高考数学 一轮 2.9函数模型及其应用 理 苏教

合集下载

苏教版江苏专版版高考数学一轮复习第二章第九节函数模型及其应用教案文解析版

苏教版江苏专版版高考数学一轮复习第二章第九节函数模型及其应用教案文解析版

1.几类函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)反比例函数模型f(x)=错误!+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,b≠0,a>0且a≠1)对数函数模型f(x)=b log a x+c(a,b,c为常数,b≠0,a>0且a≠1)幂函数模型f(x)=ax n+b(a,b为常数,a≠0)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的函数模型;(3)解模:求解函数模型,得出数学结论;(4)还原:将数学结论还原为实际意义的问题.以上过程用框图表示如下:[小题体验]1.(2019·徐州诊断)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月的水费为55元,则该职工这个月实际用水为________立方米.解析:设该职工某月的实际用水为x立方米时,水费为y元,由题意得y=错误!即y=错误!易知该职工这个月的实际用水量超过10立方米,所以5x—20=55,解得x=15.答案:152.用18 m的材料围成一块矩形场地,中间有两道隔墙.若使矩形面积最大,则能围成的最大面积是________m2.解析:设隔墙长为x m,则面积S=x·错误!=—2x2+9x=—2错误!2+错误!.所以当x=错误!时,能围成的面积最大,为错误!m2.答案:错误!1.函数模型应用不当,是常见的解题错误.所以要正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[小题纠偏]1.据调查,某自行车存车处在某星期日的存车量为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是__________.答案:y=—0.1x+1200(0≤x≤4000)2.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n年的累计产量为f(n)=错误!n(n+1)(2n+1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是________年.解析:各年产量为a n=f(n)—f(n—1)=错误!n(n+1)(2n+1)—错误!n(n—1)(2n—1)=3n2(n∈N*),令3n2≤150,得1≤n≤5错误!.又n∈N*,所以1≤n≤7,故生产期限最长为7年.答案:7错误!错误![典例引领]某跳水运动员在一次跳水训练时的跳水曲线为如图所示抛物线的一段.已知跳水板AB长为2m,跳水板距水面CD的高BC为3m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距h m(h≥1)时达到距水面最大高度4m,规定:以CD为横轴,BC为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.解:由题意,最高点为(2+h,4),h≥1.设抛物线方程为y=a[x—(2+h)]2+4.(1)当h=1时,最高点为(3,4),方程为y=a(x—3)2+4.(*)将点A(2,3)代入(*)式得a=—1.即所求抛物线的方程为y=—x2+6x—5.(2)将点A(2,3)代入y=a[x—(2+h)]2+4,得ah2=—1.由题意,方程a[x—(2+h)]2+4=0在区间[5,6]内有一解.令f(x)=a[x—(2+h)]2+4=—错误![x—(2+h)]2+4,则错误!解得1≤h≤错误!.故达到比较好的训练效果时的h的取值范围是错误!.[由题悟法]二次函数模型问题的3个注意点(1)构建函数模型时不要忘记考虑函数的定义域;(2)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(3)解决函数应用问题时,最后要还原到实际问题.[即时应用](2019·启东中学高三检测)某企业实行裁员增效,已知现有员工a人,每人每年可创利润1万元,据评估,在生产条件不变的情况下,每裁员1人,则留岗员工每人每年可多创收0.01万元,但每年需付给每个下岗工人0.4万元生活费,并且企业正常运行所需人数不得少于现有员工的错误!,设该企业裁员x人后纯收益为y万元.(1)写出y关于x的函数关系式,并指出x的取值范围;(2)当140<a≤280时,问该企业裁员多少人,才能获得最大的经济效益?(在保证能获得较大经济效益的情况下,应尽量少裁员)解:(1)由题意,y=(a—x)(1+0.01x)—0.4x=—错误!x2+错误!x+a,因为a—x≥错误!,所以x≤错误!.故x的取值范围为0≤x≤错误!且x∈N*.(2)由(1)知y=—错误!错误!2+错误!错误!2+a,当140<a≤280时,0<错误!—70≤错误!,当a为偶数时,x=错误!—70,y取最大值;当a为奇数时,x=错误!—70或x=错误!—70,y取最大值,因尽可能少裁员,所以x=错误!—70,所以当a为偶数时,应裁员错误!人;当a为奇数时,应裁员错误!人.错误!错误![典例引领]为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系C(x)=错误!(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.解:(1)由已知条件得C(0)=8,则k=40,因此f(x)=6x+20C(x)=6x+错误!(0≤x≤10).(2)f(x)=6x+10+错误!—10≥2错误!—10=70(万元),当且仅当6x+10=错误!,即x=5时等号成立.所以当隔热层厚度为5cm时,总费用f(x)达到最小值,最小值为70万元.应用函数y=x+错误!模型的关键点(1)明确对勾函数是正比例函数f(x)=ax与反比例函数f(x)=错误!叠加而成的.(2)解决实际问题时一般可以直接建立f(x)=ax+错误!的模型,有时可以将所列函数关系式转化为f(x)=ax+错误!的形式.(3)利用模型f(x)=ax+错误!求解最值时,要注意自变量的取值范围,及取得最值时等号成立的条件.[即时应用]某隧道长2150 m,通过隧道的车速不能超过20 m/s.一列有55辆车身长都为10 m的同一车型的车队(这种型号的车能行驶的最高速为40 m/s),匀速通过该隧道,设车队的速度为x m/s,根据安全和车流的需要,当0<x≤10时,相邻两车之间保持20 m的距离;当10<x≤20时,相邻两车之间保持错误!m的距离.自第1辆车车头进入隧道至第55辆车车尾离开隧道所用的时间为y(s).(1)将y表示为x的函数;(2)求车队通过隧道的时间y的最小值及此时车队的速度.(错误!≈1.73)解:(1)当0<x≤10时,y=错误!=错误!,当10<x≤20时,y=错误!=错误!+9x+18,所以y=错误!(2)当x∈(0,10]时,在x=10时,y min=错误!=378(s).当x∈(10,20]时,y=错误!+9x+18≥18+2× 错误!=18+180错误!≈329.4(s),当且仅当9x=错误!,即x≈17.3(m/s)时取等号.因为17.3∈(10,20],所以当x=17.3(m/s)时,y min=329.4(s),因为378>329.4,所以当车队的速度为17.3m/s时,车队通过隧道的时间y有最小值329.4s.错误!错误!已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律是:θ=m·2t+21—t(t≥0,并且m>0).(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m的取值范围.解:(1)若m=2,则θ=2·2t+21—t=2错误!,当θ=5时,2t+错误!=错误!,令2t=x(x≥1),则x+错误!=错误!,即2x2—5x+2=0,解得x=2或x=错误!(舍去),此时t=1.所以经过1分钟,物体的温度为5摄氏度.(2)物体的温度总不低于2摄氏度,即θ=m·2t+错误!≥2恒成立,亦即m≥2错误!恒成立.令错误!=x,则0<x≤1,所以m≥—2x2+2x,因为—2x2+2x=—2错误!2+错误!∈错误!,所以m≥错误!,因此,当物体的温度总不低于2摄氏度时,m的取值范围是错误!.[由题悟法]指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.[即时应用]候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为:v=a+b log3错误!(其中a,b是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a,b的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0 m/s,此时耗氧量为30个单位,故有a+b log3错误!=0,即a+b=0.当耗氧量为90个单位时,速度为1m/s,故a+b log3错误!=1,整理得a+2b=1.解方程组错误!得错误!(2)由(1)知,v=a+b log3错误!=—1+log3错误!.所以要使飞行速度不低于2m/s,则有v≥2,所以—1+log3错误!≥2,即log3错误!≥3,解得错误!≥27,即Q≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要270个单位.一抓基础,多练小题做到眼疾手快1.某种商品进价为4元/件,当日均零售价为6元/件,日均销售100件,当单价每增加1元,日均销量减少10件,试计算该商品在销售过程中,若每天固定成本为20元,则预计单价为________元/件时,利润最大.解析:设单价为6+x,日均销售量为100—10x,则日利润y=(6+x—4)(100—10x)—20=—10x2+80x+180=—10(x—4)2+340(0<x<10).所以当x=4时,y max=340.即单价为10元/件,利润最大.答案:102.(2018·盐城中学检测)“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R与广告费A之间满足关系R=a错误!(a为常数),广告效应为D =R—A.那么精明的商人为了取得最大广告效应,投入广告费应为________.(用常数a表示)解析:D=R—A=a错误!—A,令t=错误!(t>0),则A=t2,所以D=at—t2=—错误!2+错误!a2.所以当t=错误!a,即A=错误!a2时,D取得最大值.答案:错误!a23.某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.解析:设出租车行驶x km时,付费y元,则y=错误!由y=22.6,解得x=9.答案:94.(2019·盐城调研)一批货物随17列货车从A市以v km/h匀速直达B市,已知两地铁路线长400 km,为了安全,两列货车间距离不得小于错误!2km,那么这批物资全部运到B市,最快需要________ h(不计货车的身长).解析:设这批物资全部运到B市用的时间为y,因为不计货车的身长,所以设列车为一个点,可知最前的点与最后的点之间距离最小值为16×错误!2时,时间最快.则y=错误!=错误!+错误!≥2错误!=8,当且仅当错误!=错误!,即v=100时等号成立,y min=8.答案:85.(2019·南通模拟)用长度为24的材料围成一个矩形场地,中间有两道隔墙,要使矩形的面积最大,则隔墙的长度为________.解析:设矩形场地的宽(即隔墙的长度)为x,则长为错误!,其面积S=错误!·x=12x—2x2=—2(x—3)2+18,当x=3时,S有最大值18,所以隔墙的长度为3.答案:36.有一位商人,从北京向上海的家中打电话,通话m分钟的电话费由函数f(m)=1.06×(0.5[m]+1)(元)决定,其中m>0,[m]是大于或等于m的最小整数.则从北京到上海通话时间为5.5分钟的电话费为________元.解析:因为m=5.5,所以[5.5]=6.代入函数解析式,得f(5.5)=1.06×(0.5×6+1)=4.24.答案:4.24二保高考,全练题型做到高考达标1.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内通话时间t(分钟)与电话费s(元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差________元.解析:依题意可设s A(t)=20+kt,s B(t)=mt,又s A(100)=s B(100),所以100k+20=100m,得k—m=—0.2,于是s A(150)—s B(150)=20+150k—150m=20+150×(—0.2)=—10,即两种方式电话费相差10元.答案:102.某商店已按每件80元的成本购进某商品1000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件________元.解析:设售价提高x元,利润为y元,则依题意得y=(1000—5x)×(100+x)—80×1000=—5x2+500x+20 000=—5(x—50)2+32500,故当x=50时,y max=32500,此时售价为每件150元.答案:1503.(2019·海安中学检测)某公司为激励创新,计划逐年加大研发资金投入.若该公司全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是________.(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)解析:设后的第n年,该公司全年投入的研发资金开始超过200万元,由130(1+12%)n>200,得1.12n>错误!,两边取常用对数,得n>错误!≈错误!=3.8,所以n≥4,所以从2021年开始,该公司全年投入的研发资金开始超过200万元.答案:2021年4.(2019·启东中学检测)某公司租地建仓库,已知仓库每月占用费y1与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y1,y2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________千米处.解析:由题意设仓库在离车站x千米处,则y1=错误!,y2=k2x,其中x>0,由错误!得错误!,即y1+y2=错误!+错误!x≥2错误!=8,当且仅当错误!=错误!x,即x=5时等号成立.答案:55.将甲桶中的a升水缓慢注入空桶乙中,t分钟后甲桶中剩余的水符合指数衰减曲线y=a e nt.假设过5分钟后甲桶和乙桶的水量相等,若再过m分钟甲桶中的水只有错误!,则m=________.解析:根据题意知错误!=e5n,令错误!a=a e nt,即错误!=e nt,因为错误!=e5n,故错误!=e15n,比较知t=15,m=15—5=10.答案:106.一艘轮船在匀速行驶过程中每小时的燃料费与速度v的平方成正比,且比例系数为k,除燃料费外其他费用为每小时96元.当速度为10海里/小时时,每小时的燃料费是6元.若匀速行驶10海里,当这艘轮船的速度为________海里/小时时,总费用最小.解析:设每小时的总费用为y元,则y=kv2+96,又当v=10时,k×102=6,解得k=0.06,所以每小时的总费用y=0.06v2+96,匀速行驶10海里所用的时间为错误!小时,故总费用为W=错误!y=错误!(0.06v2+96)=0.6v+错误!≥2错误!=48,当且仅当0.6v=错误!,即v=40时等号成立.故总费用最小时轮船的速度为40海里/小时.答案:407.某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则截取的矩形面积的最大值为________.解析:依题意知:错误!=错误!,即x=错误!(24—y),所以阴影部分的面积S=xy=错误!(24—y)·y=错误!(—y2+24y)=—错误!(y—12)2+180.所以当y=12时,S有最大值为180.答案:1808.某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额x为8万元时,奖励1万元.销售额x为64万元时,奖励4万元.若公司拟定的奖励模型为y=a log4x+b.某业务员要得到8万元奖励,则他的销售额应为______(万元).解析:依题意得错误!即错误!