四轴飞行器控制系统
四轴 原理
四轴原理
四轴原理即为四旋翼飞行器的工作原理。
四旋翼飞行器由四个相对对称的旋翼组成,每个旋翼都由一个电动机驱动,并通过控制电路进行精确的调节。
四轴飞行器的飞行原理是通过对四个旋翼的转速进行精确控制,实现悬停、上升、下降、前进、后退、向左、向右平移以及旋转等多种飞行动作。
具体原理如下:
1. 升力平衡原理:四个旋翼产生的升力将飞行器维持在空中,飞行器的重力与升力平衡,实现悬停状态。
2. 空气动力学平衡原理:四个旋翼的转速可以通过电机转速控制器进行精确调节,进而调节各个旋翼产生的升力大小,实现空气动力学平衡。
3. 控制算法原理:通过搭载的传感器(如加速度计、陀螺仪、磁力计等)实时监测飞行器的姿态信息,将监测到的数据传输给飞行控制器。
飞行控制器根据姿态信息计算出相应的控制指令,通过电调调节四个旋翼的转速,控制飞行器的姿态。
如需向前飞行,则增加后面两个旋翼的转速,减小前面两个旋翼的转速,使飞行器倾斜向前。
类似地,对其他方向的飞行也是通过对相应旋翼转速的调节实现的。
4. 电源与电路原理:四轴飞行器通过电池为电动机提供能量,电路控制系统将飞行器的控制信号转化为电流和电压输出供电给电动机。
通过对四个旋翼的转速进行精确控制,在合适的气动力学平衡和姿态控制下,四轴飞行器能够实现精确悬停、稳定飞行及各种飞行动作,具有广泛的应用前景。
四轴飞行器的稳定飞行控制技术
四轴飞行器的稳定飞行控制技术四轴飞行器(Quadcopter)是一种具有四个旋翼的无人机,通过调节四个旋翼的转速来实现飞行。
由于其稳定性和机动性优秀,四轴飞行器在航拍、物流配送、农业植保等领域得到广泛应用。
而为了实现四轴飞行器的稳定飞行,飞行控制技术起着至关重要的作用。
一、传感器与数据获取四轴飞行器的稳定飞行控制技术需要依赖高精度的传感器来获取飞行器的姿态信息和环境数据。
例如,加速度计用于测量飞行器的加速度,陀螺仪用于测量转动角速度,磁力计用于测量地磁场,气压计用于测量飞行高度等等。
这些传感器通过称为“惯性测量单元(IMU)”的模块来集成,为飞行控制系统提供准确的数据。
二、飞行控制算法与姿态控制四轴飞行器的稳定飞行控制技术需要依靠精确的飞行控制算法来实现姿态控制。
常用的控制算法包括PID控制(比例、积分、微分控制)、模型预测控制以及自适应控制等。
PID控制通过调节旋翼转速,根据飞行器当前状态与期望状态之间的误差来实现姿态调整。
模型预测控制利用数学模型预测飞行器的未来响应,从而实现更加精确的控制。
自适应控制系统可以自动调整控制参数以适应各种环境条件和飞行状态。
三、飞行控制器与实时控制飞行控制器是四轴飞行器的核心部件,负责接收传感器数据、进行姿态控制算法运算,并输出控制指令。
目前市面上常用的飞行控制器主要有基于开源飞控软件的,如基于ArduPilot的Pixhawk飞控,以及基于Betaflight的F4 V3飞控等。
这些飞行控制器采用高性能的处理器和实时操作系统,能够实现稳定飞行控制算法的即时计算和输出。
同时,飞行控制器还提供与遥控器的通信接口,使得飞行器的遥控操作变得简单方便。
四、传输系统与遥控操作四轴飞行器的稳定飞行控制技术还需要借助传输系统来与地面站或遥控器进行通信。
常用的通信方式包括无线电遥控、蓝牙、Wi-Fi和4G等。
通过传输系统,飞行控制器可以接收来自地面站或遥控器的指令,反馈飞行器的飞行状态及其他数据,并实现相应的姿态调整。
采用STM32设计的四轴飞行器飞控系统
采用STM32设计的四轴飞行器飞控系统四轴飞行器飞控系统是一种应用于四轴飞行器上的关键控制设备。
