的关系是解答第1、2小题的关键;(2)解第3小题时,需分以下三种情况分别计算所需费用:①全按方案一购买;②全按方案二购买;③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子;解题时不要忽略了其中任何一种.4.解下列方程:(1)517 84a-=;(2)22146y y +--=1; (3)2131683x x x -+-= -1 解析:(1)3a =;(2)4y =-;(3)179x =. 【分析】 (1)先方程两边同乘以8去分母,再按照移项、合并同类项、系数化为1的步骤解方程即可得;(2)先方程两边同乘以12去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得;(3)先方程两边同乘以24去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】(1)方程两边同乘以8去分母,得5114a -=,移项,得5141a =+,合并同类项,得515a =,系数化为1,得3a =;(2)方程两边同乘以12去分母,得3(2)2(21)12y y +--=,去括号,得364212y y +-+=,移项,得341262y y -=--,合并同类项,得4y -=,系数化为1,得4y =-;(3)方程两边同乘以24去分母,得4(21)3(31)824x x x --+=-,去括号,得8493824x x x ---=-,移项,得8982443x x x --=-++,合并同类项,得917x -=-,系数化为1,得179x =. 【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.5.利用等式的性质解下列方程:(1)x -2=5; (2)-23x =6; (3)3x =x +6. 解析:(1)x =7;(2)x =-9;(3)x =3【分析】(1)两边同时加上2即可求解;(2)两边同时乘-32即可求解;(3)两边同时减x,然后同时除以2即可求解.【详解】解:(1)等式两边加2,得x-2+2=5+2,即x=7.(2)等式两边乘-32,得x=6×(-32),即x=-9.(3)等式两边减x,得2x=6.两边除以2,得x=3.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.6.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x+1-1所以x=1.(3)两边加25 x,得35x-8+25x=-25x+1+25x.化简,得x-8=1.两边加8,得x-8+8=1+8.所以x =9.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 7.解下列方程(1)5m-8m-m=3-11;(2)3x+3=2x+7解析:(1)m=2;(2)x=4【分析】(1)先合并同类项,再化系数为1解一元一次方程即可;(2)先移项,再合并同类项解一元一次方程即可.【详解】(1)合并同类项,得 :﹣4m=﹣8,系数化为1,得: m=2,(2)移项,得:3x ﹣2x=7﹣3,合并同类项,得: x=4.【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法及步骤是解答的关键. 8.已知16y x =-,227y x =+,解析下列问题:(1)当122y y =时,求x 的值;(2)当x 取何值时,1y 比2y 小3-.解析:(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解.【详解】(1)由题意得:62(27)x x -=+解得215x = 215x ∴=. (2)由题意得:27(6)3x x +--=-解得18x 18x ∴=. 【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.9.设a ,b ,c ,d 为有理数,现规定一种新的运算:a b ad bc c d =-,那么当35727x-=时,x 的值是多少? 解析:x =-2【分析】 根据新定义的运算得到关于x 的一元一次方程,解方程即可求解.【详解】解:由题意得:21 - 2(5 - x )=7即21-10+2x =7x =-2.【点睛】本题考查了新定义,解一元一次方程,根据新定义的运算列出方程是解题关键. 10.已知数轴上的A 、B 两点分别对应数字a 、b ,且a 、b 满足|4a-b|+(a-4)2=0(1)a= ,b= ,并在数轴上面出A 、B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A .求点P 和点Q 运动多少秒时,P 、Q 两点之间的距离为4,并求此时点Q 对应的数.解析:(1)4,16.画图见解析;(2)83或8秒;(3)点P 和点Q 运动4或8或9或11秒时,P ,Q 两点之间的距离为4.此时点Q 表示的数为20,24,25,27.【分析】(1)根据非负数的性质求出a 、b 的值即可解决问题;(2)构建方程即可解决问题;(3)分四种情形构建方程即可解决问题.【详解】(1)∵a ,b 满足|4a-b|+(a-4)2≤0,∴a=4,b=16,故答案为4,16.点A 、B 的位置如图所示.(2)设运动时间为ts.由题意:3t=2(16-4-3t)或3t=2(4+3t-16),解得t=83或8,∴运动时间为83或8秒时,点P到点A的距离是点P到点B的距离的2倍;(3)设运动时间为ts.由题意:12+t-3t=4或3t-(12+t)=4或12+t+4+3t=52或12+t+3t-4=52,解得t=4或8或9或11,∴点P和点Q运动4或8或9或11秒时,P,Q两点之间的距离为4.此时点Q表示的数为20,24,25,27.【点睛】本题考查多项式、数轴、行程问题的应用等知识,具体的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.11.a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(-2)=32+2×3×(-2)=-3(1)试求(-2)※3的值(2)若1※x=3,求x的值(3)若(-2)※x=-2+x,求x的值.解析:(1)-8;(2)1;(3)65.【分析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.【详解】(1)(-2)※3=(-2)2+2×(-2)×3=4-12=-8;(2)∵1※x=3,∴12+2x=3,∴2x=3-1,∴x=1;(3)-2※x=-2+x,(-2)2+2×(-2)x=-2+x,4-4x=-2+x,-4x-x=-2-4,-5x=-6,x=65.【点睛】此题考查有理数的混合运算,解一元一次方程,解题关键在于掌握运算法则.12.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?解析:(1)购买A种记录本120本,B种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键13.小丽用的练习本可以从甲乙两家商店购买,已知两家商店的标价都是每本 2 元,甲商店的优惠条件是:购买十本以上,从第 11 本开始按标价的 70%出售;乙商店的优惠条件是:从第一本起按标价的80%出售。
七年级数学:一元一次方程知识点及经典例题
七年级数学:一元一次方程知识点及经典例题一、知识要点梳理知识点一:方程和方程的解1.方程:含有未知数的等式叫方程。
注意:a.必须是等式 b.必须含有未知数。
易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。
考法:判断是不是方程:例:下列式子:(1).8-7=1+0.(2).x+y=22、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等。
知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a+c=b+c;如果a=b,那么a-c=b-c(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a=b,那么a×c=b×c;如果a=b,那么a÷c=b÷c(c≠0)。