解得a=2,b=—2.所以y=2log4x—2,当y=8时,即2log4x—2=8.x=1024(万元).答案:10249.某科研小组研究发现:一棵水蜜桃树的产量w(单位:百千克)与肥料费用x(单位:百元)满足如下关系:w=4—错误!,且投入的肥料费用不超过5百元,此外,还需要投入其他成本(如施肥的人工费等)2x百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为L(x)(单位:百元).(1)求L(x)的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?解:(1)L(x)=16错误!—x—2x=64—错误!—3x,x∈(0,5].(2)法一:L(x)=64—错误!—3x=67—错误!≤67—2错误!=43,当且仅当错误!=3(x+1),即x=3时取等号.故L(x)max=43.答:当投入的肥料费用为300元时,该水密桃树获得的利润最大,为4300元.法二:L′(x)=错误!—3,令L′(x)=0,得x=3.故当x∈(0,3)时,L′(x)>0,L(x)在(0,3)上单调递增;当x∈(3,5]时,L′(x)<0,L(x)在(3,5]上单调递减.故L(x)max=L(3)=43.答:当投入的肥料费用为300元时,该水蜜桃树获得的利润最大,为4300元.10.(2019·镇江调研)如图,政府有一个边长为400 m的正方形公园ABCD,在以四个角的顶点为圆心,以150 m为半径的四分之一圆内都种植了花卉.现在中间修建一块长方形的活动广场P Q MN,其中P,Q,M,N四点都在相应的圆弧上,并且活动广场边界与公园边界对应平行,记∠Q BC=α,长方形活动广场的面积为S.(1)请把S表示成关于α的函数关系式;(2)求S的最小值.解:(1)过Q作Q E⊥BC于E,连结B Q(图略).在Rt△B Q E中,BE=150cos α,Q E=150sin α,0≤α≤错误!,可得矩形P Q MN的P Q=400—300sin α,Q M=400—300cos α,则S=P Q·Q M=(400—300sin α)(400—300cos α)=10 000(4—3sin α)(4—3cos α),α∈错误!.(2)由(1)知,S=10 000[16—12(sin α+cos α)+9sin αcos α],设t=sin α+cos α=错误!sin 错误!,则错误!≤α+错误!≤错误!,可得1≤t≤错误!,sin αcos α=错误!,∴S=10 000错误!=5000错误!.∴当t=错误!时,S取得最小值5000×7=35000 m2.三上台阶,自主选做志在冲刺名校某辆汽车以x千米/时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60≤x≤120)时,每小时的耗油量(所需要的汽油量)为错误!错误!升,其中k为常数,且60≤k≤100.(1)若汽车以120千米/时的速度行驶时,每小时的耗油量为11.5升,欲使每小时的耗油量不超过9升,求x的取值范围;(2)求该汽车行驶100千米的耗油量的最小值.解:(1)由题意知,当x=120时,错误!错误!=11.5,∴k=100,由错误!错误!≤9,得x2—145x+4500≤0,∴45≤x≤100.又60≤x≤120,∴60≤x≤100.故x的取值范围为[60,100].(2)设该汽车行驶100千米的耗油量为y升,则y=错误!·错误!错误!=20—错误!+错误!(60≤x≤120).令t=错误!,则t∈错误!,∴y=90 000t2—20kt+20=90 000错误!2+20—错误!,∴该函数图象的对称轴为直线t=错误!.∵60≤k≤100,∴错误!∈错误!.1若错误!≥错误!,即75≤k≤100,则当t=错误!,即x=错误!时,y min=20—错误!.2若错误!<错误!,即60≤k<75,则当t=错误!,即x=120时,y min=错误!—错误!.答:当75≤k≤100时,该汽车行驶100千米的耗油量的最小值为错误!升;当60≤k<75时,该汽车行驶100千米的耗油量的最小值为错误!升.命题点一基本初等函数(Ⅰ)1.(2017·全国卷Ⅰ改编)设x,y,z为正数,且2x=3y=5z,则2x,3y,5z的大小关系为________.解析:设2x=3y=5z=k>1,所以x=log2k,y=log3k,z=log5k.因为2x—3y=2log2k—3log3k=错误!—错误!=错误!=错误!=错误!>0,所以2x>3y;因为3y—5z=3log3k—5log5k=错误!—错误!=错误!=错误!=错误!<0,所以3y<5z;因为2x—5z=2log2k—5log5k=错误!—错误!=错误!=错误!=错误!<0,所以5z>2x.所以5z>2x>3y.答案:5z>2x>3y2.(2018·天津高考改编)已知a=log3错误!,b=错误!13,c=log13错误!,则a,b,c的大小关系为________.解析:∵c=log13错误!=log35,a=log3错误!,又y=log3x在(0,+∞)上是增函数,∴log35>log3错误!>log33=1,∴c>a>1.∵y=错误!x在(—∞,+∞)上是减函数,∴错误!13<错误!0=1,即b<1.∴c>a>b.答案:c>a>b3.(2015·江苏高考)不等式22x x-<4的解集为________.解析:因为2x2—x<4,所以22x x-<22,所以x2—x<2,即x2—x—2<0,所以—1<x<2.答案:(—1,2)4.(2015·全国卷Ⅰ)若函数f(x)=x ln(x+错误!)为偶函数,则a=________.解析:因为f(x)为偶函数,所以f(—x)—f(x)=0恒成立,所以—x ln(—x+错误!)—x ln(x+错误!)=0恒成立,所以x ln a=0恒成立,所以ln a=0,即a =1.答案:15.(2018·上海高考)已知常数a>0,函数f(x)=错误!的图象经过点P错误!,Q错误!,若2p +q=36pq,则a=________.解析:因为函数f(x)的图象经过点P错误!,Q错误!,所以f(p)+f(q)=错误!+错误!=错误!=错误!—错误!=1,化简得2p+q=a2pq.因为2p+q=36pq,所以a2=36且a>0,所以a=6.答案:66.(2016·江苏高考)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=错误!.1求方程f(x)=2的根;2若对于任意x∈R,不等式f(2x)≥mf(x)—6恒成立,求实数m的最大值.(2)若0<a<1,b>1,函数g(x)=f(x)—2有且只有1个零点,求ab的值.解:(1)因为a=2,b=错误!,所以f(x)=2x+2—x.1方程f(x)=2,即2x+2—x=2,亦即(2x)2—2×2x+1=0,所以(2x—1)2=0,即2x=1,解得x=0.2由条件知f(2x)=22x+2—2x=(2x+2—x)2—2=(f(x))2—2.因为f(2x)≥mf(x)—6对于x∈R恒成立,且f(x)>0,所以m≤错误!对于x∈R恒成立.而错误!=f(x)+错误!≥2错误!=4,且错误!=4,所以m≤4,故实数m的最大值为4.(2)因为函数g(x)=f(x)—2=a x+b x—2有且只有1个零点,而g(0)=f(0)—2=a0+b0—2=0,所以0是函数g(x)的唯一零点.因为g′(x)=a x ln a+b x ln b,又由0<a<1,b>1知ln a<0,ln b>0,所以g′(x)=0有唯一解x0=log错误!.ba令h(x)=g′(x),则h′(x)=(a x ln a+b x ln b)′=a x(ln a)2+b x(ln b)2,从而对任意x∈R,h′(x)>0,所以g′(x)=h(x)是(—∞,+∞)上的单调增函数.于是当x∈(—∞,x0)时,g′(x)<g′(x0)=0;当x∈(x0,+∞)时,g′(x)>g′(x0)=0.因而函数g(x)在(—∞,x0)上是单调减函数,在(x0,+∞)上是单调增函数.下证x0=0.若x0<0,则x0<错误!<0,于是g错误!<g(0)=0.又g(log a2)=a log a2+b log a2—2>a log a2—2=0,且函数g(x)在以错误!和log a2为端点的闭区间上的图象不间断,所以在错误!和log a2之间存在g(x)的零点,记为x1.因为0<a<1,所以log a2<0.又错误!<0,所以x1<0,与“0是函数g(x)的唯一零点”矛盾.若x0>0,同理可得,在错误!和log b2之间存在g(x)的非0的零点,与“0是函数g(x)的唯一零点”矛盾.因此,x0=0.于是—错误!=1,故ln a+ln b=0,所以ab=1.7.(2016·上海高考)已知a∈R,函数f(x)=log2错误!.(1)当a=5时,解不等式f(x)>0;(2)若关于x的方程f(x)—log2[(a—4)x+2a—5]=0的解集中恰有一个元素,求a的取值范围;(3)设a>0,若对任意t∈错误!,函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.解:(1)由log2错误!>0,得错误!+5>1,解得x∈错误!∪(0,+∞).(2)由原方程可得错误!+a=(a—4)x+2a—5,即(a—4)x2+(a—5)x—1=0.1当a=4时,x=—1,经检验,满足题意.2当a=3时,x1=x2=—1,经检验,满足题意.3当a≠3且a≠4时,x1=错误!,x2=—1,x1≠x2.若x1是原方程的解,则错误!+a>0,即a>2;若x2是原方程的解,则错误!+a>0,即a>1.由题意知x1,x2只有一个为方程的解,所以错误!或错误!于是满足题意的a∈(1,2].综上,a的取值范围为(1,2]∪{3,4}.(3)易知f(x)在(0,+∞)上单调递减,所以函数f(x)在区间[t,t+1]上的最大值与最小值分别为f(t),f(t+1).f(t)—f(t+1)=log2错误!—log2错误!≤1,即at2+(a+1)t—1≥0对任意t∈错误!恒成立.因为a>0,所以函数y=at2+(a+1)t—1在区间错误!上单调递增,当t=错误!时,y有最小值错误!a—错误!.由错误!a—错误!≥0,得a≥错误!.故a的取值范围为错误!.命题点二函数与方程1.(2017·江苏高考)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=错误!其中集合D=错误!,则方程f(x)—lg x=0的解的个数是________.解析:由于f(x)∈[0,1),因此只需考虑1≤x<10的情况,在此范围内,当x∈Q且x∉Z时,设x=错误!,q,p∈N*,p≥2且p,q互质.若lg x∈Q,则由lg x∈(0,1),可设lg x=错误!,m,n∈N*,m≥2且m,n互质,因此10错误!=错误!,则10n=错误!m,此时左边为整数,右边为非整数,矛盾,因此lg x∉Q,故lg x不可能与每个周期内x∈D对应的部分相等,只需考虑lg x与每个周期内x∉D部分的交点.画出函数草图(如图),图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x∉D的部分,且x=1处(lg x)′=错误!=错误!<1,则在x=1附近仅有一个交点,因此方程f(x)—lg x=0的解的个数为8.答案:82.(2015·江苏高考)已知函数f(x)=|ln x|,g(x)=错误!则方程|f(x)+g(x)|=1实根的个数为________.解析:1当0<x≤1时,方程为—ln x=1,解得x=错误!.2当1<x<2时,f(x)+g(x)=ln x+2—x2单调递减,值域为(ln 2—2,1),方程f(x)+g(x)=1无解,方程f(x)+g(x)=—1恰有一解.3当x≥2时,f(x)+g(x)=ln x+x2—6单调递增,值域为[ln 2—2,+∞),方程f(x)+g (x)=1恰有一解,方程f(x)+g(x)=—1恰有一解.综上所述,原方程有4个实根.答案:43.(2018·全国卷Ⅰ改编)已知函数f(x)=错误!g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是________.解析:令h(x)=—x—a,则g(x)=f(x)—h(x).在同一坐标系中画出y=f(x),y=h(x)的示意图,如图所示.若g(x)存在2个零点,则y=f(x)的图象与y=h(x)的图象有2个交点,平移y=h(x)的图象,可知当直线y=—x—a过点(0,1)时,有2个交点,此时1=—0—a,a=—1.当y=—x—a在y=—x+1上方,即a<—1时,仅有1个交点,不符合题意.当y=—x—a在y=—x+1下方,即a>—1时,有2个交点,符合题意.综上,a的取值范围是[—1,+∞).答案:[—1,+∞)4.(2018·天津高考)已知a>0,函数f(x)=错误!若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是________.解析:法一:作出函数f(x)的大致图象如图所示.l1是过原点且与抛物线y=—x2+2ax—2a相切的直线,l2是过原点且与抛物线y=x2+2ax+a相切的直线.由图可知,当直线y=ax在l1,l2之间(不含直线l1,l2)变动时,符合题意.由错误!消去y,整理得x2—ax+2a=0.由Δ=a2—8a=0,得a=8(a=0舍去).由错误!消去y,整理得x2+ax+a=0.由Δ=a2—4a=0,得a=4(a=0舍去).综上可得a的取值范围是(4,8).法二:当x≤0时,由x2+2ax+a=ax,得a=—x2—ax;当x>0时,由—x 2+2ax—2a=ax,得2a=—x2+ax.令g(x)=错误!作出直线y=a,y=2a,函数g(x)的图象如图所示,g(x)的最大值为—错误!+错误!=错误!,由图象可知,若f(x)=ax恰有2个互异的实数解,则a<错误!<2a,解得4<a<8.答案:(4,8)命题点三函数模型及其应用1.(2018·浙江高考)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则错误!当z=81时,x=______,y=_______.解析:由题意,得错误!即错误!解得错误!答案:8 112.(2015·江苏高考)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路.记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l.如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米.以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy.假设曲线C符合函数y=错误!(其中a,b为常数)模型.(1)求a,b的值.(2)设公路l与曲线C相切于P点,P的横坐标为t.1请写出公路l长度的函数解析式f(t),并写出其定义域.2当t为何值时,公路l的长度最短?求出最短长度.解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5).将其分别代入y=错误!,得错误!解得错误!(2)1由(1)知,y=错误!(5≤x≤20),则点P的坐标为错误!.设在点P处的切线l交x,y轴分别于A,B两点,y′=—错误!,则l的方程为y—错误!=—错误!(x—t),由此得A错误!,B错误!.故f(t)=错误!=错误!错误!,t∈[5,20].2设g(t)=t2+错误!,则g′(t)=2t—错误!.令g′(t)=0,解得t=10错误!.当t∈(5,10错误!)时,g′(t)<0,g(t)是减函数;当t∈(10错误!,20)时,g′(t)>0,g(t)是增函数.从而,当t=10错误!时,函数g(t)有极小值,也是最小值,所以g(t)min=300,此时f(t)min=15错误!.故当t=10错误!时,公路l的长度最短,最短长度为15错误!千米.3.(2012·江苏高考)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx—错误!(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.解:(1)令y=0,得kx—错误!(1+k2)x2=0,由实际意义和题设条件知x>0,k>0,故x=错误!=错误!≤错误!=10,当且仅当k=1时取等号.所以炮的最大射程为10千米.(2)因为a>0,所以炮弹可击中目标⇔存在k>0,使3.2=ka—错误!(1+k2)a2成立⇔关于k的方程a2k2—20ak+a2+64=0有正根⇔判别式Δ=(—20a)2—4a2(a2+64)≥0⇔a≤6.所以当a不超过6(千米)时,可击中目标.。