它包括硬件和软件两个部分,用于控制飞行器的姿态、稳定性和导航等功能。
其中,采用STM32设计的四轴飞行器飞控系统因其高性能、低功耗和丰富的外设资源而受到广泛关注。
一、硬件设计:1.处理器模块:采用STM32系列微控制器作为处理核心。
STM32系列微控制器具有较高的计算能力和丰富的外设资源,能够满足飞行控制的计算需求。
2.传感器模块:包括加速度计、陀螺仪、磁力计和气压计等传感器。
加速度计用于测量飞行器的线性加速度,陀螺仪用于测量飞行器的角速度,磁力计用于测量飞行器的方向,气压计用于测量飞行器的高度。
3.无线通信模块:采用无线通信模块,如蓝牙、Wi-Fi或者无线射频模块,用于与地面站进行通信,实现飞行参数的传输和遥控指令的接收。
4.电源管理模块:对飞行器的电源进行管理,确保各个模块的正常运行。
包括电池管理、电量检测和电源开关等功能。
5.输出控制模块:用于控制飞行器的电机、舵机等执行机构,实现对飞行器的姿态和动作的控制。
二、软件设计:1.飞行控制程序:运行在STM32微控制器上的程序,用于实时读取传感器数据、运算控制算法、输出控制信号。
该程序包括姿态解算、飞行控制和导航等模块。
-姿态解算模块:根据加速度计、陀螺仪和磁力计等传感器数据,估计飞行器的姿态信息,如俯仰角、横滚角和偏航角。
-飞行控制模块:根据姿态信息和目标控制指令,计算出电机和舵机的控制信号,保证飞行器的稳定性和灵敏度。
-导航模块:利用GPS等导航设备获取飞行器的位置和速度信息,实现自动驾驶功能。
2.地面站程序:在地面计算机上运行的程序,与飞行器的无线通信模块进行数据交互。
地面站程序可以实时监测飞行器的状态和参数,并发送控制指令给飞行器。
总结:采用STM32设计的四轴飞行器飞控系统是一种高性能、低功耗的控制设备,包括硬件和软件两个部分。
硬件包括处理器模块、传感器模块、无线通信模块、电源管理模块和输出控制模块。
四轴飞行器动力学分析与建模
四轴飞行器动力学分析与建模四轴飞行器主要由机架、动力系统、控制系统和传感器系统组成。
机架是整个飞行器的骨架,负责承载各个部件。
动力系统由四个电动马达和四个螺旋桨组成,电动马达通过转动螺旋桨产生升力和推力。
控制系统负责控制飞行器的飞行姿态以及飞行方向。
传感器系统用于获取飞行器的姿态和位置信息。
首先是力学分析。
在飞行过程中,四个螺旋桨产生的升力和推力需要平衡飞行器的重力。
根据牛顿第二定律,可以建立四轴飞行器的运动方程。
假设四轴飞行器在三维空间中的位置为(x, y, z),速度为(vx, vy, vz),质量为m。
则四轴飞行器所受到的合力可以表示为:F = mg - Tm是飞行器的质量,g是重力加速度,T是螺旋桨产生的合力。
根据牛顿第二定律,可以得到四轴飞行器的加速度方程为:a = (mg - T) / m其次是电机模型。
电机模型主要描述电动马达的输出特性。
通常情况下,电动马达的输出转矩与输入电流之间存在一定的关系。
可以使用简化的转矩模型来描述电动马达的输出。
假设电动马达的转矩为Tm,电流为I,转矩模型可以表示为:Tm=k1*I其中k1为电动马达的参数。
接下来是姿态稳定。
四轴飞行器的姿态稳定是实现飞行器平稳飞行的重要问题。
姿态稳定的关键在于对飞行器角度的控制。
通过使用陀螺仪、加速度计和磁力计等传感器获取飞行器的姿态信息,并通过控制系统对飞行器的姿态进行控制。
姿态稳定算法可以根据飞行器的姿态误差来计算所需的控制指令,进而控制飞行器的电动马达来实现姿态的调整。
最后是运动控制。
运动控制主要涉及到飞行器的位置和速度控制。
通常情况下,可以使用位置式控制和速度式控制来实现飞行器的运动控制。