要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:2/5x-1=1.6,将其化为:2/5x-1=8/5.方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:步骤一:变形步骤二:去分母具体方法:方程两边都乘以各个分母的最小公倍数变形根据注意事项:1.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号步骤三:去括号先去小括号,再去乘法分配律、分配律应满足分配到每一项,最后去大括号去括号法则2.注意符号,特别是去掉括号步骤四:移项移项要变号;一般把含有未知数的项移到方程左边,其余项移到右边步骤五:合并同类项把含有未知数的项移到方程的一边,不含有未知数的项移到另一边合并同类项时,把同类项的系数相加,字母与字母的指数不变步骤六:化成“ax=b”的形式把方程中的同类项同分别合并,化成一般“ax=b”的形式(a≠0)步骤七:求解未知数的系数,得x=b/a要点诠释:等式性质1:合并同类项1.解方程5x=-17,合并同类项得x=-17/5.2.巧组合解方程:将分母通分,得到方程3x/4+2x/3=7/2.将3x/4和2x/3的分母都化为12,得到9x/12+8x/12=7/2,合并同类项得到17x/12=7/2,解得x=24/17.3.巧解含有绝对值的方程:将|x-2|-3=0转化为两个方程,即x-2-3=0或者-(x-2)-3=0.解得x=5或x=-1.4.变式1:已知方程4x=1,那么方程的解是x=1/4.5.变式2:将5|x|-16=3|x|-4转化为两个方程,即5x-16=3x-4或者5x-16=-3x+4.解得x=4或x=4/3.6.利用整体思想解方程:将整个分式作为一个整体,求出分式的值为4/3,代入原方程得到3x/2=4/3,解得x=8/9.7.判断是否为一元一次方程:(1)不是,因为y的指数不为1;(2)不是,因为x的指数不为1;(3)不是,因为方程中含有分式;(4)是一元一次方程。
《常考题》初中七年级数学上册第三单元《一元一次方程》知识点总结(含答案解析)
一、选择题1.已知5x =是关于x 的方程4231x m x +=+的解,则方程3261x m x +=+的解是_________.A .53 B .53- C .-2 D .12.如图所示,两人沿着边长为90 m 的正方形,按A →B →C →D →A …的方向行走,甲从A 点以65 m/min 的速度、乙从B 点以75 m/min 的速度行走,当乙第一次追上甲时,将在正方形的( )边上.A .BCB .DC C .ADD .AB3.如图,方格中的格子被填上了数,每一行、每一列以及两条对角线中所填的数字之和均相等,则x 的值为( )16 x11 1512A .39B .13C .14D .94.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( ) A .2小时B .3小时C .125小时D .52小时5.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( ) A .120元 B .125元C .135元D .140元6.若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8 B .﹣8C .6D .﹣67.解方程32282323x x x----=的步骤如下,错误的是( ) ①2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x );②6x ﹣4﹣3x ﹣6=16﹣4x ; ③3x +4x =16+10; ④x =267. A .①B .②C .③D .④8.佳佳的压岁钱由爸爸存入某村镇银行,当年年利率为1.5%,一年后取出时得到本息和为4060元,则佳佳的压岁钱是( ) A .2060元B .3500元C .4000元D .4100元9.一张试卷共有25道题,若做对1题得4分,做错1题扣1分,小明做了全部试题只得了70分,那么小明做对了( )道. A .17 B .18C .19D .2010.某商场的老板销售一种商品,标价为360元,可以获得80%的利润,则这种商品进价多少( ) A .80元B .200元C .120元D .160元11.书架上,第一层书的数量是第二层书的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层书的数量的一半多3本.设第二层原有x 本书,则可列方程为( ) A .2x -8=12(x +8)+3 B .2x =12(x +8)+3 C .2x -8=12x +3 D .2x =12x +3 12.甲、乙两个工程队,甲队32人,乙队28人,现在从乙队抽调x 人到甲队,使甲队人数为乙队人数的2倍.则根据题意列出的方程是( ) A .32+x =2(28−x) B .32−x =2(28−x) C .32+x =2(28+x)D .2(32+x)=28−x13.某工厂一、二月份共完成生产任务57吨,其中二月份比一月份的23多13吨,设一月份完成x 吨,则下列所列方程正确的是( ) A .x +23x −13=57 B .x +23x +13=57 C .x +23x =57+13D .3x +2x =57−13 14.下列判断错误的是 ( ) A .若a =b ,则a −3=b −3 B .若a =b ,则7a −1=7b −1 C .若a =b ,则a c 2+1=bc 2+1D .若ac 2=bc 2,则a =b15.下列方程中,以x =-1为解的方程是( ) A . 3x +12=x2−2B .7(x -1)=0C .4x -7=5x +7D .13x =-3二、填空题16.关于x 的方程927x kx -=+的解是自然数,则整数k 的值为________.17.若关于x 的方程2x+a=9﹣a (x ﹣1)的解是x=3,则a 的值为_____.18.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有______________幅.19.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.20.一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为______________千米/小时. 21.解方程:1225y y -+=. 解:去分母,得____________. 去括号,得______________. 移项,得_______________. 合并同类项,得______________. 方程两边同除以3,得_______________.22.将一个底面直径是10cm 、高为40cm 的圆柱锻压成底面直径为16cm 的圆柱,则锻压后圆柱的高为________cm.23.如果ma mb =,那么下列等式一定成立的是_______. ①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+.24.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是______g.25.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.26.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).三、解答题27.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生? (2)请你帮他们算算,用哪种方式购票更省钱?28.我们知道13写成小数形式为0.3,反过来,无限循环小数0.3也可以转化成分数形式.方法如下:设0.3x =,由0.30.333=,可知10 3.333x =,所以103x x -=.解方程,得13x =,所以10.33=.例如:把无限循环小数0.32化为分数的方法如下: 设0.32x =,由0.320.323232=,可知10032.323232x =,所以10032x x -=,解方程,得3299x =,所以320.3299=.根据上述材料,解答下列问题: (1)把下列无限循环小数写成分数形式:①0.5=________;②2.58=________;③0.518=________.(2)借鉴材料中的方法,从第(1)题的①②③中任选一个,写出你的转化过程. 29.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表: 购买服装数(套) 1~35 36~60 61及61以上 每套服装价(元)605040已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人? 30.一种商品每件成本a 元,按成本增加22%标价. (1)每件标价多少元?(2)由于库存积压,实际按标价的九折出售,每件是盈利还是亏损?盈利或亏损多少元?。
初一年级一元一次方程所有知识点总结及常考题提高难题压轴题练习[含答案及解析]-(5733)
②长方体的体积
V
=长×宽×高=abc
3. 劳力调配问题:
从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量
. 这类问题要搞
清人数的变化,常见题型有:
( 1)既有调入又有调出;
( 2)只有调入没有调出,调入部分变化,其余不变;
( 3)只有调出没有调入,调出部分变化,其余不变
4. 数字问题: 要正确区分“数”与“数字”两个概念 , 同一个数字在不同数位上,
抓住两码头间距离不变, 水流速和船速 (静速)不变的特点考虑相等关系. 即顺水逆水
问题常用等量关系:顺水路程 =逆水路程. ⑥ 考虑车长的过桥或通过山洞隧道问题
将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然
.