2015高考数学(理)一轮复习考点突破课件:2.9函数模型及其应用

2015高考数学(理)一轮复习考点突破课件:2.9函数模型及其应用

对点演练 (1)今有一组数据,如表所示: x 1 2 3 4 5
y 3 5 6.99 9.01 11 下列函数模型中,最接近地表示这组数据满足规律的一个是 ( A.指数函数 C.一次函数 答案:C B.反比例函数 D.二次函数 )


(2)一辆汽车在某段路程中的行驶速度 v与时间t的关系图象如图, 则t=2时,汽车已行驶的路程为________km.
快于 ax>xn
• (2)对数函数y=logax(a>1)与幂函数y=xn(n>0) • 对数函数y=logax(a>1)的增长速度,不论a与n值的大小如何总会 y = xn 的 增 长速 度 , 因 而 在 定 义 域 内 总 存 在 一 个 实 数 x0 , 使 x > x0 时 有 . 慢于 • 由(1)(2)可以看出三种增长型的函数尽管均为增函数,但它们的增长速 度不同,且不在同一个档次上,因此在 (0 ,+ ∞ )上,总会存在一个 x0, logax<xn 使x>x0时有 .
• • • • •
1.解函数应用问题的步骤(四步八字) (1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选 择数学模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为符号 语言,利用数学知识,建立相应的数学模型; (3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题的意义.
• •
满分指导:实际应用问题的规范解答 【典例】 (满分 12 分 )(2013·重庆 )某村庄拟修建一个无盖的圆柱形蓄
水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立 方米.假设建造成本仅与表面积有关,侧面的建造成本为 100 元 / 平方 米,底面的建造成本为 160 元 / 平方米,该蓄水池的总建造成本为 12 000π元(π为圆周率). • • (1)将V表示成r的函数V(r),并求该函数的定义域; (2) 讨论函数 V(r) 的单调性,并确定 r 和 h 为何值时该蓄水池的体积最

高三数学一轮复习 2.9函数模型及其应用课件

高三数学一轮复习 2.9函数模型及其应用课件

f1 x , x D 1,
(6)分段函数模型:
y
f
2
x
,
x
D 2,
图象特点是每一段自变量
f
n
x

x
D
n
,
变化所遵循的规律不同.可以先将其当作几个问题,将各段的变
化规律分别找出来,再将其合到一起,要注意各段自变量的取值
范围,特别是端点.
3.建立函数模型解决实际应用问题的步骤(四步八字) (1)审题:阅读理解、弄清题意,分清条件和结论,理顺数量关系, 弄清数据的单位等. (2)建模:正确选择自变量,将自然语言转化为数学语言,将文字 语言转化为符号语言,利用数学知识,建立相应的数学模型. (3)求模:求解数学模型,得出数学结论. (4)还原:将数学问题还原为实际问题.
5.某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期
是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数
关系式是
.
【解析】已知本金为a元,利率为r,则 1期后本利和为y=a+ar=a(1+r), 2期后本利和为y=a(1+r)+a(1+r)r=a(1+r)2, 3期后本利和为y=a(1+r)3, … x期后本利和为y=a(1+r)x,x∈N. 答案:y=a(1+r)x,x∈N
③图(3)的建议是:提高票价,并保持成本不变;
④图(3)的建议是:提高票价,并降低成本.
其中所有正确说法的序号是( )A.①③Fra bibliotekB.①④
C.②③
D.②④
【解析】选C.对于图(2),当x=0时,函数值比图(1)中的大,表示 成本降低,两直线平行,表明票价不变,故②正确;对于图(3),当 x=0时,函数值不变表示成本不变,当x>0时,函数值增大表明票 价提高,故③正确.

苏教版高中数学必修一函数模型及其应用张PPT(1)(1)课件

苏教版高中数学必修一函数模型及其应用张PPT(1)(1)课件
人 55 56 57 58 60 61 62 64 65 67 数/ 19 30 48 79 26 45 82 56 99 20 万60 2 6 66 8347 (长1)人率如(果精以确各到年0.0人0中01增),用长马率尔的萨平斯均人值口作增为长我模国型这建一立时我期国的在人这口一增
时期的具体人口增长模型,并检验所得模型与实际人口数据是否 相符; (2)如果按表上表的增长趋势,大约在哪一年我国的人口达 到13亿?
y 55196e0.0221t (t N )的图象(下图).
y 70000
65000
60000
55000
50000 0
12
3
4
5
6
7 8 9t
由上图可以看出,所得模型与 1950~1959年的实际人中数据基本吻合.
•注意点:
• 1.在引入自变量建立目标函数解决函数
应用题时,一是要注意自变量的取值范围, 二是要检验所得结果,必要时运用估算和 近似计算,以使结果符合实际问题的要 求.
答:每天从报社买进400份时,每月获的利润最大,最大利润为870元.
例3、某蔬菜菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内, 西红柿市场售价与上市时间关系用图1的一条折线表示;西红柿的种植成本与上 市时间的关系用图2的抛物线表示:
(1)、写出图1表示的市场售价与时间的函数关系式, P f (t)
• A.5 B.10 C.14 D.15
• 3.有一批材料可以建成200m的围墙,如果用此
材料在一边靠墙的地方围成一块矩形场地,中间 用同样的材料隔成三个面积相等的矩形(如下图 所示),则围成的矩形最大面积为 __2_5_0_0___m2(围墙厚度不计).

江苏专用版高考数学一轮复习第二章函数及其应用第九节函数模型及其应用课件苏教版

江苏专用版高考数学一轮复习第二章函数及其应用第九节函数模型及其应用课件苏教版

5.有一批材料可以建成 200 m 长的围墙,如果用这些材料在一边靠墙的地方围成 一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成 的矩形场地的最大面积为____________m2.(围墙厚度不计)
【解析】设围成的矩形场地的长为 x m,
则宽为2004-x m,
200-x 则 S=x· 4
A.10 元 B.20 元 C.30 元 D.430 元
(2)(2020·广州模拟)如图,一高为 H 且装满水的鱼缸,其底部有一排水小孔,当小 孔打开时,水从孔中匀速流出,水流完所用时间为 T.若鱼缸水深为 h 时,水流出 所用时间为 t,则函数 h=f(t)的图象大致是( )
【解析】(1)选 A.设 A 种方式对应的函数解析式为 s=k1t+20,B 种方式对应的函 11源自=4(-x2+200x).
当 x=100 时,Smax=2 500(m2).
答案:2 500
考点突破·典例探究 【考点一】利用图象刻画实际问题 【典例 1】(1)某电信公司推出两种手机收费方式:A 种方式是月租 20 元,B 种方 式是月租 0 元.一个月的本地网内打出电话时间 t(分钟)与打出电话费 s(元)的函数 关系如图,当通话 150 分钟时,这两种方式电话费相差( )
的含量为12
n
,由12
n
<1
1 000
,得 n≥10.所以,若某死亡生物体内的碳
14 用该放射性探测器探测不到,则它至少需要经过 10 个“半衰期”.
3.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是
()
(下列数据仅供参考: 2 ≈1.41, 3 ≈1.73,3 3 ≈1.44,6 6 ≈1.35) A.38% B.41% C.44% D.73%