在位置式控制中,通过计算飞行器的位置误差来产生相应的控制指令,控制飞行器的电动马达来实现位置的调整。
在速度式控制中,通过计算飞行器的速度误差来产生相应的控制指令,控制飞行器的电动马达来实现速度的调整。
综上所述,四轴飞行器的动力学分析与建模主要涉及到力学分析、电机模型、姿态稳定和运动控制等方面。
四轴飞行控制原理
四轴飞行控制原理四轴飞行器是一种具有四个旋翼的飞行器,通过控制旋转速度和方向来实现飞行。
其控制原理包括传感器感知、飞行动力学建模、控制器设计和电机控制。
1.传感器感知四轴飞行器通常配备有陀螺仪、加速度计、磁力计和气压计等传感器。
陀螺仪用于测量飞行器的角速度,加速度计用于测量线性加速度,磁力计用于测量地磁场方向,气压计用于测量飞行器的高度。
这些传感器可以提供飞行器在空间中的姿态、位置和速度等信息。
2.飞行动力学建模通过传感器测量的数据,可以对飞行器的姿态进行估计。
姿态估计主要包括姿态角(滚转、俯仰和偏航)的估计和位置的估计。
将姿态和位置的估计值与期望值进行比较,可以得到姿态和位置的误差。
飞行动力学建模主要包括飞行器的动力学方程和状态方程,可以通过这些方程来描述飞行器的姿态、位置和速度等动态变化。
3.控制器设计控制器设计主要是设计一个控制算法来根据传感器测量的数据和期望的姿态和位置来控制飞行器的旋转速度和方向。
通常使用的控制算法包括PID控制器、模型预测控制器、自适应控制器等。
PID控制器是一种常用的控制算法,根据误差的大小和变化率来调整控制信号,从而使飞行器逐渐接近期望的姿态和位置。
4.电机控制四轴飞行器通常使用四个无刷电机来控制旋翼的转速和方向。
通过适当调整电机的转速,可以使飞行器产生所需的推力和力矩,从而实现期望的运动。
电机控制主要包括PWM控制信号的生成、电机转速的调节和电机的航向控制。
PWM控制信号的生成由控制器完成,根据控制器的输出调整电机转速,使旋翼产生所需的推力和力矩。
电机的航向控制通常通过改变电机的转速来实现。
总结:四轴飞行控制原理主要包括传感器感知、飞行动力学建模、控制器设计和电机控制。
通过传感器感知飞行器的角速度、线性加速度、地磁场方向和高度等信息,通过飞行动力学建模估计飞行器的姿态和位置,根据期望的姿态和位置与估计值的误差,设计控制算法来控制飞行器的旋转速度和方向,通过调整电机的转速,使飞行器产生所需的推力和力矩,从而实现期望的飞行。
四轴(多轴)飞行器概述
四轴(多轴)飞行器概述一、简介四轴(多轴)飞行器也叫四旋翼(多旋翼)飞行器它有四个(多个)螺旋桨,四轴(多轴)飞行器也是飞行器中结构最简单的飞行器了。
前后左右各一个,其中位于中心的主控板接收来自于遥控发射机的控制信号,在收到操作者的控制后通过数字的控制总线去控制四个电调,电调再把控制命令转化为电机的转速,以达到操作者的控制要求,前后马达是顺时针转动,需要安装反桨,左右马达是逆时针转动,需要安装正桨,机械结构上只需保持重量分布的均匀,四电机保持在一个水平线上,可以说结构非常简单,做四轴的目的也是为了用电子控制把机械结构变得尽可能的简单。
二、控制原理四轴飞行器的控制原理就是,当没有外力并且重量分布平均时,四个螺旋桨以一样的转速转动,在螺旋桨向上的拉力大于整机的重量时,四轴就会向上升,在拉力与重量相等时,四轴就可以在空中悬停。