常见的还有:相背而行;行船问题;环形跑道润 100%
0≤ b≤ 9, 1 ≤ c≤ 9) .
( 2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大
1;偶数用
2n 表示,连续的偶数用 2n+2 或 2n— 2 表示;奇数用 2n+1 或 2n— 1 表示 .
5. 工程问题 (生产、做工等类问题) :
工作量=工作效率×工作时间
工作效率
工作量 工作时间
完美 .格式 .编辑
2. 等积变形问题:
( 1)“等积变形”是以形状改变而体积不变 ( 等积 ) 为前提,是等量关系的所在 . 常用等
量关系为:
① 形状面积变了,周长没变;
② 原料体积=成品体积 .
( 2)常见几何图形的面积、体积、周长计算公式,
依据形虽变,但体积不变 .
①圆柱体的体积公式
V= 底面积×高= S·h=π r 2h
七年级数学上册第三单元《一元一次方程》-解答题专项知识点总结(含答案)
一、解答题1.小明解方程26152x x a -++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为1x =-,试求a 的值,并正确地求出原方程的解.解析:2a =-,8x =【分析】先根据错误的做法:“方程左边的1没有乘以10”而得到1x =-,代入错误方程,求出a 的值,再把a 的值代入原方程,求出正确的解.【详解】解:412155x x a -+=+∵1x =-为412155x x a -+=+的解∴16155a -+=-+∴2a =-;∴原方程为:262152x x --+= 去分母得:41210510x x -+=-∴45101012x x -=--+∴8x -=-∴8x =.【点睛】本题考查了解一元一次方程,本题易在去分母、去括号和移项中出现错误.由于看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.2.某同学在解方程21132y y a -+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y =2,试求a 的值及此方程的解.解析:y =-3.【分析】根据题意得到去分母结果,把y=2代入求出a 的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1, 解得:a=13, 方程为1213132y y +-=-, 去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 3.解下列方程: (1)51784a -=; (2)22146y y +--=1; (3)2131683x x x -+-= -1 解析:(1)3a =;(2)4y =-;(3)179x =. 【分析】 (1)先方程两边同乘以8去分母,再按照移项、合并同类项、系数化为1的步骤解方程即可得;(2)先方程两边同乘以12去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得;(3)先方程两边同乘以24去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】(1)方程两边同乘以8去分母,得5114a -=,移项,得5141a =+,合并同类项,得515a =,系数化为1,得3a =;(2)方程两边同乘以12去分母,得3(2)2(21)12y y +--=,去括号,得364212y y +-+=,移项,得341262y y -=--,合并同类项,得4y -=,系数化为1,得4y =-;(3)方程两边同乘以24去分母,得4(21)3(31)824x x x --+=-,去括号,得8493824x x x ---=-,移项,得8982443x x x --=-++,合并同类项,得917x -=-,系数化为1,得179x =. 【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.4.已知16y x =-,227y x =+,解析下列问题:(1)当122y y =时,求x 的值;(2)当x 取何值时,1y 比2y 小3-.解析:(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解.【详解】(1)由题意得:62(27)x x -=+解得215x = 215x ∴=. (2)由题意得:27(6)3x x +--=-解得18x 18x ∴=. 【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.5.关于x 的方程357644m x m x +=-的解比方程4(37)1935x x -=-的解大1,求m 的值. 解析:623m =-【分析】 分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可. 【详解】 解:357644m x m x +=-, 整理得:2(310)321m x m x +=- 313x m =-解得:331m x =-, 4(37)1935x x -=-4747x =1x =由题意得:311 31m--=解得:623 m=-【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m的式子表示x,然后根据题意列出方程.6.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得;(2)根据2h后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.7.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元.(2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明解析:(1)134元,520元;(2)54元;(3)见解析【分析】(1)先判断两次是否优惠,若优惠,在哪一档优惠;(2)用商品标价减去实际付款可求节省的钱数;(3)先计算两次物品合起来一次购买实际付款,在与134+466比较即可.【详解】解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品的标价超过了500元.设其标价x元,则500×0.9+(x-500)×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;故答案为:134元,520元;(2)134+520-134-466=54,所以省了54元;(3)两次物品合起来一次购买更节省.两次合起来一次购买支付500×0.9+(654-500)×0.8=573.2元,573.2<134+466=600,所以两次物品合起来一次购买更节省.【点睛】此题主要考查了一元一次方程的应用中实际生活中的折扣问题,关键是运用分类讨论的思想,分析清楚付款打折的两种情况.8.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,交电费元.(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?解析:(1)0.6;122.5.(2)0.9x﹣82.5.(3)250千瓦.(1)根据100<150结合应交电费60元即可得出关于a的一元一次方程,解之即可得出a 值;再由150<200<300,结合应交电费=150×0.6+0.65×超出150千瓦时的部分即可求出结论;(2)根据应交电费=150×0.6+(300-150)×0.65+0.9×超出300千瓦时的部分,即可得出结论;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,分x在第二档及第三档考虑,根据总电费=均价×数量即可得出关于x的一元一次方程,解之即可得出x值,结合实际即可得出结论.【详解】(1)∵100<150,∴100a=60,∴a=0.6,若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元),故答案为0.6;122.5;(2)当x>300时,应交的电费150×0.6+(300-150)×0.65+0.9(x﹣300)=0.9x﹣82.5;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x﹣150)=0.62x,解得:x=250;当该居民用电处于第三档时,0.9x﹣82.5=0.62x,解得:x≈294.6<300(舍去).综上所述该居民用电不超过250千瓦时,其当月的平均电价每千瓦时不超过0.62元.