2020版高考数学(文)高分计划一轮高分讲义:第2章函数、导数及其应用 2.9 函数模型及其应用 Word版含解析

2020版高考数学(文)高分计划一轮高分讲义:第2章函数、导数及其应用 2.9 函数模型及其应用 Word版含解析

2.9函数模型及其应用[知识梳理]1.七类常见函数模型2.指数、对数、幂函数模型的性质3.解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型.(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型.(3)解模:求解数学模型,得出数学结论.(4)还原:将数学问题还原为实际问题.以上过程用框图表示如下:特别提醒:(1)“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.(2)充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.(3)易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.[诊断自测]1.概念思辨(1)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=xα(α>0)的增长速度.()(2)指数函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.()(3)当a>1时,不存在实数x0,使a x0<x a0<log a x0.()(4)对数函数增长模型比较适合于描述增长速度平缓的变化规律.()答案(1)√(2)√(3)√(4)√2.教材衍化(1)(必修A1P59T6)如果在今后若干年内,我国国民经济生产总值都控制在平均每年增长9%的水平,那么要达到国民经济生产总值比1995年翻两番的年份大约是(lg 2=0.3010,lg 3=0.4771,lg 109=2.0374,lg 0.09=-2.9543)()A.2015年B.2011年C.2010年D.2008年答案 B解析设1995年总值为a,经过x年翻两番,则a·(1+9%)x=4a.∴x=2lg 2lg 1.09≈16.故选B.(2)(必修A1P107T1)在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()A .y =2x -2B .y =12(x 2-1) C .y =log 2x D .y =log 12x答案 B解析 由题意得,表中数据y 随x 的变化趋势,函数在(0,+∞)上是增函数,且y 的变化随x 的增大越来越快.∵A 中函数是线性增加的函数,C 中函数是比线性增加还缓慢的函数,D中函数是减函数,∴排除A ,C ,D ,∴B 中函数y =12(x 2-1)符合题意.故选B. 3.小题热身(1) (2018·湖北八校联考)某人根据经验绘制了2016年春节前后,从1月25日至2月11日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象,如图所示,则此人在1月30日大约卖出了西红柿 ________千克.答案 1909解析 前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析式,得⎩⎪⎨⎪⎧10=k +b ,30=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909. (2)(2017·朝阳区模拟)某商场2017年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型:①f (x )=p ·q x (q >0,q ≠1); ②f (x )=log p x +q (p >0,p ≠1); ③f (x )=x 2+px +q .能较准确反映商场月销售额f (x )与月份x 关系的函数模型为________(填写相应函数的序号),若所选函数满足f (1)=10,f (3)=2,则f (x )=________.答案 ③ x 2-8x +17解析 (ⅰ)因为f (x )=p ·q x ,f (x )=log q x +q 是单调函数,f (x )=x 2+px +q 中,f ′(x )=2x +p ,令f ′(x )=0,得x =-p2,f (x )出现一个递增区间和一个递减区间,所以模拟函数应选f (x )=x 2+px +q .(ⅱ)∵f (1)=10,f (3)=2,∴⎩⎪⎨⎪⎧1+p +q =10,9+3p +q =2,解得p =-8,q =17, ∴f (x )=x 2-8x +17 故答案为③;x 2-8x +17.题型1 二次函数及分段函数模型典例 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =⎩⎪⎨⎪⎧13x 3-80x 2+5040x ,x ∈[120,144),12x 2-200x +80000,x ∈[144,500],且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,亏损数额国家将给予补偿.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果亏损,则国家每月补偿数额的范围是多少?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?本题用函数法,再由均值定理解之.解 (1)当x ∈[200,300]时,设该项目获利为S ,则S =200x -⎝ ⎛⎭⎪⎫12x 2-200x +80000=-12x 2+400x -80000=-12(x-400)2,所以当x ∈[200,300]时,S <0,因此该单位不会获利. 当x =300时,S 取得最大值-5000,当x =200时,S 取得最小值-20000,故国家每月补偿数额的范围是[5000,20000].(2)由题意,可知二氧化碳的每吨处理成本为 yx =⎩⎪⎨⎪⎧13x 2-80x +5040,x ∈[120,144),12x +80000x -200,x ∈[144,500].①当x ∈[120,144)时,y x =13x 2-80x +5040=13(x -120)2+240, 所以当x =120时,yx 取得最小值240. ②当x ∈[144,500]时, y x =12x +80000x -200≥212x ×80000x -200=200,当且仅当12x =80000x ,即x =400时,yx 取得最小值200.因为200<240,所以当每月的处理量为400吨时,才能使每吨的平均处理成本最低.方法技巧一次函数、二次函数及分段函数模型的选取与应用策略 1.在实际问题中,若两个变量之间的关系是直线上升或直线下降或图象为直线(或其一部分),一般构建一次函数模型,利用一次函数的图象与性质求解.2.实际问题中的如面积问题、利润问题、产量问题或其图象为抛物线(或抛物线的一部分)等一般选用二次函数模型,根据已知条件确定二次函数解析式.结合二次函数的图象、最值求法、单调性、零点等知识将实际问题解决.见典例.3.实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解,但应关注以下两点:(1)构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏;(2)分段函数的最值是各段的最大(或最小)值中的最大(或最小)值. 提醒:(1)构建函数模型时不要忘记考虑函数的定义域. (2)对构建的较复杂的函数模型,要适时地用换元法转化为熟悉的函数问题求解.冲关针对训练(2017·广州模拟)某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图1;B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).(1)分别将A ,B 两种产品的利润表示为投资的函数关系式; (2)已知该企业已筹集到18万元资金,并将全部投入A ,B 两种产品的生产.①若平均投入生产两种产品,可获得多少利润?②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?解 (1)f (x )=0.25x (x ≥0),g (x )=2x (x ≥0).(2)①由(1)得f (9)=2.25,g (9)=29=6,所以总利润y =8.25万元.②设B 产品投入x 万元,A 产品投入(18-x )万元,该企业可获总利润为y 万元.则y =14(18-x )+2x ,0≤x ≤18. 令x =t ,t ∈[0,3 2 ],则y =14(-t 2+8t +18)=-14(t -4)2+172. 所以当t =4时,y max =172=8.5,此时x =16,18-x =2,所以当A ,B 两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.题型2 指数函数模型典例 (2017·西安模拟)我国加入WTO 后,根据达成的协议,若干年内某产品的关税与市场供应量P 的关系近似满足:y =P (x )=2(1-kt )(x -b )2(其中t 为关税的税率,且t ∈⎣⎢⎡⎭⎪⎫0,12,x 为市场价格,b ,k为正常数),当t =18时的市场供应量曲线如图:(1)根据图象求b ,k 的值; (2)若市场需求量为Q ,它近似满足Q (x )=211-x2.当P =Q 时的市场价格称为市场平衡价格.为使市场平衡价格控制在不低于9元的范围内,求税率t 的最小值.本题用函数思想,采用换元法.解 (1)由图象知函数图象过(5,1),(7,2).所以⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫1-k 8(5-b )2=0,⎝ ⎛⎭⎪⎫1-k 8(7-b )2=1,解得⎩⎪⎨⎪⎧k =6,b =5.(2)当P =Q 时,2(1-6t )(x -5) 2=211-x 2 ,即(1-6t )(x -5)2=11-x 2,化简得1-6t =11-x 2(x -5)2=12·22-x(x -5)2=12·⎣⎢⎡⎦⎥⎤17(x -5)2-1x -5. 令m =1x -5(x ≥9),所以m ∈⎝ ⎛⎦⎥⎤0,14.设f (m )=17m 2-m ,m ∈⎝ ⎛⎦⎥⎤0,14,对称轴为m =134,所以f (m )max =f ⎝ ⎛⎭⎪⎫14=1316,所以,当m =14,即x =9时,1-6t 取得最大值为12×1316,即1-6t ≤12×1316,解得t ≥19192,即税率的最小值为19192. 方法技巧构建指数函数模型的关注点1.指数函数模型常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.2.应用指数函数模型时关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型.3.y =a (1+x )n 通常利用指数运算与对数函数的性质求解. 冲关针对训练某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答以下问题:(1)写出该城市人口总数y (单位:万人)与年份x (单位:年)的函数关系式;(2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年以后该城市人口将达到120万人(精确到1年). (1.01210≈1.127,1.01215≈1.196,1.01216≈1.210,log 1.0121.2≈15.3) 解 (1)1年后该城市人口总数为y =100+100×1.2%=100×(1+1.2%),2年后该城市人口总数为y =100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2,3年后该城市人口总数为y =100×(1+1.2%)2+100×(1+1.2%)2×1.2%=100×(1+1.2%)3,……x 年后该城市人口总数为y =100×(1+1.2%)x .所以该城市人口总数y (万人)与年份x (年)的函数关系式是y =100×(1+1.2%)x (x ∈N ).(2)10年后该城市人口总数为100×(1+1.2%)10≈112.7(万人). 所以10年后该城市人口总数约为112.7万人.(3)设x 年后该城市人口将达到120万人,即100(1+1.2%)x ≥120,于是1.012x ≥120100,所以x ≥log 1.012120100=log 1.0121.2≈15.3≈15(年),即大约15年后该城市人口总数将达到120万人.题型3 对数函数模型典例 某企业根据分析和预测,能获得10万~1000万元的投资收益,企业拟制定方案对科研进行奖励,方案:奖金y (万元)随投资收益x (万元)的增加而增加,且奖金不超过9万元,同时奖金也不超过投资收益的20%,并用函数y =f (x )模拟此方案.(1)写出模拟函数y =f (x )所满足的条件;(2)试分析函数模型y =4lg x -3是否符合此方案要求,并说明理由.用函数思想,采用导数法.解 (1)由题意,y =f (x )所满足的条件是:①f (x )在[10,1000]上为增函数,②f (x )≤9,③f (x )≤15x .(2)对于y =4lg x -3,显然在[10,1000]上是增函数,满足条件①.当10≤x ≤1000时,4lg 10-3≤y ≤4lg 1000-3,即1≤y ≤9,满足条件②.证明如下:f (x )≤15x ,即4lg x -3≤15x ,对于x ∈[10,1000]恒成立.令g (x )=4lg x -3-15x ,x ∈[10,1000],g ′(x )=20 lg e -x 5x,∵e<10,∴lg e<lg 10=12, ∴20lg e<10,又∵x ≥10,∴20lg e -x <0,∴g ′(x )<0对于x ∈[10,1000]恒成立,∴g (x )在[10,1000]上是减函数.∴g (x )≤g (10)=4lg 10-3-15×10=-1<0,即4lg x -3-15x ≤0,即4lg x -3≤15x ,对x ∈[10,1000]恒成立,从而满足条件③.方法技巧本例属奖金分配问题,奖金的收益属对数增长,随着投资收益的增加,奖金的增加会趋向于“饱和”状态,实际中很多经济现象都是这种规律,并注意掌握直接法、列式比较法、描点观察法.冲关针对训练候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q 10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位?解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s ,故a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧ a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1. (2)由(1)知,v =a +b log 3Q 10=-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,所以-1+log 3Q 10≥2,即log 3Q 10≥3,解得Q 10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.1.(2015·北京高考)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升答案 B 解析 因为第一次(即5月1日)把油加满,而第二次把油加满加了48升,即汽车行驶35600-35000=600千米耗油48升,所以每100千米的耗油量为8升.故选B.2.(2014·湖南高考)某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B .(p +1)(q +1)-12 C.pqD .(p +1)(q +1)-1 答案 D解析 设两年前的年底该市的生产总值为a ,则第二年年底的生产总值为a (1+p )(1+q ).设这两年生产总值的年平均增长率为x ,则a (1+x )2=a (1+p )(1+q ),由于连续两年持续增加,所以x >0,因此x =(1+p )(1+q )-1.故选D.3.(2015·四川高考)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃ 的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.答案 24解析 依题意有192=e b,48=e 22k +b =e 22k ·e b ,所以e 22k=48e b =48192=14,所以e 11k =12或-12(舍去),于是该食品在33 ℃的保鲜时间是e 33k +b =(e 11k )3·e b=⎝ ⎛⎭⎪⎫123×192=24(小时). 4.(2017·江西九江七校联考)某店销售进价为2元/件的产品A ,该店产品A 每日的销售量y (单位:千件)与销售价格x (单位:元/件)满足关系式y =10x -2+4(x -6)2,其中2<x <6.(1)若产品A 销售价格为4元/件,求该店每日销售产品A 所获得的利润;(2)试确定产品A 的销售价格x 的值,其使该店每日销售产品A 所获得的利润最大.(保留1位小数)解 (1)当x =4时,y =102+4×(4-6)2=21千件,此时该店每日销售产品A 所获得的利润为(4-2)×21=42千元.(2)该店每日销售产品A 所获得的利润f (x )=(x -2)·⎣⎢⎡⎦⎥⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x 3-56x 2+240x -278(2<x <6),从而f ′(x )=12x 2-112x +240=4(3x -10)(x -6)(2<x <6).令f ′(x )=0,得x =103,易知在⎝ ⎛⎭⎪⎫2,103上,f ′(x )>0,函数f (x )单调递增;在⎝ ⎛⎭⎪⎫103,6上,f ′(x )<0,函数f (x )单调递减.所以x =103是函数f (x )在(2,6)内的极大值点,也是最大值点,所以当x =103≈3.3时,函数f (x )取得最大值.故当销售价格为3.3元/件时,利润最大.[基础送分 提速狂刷练]一、选择题1.(2018·福州模拟)在一次数学实验中,运用计算器采集到如下一组数据:则y 关于x 的函数关系与下列函数最接近的(其中a ,b 为待定系数)是( )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +b x答案 B 解析 由x =0时,y =1,排除D ;由f (-1.0)≠f (1.0),排除C ;由函数值增长速度不同,排除A.故选B.2.(2017·云南联考)某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系可用图象表示的是( )答案 A解析 由于开始的三年产量的增长速度越来越快,故总产量迅速增长,图中符合这个规律的只有选项A ;后三年产量保持不变,总产量直线上升.故选A.3.某杂志每本原定价2元,可发行5万本,若每本提价0.20元,则发行量减少4000本,为使销售总收入不低于9万元,需要确定杂志的最高定价是( )A .2.4元B .3元C .2.8元D .3.2元答案 B解析 设每本定价x 元(x ≥2),销售总收入是y 元,则y =⎣⎢⎡⎦⎥⎤5×104-x -20.2×4×103·x =104·x (9-2x )≥9×104. ∴2x 2-9x +9≤0⇒32≤x ≤3.故选B.4.(2017·南昌期末)某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )A .5 km 处B .4 km 处C .3 km 处D .2 km 处答案 A解析 设仓库与车站距离为x ,土地费用为y 1,运输费用为y 2,于是y 1=k 1x ,y 2=k 2x ,∴⎩⎨⎧ 2=k 110,8=10k 2,解得k 1=20,k 2=45.设总费用为y ,则y =20x +4x 5≥220x ·4x5=8. 当且仅当20x =4x 5,即x =5时取等号.故选A.5.(2015·北京高考)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时.相同条件下, 在该市用丙车比用乙车更省油答案 D解析 对于A 选项,从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L ,故乙车消耗1升汽油的行驶路程可大于5千米,所以A 错误;对于B 选项,由图可知甲车消耗汽油最少;对于C 选项,甲车以80 km/h 的速度行驶时的燃油效率为10 km/L ,故行驶1小时的路程为80千米,消耗8 L 汽油,所以C 错误;对于D 选项,当最高限速为80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D 正确.故选D.6.(2017·北京朝阳测试)将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e n t .假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a 8,则m 的值为( )A .7B .8C .9D .10答案 D解析 根据题意知12=e 5n ,令18a =a e n t ,即18=e n t ,因为12=e 5n ,故18=e 15n ,比较知t =15,m =15-5=10.故选D.7.(2016·天津模拟)国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( )A .560万元B .420万元C .350万元D .320万元答案 D解析 设该公司的年收入为x 万元,纳税额为y 万元,则由题意得y =⎩⎪⎨⎪⎧x ×p %,x ≤280,280×p %+(x -280)×(p +2)%,x >280, 依题有280×p %+(x -280)×(p +2)%x=(p +0.25)%,解得x =320.故选D.8.假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案每天的回报如图所示.横轴为投资时间,纵轴为每天的回报,根据以上信息,若使回报最多,下列说法错误的是( )A .投资3天以内(含3天),采用方案一B .投资4天,不采用方案三C .投资6天,采用方案一D .投资12天,采用方案二答案 D解析 由图可知,投资3天以内(含3天),方案一的回报最高,A 正确;投资4天,方案一的回报约为40×4=160(元),方案二的回报约为10+20+30+40=100(元),都高于方案三的回报,B 正确;投资6天,方案一的回报约为40×6=240(元),方案二的回报约为10+20+30+40+50+60=210(元),都高于方案三的回报,C 正确;投资12天,明显方案三的回报最高,所以此时采用方案三,D 错误.故选D.9.(2017·福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A .8B .9C .10D .11答案 C解析 设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n ,由⎝ ⎛⎭⎪⎫12n <11000得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C.10.(2017·北京朝阳区模拟)某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( )A .3000元B .3300元C .3500元D .4000元答案 B解析 由题意,设利润为y 元,租金定为3000+50x 元(0≤x ≤70,x ∈N ).则y =(3000+50x )(70-x )-100(70-x )=(2900+50x )·(70-x )=50(58+x )(70-x )≤50⎝ ⎛⎭⎪⎫58+x +70-x 22, 当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3000+300=3300(元)时,公司获得最大利润.故选B.二、填空题11.(2017·金版创新)“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A (a 为常数),广告效应为D =a A -A .那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)答案 14a 2解析 令t =A (t ≥0),则A =t 2,∴D =at -t 2=-⎝ ⎛⎭⎪⎫t -12a 2+14a 2. ∴当t =12a ,即A =14a 2时,D 取得最大值.12.一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e -bt (cm 3),若经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.答案 16解析 当t =0时,y =a ;当t =8时,y =a e-8b =12a , ∴e-8b =12,容器中的沙子只有开始时的八分之一时,即y =a e -bt=18a .e -bt =18=(e -8b )3=e -24b ,则t =24,所以再经过16 min.13.(2014·北京高考改编)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),右图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________.答案 3.75分钟解析 由已知得⎩⎪⎨⎪⎧ 9a +3b +c =0.7,16a +4b +c =0.8,25a +5b +c =0.5,解得⎩⎪⎨⎪⎧ a =-0.2,b =1.5,c =-2, ∴p =-0.2t 2+1.5t -2=-15⎝ ⎛⎭⎪⎫t -1542+1316,∴当t =154=3.75时p 最大,即最佳加工时间为3.75分钟.14.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式y =⎝ ⎛⎭⎪⎫116t -a (a 为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为________;(2)据测定,当空气中每立方米的含药量不大于0.25毫克时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.答案 (1)y =⎩⎨⎧ 10t ,0≤t ≤0.1,⎝ ⎛⎭⎪⎫116t -0.1,t >0.1 (2)0.6解析 (1)设y =kt ,由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10,∴y =10t (0≤t ≤0.1).由y =⎝ ⎛⎭⎪⎫116t -a 过点(0.1,1),得1=⎝ ⎛⎭⎪⎫1160.1-a ,解得a =0.1,∴y =⎝ ⎛⎭⎪⎫116t -0.1(t >0.1).(2)由⎝ ⎛⎭⎪⎫116t -0.1≤0.25=14,得t ≥0.6. 故至少需经过0.6小时学生才能回到教室.三、解答题15.(2017·济宁期末)已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量增加收益.据估算,若今年的实际销售单价为x 元/件(1≤x ≤2),则新增的年销量P =4(2-x )2(万件).(1)写出今年商户甲的收益f (x )(单位:万元)与x 的函数关系式;(2)商户甲今年采取降低单价提高销量的营销策略,是否能获得比往年更大的收益(即比往年收益更多)?请说明理由.解 (1)由题意可得:f (x )=[1+4(2-x )2](x -1),1≤x ≤2.(2)甲往年以单价2元/件销售该商品时,年销量为1万件,可得收益为1万元.f ′(x )=8(x -2)(x -1)+1+4(2-x )2=12x 2-40x +33=(2x -3)(6x -11),可得当x ∈⎣⎢⎡⎭⎪⎫1,32时,函数f (x )单调递增; 当x ∈⎝ ⎛⎭⎪⎫32,116时,函数f (x )单调递减; 当x ∈⎝ ⎛⎦⎥⎤116,2时,函数f (x )单调递增. ∴x =32时,函数f (x )取得极大值,f ⎝ ⎛⎭⎪⎫32=1;又f (2)=1.∴当x =32或x =2时,函数f (x )取得最大值1(万元).因此商户甲今年采取降低单价提高销量的营销策略,不能获得比往年更大的收益.16.(2017·北京模拟)已知甲、乙两个工厂在今年的1月份的利润都是6万元,且乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x 之间的函数关系式分别符合下列函数模型:f (x )=a 1x 2-4x +6,g (x )=a 2·3x +b 2(a 1,a 2,b 2∈R ).(1)求函数f (x )与g (x )的解析式;(2)求甲、乙两个工厂今年5月份的利润;(3)在同一直角坐标系下画出函数f (x )与g (x )的草图,并根据草图比较今年1~10月份甲、乙两个工厂的利润的大小情况.解 (1)依题意:由f (1)=6,解得a 1=4,所以f (x )=4x 2-4x +6.由⎩⎪⎨⎪⎧ g (1)=6,g (2)=8,得⎩⎪⎨⎪⎧3a 2+b 2=6,9a 2+b 2=8, 解得a 2=13,b 2=5,所以g (x )=13×3x +5=3x -1+5.(2)由(1)知甲厂在今年5月份的利润为f (5)=86万元,乙厂在今年5月份的利润为g (5)=86万元,故有f (5)=g (5),即甲、乙两个工厂今年5月份的利润相等.(3)作函数图象如下:从图中可以看出今年1~10月份甲、乙两个工厂的利润:当x=1或x=5时,有f(x)=g(x);当x=2,3,4时,有f(x)>g(x);当x=6,7,8,9,10时,有f(x)<g(x).海阔天空专业文档。