在四轴的前方受到向下的外力时,前方马达加快转速,以抵消外力的影响从而保持水平,同样其它几个方向受到外力时四轴也是可以通过这种动作保持水平的,当需要控制四轴向前飞时,前方的马达减速,而后方的马达加速,这样,四轴就会向前倾斜,也相应的向前飞行,同样,需要向后、向左、向右飞行也是通过这样的控制就可以使四轴往我们想要控制的方向飞行了,当我们要控制四轴的机头方向向顺时针转动时,四轴同时加快左右马达的转速,并同时降低前后马达的转速,因为左右马达是逆时针转动的,而左右马达的转速是一样,所以左右是保持平衡的,而前后马达是顺时针转动的,但前后马达的转速也是一样的,所以前后左右都是可以保持平衡,飞行高度也是可以保持的,但是逆时针转动的力比顺时针就大,所以机身会向反方向转动,从而达到控制机头的方向。
这也是为什么要使用两个反桨,两个正桨的原因。
三、电调我们平时用的商品电调是通过接收机上的油门通道进行控制的,这个接收机出来的控制信号一般都是20mS 间隔的PPM脉宽控制信号,而四轴为了提高响应的速度,需要控制命令的间隔更短-比如说5mS,所以就需要特殊的电调而不能用普通的商品电调,但是为什么要使用I2C总线跟电调连接呢,这个跟电路设计以及软件编写等有关,I2C总线在硬件连接上可以多个设备直接并连在总线上,它有相应的传输机制保证主机与各个从机之前顺畅沟通,这样连接就比较的方便,所以四个电调的控制线是并接在一起连到主控板上就可以了,这个也跟我们选用的芯片相关,很多单片机都有集成I2C总线的,软件设计起来也得心应手。
四轴飞行器控制原理简单介绍
四轴飞行器控制原理简单介绍1.姿态控制姿态控制是指控制四轴飞行器所处的空中姿态,包括横滚、俯仰和偏航。
横滚是指四轴飞行器以机体中心线为轴心向左或向右旋转;俯仰是指四轴飞行器以机体前后中心线为轴心向前或向后倾斜;偏航是指四轴飞行器以竖直轴为轴心旋转。
姿态控制可以通过四个电动马达间的配合来实现。
例如,当四轴飞行器需要向左旋转时,右侧的两个电动马达通过提高转速而左侧的两个电动马达通过降低转速,使得产生的升力不均衡,从而导致飞行器向左旋转;同样的原理,可以实现向右、向前和向后的倾斜,从而实现横滚和俯仰的控制。
偏航控制则是通过改变对角电动马达的转速来实现的。
2.高度控制高度控制是指控制四轴飞行器的飞行高度。
通常,四轴飞行器通过改变电动马达的转速来控制升力,从而控制飞行高度。
当需要升高时,四个电动马达的转速同时提高,产生更大的升力,使得飞行器上升;当需要下降时,四个电动马达的转速同时降低,减小升力,使得飞行器下降。
3.位置控制位置控制是指控制四轴飞行器在空中的位置,通常使用GPS、惯性导航系统(INS)和视觉系统来获取实时位置信息,并通过控制四个电动马达的转速来调整飞行器的位置。
位置控制通常采用反馈控制的方法,在测量到的当前位置与目标位置之间存在偏差时,通过调整电动马达的转速来减小偏差,并使飞行器逐渐趋向于目标位置。
综上所述,四轴飞行器的控制原理涉及到姿态控制、高度控制和位置控制三个方面。
通过控制四个电动马达的转速来实现姿态控制和高度控制,通过GPS、INS和视觉系统来获取位置信息,并通过反馈控制来调整飞行器的位置。
这些控制原理的运用使得四轴飞行器能够实现精准、稳定的飞行。
四轴飞行器姿态控制算法
四轴飞行器姿态控制算法四轴飞行器姿态控制是指通过调整四个电机的转速,使得飞行器能够保持所需的姿态,例如平稳飞行、转弯、盘旋等。
姿态控制算法主要包括传感器采集、姿态估计和控制指令生成等几个部分。
以下将详细介绍四轴飞行器姿态控制的算法原理。
1.传感器采集:四轴飞行器通常会配备三个主要的传感器:加速度计、陀螺仪和磁力计。
加速度计用于测量飞行器的重力加速度,陀螺仪用于测量飞行器的角速度,磁力计用于测量地磁场强度。
这些传感器的数据将用于后续的姿态估计和控制。
2.姿态估计:姿态估计是根据传感器提供的数据计算出飞行器的当前姿态角。