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出代数式;(3)根据总电费=均价×数量列出关于x的一元一次方程.9.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)解析:(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a,则a的上一个数为a−18,下一个数为a+18,前一个数为a−2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a=2020,a=404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.10.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?解析:(1)购买A种记录本120本,B种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键11.某市百货商店元月1日搞促销活动,购物不超200元不予优惠;购物超过200元而不足500元的按全价的90%优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)列方程求出此人两次购物若其物品不打折共值多少钱?(2)若此人将这两次购物合为一次购买是否更节省?为什么?解析:(1)654元钱;(2)将这两次购物合为一次购买更节省,理由见解析.【分析】(1)根据“超过200元而不足500元的按9折优惠”可得:200×90%=180元,由于第一次购物134元<180元,故不享受任何优惠;由“超过500元,其中500元按9折优惠,超过部分8折优惠”可知500×90%=450元,466>450元,故此人购物享受“超过500元,其中500元按9折优惠,超过部分8折优惠”,设他所购价值x元的货物,首先享受500元钱时的9折优惠,再享受超过500元的8折优惠,把两次的花费加起来即可得出此人第二次购物不打折的花费,最后将两次购物不打折的花费相加即可;(2)计算出两次购物合为一次购买实际应付的费用,再与他两次购物所花的费用进行比较即可.【详解】解:(1)①因为134元<200×90%=180元,所以该人此次购物不享受优惠;②因为第二次付了466元>500×90%=450元,所以该人享受超过500元,其中500元按9折优惠,超过部分8折优惠.设他所购货物价值x元,则90%×500+(x﹣500)×80%=466,解得x=520,520+134=654(元).答:此人两次购物若其物品不打折共值654元钱;(2)500×90%+(654﹣500)×80%=573.2(元),134+466=600(元),∵573.2<600,∴此人将这两次购物合为一次购买更节省.【点睛】此题主要考查了一元一次方程的应用,关键是分析清楚付款打折的情况,找出合适的等量关系列出方程.12.青岛、大连两个城市各有机床12台和6台,现将这些机床运往海南10台和厦门8台,每台费用如表一:问题1:如表二,假设从青岛运往海南x台机床,并且从青岛、大连运往海南机床共花费36万元,求青岛运往海南机床台数.问题2:在问题1的基础上,问从青岛、大连运往海南、厦门的总费用为多少万元?解析:问题1:青岛运往海南机床台数是4台;问题2:从青岛、大连运往海南、厦门的总费用为94万元.【分析】(1)假设从青岛运往海南x台机床,则从大连运往海南的就是10-x台,根据等量关系:“运往海南机床共花费36万元”,即可列出方程解决问题;(2)根据问题1中求出的分别从青岛和大连运出的台数,则它们剩下的台数都要运到厦门,由此利用乘法和加法的意义即可解答问题.【详解】(1)设从青岛运往海南x台机床,则从大连运往海南的就是10-x台,根据题意可得方程:4x+3(10-x)=36,4x+30-3x=36,x=6,则从大连运往海南的有:10-6=4(台).答:从青岛运往海南6台,从大连运往海南4台.(2)根据上面计算结果可知:青岛剩下12-6=6(台);大连剩下6-4=2(台),剩下的这些都要运往厦门,所以需要的费用是:6×8+2×5,=48+10,=58(万元),36+58=94(万元).答:从青岛、大连运往海南、厦门的总费用为94万元.【点睛】观察表格,找出已知条件,和要求的问题,根据题干中的等量关系即可,此题条件稍微复杂,需要学生认真审题进行解答.13.为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.下表是小明家1至4月份水量和缴纳水费情况,根据表格提供的数据,回答:)规定用量内的收费标准是 元吨,超过部分的收费标准是 元/吨;(2)问该市每户每月用水规定量是多少吨?(3)若小明家六月份应缴水费50元,则六月份他们家的用水量是多少吨?解析:(1)2;3(2)规定用水量为10吨(3)六月份的用水量为20吨【分析】(1)由小明家1,2月份的用水情况,可求出规定用量内的收费标准;由小明家3,4月份的用水情况,可求出超过部分的收费标准;(2)设该市规定用水量为a 吨,由小明家3月份用水12吨缴纳26元,即可得出关于a 的一元一次方程,解之即可得出结论;(3)设小明家6月份的用水量是x 吨,根据应缴水费=2×10+3×超出10吨部分,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】(1)由表可知,规定用量内的收费标准是2元/吨,超过部分的收费标准为3元/吨 (2)设规定用水量为a 吨;则23(12)26a a +-=,解得:10a =,即规定用水量为10吨;(3)∵2102050⨯=<,∴六月份的用水量超过10吨,设用水量为x 吨,则2103(10)50x ⨯+-=,解得:20x, ∴六月份的用水量为20吨 【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:通过分析小明家1-4月用水量和交费情况,找出结论;找准等量关系,正确列出一元一次方程. 14.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?解析:10个家长,5个学生【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x个家长,(15﹣x)个学生,根据题意得:100x+100×0.8(15﹣x)=1400,解得:x=10,15﹣x=5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.15.一项工程,甲队独做10h完成,乙队独做15h完成,丙队独做20h完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h,问甲队实际工作了几小时?解析:3【分析】设三队合作时间为x,总工程量为1,根据等量关系:三队合作部分工作量+乙、丙两队合作部分工作量=1,列式求解即可得到甲队实际工作时间.【详解】设三队合作时间为xh,乙、丙两队合作为(6)x h-,总工程量为1,由题意得:11111()()(6)1 1015201520x x++++-=,解得:3x=,答:甲队实际工作了3小时.【点睛】本题主要考查了一元一次方程实际问题中的工程问题,准确分析题目中的等量关系以及设出未知量是解决本题的关键.16.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?解析:(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱(2)该商场共获得利润6600元【详解】(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得:500{243313800x y x y +=+=, 解得:300{200x y ==, 答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱;(2)300×(36−24)+200×(48−33)=3600+3000=6600(元),答:该商场共获得利润6600元.17.检验下列方程后面小括号内的数是否为相应方程的解.(1)2x+5=10x-3(x=1); (2)2(x-1)-12(x+1)=3(x+1)-13(x-1)(x=0). 解析:(1)是;(2)否.【分析】(1)先求出一元一次方程的解,然后进行判断即可;(2)先求出一元一次方程的解,然后进行判断即可;【详解】解:(1)25103x x +=-,∴88x -=-,∴1x =,∴括号内的数是方程的解;(2)112(1)(1)3(1)(1)23x x x x --+=+--, ∴77(1)(1)32x x -=+, ∴2233x x -=+,∴5x =-;∴括号内的数不是方程的解.