高考数学一轮总复习第2章函数的概念与基本初等函数(ⅰ)第9节函数模型及其应用跟踪检测文含解析

高考数学一轮总复习第2章函数的概念与基本初等函数(ⅰ)第9节函数模型及其应用跟踪检测文含解析

第二章 函数的概念与基本初等函数(Ⅰ)第九节 函数模型及其应用A 级·基础过关|固根基|1.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的( )解析:选B 由题意知h =20-5t(0≤t≤4),图象应为B 项.2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .118元B .105元C .106元D .108元解析:选D 设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.3.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是( )(参考数据:lg 3≈0.48) A .1033B .1053C .1073D .1093解析:选D M≈3361,N≈1080,M N ≈33611080,则lg M N ≈lg 33611080=lg 3361-lg 1080=361lg 3-80≈93.∴M N≈1093. 4.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x-0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元解析:选C 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x)辆. 所以利润y =4.1x -0.1x 2+2(16-x)=-0.1x 2+2.1x +32=-0.1⎝⎛⎭⎪⎫x -2122+0.1×2124+32.因为x∈[0,16],且x∈N,所以当x =10或11时,总利润取得最大值43万元.5.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正数).公司决定从原有员工中分流x(0<x <100,x∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15B .16C .17D .18解析:选B 由题意,分流前每年创造的产值为100t 万元,分流x 人后,每年创造的产值为(100-x)(1+1.2x%)t 万元,则由⎩⎪⎨⎪⎧0<x <100,x∈N *,(100-x )(1+1.2x%)t≥100t,解得0<x≤503.因为x∈N *,所以x 的最大值为16.6.当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A .8B .9C .10D .11解析:选C 设该死亡生物体内原来的碳14的含量为1,则经过n 个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n,由⎝ ⎛⎭⎪⎫12n<11 000,得n≥10,所以,若某死亡生物体内的碳14用该放射性探测器探测不到,则它至少需要经过10个“半衰期”.7.(2019届北京东城模拟)小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图象,拟合了记忆保持量f(x)与时间x(天)之间的函数关系f(x)=⎩⎪⎨⎪⎧-720x +1,0<x≤1,15+920x-12,1<x≤30.某同学根据小菲拟合后的信息得到以下结论: ①随着时间的增加,小菲的单词记忆保持量降低; ②9天后,小菲的单词记忆保持量低于40%; ③26天后,小菲的单词记忆保持量不足20%.其中正确结论的序号有________.(请写出所有正确结论的序号)解析:由函数解析式可知f(x)随着x 的增加而减少,故①正确;当1<x≤30时,f(x)=15+920x -12,则f(9)=15+920×9-12=0.35,即9天后,小菲的单词记忆保持量低于40%,故②正确;f(26)=15+920×26-12>15,故③错误. 答案:①②8.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m 2.(围墙厚度不计)解析:设围成的矩形场地的长为x m ,则宽为200-x 4 m ,则S =x·200-x 4=14(-x 2+200x)=-14(x -100)2+2 500.∴当x =100时,S max =2 500 m 2. 答案:2 5009.已知投资x 万元经销甲商品所获得的利润为P =x 4;投资x 万元经销乙商品所获得的利润为Q =a2x(a >0).若投资20万元同时经销这两种商品或只经销其中一种商品,使所获得的利润不少于5万元,则a的最小值为________.解析:设投资乙商品x 万元(0≤x≤20),则投资甲商品(20-x)万元. 则利润分别为Q =a 2x(a >0),P =20-x4,由题意得P +Q≥5,0≤x≤20时恒成立, 则化简得a x ≥x2,在0≤x≤20时恒成立.(1)x =0时,a 为一切实数; (2)0<x≤20时,分离参数a≥x2,0<x≤20时恒成立,所以a≥5,a 的最小值为 5. 答案: 510.已知某服装厂生产某种品牌的衣服,销售量q(x)(单位:百件)关于每件衣服的利润x(单位:元)的函数解析式为q(x)=⎩⎪⎨⎪⎧1 260x +1,0<x≤20,90-35x ,20<x≤180,求该服装厂所获得的最大效益是多少元?解:设该服装厂所获效益为f(x)元,则f(x)=100xq(x)=⎩⎪⎨⎪⎧126 000x x +1,0<x≤20,100x (90-35x ),20<x≤180.当0<x≤20时,f(x)=126 000x x +1=126 000-126 000x +1,f(x)在区间(0,20]上单调递增,所以当x =20时,f(x)有最大值120 000;当20<x≤180时,f(x)=9 000x -3005·x x , 则f′(x)=9 000-4505·x ,令f′(x)=0,所以x =80.当20<x <80时,f′(x)>0,f(x)单调递增;当80≤x≤180时,f′(x)≤0,f(x)为单调递减,所以当x =80时,f(x)有极大值,也是最大值240 000.由于120 000<240 000.故该服装厂所获得的最大效益是240 000元. B 级·素养提升|练能力|11.将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =ae nt.假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4L ,则m 的值为( )A .5B .8C .9D .10解析:选A ∵5 min 后甲桶和乙桶的水量相等,∴函数y =f(t)=ae n t 满足f(5)=ae 5n=12a ,可得n =15ln 12,∴f(t )=a·⎝ ⎛⎭⎪⎫12t 5,因此,当k min 后甲桶中的水只有a4 L 时,f(k)=a·⎝ ⎛⎭⎪⎫12k 5=14a ,即⎝ ⎛⎭⎪⎫12k 5=14,∴k =10,由题可知m =k -5=5.12.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A(a 为常数),广告效应为D =a A -A.那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)解析:令t =A(t ≥0),则A =t 2,所以D =at -t 2=-t -12a 2+14a 2,所以当t =12a ,即A =14a 2时,D取得最大值.答案:14a 213.(2019年北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________.解析:(1)当x =10时,一次购买草莓和西瓜各1盒,共60+80=140(元),由题可知顾客需支付140-10=130(元).(2)设每笔订单金额为m 元,当0≤m<120时,顾客支付m 元,李明得到0.8m 元,0.8m ≥0.7m ,显然符合题意,此时x =0; 当m≥120时,根据题意得(m -x)80%≥m ×70%, 所以x≤m8,而m≥120,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x≤⎝ ⎛⎭⎪⎫m 8min ,而⎝ ⎛⎭⎪⎫m 8min=15, 所以x≤15.综上,当0≤x≤15时,符合题意, 所以x 的最大值为15.答案:(1)130 (2)1514.十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作,经摸底排查,该村现有贫困农户100家,他们均从事水果种植,2017年底该村平均每户年纯收入为1万元.扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2018年初开始,若该村抽出5x 户(x∈Z,1≤x≤9)从事水果包装、销售工作,经测算,剩下从事水果种植的农户的年纯收入每户平均比上一年提高x20,而从事包装、销售的农户的年纯收入每户平均为⎝ ⎛⎭⎪⎫3-14x 万元(参考数据:1.13=1.331,1.153≈1.521,1.23=1.728).(1)至2020年底,为使从事水果种植的农户能实现脱贫(每户年均纯收入不低于1万6千元),至少要抽出多少户从事包装、销售工作?(2)至2018年底,该村每户年均纯收入能否达到1.35万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.解:(1)至2020年底,种植户平均收入 =(100-5x )⎝ ⎛⎭⎪⎫1+x 203100-5x≥1.6,即⎝ ⎛⎭⎪⎫1+x 203≥1.6, 即x≥20(31.6-1).由题中所给数据,知1.15<31.6<1.2,所以3<20(31.6-1)<4. 所以x 的最小值为4,此时5x≥20,即至少要抽出20户从事包装、销售工作. (2)至2018年底,假设该村每户年均纯收入能达到1.35万元.每户的平均收入为5x ⎝ ⎛⎭⎪⎫3-14x +(100-5x )⎝ ⎛⎭⎪⎫1+x 20100≥1.35,化简得3x 2-30x +70≤0.因为x∈Z 且1≤x≤9,所以x∈{4,5,6}.所以当从事包装、销售的户数达到20至30户时,能达到,否则,不能.。

2015届高考数学(理)一轮复习单元卷:函数模型及其应用(苏教版)

2015届高考数学(理)一轮复习单元卷:函数模型及其应用(苏教版)

函数模型及其应用(分Ⅰ、Ⅱ卷,共2页)第Ⅰ卷:夯基保分卷1.(2014·苏锡常镇一调)某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.2.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S.则S最小时,电梯所停的楼层是________层.3.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,满缸水从洞中流出.若鱼缸水深为h时的水的体积为v,则函数v=f(h)的大致图像可能是图中的________.4.如图,书的一页的面积为600 cm2,设计要求书面上方空出2 cm的边,下、左、右方都空出1 cm的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________.5.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7 000万元,则x的最小值是________.6.(2014·连云港模拟)某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:①报销的医疗费用y(万元)随医疗总费用x(万元)增加而增加;②报销的医疗费用不得低于医疗总费用的50%;③报销的医疗费用不得超过8万元.(1)请你分析该单位能否采用函数模型y=0.05(x2+4x+8)作为报销方案;(2)若该单位决定采用函数模型y=x-2ln x+a(a为常数)作为报销方案,请你确定整数a 的值(参考数据:ln 2≈0.69,ln 10≈2.3).7.(2013·苏北四市统考)某开发商用9 000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2 000平方米.已知该写字楼第一层的建筑费用为每平方米4 000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元.(1)若该写字楼共x 层,总开发费用为y 万元,求函数y =f (x )的解析式;(总开发费用=总建筑费用+购地费用)(2)要使整幢写字楼每平方米开发费用最低,该写字楼应建为多少层?8.(2014·南通一调)将52名志愿者分成A ,B 两组参加义务植树活动,A 组种植150捆白杨树苗,B 组种植200捆沙棘树苗.假定A ,B 两组同时开始种植.(1)根据历年统计,每名志愿者种植一捆白杨树苗用时25 h ,种植一捆沙棘树苗用时12h .应如何分配A ,B 两组的人数,使植树活动持续时间最短?(2)在按(1)分配的人数种植1 h 后发现,每名志愿者种植一捆白杨树苗用时仍为25h ,而每名志愿者种植一捆沙棘树苗实际用时23h ,于是从A 组抽调6名志愿者加入B 组继续种植,求植树活动所持续的时间.第Ⅱ卷:提能增分卷1.(2014·扬州期末)某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建防辐射材料的选用与宿舍到工厂的距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离x (km)的关系式为p =k 3x +5(0≤x ≤8),若距离为1 km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设函数f (x )为建造宿舍与修路费用之和.(1)求f (x )的解析式;(2)宿舍应建在离工厂多远处,可使总费用f (x )最小,并求出最小值.2.(2014·苏州一调)如图,有一块边长为1(百米)的正方形区域ABCD.在点A处有一个可转动的探照灯,其照射角∠P AQ始终为45°(其中点P,Q分别在边BC,CD上),设∠P AB=θ,tan θ=t.(1)用t表示出PQ的长度,并探求△CPQ的周长l是否为定值;(2)问探照灯照射在正方形ABCD内部区域的面积S至多为多少平方百米?3.(2013·徐州调研)徐州、苏州两地相距500 km,一辆货车从徐州匀速行驶到苏州,规定速度不得超过100 km/h.已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v km/h的平方成正比,比例系数为0.01;固定部分为a元(a>0).(1)把全程运输成本y元表示为速度v km/h的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?4.(2014·镇江质检)有一海湾,海岸线为近似半个椭圆(如图),椭圆长轴端点分别为A,B.A,B间的距离为3 km,椭圆焦点分别为C,D.C,D间的距离为2 km,在C,D处分别有甲、乙两个油井,现准备在海岸线上建一度假村P,不考虑风向等因素影响,油井对度假村废气污染程度与排出废气的浓度成正比(比例系数都为k1),与距离的平方成反比(比例系数都为k2),又知甲油井排出的废气浓度是乙油井的8倍.(1)设乙油井排出的废气浓度为a(a为常数),度假村P距离甲油井x km,度假村P受到甲、乙两油井的污染程度和记为f(x),求f(x)的解析式并求其定义域;(2)度假村P距离甲油井多少时,甲、乙两油井对度假村的废气污染程度和最小?答案第Ⅰ卷:夯基保分卷1.解析:当恰好行驶8 km时,需要付费1+8+2.15×5=19.75元,而现在付出费用为22.6元,所以用22.6-19.75=2.85,故多行1 km ,即实际行驶9 km.答案:92.解析:设所停的楼层为n 层,则2≤n ≤12,由题意得:S =2+4+…+2(12-n )+1+2+3+…+(n -2)=(12-n )(26-2n )2+(n -2)[1+(n -2)]2=32n 2-532n +157,其对称轴为n =536∈(8,9),又n ∈N *且n 离9的距离较近. 答案:93.解析:当h =0时,v =0可排除①、③;由于鱼缸中间粗两头细,∴当h 在H 2附近时,体积变化较快;h 小于H 2时,增加越来越快;h 大于H 2时,增加越来越慢. 答案:②4.解析:设长为a cm ,宽为b cm ,则ab =600 cm ,则中间文字部分的面积S =(a -2-1)(b -2)=606-(2a +3b )≤606-26×600=486,当且仅当2a =3b ,即a =30,b =20时,S 最大=486 cm 2.答案:30 cm,20 cm5.解析:七月份的销售额为500(1+x %),八月份的销售额为500(1+x %)2,则一月份到十月份的销售总额是3 860+500+2 [500(1+x %)+500(1+x %)2],根据题意有3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000,即25(1+x %)+25(1+x %)2≥66,令t =1+x %,则25t 2+25t -66≥0,解得t ≥65或者t ≤-115(舍去), 故1+x %≥65, 解得x ≥20.答案:206.解:(1)y =0.05(x 2+4x +8)在[2,10]上是增函数,满足条件①;当x =10时,y 有最大值7.4,小于8,满足条件③;但当x =3时,y =2920<32,即y ≥x 2不恒成立,不满足条件②, 故该函数模型不符合该单位报销方案.(2)对于函数模型y =x -2ln x +a ,设f (x )=x -2ln x +a ,则f ′(x )=1-2x =x -2x≥0.所以f (x )在[2,10]上是增函数,满足条件①.由条件②得x -2ln x +a ≥x 2, 即a ≥2ln x -x 2在x ∈[2,10]上恒成立. 令g (x )=2ln x -x 2, 则g ′(x )=2x -12=4-x 2x, 由g ′(x )>0得x <4, 所以g (x )在(2,4)上是增函数,在(4,10)上是减函数.所以a ≥g (4)=2ln 4-2=4ln 2-2.由条件③得f (10)=10-2ln 10+a ≤8,解得a ≤2ln 10-2.另一方面,由x -2ln x +a ≤x ,得a ≤2ln x 在x ∈[2,10]上恒成立,所以a ≤2ln 2. 综上所述,a 的取值范围为[4ln 2-2,2ln 2],所以满足条件的整数a 的值为1.7.解:(1)由已知,写字楼最下面一层的总建筑费用为4 000×2 000=8 000 000(元)=800(万元),从第二层开始,每层的建筑总费用比其下面一层多100×2 000=200 000(元)=20(万元),所以写字楼从下到上各层的总建筑费用构成以800为首项,20为公差的等差数列,所以y =f (x )=800x +x (x -1)2×20+9 000 =10x 2+790x +9 000(x ∈N *).(2)由(1)知写字楼每平方米平均开发费用为g (x )=f (x )2 000x×10 000 =5(10x 2+790x +9 000)x=50⎝⎛⎭⎫x +900x +79≥50×(2900+79)=6 950, 当且仅当x =900x,即x =30时,等号成立. 所以要使整幢写字楼每平方米开发费用最低,该写字楼应建为30层.8.解:(1)设A 组人数为x ,且0<x <52,x ∈N *,则A 组植树活动所需时间为f (x )=150×25x=60x ,B 组植树活动所需时间为g (x )=200×1252-x =10052-x. 令f (x )=g (x ),即60x =10052-x, 解得x =392. 所以A ,B 两组同时开始的植树活动所需时间为F (x )=⎩⎨⎧ 60x , x ≤19,x ∈N *,10052-x , x ≥20,x ∈N *.而F (19)=6019,F (20)=258, 故F (19)>F (20).所以当A ,B 两组人数分别为20,32时,植树活动持续时间最短.(2)A 组所需时间为1+150×25-20×120-6=367, B 组所需时间为1+200×23-32×132+6=323, 所以植树活动所持续的时间为367h. 第Ⅱ卷:提能增分卷1.解:(1)根据题意得100=k 3×1+5, 所以k =800.故f (x )=8003x +5+5+6x,0≤x ≤8. (2)因为f (x )=8003x +5+2(3x +5)-5 ≥2 8003x +5·2(3x +5)-5=75, 当且仅当8003x +5=2(3x +5),即x =5时取等号.所以f (x )min =75.所以宿舍应建在离工厂5 km 处,可使总费用f (x )最小,最小为75万元.2.解:(1)由题意得BP =t ,CP =1-t,0≤t ≤1.∠DAQ =45°-θ,DQ =tan(45°-θ)=1-t 1+t, CQ =1-1-t 1+t =2t 1+t, 所以PQ =CP 2+CQ 2= (1-t )2+⎝⎛⎭⎫2t 1+t 2=1+t 21+t . 所以l =CP +CQ +PQ =1-t +2t 1+t +1+t 21+t =1-t +1+t =2,是定值. (2)S =S 正方形ABCD -S △ABP -S △ADQ =1-12t -12·1-t 1+t =2-⎣⎡⎦⎤12(1+t )+11+t . 因为1+t >0,所以S ≤2-2 12(1+t )·11+t =2-2,当且仅当12(1+t )=11+t,即t =2-1时取等号. 所以探照灯照射在正方形ABCD 内部区域的面积S 至多为(2-2)平方百米. 3.解:(1)由题意知汽车从甲地匀速行驶到乙地所用时间为500v ,全程运输成本为y =a ·500v +0.01v 2·500v =500a v +5v .故所求函数为y =500a v +5v ,v ∈(0,100]. (2)由题意知a ,v 都为正数,故500a v +5v ≥100a ,当且仅当500a v =5v ,即v =10a 时,等号成立.①若10a ≤100,即0<a ≤100时,则当v =10a 时,全程运输成本y 最小;②若10a >100,即a >100时,则当v ∈(0,100]时,有y ′=-500a v 2+5=5(v 2-100a )v 2<0. 所以函数y 在v ∈(0,100]上单调递减,也即当v =100时,全程运输成本y 最小. 综上可知,为使全程运输成本y 最小,当0<a ≤100时,行驶速度应为v =10a km/h ;当a >100时,行驶速度应为v =100 km/h.4.解:(1)由点P 在椭圆上知,PC +PD =3,即PC =x ,则PD =3-x .所以度假村P 受乙油井污染程度为ak 1k 2(3-x )2,受甲油井污染程度为8ak 1k 2x 2. 所以f (x )=8ak 1k 2x 2+ak 1k 2(3-x )2,定义域为⎣⎡⎦⎤12,52. (2)由(1)知f (x )=8ak 1k 2x 2+ak 1k 2(3-x )2=ak 1k 2⎝⎛⎭⎫8x 2+1x 2-6x +9. 故f ′(x )=ak 1k 2⎣⎢⎡⎦⎥⎤-16x 3+2(3-x )(x 2-6x +9)2 =2ak 1k 2·x 3-8(3-x )3x 3(3-x )3=18ak 1k 2·(x -2)(x 2-6x +12)x 3(3-x )3. 令f ′(x )=0,解得x =2,当x ∈⎝⎛⎭⎫12,2时,f ′(x )<0,函数f (x )为减函数,当x ∈⎝⎛⎭⎫2,52时,f ′(x )>0,函数f (x )为增函数. 故当x =2时,f (x )取得最小值.即度假村离甲油井2 km 时,甲乙两油井对度假村的污染程度和最小.。