一种常用的姿态估计方法是互补滤波器。
互补滤波器将加速度计和陀螺仪的数据进行融合,通过加速度计估计出的姿态角和陀螺仪估计出的姿态角进行加权平均,从而得到更准确的姿态估计。
3.控制指令生成:姿态控制器的目标是生成适当的转速指令,使得飞行器能够达到所需的姿态。
在四轴飞行器中,姿态控制通常分为俯仰控制、滚转控制和偏航控制三个方向。
俯仰控制用于调整飞行器的前后倾斜角度,滚转控制用于调整飞行器的左右倾斜角度,偏航控制用于调整飞行器的旋转角度。
在控制指令生成中,通常会采用PID控制器。
PID控制器根据目标姿态角和当前姿态角的误差,计算出相应的控制指令。
PID控制器包括三个参数:比例项、积分项和微分项。
比例项用于快速响应误差,积分项用于消除稳态误差,微分项用于抑制系统的振荡。
通过将三个方向的控制指令进行线性叠加,得到最终的转速指令。
转速指令将被发送到四个电机,控制它们的转速,从而实现飞行器的姿态调整。
值得注意的是,四轴飞行器还需要考虑到动力学和非线性因素。
动力学因素包括电机的动态响应和旋转惯量的影响,通常会使用动态模型进行补偿。
非线性因素包括旋翼的非线性动力学和空气动力学特性的影响,通常会采用非线性控制器进行补偿。
综上所述,四轴飞行器姿态控制算法主要包括传感器采集、姿态估计和控制指令生成等几个部分。
四轴飞行器运动控制系统设计和仿真
四轴飞行器运动控制系统设计和仿真随着科技的发展,四轴飞行器这种机器在日常生活中变得越来越常见。
从无人机的航拍、救援到消防,四轴飞行器的应用越来越广泛。
但是,控制飞行器的姿态和运动依然是一个挑战。
这里将对四轴飞行器的运动控制系统进行设计和仿真。
1. 系统分析先对四轴飞行器进行简单的系统分析。
四轴飞行器有四个电机,每个电机都有一个螺旋桨。
通过改变电机的转速和螺旋桨的旋转方向,可以控制飞行器的姿态和运动。
四轴飞行器有三个自由度的旋转运动,分别是偏航、俯仰和横滚,还有三个自由度的平移运动,分别是上下、左右和前后。
控制这些运动需要一个运动控制系统。
运动控制系统分为两部分:飞行器的传感器和飞行控制器。
传感器用于测量飞行器的状态,例如角速度、角度和线性加速度等。
飞行控制器根据传感器的数据进行控制,以达到控制飞行器运动的目的。
2. 控制算法运动控制系统的重点在于控制算法。
幸运的是,我们可以使用开源的四轴飞行控制器(例如 Pixhawk 和 APM)来控制飞行器。
这些控制器具有成熟的控制算法,可实现飞行器的稳定飞行和自动飞行。
在四轴飞行器的运动控制中,最重要的算法是控制飞行器的姿态。
姿态控制是通过测量三个轴上的角度和角速度实现的。
姿态控制经常使用 PID 控制器。
PID 控制器使用比例、积分和微分三个控制项来控制飞行器的姿态。
3. 系统设计接下来,我们将设计一个四轴飞行器的运动控制系统。
这里主要讨论的是控制器的硬件和软件设计。
3.1 硬件设计飞行控制器通常使用 Arduino 或者其他类似的微控制器。
这些微控制器轻便、可编程并且能够进行必要的计算。
除了微控制器,飞行控制器还应该包含其他必要的硬件,例如传感器、接收器和电池等。
传感器是测量飞行器状态的重要组成部分。
飞行器通常使用加速度计、陀螺仪和罗盘。
加速度计可以测量飞行器在三个轴上的线性加速度,陀螺仪可以测量飞行器在三个轴上的角速度,罗盘可以测量飞行器的方向。
接收器则负责接收运动控制器发出的指令,例如俯仰、横滚和油门等。
四轴飞行器的设计概要
四轴飞行器的设计概要概述:四轴飞行器是一种利用四个电动马达驱动的无人机,具有对称的结构并能自由悬浮在空中。