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法和步骤. 18.解下列方程 (1)32(4)25x x --=-; (2)212164y y -+-=-; (3)312423(1)32x x x -+-+=-; (4)4 1.550.8 1.20.50.20.1x x x ----= ; (5) 315x x +-= ; (6)解下列关于x 的方程211423x m mx ---=. 解析:(1)4x =;(2)4y =-;(3)83x =;(4)117x =-;(5)2x =-或32x =;(6)2+364=-m x m. 【分析】 (1)先两边同时乘以5去分母,然后去括号解方程即可;(2)先两边同时乘以12去分母,然后去括号解方程即可;(3)先两边同时乘以6去分母,然后去括号解方程即可;(4)先两边同时乘以1去分母,然后去括号解方程即可;(5)分①当x≤13时,②当x >13时,两种情况,分别求出x 即可; (6)把m 当成已知数,先两边同时乘以12去分母,然后去括号解方程即可.【详解】解:(1)103(4)510--=-x x10312510-+=-x x351022--=--x x832-=-x4x =;(2)()()4216224--+=-y y8461224---=-y y224+16=-y28y =-4y =-;(3)()()2311232418(1)--++=-x x x62126121818--++=-x x x1218182-=-+x x616-=-x83x =; (4)()()()24 1.5550.8101.2---=-x x x832541210--+=-x x x1710121-+=-x x711-=x117x =-; (5)315x x +-=①当x≤13时,()315+-+=x x24x -=2x =-,-2<13, ∴2x =-满足;②当x >13时, ()315+-=x x46x =32x = 3123>, ∴32x =满足, ∴2x =-或32x =; (6)()()32641--=-x m mx63644--=-x m mx644+3+6-=-x mx m()642+3-=m x m2+364=-m x m. 【点睛】 本题是对解一元一次方程的考查,熟练掌握一元一次方程的解法是解决本题的关键. 19.某市水果批发欲将A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下:(1) 如果汽车的总支出费用比火车费用多1100元,你知道本市与A 市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)(2) 如果A 市与B 市之间的距离为S 千米,你若是A 市水果批发部门的经理,要想将这种水果运往B 市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢?解析:(1) x =400;(2) 当s >200时,选择火车运输;当s <200时,选择汽车运输;当s =200时,两种方式都一样【分析】(1)设路程为x 千米,题中等量关系是:汽车的总支出费用比火车费用多1100元,列出方程解答;(2)根据(1)中结论分别算出火车和汽车所需的运费,再进行比较即可求解.【详解】(1) 设本市与A 市之间的路程是x 千米200•20015200011002090010080x x x x +++=++, 解得x =400(2) 火车的运输费用为•200152000172000100s s s ++=+ 汽车运输的费用为•2002090022.590080s s s ++=+ 当17s +2000=22.5s +900,解得s =200当s >200时,选择火车运输当s <200时,选择汽车运输当s =200时,两种方式都一样【点睛】本题主要考查了一元一次方程的应用,根据题意列出方程是解答本类问题的关键. 20.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?解析:大和尚有25人,小和尚有75人【分析】设大和尚有x 人,则小和尚有(100x -)人,根据“3×大和尚人数+小和尚人数÷3=100”,即可得出关于x 的一元一次方程,此题得解.【详解】设大和尚有x 人,则小和尚有(100x -)人, 根据题意得:10031003x x -+= 解得:25x =,则10075x -=,答:大和尚有25人,小和尚有75人.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?解析:(1)(70a+2800),(56a+3360);(2)购买40只书架时,无论到哪家超市所付货款都一样;(3)第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【分析】(1)根据A、B两个超市的优惠政策即可求解;(2)由(1)和两家超市所付货款都一样可列出方程,再解即可;(3)去A超市买、去B超市买和去A超市购买20个书柜和20个书架,到B超市购买80只书架,三种情况讨论即可得出最少付款额.【详解】(1)根据题意得A超市所需的费用为:20×210+70(a﹣20)=70a+2800B超市所需的费用为:0.8×(20×210+70a)=56a+3360故答案为:(70a+2800),(56a+3360)(2)由题意得:70a+2800=56a+3360解得:a=40,答:购买40只书架时,无论到哪家超市所付货款都一样.(3)学校购买20张书柜和100只书架,即a=100时第一种方案:到A超市购买,付款为:20×210+70(100﹣20)=9800元第二种方案:到B超市购买,付款为:0.8×(20×210+70×100)=8960元第三种方案:到A超市购买20个书柜和20个书架,到B超市购买80只书架,付款为:20×210+70×(100﹣20)×0.8=8680元.因为8680<8960<9800所以第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,再列出方程.22.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是购买10本以上,每本按标价的8折卖.(1)小明要买20本练习本,到哪个商店较省钱?(2)小明要买10本以上练习本,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本练习本?解析:(1)到乙商店较省钱;(2)买30本;(3)最多可买41本练习本.【分析】(1)分别按照甲商店与乙商店给的优惠活动,计算出费用,哪个商店的费用更低,即更省钱,即可解决;(2)可设买x 本时到两个商店付的钱一样多,分别用x 表示到甲商店购买的钱与到乙商店购买的钱,令其相等,解出x ,即可解决本题;(3)设可买y 本练习本,分别算出到甲商店能买多少本,到乙商店能买多少本,取更多的即可解决.【详解】解:(1)∵甲商店:101(2010)170%17⨯+-⨯⨯=(元);乙商店:20180%16⨯⨯=(元).又∵17>16,∴小明要买20本练习本时,到乙商店较省钱.(2)设买x 本时到两个商店付的钱一样多.依题意,得10170%(10)80%x x ⨯+-=,解得30x =.∴买30本时到两个商店付的钱一样多.(3)设可买y 本练习本.在甲商店购买:1070%(10)32y +-=. 解得29034177y ==. ∵y 为正整数,∴在甲商店最多可购买41本练习本.在乙商店购买:80%32y =.解得40y =.∴在乙商店最多可购买40本练习本.∵41>40,∴最多可买41本练习本.【点睛】本题主要考查了一元一次方程的实际应用,能够找出等量关系,列出方程是解决本题的关键.23.李老师准备购买一套小户型商品房,他去售楼处了解情况得知,该户型商品房的单价是5000元2/m ,如图所示(单位:m ,卫生间的宽未定,设宽为xm ),售楼处为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元2/m ,其中卫生间可免费赠送一半的面积;方案二:整套房按原销售总金额的9.5折出售.(1)用含x 的代数式表示该户型商品房的面积及按方案一、方案二购买一套该户型商品房的总金额;(2)当2x =时,通过计算说明哪种方案更优惠,优惠多少元.解析:(1)该户型商品房的面积为2(482)x m +,按方案一购买一套该户型商品房的总金额为(2400005000)x +元,按方案二购买一套该户型商品房的总金额为(2280009500)x +元;(2)当2x =时,方案二更优惠,优惠3000元.