高考数学一轮总复习第二章函数导数及其应用2.9函数模型及其应用课件理

高考数学一轮总复习第二章函数导数及其应用2.9函数模型及其应用课件理
必修(bìxiū)部分
第二章 函数(hánshù)、导数及其应用
第九节 函数模型(móxíng)及其应用
第一页,共33页。

考情分析 1
(fēnxī)

基础自主(zìzhǔ) 2
3 考点疑难(yí
nán)突破

梳理

4 课时跟踪检测
第二页,共33页。
1
考情分析
第三页,共33页。
考点分布
考纲要求
第十三页,共33页。
3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品 x 万件时的生产成本为 C(x)=12x2+2x+20(万元).一万件售价是 20 万元,为获取更大 利润,该企业一个月应生产该商品数量为________万件.
解析:利润 L(x)=20x-C(x)=-12(x-18)2+142,当 x=18 时,L(x)有最大值. 答案:18
第三十页,共33页。
指数函数与对数函数模型的应用技巧 (1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会 合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于 1)的一 类函数模型,与增长率、银行利率有关的问题都属于指数函数模型. (2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函 数解析式,再借助函数的图象求解最值问题.
二次函数模型
f(x)=ax2+bx+c (a,b,c 为常数,a≠0)
第六页,共33页。
f(x)=bax+c 指数函数模型
(a,b,c 为常数,b≠0,a>0 且 a≠1)
对数函数模型
f(x)=blogax+c
(a,b,c 为常数,b≠0,a>0 且 a≠1)

【最新】高考数学一轮复习 第二章 第9讲 函数模型及其应用课件 理 苏教版

【最新】高考数学一轮复习 第二章 第9讲 函数模型及其应用课件 理 苏教版
入应分别为0.75万元和2.25万元,获得总利润为1.05万
元.
[方法总结] (1)有些问题的两变量之间是二次函数关系,如
面积问题、利润问题、产量问题等.构建二次函数模型, 利用二次函数图象与单调性解决. (2)在解决二次函数的应用问题时,一定要注意定义域.
【训练1】 将进货单价为8元的商品按10元一个销售时,每 天可卖出100个,若这种商品的销售单位每涨1元,日销 售量应减少10个,为了获得最大利润,此商品的销售单 价应为多少元? 解 设销售单价应涨x元,则实际销售价格为(10+x)元, 由题意得利润为y=(10+x)(100-10x)-8(100-10x)=-

(1)当 x=1 时,f(1)=P(1)=39. 1 1 当 x≥2 时,f(x)=P(x)-P(x-1)= x(x+1)(41-2x)- 2 2 (x-1)x(43-2x)=3x(14-x). ∵f(1)=39 满足上式,∴f(x)=-3x2+42x(x≤12,x∈ N*). (2)设月利润为 h(x),h(x)=q(x)· g(x) 30ex7-x,1≤x<7,x∈N*, =10 3 x -100x2+960x,7≤x≤12,x∈N*, 3
考点自测
1.某县目前人口100万人,经过x年后为y万人,若人口年增
长率是1.2%,则y关于x的函数关系式是________.
答案 y=100(1+1.2%)x(x∈N*) 2.某厂日产手套总成本y(元)与手套日产量x(副)的关系式为 y=5x+4 000,而手套出厂价格为每副10元,则该厂为 了不亏本,日产手套至少为________副.
1 2 1 =- Q +30Q-2 000=- (Q-300)2+2 500 20 20 当 Q=300 时,L(Q)的最大值为 2 500 万元.

高考数学《2.9 函数模型及其应用》

高考数学《2.9 函数模型及其应用》

f(x)=4
1
+
1 ������
,人均消费 g(x)(单位:元)与时间 x(单位:天)的函数关系
近似满足g(x)=104-|x-23|. (1)求该市旅游日收益p(x)(单位:万元)与时间x(1≤x≤30,x∈N*) 的函数关系式; (2)若以最低日收益的15%为纯收入,该市对纯收入按1.5%的税率 来收回投资,按此预计两年内能否收回全部投资. 思考分段函数模型适合哪些问题?
关闭
4
解析 答案
第二章
2.9 函数模型及其应用
知识梳理
核心考点
-9-
考点1
考点2
考点3
考点4
考点 1 二次函数模型
例1A,B两城相距100 km,在两城之间距A城x km处建一核电站给 A,B两城供电,为保证城市安全,核电站与城市距离不得小于10 km. 已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25 倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.
核心考点
-7-
知识梳理 双基自测
12345
4.(教材例题改编P123例2)在某个物理实验中,测量得变量x和变量 y的几组数据,如下表.则x,y最适合的函数模型是( )
x 0.50 y -0.99
0.99
2.01
3.98
0.01
0.98
2.00
A.y=2x C.y=2x-2
B.y=x2-1 D.y=log2x
关闭
(1)× (2)√ (3)√ (4)√ (5)√
答案
第二章
2.9 函数模型及其应用
知识梳理
核心考点
-5-
知识梳理 双基自测
12345

函数模型及其应用+课件-2025届高三数学一轮复习

函数模型及其应用+课件-2025届高三数学一轮复习
A
a
b
c
A.① B.①② C.①③ D.①②③
[解析] 由题图a,得进水的速度为1,出水的速度为2.在题图c中, 时到3时直线的斜率为2,即蓄水量每小时增加2, 只进水不出水(即两个进水口都进水),故①一定正确;若不进水只出水1小时后,则蓄水量减少2,故②一定错误;若两个进水口和一个出水口同时打开,则蓄水量也可以保持不变,故③不一定正确.故选A.
[思路点拨](1)根据与 的关系图可得正确的选项.
(2) 水池有两个相同的进水口和一个出水口,其进水量和出水量随时间的变化如图a, 所示,某天0时到6时该水池的蓄水量如图c所示,给出以下3个说法:①0时到3时只进水不出水;②3时到4时不进水只出水;③4时到5时不进水也不出水.则说法一定正确的是( )
,,为常数,且,
对数函数模型
,,为常数,且,
幂函数模型
,, 为常数,,
◆ 对点演练 ◆
题组一 常识题
1.[教材改编] 已知函数,,,则随着 的增大,增长速度的大小关系是_______________.(填关于,, 的关系式)
[解析] 根据指数函数、一次函数、对数函数的增长速度关系可得 .
2.[教材改编] 在如图所示的锐角三角形空地中,欲建一个面积不小于的矩形花园(阴影部分),则其中 的取值范围是_________.
[思路点拨](2)蓄水量增加,说明进水速度大于出水速度,蓄水量减少,说明出水速度大于进水速度,再结合具体数据进行分析即可.
[总结反思]判断函数图象与实际问题变化过程是否相吻合时:首先要关注横轴与纵轴所表达的变量的实际意义;其次根据实际问题中两变量的变化快慢等特点,结合图象变化趋势,验证是否吻合,从中排除不符合实际的情况,选出符合实际的答案.