它的设计目标是实现稳定、灵活的飞行以及可靠的操控系统,为各种应用场景提供解决方案。
本文将对四轴飞行器的设计概要进行详细阐述。
一、飞行器结构设计:1.机体结构:四轴飞行器的机体通常采用轻质、坚固的材料,如碳纤维或铝合金等。
机体必须具有足够的刚度和强度,以承受飞行过程中的各种应力。
2.电动马达:四轴飞行器需要四个电动马达,控制器通过电子调速器调节马达的转速,实现四轴飞行器的稳定悬停及各种动作。
3.旋翼设计:旋翼是四轴飞行器实现升力和推力的关键部件,通常采用两个对向旋转的螺旋桨。
旋翼的直径、叶片数、材质和旋转速度等参数需通过模拟和实验确定,以实现飞行器的稳定和高效。
4.重力中心:四轴飞行器的重心位置会直接影响其稳定性和机动性能。
因此,在设计中需要考虑重心位置的合理性,并通过调整机体结构或其他方式来实现飞行器的平衡。
5.电源系统:飞行器所需能量主要依靠电池供应,因此需要设计适合的电池容量和电压。
同时,应考虑电池的充电和更换便捷性,以提高飞行器的续航能力。
二、传感器与控制系统设计:1.姿态传感器:为了实现飞行器的稳定飞行,需要安装姿态传感器,如陀螺仪、加速度计和磁力计等。
通过这些传感器获取飞行器当前的姿态信息,用于控制系统的反馈调整。
2.控制器:飞行器的飞行控制通常由中央控制器实现,该控制器接收传感器反馈的数据,并根据事先编程的算法进行实时计算控制指令。
控制器需要具备快速响应和高准确度,以保证飞行器的稳定性和操控性。
3.通信系统:四轴飞行器通常需要与地面控制站进行无线通信,以接收控制指令和发送飞行数据。
因此,设计中需要考虑通信系统的可靠性和有效传输距离。
三、安全与防护设计:1.碰撞检测与避障:为了保护四轴飞行器及周围环境的安全,可以考虑在飞行器上安装距离传感器或红外线传感器等,用于检测和避免可能的碰撞。
基于STM32控制的微型四轴飞行器
西华大学610039摘要:在对我很感兴趣的项目微型四轴飞行器进行了功能描述的基础上展开了对系统深入研究的方案设计。
该系统(装置)主要由飞控,遥控,蓝牙或WIFI模块,通信模块等组成。
飞控是由stm32f103作为主控,采用MPU6050作为惯性测量单元。
遥控是由arduino作为主控。
通信运用2.4G无线模块。
在AD环境中完成对飞控的的设计。
在keil 5中完成软件的设计。
然后,通过proteus软件完成飞控的模块的仿真与调试。
最后,分析了项目的计划完成情况。
关键词:四轴飞行器控制 stm32 通信设计引言随着社会的发展和科技的进步,我们迎来了新的时代。
在这个高速发展时代,所有的物品都在日新月异的变化。
我们小时候的纸飞机玩具变成了现在的遥控飞机,其中的四轴飞行器备受大众喜欢。
但是四轴飞行器的用处还有多,如林业,侦察,航拍,运输,娱乐观赏等领域,目前热门的航拍就是基于稳定四轴及云台搭建的平台实现,然后其他邻域应用还有相当的潜力。
四轴飞行器将会是很有潜力和未来需求的,代替人类运输,派遣去危险的地方拍摄,或者是交通,个人飞行器等等。
所以四轴飞行器以后一定可以成为主流产品,在生活的方方面面都可能会用到。
1项目1.1 项目描述近年来,国内科技领域对四轴飞行器的研究如火如荼,相关技术得到了迅速的发展。
随着信息化时代的蓬勃发展, 科学技术不断更新, 飞行器被广泛的应用在军事侦查、航拍以及民用快递运输等诸多行业。
四轴飞行器结构简单,操作灵活,单位体积内可提供巨大的升力,适合在狭窄环境中飞行,携带各种电子设备可执行各种任务,例如军事侦察、定位跟踪、农田监测等,在军事、民用等领域均有广泛的应用和广阔的前景。