【分析】(1)该户型商品房的面积=大长方形的面积-卫生间右侧的长方形,代入计算,也可以利用各间的面积和来求;方案一:(总面积-厨房的12)×单价5000;方案二:总价×0.95; (2)分别把数据代入计算即可;【详解】解:(1)该户型商品房的面积为: 2473(84)2(73)(842)(482)x x m ⨯+⨯-+⨯-+--=+按方案一购买一套该户型商品房的总金额为:147342425000(2400005000)2x x ⎛⎫⨯+⨯+⨯+⨯⨯=+ ⎪⎝⎭元; 按方案二购买一套该户型商品房的总金额为:(4734242)500095%(2280009500)x x ⨯+⨯+⨯+⨯⨯=+元.(2)当2x =时,方案一总金额为2400005000250000x +=(元);方案二总金额为2280009500247000x +=(元).方案二比方案一优惠2500002470003000-=(元).所以方案二更优惠,优惠3000元.【点睛】本题是根据实际应用列代数式,是楼房销售问题,考查了图形面积与销售总额及银行利率的知识;解题的关键是熟练掌握利用代数式表示图形的面积.24.在我国明代数学家吴敬所著的《九章算法比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”(“倍加增”指从塔的顶层到底层,每层灯的数量是上一层的2倍)那么,塔的顶层有几盏灯?解析:3盏【分析】根据题意列出方程求解即可.【详解】解:设塔的顶层有x 盏灯.根据题意,得248163264381x x x x x x x ++++++=.解得3x =.答:塔的顶层有3盏灯.【点睛】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键. 25.解方程:111(3)(3)1236x x x x ⎡⎤---=-+⎢⎥⎣⎦. 解析:2x =【分析】本题首先去括号,继而移项、合并同类项求解即可.【详解】 去括号得:111(3)(3)1266x x x x -+-=-+, 合并同类项得:112x =, 去分母得:2x =.【点睛】 本题考查一元一次方程的求解,计算时按照运算法则依次去括号、合并同类项,计算注意仔细即可.26.解方程32324343x x -=-. 解析:1x =【分析】方程去分母,去括号,移项合并,将y 系数化为1即可求出解.【详解】 解:原方程可化为332204433x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即32(1)(1)043x x -+-=. 将(1)x -看作一个整体进行合并,得32(1)043x ⎛⎫+-=⎪⎝⎭,所以10x -=,移项,得1x =.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.27.解方程:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一一元一次方程所有知识点总结和常考题【知识点归纳】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次)的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等. 用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c ≠0),那么a c =b c三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则 〔依据分配律:a (b+c )=ab+ac 〕1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a ≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a (或乘未知数的倒数),得到方程的解x=b a). 六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,找:明确各数量之间的关系;2. 设:设未知数(可分直接设法,间接设法), 表示出有关的含字母的式子;3. 列:根据题意列方程;4. 解:解出所列方程, 求出未知数的值;5. 检:检验所求的解是否是方程的解,是否符合题意;6. 答:写出答案(有单位要注明答案).七、有关常用应用题类型及各量之间的关系1. 和、差、倍、分问题(增长率问题): 增长量=原有量×增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,几分之几,增长率,减少,缩小……”来体现.(2)多少关系:通过关键词语“多、少、大、小、和、差、不足、剩余……”来体现.审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变(等积)为前提,是等量关系的所在.常用等量关系为: ①形状面积变了,周长没变; ②原料体积=成品体积.(2)常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S ·h =πr 2h②长方体的体积 V =长×宽×高=abc3. 劳力调配问题:从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量.这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题: 要正确区分“数”与“数字”两个概念, 同一个数字在不同数位上,表示的数值不同,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系列方程.列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和.(1)要搞清楚数的表示方法:一般可设个位数字为a ,十位数字为b ,百位数字为c ,十位数可表示为10b+a ,百位数可表示为100c+10b+a (其中a 、b 、c 均为整数,且0≤a ≤9, 0≤b ≤9, 1≤c ≤9).(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n —2表示;奇数用2n+1或2n —1表示.5. 工程问题(生产、做工等类问题):工作量=工作效率×工作时间 工作时间工作量工作效率= 工作效率工作量工作时间= 合做的效率=各单独做的效率的和. 一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=1.分析时可采用列表或画图来帮助理解题意。
工程问题常用等量关系:先做的+后做的=完成量.6.行程问题:利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.(1)行程问题中的三个基本量及其关系:路程=速度×时间 速度路程时间= 时间路程速度=.要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)(2)基本类型有①单人往返 各段路程和=总路程 各段时间和=总时间 匀速行驶时速度不变②相遇问题(相向而行):快行距+慢行距=原总距 两者所走的时间相等或有提前量.③追及问题(同向而行);快行距-慢行距=原总距 两者所走的时间相等或有提前量.④环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程.行程问题可以采用画示意图的方法来帮助理解题意,并注意两者运动时出发的时间和地点.⑤航行问题: 顺水(风)速度=静水(风)速度+水流(风)速度;逆水(风)速度=静水(风)速度-水流(风)速度.水流速度=21(顺水速度-逆水速度) 抓住两码头间距离不变,水流速和船速(静速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.⑥考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然.常见的还有:相背而行;行船问题;环形跑道问题7. 商品销售问题:(1)%100⨯=商品成本价商品利润商品利润率;(2)商品销售额=商品销售价×商品销售量;(3)商品销售利润=(销售价-成本价)×销售量;(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.关系式:商品售价=商品标价×折扣率.8. 银行储蓄问题:⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数(存期),利息与本金的比叫做利率.利息的20%付利息税.