高考数学一轮复习练习 数学建模——函数模型及其应用

高考数学一轮复习练习  数学建模——函数模型及其应用

数学建模——函数模型及其应用基础巩固组1.汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1 L汽油,乙车最多可行驶5 kmB.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80 km/h的速度行驶1小时,消耗10 L汽油D.某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油2.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台3.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为()A.3 000元B.3 300元C.3 500元D.4 000元4.一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为s=1t2米,那么,此人()2A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但期间最近距离为14米D.不能追上汽车,但期间最近距离为7米5.设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正数).公司决定从原有员工中分流x(0<x<100,x∈N*)人去进行新开发的产品B的生产.分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了(1.2x)%.若要保证产品A的年产值不减少,则最多能分流的人数是()A.15B.16C.17D.186.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质,至少应过滤次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)含量减少137.一个容器装有细沙a cm3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=a e-bt cm3,经过8 min后发现容器内还有一半的沙子,则再经过 min,容器中的沙子只有开始时的八分之一.8.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(单位:μg)与时间t(单位:h)之间的关系近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数解析式y=f(t);(2)据进一步测定:当每毫升血液中含药量不少于0.25 μg时,治疗有效,求服药一次后治疗有效的时间.综合提升组9.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4 m和a m(0<a<12).不考虑树的粗细,现用16 m长的篱笆,借助墙角围成一个矩形花圃ABCD,设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位:m2)的图像大致是()10.某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2018年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A.2020年B.2021年C.2022年D.2023年11.如图,直角边长为2 cm的等腰直角三角形ABC,以2 cm/s 的速度沿直线l向右运动,则该三角形与矩形CDEF重合部分面积y(单位:cm2)与时间t(单位:s)的函数关系(设0≤t≤3)为,y的最大值为.12.某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=p·q x;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p(以上三式中p,q均为常数,且q>1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)?(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数定义域是[0,5],其中x=0表示8月1日,x=1表示9月1日,以此类推);(3)在(2)的条件下预测该海鲜将在哪几个月内价格下跌.创新应用组13.声强级Y(单位:分贝)由公式Y=10lg I给出,其中I为声强(单位:W/m2).10-12(1)平常人交谈时的声强约为10-6 W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?(3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7 W/m 2,问这两位同学是否会影响其他同学休息?参考答案课时规范练13 数学建模——函数模型及其应用1.D 从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L,故乙车消耗1 L 汽油的行驶路程可大于5 km,所以选项A 错误;由图可知以相同速度行驶相同路程甲车消耗汽油最少,所以选项B 错误;甲车以80 km/h 的速度行驶时的燃油效率为10 km/L,故行驶1小时的路程为80 km,消耗8 L 汽油,所以选项C 错误;当最高限速为80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以选项D 正确.2.C 设利润为f (x )万元,则f (x )=25x-(3 000+20x-0.1x 2)=0.1x 2+5x-3 000(0<x<240,x ∈N *).令f (x )≥0,得x ≥150,故生产者不亏本时的最低产量是150台.故选C .3.B 由题意,设利润为y 元,租金定为(3 000+50x )元(0≤x ≤70,x ∈N ),则y=(3 000+50x )(70-x )-100(70-x )=(2 900+50x )(70-x )=50(58+x )(70-x )≤5058+x+70-x 22=204 800,当且仅当58+x=70-x ,即x=6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B .4.D 已知s=12t 2,车与人的间距d=(s+25)-6t=12t 2-6t+25=12(t-6)2+7.当t=6时,d 取得最小值7.所以不能追上汽车,但期间最近距离为7米,故选D .5.B 由题意,分流前每年创造的产值为100t 万元,分流x 人后,每年创造的产值为(100-x )[1+(1.2x )%]t ,则{0<x <100,x ∈N *,(100-x )[1+(1.2x )%]t ≥100t , 解得0<x ≤503.因为x ∈N *,所以x 的最大值为16,故选B . 6.8 设至少过滤n 次才能达到市场要求,则2%1-13n ≤0.1%,即23n ≤120, 所以n lg 23≤-1-lg 2,解得n ≥7.39,所以n=8.7.16 当t=0时,y=a ,当t=8时,y=a e -8b =12a ,所以e -8b =12,容器中的沙子只有开始时的八分之一时,即y=a e -bt =18a ,e -bt =18=(e -8b )3=e -24b ,则t=24,所以再经过24-8=16(min),容器中的沙子只有开始时的八分之一.8.解 (1)根据所给的曲线,可设y={kt ,0≤t ≤1,(12) t -a ,t >1.当t=1时,由y=4,得k=4,由121-a =4,得a=3.则y={4t ,0≤t ≤1,(12) t -3,t >1.(2)由y ≥0.25,得{0≤t ≤1,4t ≥0.25或{t >1,(12) t -3≥0.25,解得116≤t ≤5.因此服药一次后治疗有效的时间为5-116=7916(h).9.B 设AD 的长为x m,则CD 的长为(16-x ) m,则矩形ABCD 的面积为x (16-x ) m 2.因为要将点P 围在矩形ABCD 内,所以a ≤x ≤12.当0<a ≤8时,当且仅当x=8时,u=64;当8<a<12时,u=a (16-a ).画出函数图像可得其形状与B 选项接近,故选B .10.C 若2019年是第1年,则第n 年全年投入的科研经费为1 300×1.12n 万元,由1 300×1.12n >2 000,可得lg 1.3+n lg 1.12>lg 2,所以n ×0.05>0.19,得n>3.8,所以第4年,即2022年全年投入的科研经费开始超过2 000万元,故选C .11.y={2t 2,0≤t <1,2,1≤t ≤2,2-12(2t -4)2,2<t ≤32 如题图,当0≤t<1时,重叠部分面积y=12×2t ×2t=2t 2;当1≤t ≤2时,重叠部分为直角三角形ABC ,重叠部分面积y=12×2×2=2(cm 2); 当2<t ≤3时,重叠部分为梯形,重叠部分面积y=S △ABC -12(2t-4)2=2-12(2t-4)2=-2t 2+8t-6. 综上,y={2t 2,0≤t <1,2,1≤t ≤2,-2t 2+8t -6,2<t ≤3,故可得y 的最大值为2.12.解 (1)因为上市初期和后期价格呈持续上涨态势,而中期又将出现价格连续下跌,所以在所给出的函数中应选模拟函数f (x )=x (x-q )2+p.(2)对于f (x )=x (x-q )2+p ,由f (0)=4,f (2)=6,可得p=4,(2-q )2=1,又q>1,所以q=3,所以f (x )=x 3-6x 2+9x+4(0≤x ≤5).(3)因为f (x )=x 3-6x 2+9x+4(0≤x ≤5),所以f'(x )=3x 2-12x+9, 令f'(x )<0,得1<x<3.所以函数f (x )在(1,3)内单调递减,所以可以预测这种海鲜将在9月,10月两个月内价格下跌. 13.解 (1)当声强为10-6 W/m 2时,由公式Y=10lgI 10-12,得Y=10lg 10-610-12=10lg 106=60(分贝).(2)当Y=0时,由公式Y=10lg I 10-12,得10lgI 10-12=0.所以I10-12=1,即I=10-12 W/m 2,则最低声强为10-12 W/m 2.(3)当声强为5×10-7 W/m 2时,声强级为Y=10lg 5×10-710-12=10lg(5×105)=50+10lg 5(分贝),因为50+10lg 5>50,故这两位同学会影响其他同学休息.。

创新设计江苏专用2018版高考数学一轮复习第二章函数概念与基本初等函数I2.9函数模型及其应用课时作业理

创新设计江苏专用2018版高考数学一轮复习第二章函数概念与基本初等函数I2.9函数模型及其应用课时作业理

第9讲 函数模型及其应用基础巩固题组(建议用时:40分钟) 一、填空题1.给出下列函数模型:①一次函数模型;②幂函数模型;③指数函数模型;④对数函数模型.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是________(填序号).x45678910y15171921232527解析 根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.答案 ①2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是________(填序号).解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有①,③图象符合要求,而后3年年产量保持不变,总产量增加,故①正确,③错误.答案 ①3.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差________元.解析 设A种方式对应的函数解析式为s=k1t+20,B种方式对应的函数解析式为s=k2t,当t=100时,100k1+20=100k2,∴k2-k1=,t=150时,150k2-150k1-20=150×-20=10.答案 104.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为________m.解析 设内接矩形另一边长为y,则由相似三角形性质可得=,解得y=40-x,所以面积S=x(40-x)=-x2+40x=-(x-20)2+400(0<x<40),当x=20时,S max=400.答案 205.(2017·长春模拟)一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y=a e-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.解析 当t=0时,y=a,当t=8时,y=a e-8b=a,∴e-8b=,容器中的沙子只有开始时的八分之一时,即y=a e-bt=a,e-bt==(e-8b)3=e-24b,则t=24,所以再经过16 min.答案 166.A,B两只船分别从在东西方向上相距145 km的甲乙两地开出.A从甲地自东向西行驶.B从乙地自北向南行驶,A的速度是40 km h,B 的速度是16 km h,经过________h,AB间的距离最短.解析 设经过x h,A,B相距为y km,则y==(0≤x≤),求得函数的最小值时x的值为.答案 7.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为________.解析 设该企业需要更新设备的年数为x,设备年平均费用为y,则x年后的设备维护费用为2+4+…+2x=x(x+1),所以x年的平均费用为y==x++1.5,由基本不等式得y=x++1.5≥2 +1.5=21.5,当且仅当x=,即x=10时取等号.答案 108.(2016·四川卷改编)某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发奖金130万元.在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是________(参考数据:lg 1.12=0.05,lg 1.3=0.11,lg 2=0.30).解析 设第x年的研发奖金为200万元,则由题意可得130×(1+12%)x=200,∴1.12x=,∴x=log1.12=log1.1220-log1.1213=-===3.8.即3年后不到200万元,第4年超过200万元,即2019年超过200万元.答案 2019二、解答题9.(2016·江苏卷)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥P-A1B1C1D1,下部分的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高OO1是正四棱锥的高PO1的4倍.(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?解 (1)V=×62×2+62×2×4=312(m3).(2)设PO1=x,则O1B1=,B1C1=·,∴SA1B1C1D1=2(62-x2),又由题意可得下面正四棱柱的高为4x.则仓库容积V=x·2(62-x2)+2(62-x2)·4x=x(36-x2).由V′=0得x=2或x=-2(舍去).由实际意义知V在x=2(m)时取到最大值,故当PO1=2 m时,仓库容积最大.10.(2017·南通模拟)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=-48x+8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解 (1)每吨平均成本为(万元).则=+-48≥2 -48=32,当且仅当=,即x=200时取等号.∴年产量为200吨时,每吨平均成本最低为32万元.(2)设年获得总利润为R(x)万元.则R(x)=40x-y=40x-+48x-8 000=-+88x-8 000=-(x-220)2+1 680(0≤x≤210).∵R(x)在[0,210]上是增函数,∴x=210时,R(x)有最大值为-(210-220)2+1 680=1 660.∴年产量为210吨时,可获得最大利润1 660万元.能力提升题组(建议用时:30分钟)11.(2017·南京调研)某市对城市路网进行改造,拟在原有a个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x个标段和n个道路交叉口,其中n与x满足n=ax+5.已知新建一个标段的造价为m万元,新建一个道路交叉口的造价是新建一个标段的造价的k倍.(1)写出新建道路交叉口的总造价y(万元)与x的函数关系式;(2)设P是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数的20%,且k≥3.问:P能否大于,说明理由.解 (1)依题意得y=mkn=mk(ax+5),x∈N*.(2)法一 依题意x=0.2a,所以P====≤=≤=<.P不可能大于.法二 依题意x=0.2a,所以P====.假设P>,则ka2-20a+25k<0.因为k≥3,所以Δ=100(4-k2)<0,不等式ka2-20a+25k<0无解,假设不成立.P不可能大于.12.(2017·苏、锡、常、镇四市调研)某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=;若x大于或等于180,则销售量为零;当20≤x≤180时,q(x)=a-b(a,b为实常数).(1)求函数q(x)的表达式;(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.解 (1)当20≤x≤180时,由得故q(x)=(2)设总利润f(x)=x·q(x),由(1)得f(x)=当0<x≤20时,f(x)==126 000-,又f(x)在(0,20]上单调递增,所以当x=20时,f(x)有最大值120 000.当20<x<180时,f(x)=9 000x-300·x,f′(x)=9 000-450·,令f′(x)=0,得x=80.当20<x<80时,f′(x)>0,f(x)单调递增,当80<x<180时,f′(x)<0,f(x)单调递减,所以当x=80时,f(x)有最大值240 000.当x≥180时,f(x)=0.综上,当x=80元时,总利润取得最大值240 000元.13.(2017·苏北四市调研)如图,某森林公园有一直角梯形区域ABCD,其四条边均为道路,AD∥BC,∠ADC=90°,AB=5 千米,BC=8 千米,CD=3 千米.现甲、乙两管理员同时从A地出发匀速前往D地,甲的路线是AD,速度为6千米/时,乙的路线是ABCD,速度为v千米/时.(1)若甲、乙两管理员到达D的时间相差不超过15分钟,求乙的速度v的取值范围;(2)已知对讲机有效通话的最大距离是5千米.若乙先到D,且乙从A到D的过程中始终能用对讲机与甲保持有效通话,求乙的速度v的取值范围.解 (1)由题意得AD=12 千米,≤,解得≤v≤,故乙的速度v的取值范围是.(2)设经过t小时,甲、乙之间的距离的平方为f(t).由于乙先到达D地,故<2,即v>8.①当0<vt≤5,即0<t≤时,f(t)=(6t)2+(vt)2-2×6t×vt×cos∠DAB=t2.因为v2-v+36>0,所以当t=时,f(t)取最大值,所以×2≤25,解得v≥.②当5<vt≤13,即<t≤时,f(t)=(vt-1-6t)2+9=(v-6)22+9.因为v>8,所以<,(v-6)2>0,所以当t=时,f(t)取最大值,所以(v-6)22+9≤25,解得≤v≤.③当13≤vt≤16,即≤t≤时,f(t)=(12-6t)2+(16-vt)2因为12-6t>0,16-vt>0,所以f(t)在上单调递减,所以当t=时,f(t)取最大值,2+2≤25,解得≤v≤.因为v>8,所以8<v≤.综上所述,v的取值范围是.。

数学一轮复习第二章函数2.9函数模型及其应用学案理

数学一轮复习第二章函数2.9函数模型及其应用学案理

2.9函数模型及其应用必备知识预案自诊知识梳理1.常见的函数模型(1)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(2)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(3)反比例函数模型:f(x)=kk(k为常数,k≠0);(4)指数型函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b〉0,b≠1);(5)对数型函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a〉0,a≠1);(6)幂型函数模型:f(x)=ax n+b(a,b,n为常数,a≠0);(7)分段函数模型:y={k1(k),k∈k1,k2(k),k∈k2,k3(k),k∈k3;(8)对勾函数模型:y=x+kk(a为常数,a>0)。

2。

指数、对数、幂函数模型的性质比较性质函数y=a x(a>1)y=log a x(a〉1)y=xα(α〉0)在(0,+∞)内的增减性增长速度越来越快越来越慢相对平稳图像的变化随x的增大逐渐表现为与平行随x的增大逐渐表现为与平行随α值变化而各有不同值的比较存在一个x0,当x〉x0时,有log a x<xα〈a x考点自诊1。

判断下列结论是否正确,正确的画“√”,错误的画“×"。

(1)幂函数增长比一次函数增长更快。

() (2)在(0,+∞)内,随着x的增大,y=a x(a〉1)的增长速度会超过并远远大于y=xα(α〉0)的增长速度.()(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题。

()(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)〈f(x)〈g(x)。

()(5)“指数爆炸”是指数型函数y=a·b x+c(a>0,b>1)增长速度越来越快的形象比喻。

()2。

(2020山东潍坊临朐模拟二,3)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。

(江苏专版)2019年高考数学一轮复习专题2.9函数模型及其应用(讲)

(江苏专版)2019年高考数学一轮复习专题2.9函数模型及其应用(讲)