本项目设计了一种基于STM32的微型四轴飞行器控制系统,以STM32单片机为主控制器,MPU6050为惯性测量单元模块核心,3.7V锂电池供电,通过蓝牙模块或wifi模块实现在手机App上来控制飞行器,或者通过自制遥控器来控制。
四旋翼飞行器控制系统硬件电路设计
四旋翼飞行器控制系统硬件电路设计首先,在硬件电路设计中,关键是选择合适的传感器。
常用的传感器包括加速度计、陀螺仪和磁力计等。
加速度计用于测量飞行器的线性加速度,陀螺仪用于测量飞行器的角速度,磁力计用于测量飞行器的方向。
这些传感器需要与处理器进行接口连接,并能够提供准确的数据。
因此,在硬件电路设计中,需要选取高性能的传感器,同时设计稳定可靠的电路板。
其次,处理器是控制系统的核心。
处理器的选择应综合考虑性能、功耗和成本等因素。
常用的处理器有单片机和微处理器。
单片机适用于简单的控制任务,如姿态控制和飞行模式切换等。
而微处理器适用于复杂的控制任务,如路线规划和数据处理等。
在硬件电路设计中,处理器需要与传感器和电调进行接口连接,并能够高效地处理控制指令。
此外,处理器还需要具备足够的计算能力和存储空间,以便实现飞行控制算法和数据记录功能。
电调是控制电机转速的关键组件。
通常,四旋翼飞行器需要四个电调以控制四个电机的转速。
电调需要接收处理器发送的PWM信号,并将其转换为适当的电机转速。
在硬件电路设计中,电调需要具备快速响应的能力,并能够输出稳定的PWM信号。
此外,电调还需要有适当的保护机制,以避免过载和短路等故障。
最后,电机是驱动飞行器旋转的关键组件。
电机的选择应综合考虑功率和效率等因素。
常用的电机有无刷电机和有刷电机。
无刷电机具有高效率和长寿命等优点,因此在硬件电路设计中通常选择无刷电机。
电机需要与电调进行接口连接,并能够输出适当的推力。
此外,电机还需要具备足够的扭矩和转速范围,以应对不同的飞行任务。
总之,四旋翼飞行器控制系统硬件电路设计涉及多个组件的选择和接口设计等方面。
在设计过程中,需要综合考虑传感器、处理器、电调和电机等因素,以实现飞行器的控制能力和飞行稳定性。
四轴飞行器的设计概要
四轴飞行器的设计概要机身是四轴飞行器的主要结构,一般采用轻量化的材料如碳纤维或铝合金,以提供足够的强度和刚性。
机身通常具有刚性和亲水性,以减少空气阻力和提高飞行稳定性。
主控系统是四轴飞行器的大脑,它负责控制飞行器的姿态、稳定性和飞行模式。
主控系统通常由一个中央处理器、陀螺仪、加速度计和磁罗盘等组成。
中央处理器负责计算并控制马达的速度和位置,陀螺仪和加速度计用于检测飞行器的角度和加速度,磁罗盘用于检测飞行器的方向。
动力系统通常由电池和电调组成,电池提供电能给电动马达,电调负责调节电压和电流,以控制电动马达的转速和推力。
电池的能量密度和安全性是非常重要的考虑因素,因为它会直接影响飞行器的续航时间和飞行性能。
传感器系统用于感知外部环境和飞行器的状态,通常包括GPS导航系统、气压计、超声波传感器等。
GPS导航系统可以提供准确的位置和速度信息,帮助飞行器实现自主飞行和导航。
气压计可以测量大气压力,从而确定飞行器的高度。
超声波传感器可以测量飞行器和地面之间的距离,以避免碰撞。
通信系统用于与地面控制台或其他飞行器进行通信,以实现远程遥控和数据传输。
通信系统通常使用无线电或蓝牙技术,具有足够的带宽和范围。
除了以上主要的组成部分,四轴飞行器的设计还需要考虑飞行器的重量和平衡、飞行性能和稳定性等因素。
四轴飞行器的设计要尽量轻量化和简化结构,以提高续航时间和机动性。
飞行器的重心要尽量保持稳定,以确保飞行器的平衡和控制性能。
同时,飞行器的飞行性能和稳定性也需要通过合理的设计和调试来实现。