⑵ 利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%)(3) 利润=每个期数内的利息本金×100% 注意利率有日利率、月利率和年利率: 年利率=月利率×12=日利率×365.9.溶液配制问题: 溶液质量=溶质质量+溶剂质量 溶质质量=溶液中所含溶质的质量分数.常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意.10.年龄问题: 大小两个年龄差不会变;主要等量关系:抓住年龄增长,一年一岁,人人平等.11.时钟问题:⑴将时钟的时针、分针、秒针的尖端看作一个点来研究⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:①时针的速度是0.5°/分②分针的速度是6°/分③秒针的速度是6°/秒12.配套问题: 这类问题的关键是找对配套的两类物体的数量关系13.比例分配问题:各部分之和=总量比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式.14.比赛积分问题: 注意比赛的积分规则,胜、负、平各场得分之和=总分15.方案选择问题: 根据具体问题,选取不同的解决方案常考题:一.选择题(共13小题)1.下列运用等式的性质,变形正确的是()A.若x=y,则x﹣5=y+5 B.若a=b,则ac=bcC.若,则2a=3b D.若x=y,则2.解方程1﹣,去分母,得()A.1﹣x﹣3=3x B.6﹣x﹣3=3x C.6﹣x+3=3x D.1﹣x+3=3x3.代数式3x2﹣4x+6的值为9,则x2﹣+6的值为()A.7 B.18 C.12 D.94.已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为()A.1 B.﹣1 C.9 D.﹣95.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.2 B.﹣2 C.D.﹣6.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元7.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6 C.3ac=2bc+5 D.a=8.把方程3x+去分母正确的是()A.18x+2(2x﹣1)=18﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.3x+2(2x﹣1)=3﹣3(x+1)9.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x﹣1)=1310.若代数式4x﹣5与的值相等,则x的值是()A.1 B.C.D.211.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.512.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)13.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不赔B.赚9元C.赔18元D.赚18元二.填空题(共12小题)14.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.15.若3a2﹣a﹣2=0,则5+2a﹣6a2=.16.如图所示是计算机程序计算,若开始输入x=﹣1,则最后输出的结果是.17.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.18.在等式3×□﹣2×□=15的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立.则第一个方格内的数是.19.我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,则x=0.3+x,解得x=,即=.仿此方法,将化成分数是.20.设a,b,c,d为实数,现规定一种新的运算=ad﹣bc,则满足等式=1的x的值为.21.若a﹣2b=3,则9﹣2a+4b的值为.22.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是.23.方程x+5=(x+3)的解是.24.已知关于x的方程3a﹣x=+3的解为2,则代数式a2﹣2a+1的值是.25.已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是.三.解答题(共15小题)26.解方程:.27.解方程:.28.已知x=是方程﹣=的根,求代数式(﹣4m2+2m﹣8)﹣(m﹣1)的值.29.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?30.情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.31.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.32.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?33.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用).但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?34.某地电话拨号入网有两种收费方式,用户可以任选其一.(Ⅰ)计时制:0.05元/分;(Ⅱ)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分.(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?35.为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?36.已知a、b互为相反数,c、d互为倒数,m的倒数等于它本身,则的值是多少?37.先阅读下面例题的解题过程,再解决后面的题目.例已知9﹣6y﹣4y2=7,求2y2+3y+7的值.解:由9﹣6y﹣4y2=7,得﹣6y﹣4y2=7﹣9,即6y+4y2=2,所以2y2+3y=1,所以2y2+3y+7=8.题目:已知代数式14x+5﹣21x2的值是﹣2,求6x2﹣4x+5的值.38.已知|a﹣3|+(b+1)2=0,代数式的值比的值多1,求m的值.39.为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:执行电价(元/度)档次每户每月用电数(度)第一档小于等于2000.55第二档大于200小于4000.6第三档大于等于4000.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?40.在“五•一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.初一一元一次方程所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共13小题)1.(2013秋•克东县期末)下列运用等式的性质,变形正确的是()A.若x=y,则x﹣5=y+5 B.若a=b,则ac=bcC.若,则2a=3b D.若x=y,则【分析】利用等式的性质对每个式子进行变形即可找出答案.【解答】解:A、根据等式性质1,x=y两边同时加5得x+5=y+5;B、根据等式性质2,等式两边都乘以c,即可得到ac=bc;C、根据等式性质2,等式两边同时乘以2c应得2a=2b;D、根据等式性质2,a≠0时,等式两边同时除以a,才可以得=.故选B.【点评】本题主要考查等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.2.(2013•相城区模拟)解方程1﹣,去分母,得()A.1﹣x﹣3=3x B.6﹣x﹣3=3x C.6﹣x+3=3x D.1﹣x+3=3x【分析】去分母的方法是方程左右两边同时乘以分母的最小公倍数,注意分数线的括号的作用,并注意不能漏乘.【解答】解:方程两边同时乘以6得6﹣x﹣3=3x.故选B.【点评】解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式.在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.3.