专题2.9 函数模型及其应用【考纲解读】【直击教材】1.已知某种动物繁殖量y (只)与时间x (年)的关系为y =a log 3(x +1),设这种动物第2年有100只,到第8年它们发展到________只. 答案:2002.用18 m 的材料围成一块矩形场地,中间有两道隔墙.若使矩形面积最大,则能围成的最大面积是________m 2.解析:设隔墙长为x m ,则面积S =x ·18-4x 2=-2x 2+9x =-2⎝ ⎛⎭⎪⎫x -942+818.所以当x =94时,能围成的面积最大,为818 m 2.答案:818【知识清单】1.几种常见的函数模型2.三种函数模型性质比较【考点深度剖析】解答应用问题的程序概括为“四步八字”,即①审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;②建模:把自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;③求模:求解数学模型,得出数学结论;④还原:将数学结论还原为实际问题的意义.【重点难点突破】考点1 一次函数与二次函数模型【1-1】某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内通话时间t(分钟)与电话费s(元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差_________元.【答案】10【1-2】将进货单价为80元的商品按90元出售时,能卖出400个.若该商品每个涨价1元,其销售量就减少20个,为了赚取最大的利润,售价应定为每个_________元. 【答案】95【解析】设售价定为(90+x )元,卖出商品后获得利润为:y =(90+x -80)(400-20x )=20(10+x )(20-x )=20(-x 2+10x +200)=-20(x 2-10x -200)=-20[(x -5)2-225],∴当x =5时,y 取得最大值,即售价应定为:90+5=95(元).【思想方法】(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题. 【温馨提醒】1.易忽视实际问题的自变量的取值范围,需合理确定函数的定义域.2.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性. 考点2 分段函数模型【2-1】提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数. (1)当0≤x ≤200时,求函数v (x )的表达式.(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值(精确到1辆/小时). 【答案】(1) v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,200-x3,20<x ≤200.(2) 当x =100时,f (x )在区间(20,200]上取得最大值.【2-2】某公司研制出了一种新产品,试制了一批样品分别在国内和国外上市销售,并且价格根据销售情况不断进行调整,结果40天内全部销完.公司对销售及销售利润进行了调研,结果如图所示,其中图①(一条折线)、图②(一条抛物线段)分别是国外和国内市场的日销售量与上市时间的关系,图③是每件样品的销售利润与上市时间的关系.(1)分别写出国外市场的日销售量f (t )与上市时间t 的关系及国内市场的日销售量g (t )与上市时间t 的关系;(2)国外和国内的日销售利润之和有没有可能恰好等于6 300万元?若有,请说明是上市后的第几天;若没有,请说明理由.【答案】(1) f (t )=⎩⎪⎨⎪⎧2t ,0≤t ≤30,-6t +240,30<t ≤40. g (t )=-320t 2+6t (0≤t ≤40). (2) 上市后的第30天.∴F (t )在[0,20]上是增函数,∴F (t )在此区间上的最大值为F (20)=6 000<6 300.当20<t ≤30时,F (t )=60⎝ ⎛⎭⎪⎫-320t 2+8t . 由F (t )=6 300,得3 t 2-160t +2 100=0, 解得t =703(舍去)或t =30.当30<t ≤40时,F (t )=60⎝ ⎛⎭⎪⎫-320t 2+240. 由F (t )在 (30,40]上是减函数,得F (t )<F (30)=6 300.故国外和国内的日销售利润之和可以恰好等于6 300万元,为上市后的第30天. 【思想方法】(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解.(2) 分段函数的最值是各段的最大(最小)者的最大者(最小者).【温馨提醒】构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏. 考点3 指数函数模型【3-1】一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?【答案】(1) x =1-⎝ ⎛⎭⎪⎫12110 (2) 5.(3)15.【3-2】某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),判定该股民这支股票的盈亏情况(不考虑其他费用).【答案】略有亏损【思想方法】(1)指数函数模型,常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.(2)应用指数函数模型时,关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型.(3)y =a (1+x )n通常利用指数运算与对数函数的性质求解.【温馨提醒】解指数不等式时,一定要化为同底,且注意对应函数的单调性. 考点二 函数y =x +ax模型的应用为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值. 解:(1)由已知条件得C (0)=8,则k =40, 因此f (x )=6x +20C (x )=6x +8003x +5(0≤x ≤10).(2)f (x )=6x +10+8003x +5-10≥26x +10 ·8003x +5-10=70(万元),当且仅当6x +10=8003x +5,即x =5时等号成立.所以当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元. [由题悟法]应用函数y =x +a x模型的关键点(1)明确对勾函数是正比例函数f (x )=ax 与反比例函数f (x )=b x叠加而成的.(2)解决实际问题时一般可以直接建立f (x )=ax +b x的模型,有时可以将所列函数关系式转化为f (x )=ax +bx的形式. (3)利用模型f (x )=ax +b x求解最值时,要注意自变量的取值范围,及取得最值时等号成立的条件. [即时应用]“水资源与永恒发展”是2015年联合国世界水资源日主题,近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费C (单位:万元)与安装的这种净水设备的占地面积x (单位:平方米)之间的函数关系是C (x )=k50x +250(x ≥0,k 为常数).记y 为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.(1)试解释C (0)的实际意义,并建立y 关于x 的函数关系式并化简; (2)当x 为多少平方米时,y 取得最小值,最小值是多少万元?【易错试题常警惕】数学实际应用问题,一定要正确理解题意,选择适当的函数模型;合理确定实际问题中自变量的取值范围;必须验证答案对实际问题的合理性.如:如图所示,在矩形CD AB 中,已知a AB =,C b B =(a b >).在AB 、D A 、CD 、C B 上分别截取AE 、AH 、CG 、CF 都等于x ,当x 为何值时,四边形FG E H 的面积最大?求出这个最大面积.【分析】设四边形FG E H 的面积为S ,则()()F D G 12S S a x b x ∆BE ∆H ==--,CFG S S ∆AEH ∆= 212x =,∴()()()22211222224a b S ab x a x b x x a b x x +⎡⎤⎛⎫=-+--=-++=-- ⎪⎢⎥⎣⎦⎝⎭()28a b ++,由图形知函数的定义域为{}0x x b <≤. 0b a <<,∴02a bb +<<,若 4a b b +≤,即3a b ≤时,4a b x +=,使面积S 取得最大值()28a b +;若4a b b +>,即3a b >时,函数()S x 在(]0,b 上是增函数,此时当x b =时,S 有最大值为()22248a b a b b ++⎛⎫--+⎪⎝⎭ 2ab b =-.综上可知,若3a b ≤,当4a b x +=时,四边形FG E H 的面积取得最大值()28a b +;若3a b >,当x b =时,四边形FG E H 的面积取得最大值2ab b -.【易错点】忽略实际问题中自变量的取值范围,造成与实际问题不相符合的错误结论.【练一练】某村计划建造一个室内面积为8002m 的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大面积是多少?【答案】当矩形温室的边长各为40m ,20m 时,蔬菜的种植面积最大,最大面积是6482m .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型分类·深度剖析
题型分类·深度剖析
(1)当h=1时,求跳水曲线所在的抛物线方程;
思维升华 实际生活中的二次函数问题(如面积、利润、 产量等),可根据已知条件确定二次函数模型,结合二 次函数的图象、单调性、零点解决,解题中一定要注 意函数的定义域.
题型分类·深度剖析
解析
例1 (2)若跳水运动员在区域 EF内入水时才能达到压水花 的训练要求,求达到压水花 的训练要求时h的取值范围.
x (1≤x≤30,x∈N*).
题型分类·深度剖析
(1)求该市旅游日收益p(x)(万元) 与时间x(1≤x≤30,x∈N*)的 函数关系式;
解析
思维升华
(1)分段函数的特征主
要是每一段自变量变化 所遵循的规律不同.分 段函数模型的最值问题, 应该先求出每一段上的 最值,然后比较大小.
题型分类·深度剖析
反比例函数模型
f(x)=kx+b (k,b为常数且k≠0)
二次函数模型
f(x)=ax2+bx+c (a,b,c为常数,a≠0)
基础知识·自主学习
知识梳理
指数函数模型 对数函数模型
幂函数模型
f(x)=bax+c (a,b,c为常数,b≠0,a>0且a≠1)
f(x)=blogax+c (a,b,c为常数,b≠0,a>0且a≠1)
a=-0.2,
解得b=1.5, c=-2.0.
所以 p=-0.2t2+1.5t-2.0=-15(t2-125t+21265)+4156-2= -15(t-145)2+1136, 所以当 t=145=3.75 时,p 取得最大值,即最佳加工时间
为 3.75 分钟.
题型分类·深度剖析
题型一 二次函数模型
跟踪训练1 某汽车运输公司购买了一批豪华 大客车投入营运,据市场分析每辆客车营运 的总利润y(单位:10万元)与营运年数x(x∈N*) 为二次函数关系(如图所示),则每辆客车营运____5____年时, 其营运的年平均利润最大. 当且仅当x=25 ,即x=5时取“=”.
x ∴x=5时营运的年平均利润最大.
题型分类·深度剖析
(1)当h=1时,求跳水曲线所在的抛物线方程;
解 由题意知最高点为(2+h,4),h≥1, 设抛物线方程为y=a[x-(2+h)]2+4, 当h=1时,最高点为(3,4),方程为y=a(x-3)2+4, 将A(2,3)代入,得3=a(2-3)2+4,解得a=-1. ∴当h=1时,跳水曲线所在的抛物线方程为 y=-(x-3)2+4.
题型分类·深度剖析
例1 (2)若跳水运动员在区域 EF内入水时才能达到压水花 的训练要求,求达到压水花 的训练要求时h的取值范围.
解析
思维升华
解得 1≤h≤43. 所以达到压水花的训练 要求时 h 的取值范围为 [1,43].
题型分类·深度剖析
例1 (2)若跳水运动员在区域 EF内入水时才能达到压水花 的训练要求,求达到压水花 的训练要求时h的取值范围.
现为与 y轴 平行 现为与 x轴 平行 各有不同
值的比较
存在一个x0,当x>x0时,有logax<xn<ax
基础知识·自主学习
知识梳理
2.解函数应用问题的步骤(四步八字) (1)审题:弄清题意,分清条件和结论,理顺数量关系,初 步选择数学模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为 符号语言,利用数学知识,建立相应的数学模型; (3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题的意义.
车.(精确到1小时)
解析
思维升华
题型分类·深度剖析
解析
设经过x小时才能开车. 由题意得0.3(1-25%)x≤0.09, ∴0.75x≤0.3,x≥log0.750.3≈4.19. ∴x最小为5. 答案 5
思维升华
题型分类·深度剖析
解析
思维升华
一般地,涉及增长率问题、存蓄利息问题、细胞分 裂问题等,都可以考虑用指数函数的模型求解.求解 时注意指数式与对数式的互化,指数函数的值域的 影响以及实际问题中的条件限制.
f(x)=axn+b (a,b为常数,a≠0)
基础知识·自主学习
aloga N
(2)三种函数模型的性质
知识梳理
函数 性质
y=ax(a>1)
y=logax(a>1) y=xn(n>0)
在(0,+∞) 单调 递增
上的增减性
单调 递增
单调递增
增长速度
越来越快
越来越慢
相对平稳
随x的增大逐渐表 随x的增大逐渐表 随n值变化而 图象的变化
解析
思维升华
(1)求该市旅游日收益p(x)(万元) 与时间x(1≤x≤30,x∈N*)的 函数关系式;
(2) 构 造 分 段 函 数 时 , 要力求准确、简洁, 做到分段合理,保证 不重不漏.
题型分类·深度剖析
(2)若以最低日收益的15%为纯收入,该市对纯收入按1.5%的
税率来收回投资,按此预计两年内能否收回全部投资.
基础知识·自主学习
知识梳理
(5)某种商品进价为每件100元,按进价增加25%出售,后因 库存积压降价,若按九折出售,则每件还能获利.( √ ) (6)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒 有h(x)<f(x)<g(x).( √ )
基础知识·自主学习
题号
1 2 3 4
基础知识·自主学习
以上过程用框图表示如下:
知识梳理
基础知识·自主学习
知识梳理
思考辨析 判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数y=2x的函数值比y=x2的函数值大.( × ) (2)幂函数增长比直线增长更快.( × ) (3)不存在x0,使 ax0 <xn0 <logax0.( × ) (4)美缘公司2013年上市的一种化妆品,由于脱销,在2014年 曾提价25%,2015年想要恢复成原价,则应降价25%.( × )
当t=5时,y=e10ln 2=210=1 024.
题型分类·深度剖析
题型分类·深度剖析
题型三 分段函数模型
例3 中共十八届三中全会提出要努力建设社会主义文化强 国.为响应中央号召.某市2016年计划投入600万元加强民族 文化基础设施改造.据调查,改造后预计该市在一个月内 (以30天计),民族文化旅游人数f(x)(万人)与时间x(天)的函 数关系近似满足f(x)=4(1+1),人均消费g(x)(元)与时间x(天)
答案
p+1q+1-1
5 15,12 3.75
考点自测
解析
根据图表,把(t,p)的三组数据(3,0.7),(4,0.8),(5,0.5) 分别代入函数关系式,
0.7=9a+3b+c,
联立方程组得0.8=16a+4b+c, 0.5=25a+5b+c,
7a+b=0.1, 消去 c 化简得9a+b=-0.3,
题型分类·深度剖析
跟踪训练2 某种病毒经30分钟繁殖为原来的2倍,且知病毒
的繁殖规律为y=ekt(其中k为常数,t表示时间,单位:小时,
y表示病毒个数),则k=__2_l_n_2___,经过5小时,1个病毒能
繁殖为__1_0_2_4___个.
解析
当t=0.5时,y=2,∴2=
e
1 2
k

∴k=2ln 2,∴y=e2tln 2,
税率来收回投资,按此预计两年内能否收回全部投资.
解析
思维升华
①当 1≤x≤23 时,p(x)=4(1+1x)(81+x)=4(82+x+8x1)≥
4(82+2 x·8x1)=400, 当且仅当 x=8x1,即 x=9 时 p(x)取得最小值 400.

________倍.
解析
思维升华
题型分类·深度剖析
解析
思维升华
(2)由M=lg A-lg A0知,M=lg 1 000-lg 0.001=3-(-3) =6, ∴此次地震的震级为6级.
设9级地震的最大振幅为A1,5级地震的最大振幅为A2, 则 lgAA21=lg A1-lg A2=(lg A1-lg A0)-(lg A2-lg A0) =9-5=4.
解析
思维升华
实际生活中的二次函数问
题(如面积、利润、产量
等),可根据已知条件确
定二次函数模型,结合二
次函数的图象、单调性、
零点解决,解题中一定要
注意函数的定义域.
题型分类·深度剖析
跟踪训练1 某汽车运输公司购买了一批豪华 大客车投入营运,据市场分析每辆客车营运 的总利润y(单位:10万元)与营运年数x(x∈N*) 为二次函数关系(如图所示),则每辆客车营运________年时, 其营运的年平均利润最大. 解析 由题图可得营运总利润y=-(x-6)2+11, 则营运的年平均利润yx=-x-2x5+12,
题型分类·深度剖析
解析
思维升华
∴AA12=104=10 000, ∴9级地震的最大振幅是5级地震最大振幅的10 000倍. 答案 6 10 000
题型分类·深度剖析
解析
思维升华
一般地,涉及增长率问题、存蓄利息问题、细胞分 裂问题等,都可以考虑用指数函数的模型求解.求解 时注意指数式与对数式的互化,指数函数的值域的 影响以及实际问题中的条件限制.
题型分类·深度剖析
例2 (2)里氏震级M的计算公式:M=lg A-lg A0,其中A是 测震仪记录的地震曲线的最大振幅,A0是相应的标准地震 的振幅.假设在一次地震中,测震仪记录的最大振幅是1
000,此时标准地震的振幅为0.001,则此次地震的震级为
________级;9级地震的最大振幅是5级地震最大振幅的
例1 某跳水运动员在一次跳水训练时 的跳水曲线为如图所示的抛物线的一 段,已知跳水板AB长为2 m,跳水板 距水面CD的高BC为3 m,CE=5 m, CF=6 m,为安全和空中姿态优美,训练时跳水曲线应在 离起跳点h m(h≥1)时达到距水面最大高度4 m,规定:以 CD为横轴,CB为纵轴建立直角坐标系.
相关文档
最新文档