(2008•枣庄)代数式3x2﹣4x+6的值为9,则x2﹣+6的值为()A.7 B.18 C.12 D.9【分析】观察题中的两个代数式3x2﹣4x+6和x2﹣+6,可以发现3x2﹣4x=3(x2﹣),因此,可以由“代数式3x2﹣4x+6的值为9”求得x2﹣=1,所以x2﹣+6=7.【解答】解:∵3x2﹣4x+6=9,∴方程两边除以3,得x2﹣+2=3x2﹣=1,所以x2﹣+6=7.故选:A.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2﹣的值,然后利用“整体代入法”求代数式的值.4.(2013•晋江市)已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为()A.1 B.﹣1 C.9 D.﹣9【分析】将x=﹣2代入方程即可求出a的值.【解答】解:将x=﹣2代入方程得:﹣4﹣a﹣5=0,解得:a=﹣9.故选:D【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.(2008•武汉)已知关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.2 B.﹣2 C.D.﹣【分析】此题用m替换x,解关于m的一元一次方程即可.【解答】解:由题意得:x=m,∴4x﹣3m=2可化为:4m﹣3m=2,可解得:m=2.故选:A.【点评】本题考查代入消元法解一次方程组,可将4x﹣3m=2和x=m组成方程组求解.6.(2013•枣庄)某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.7.(2015秋•昌图县期末)已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6 C.3ac=2bc+5 D.a=【分析】利用等式的性质:①等式的两边同时加上或减去同一个数或同一个整式,所得的结果仍是等式;②:等式的两边同时乘以或除以同一个数(除数不为0),所得的结果仍是等式,对每个式子进行变形即可找出答案.【解答】解:A、根据等式的性质1可知:等式的两边同时减去5,得3a﹣5=2b;B、根据等式性质1,等式的两边同时加上1,得3a+1=2b+6;D、根据等式的性质2:等式的两边同时除以3,得a=;C、当c=0时,3ac=2bc+5不成立,故C错.故选:C.【点评】本题主要考查了等式的基本性质,难度不大,关键是基础知识的掌握.8.(2008•十堰)把方程3x+去分母正确的是()A.18x+2(2x﹣1)=18﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.3x+2(2x﹣1)=3﹣3(x+1)【分析】同时乘以各分母的最小公倍数,去除分母可得出答案.【解答】解:去分母得:18x+2(2x﹣1)=18﹣3(x+1).故选:A.【点评】本题考查了解一元一次方程的步骤:去分母、去括号、移项、合并同类项和系数化为1,在去分母时一定要注意:不要漏乘方程的每一项.9.(2009•吉林)A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x﹣1)=13【分析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数13元,明确了等量关系再列方程就不那么难了.【解答】解:设B种饮料单价为x元/瓶,则A种饮料单价为(x﹣1)元,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,可得方程为:2(x﹣1)+3x=13.故选A.【点评】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱13元.10.(2015•济南)若代数式4x﹣5与的值相等,则x的值是()A.1 B.C.D.2【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:4x﹣5=,去分母得:8x﹣10=2x﹣1,解得:x=,故选B.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.11.(2008•乌兰察布)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.5【分析】由图可知:2球体的重量=5圆柱体的重量,2正方体的重量=3圆柱体的重量.可设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程即可得出答案.【解答】解:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x=z,则3x=5z,即三个球体的重量等于五个正方体的重量.故选D.【点评】此题的关键是找到球,正方体,圆柱体的关系.12.(2015•杭州)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)【分析】设把x公顷旱地改为林地,根据旱地面积占林地面积的20%列出方程即可.【解答】解:设把x公顷旱地改为林地,根据题意可得方程:54﹣x=20%(108+x).故选B.【点评】本题考查一元一次方程的应用,关键是设出未知数以以改造后的旱地与林地的关系为等量关系列出方程.13.(2015•随县模拟)某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不赔B.赚9元C.赔18元D.赚18元【分析】要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解.【解答】解:设在这次买卖中原价都是x元,则可列方程:(1+25%)x=135解得:x=108比较可知,第一件赚了27元第二件可列方程:(1﹣25%)x=135解得:x=180,比较可知亏了45元,两件相比则一共亏了18元.故选:C.【点评】此题的关键是先算出两件衣服的原价,才能知道赔赚.不可凭想象答题.二.填空题(共12小题)14.(2016•安顺)根据如图所示的程序计算,若输入x的值为1,则输出y的值为4.【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.【点评】解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是﹣2,但﹣2<0不是要输出y的值,这是本题易出错的地方,还应将x=﹣2代入y=2x2﹣4继续计算.15.(2009•江苏)若3a2﹣a﹣2=0,则5+2a﹣6a2=1.【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.【点评】主要考查了代数式求值问题.代数式中的字母表示的数没有明确告知,而是隐含在题设中,把所求的代数式变形整理出题设中的形式,利用“整体代入法”求代数式的值.16.(2013秋•西安期末)如图所示是计算机程序计算,若开始输入x=﹣1,则最后输出的结果是﹣11.【分析】首先要理解该计算机程序的顺序,即计算顺序,观察可以看出当输入﹣(﹣1)时可能会有两种结果,一种是当结果>﹣5,此时就需要将结果返回重新计算,直到结果<﹣5才能输出结果;另一种是结果<﹣5,此时可以直接输出结果.【解答】解:将x=﹣1代入代数式4x﹣(﹣1)得,结果为﹣3,∵﹣3>﹣5,∴要将﹣3代入代数式4x﹣(﹣1)继续计算,此时得出结果为﹣11,结果<﹣5,所以可以直接输出结果﹣11.【点评】此题的关键是明确计算机程序的计算顺序.17.(2013•鞍山)刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是9.【分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【点评】依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.18.(2005•绍兴)在等式3×□﹣2×□=15的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立.则第一个方格内的数是3.【分析】根据相反数的定义,结合方程计算.【解答】解:设第一个□为x,则第二个□为﹣x.依题意得3x﹣2×(﹣x)=15,解得x=3.故第一个方格内的数是3.故答案为:3.【点评】学会分析,学会总结,学会举一反三是解决此类问题的关键.19.(2014•荆州)我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,则x=0.3+x,解得x=,即=.仿此方法,将化成分数是.【分析】设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.。