总之,四轴飞行器是一种基于电动马达和电子稳定系统的无人飞行器,具有良好的飞行性能和控制能力。
它的设计要考虑机身结构、电动马达、主控系统、动力系统、电池、传感器和通信系统等多个方面,以保证飞行器的稳定性、飞行性能和安全性。
四轴飞行器控制系统设计及其姿态解算和控制算法研究
本次演示提出的基于嵌入式的四轴飞行器控制系统架构由以下几个部分组成: 飞行器主体、传感器模块、嵌入式控制器、无线通信模块以及电源模块。其中, 飞行器主体负责产生升力和重力;传感器模块包括加速度计、陀螺仪和气压计等, 用于实时监测飞行状态;嵌入式控制器作为核心控制单元,负责处理传感器数据 并生成控制指令;无线通信模块用于传输控制指令和飞行状态数据;电源模块为 整个系统提供能量。
3、设计高效的执行器,实现了电机转速的准确控制。
参考内容二
引言
四轴飞行器是一种具有广泛应用前景的无人机,其控制系统对于飞行器的稳 定性和精度具有至关重要的作用。随着科技的不断进步,嵌入式技术逐渐成为四 轴飞行器控制系统的重要发展方向。本次演示将围绕基于嵌入式的四轴飞行器控 制系统展开研究与设计进行详细阐述。
在设计四轴飞行器姿态控制系统时,我们需要明确设计理念。在本设计中, 我们的主要目标是通过优化控制算法和提高硬件性能,实现飞行器的高精度和稳 定控制。为了达到这个目标,我们将采用以下措施:
1、采用先进的控制算法,如PID控制器和卡尔曼滤波器等,以增加系统的稳 定性和精度;
2、选择高性能的传感器和微处理器,以提高传感器数据的准确性和处理速 度;
1、实现方法
在实现基于嵌入式的四轴飞行器控制系统过程中,我们首先完成了硬件设备 的选型和搭建,然后编写了控制算法和通信协议。在调试过程中,我们通过连接 PC与嵌入式控制器,利用上位机软件实时监测飞行状态和调整控制参数。
2、实验结果
通过多次实验,我们发现该控制系统能够实现稳定的飞行,并且具有较强的 抗干扰能力。在控制算法方面,PID控制算法表现出了良好的性能,能够快速跟 踪期望轨迹,减小误差。此外,我们还对该系统的通信协议进行了测试,结果表 明通信模块工作正常,数据传输稳定可靠。
四轴飞行器原理教程解读
四轴飞行器原理教程解读四轴飞行器由四个关节相互垂直的旋翼组成,每个旋翼上有一个电动机、一个螺旋桨。
四个电动机带动四个螺旋桨快速旋转,产生升力,从而使飞行器能够离地飞行。
同时,通过改变四个电动机的转速差异,可以实现左右、前后、上下的控制。
四轴飞行器的稳定性主要依赖于飞行控制系统。
飞行控制系统由传感器、控制器、执行器组成。
传感器用于感知姿态信息,常见的有陀螺仪、加速度计、罗盘等。
陀螺仪用来测量飞行器的角速度,加速度计用来测量飞行器的线加速度,罗盘用来测量飞行器的航向角。
控制器根据传感器的反馈信号,计算出飞行器的姿态,并根据用户的指令对电机进行控制。
执行器是指四个电动机,它们根据控制器发送的指令,调整旋翼的转速,从而实现飞行器的平稳飞行。
在飞行过程中,四轴飞行器需要实时调整姿态来保持平衡。
当用户发送飞行指令时,控制器会根据指令调整旋翼的转速,使得飞行器能够向前、向后、向左、向右平稳移动。
当飞行器发生姿态偏差时,控制器会根据传感器的反馈信号计算出姿态偏差,并通过调整旋翼的转速来调整姿态,使飞行器回到平衡状态。
在飞行器悬停过程中,四个旋翼的升力之和等于飞行器的重力,这样才能保持悬停状态。
当用户发送悬停指令时,控制器会根据传感器的反馈信号计算出飞行器的姿态,然后调整旋翼的转速,使得飞行器能够悬停在空中。
此外,四轴飞行器还可以通过改变旋翼的转速差异实现翻滚、翻转、盘旋等动作。
当用户发送相应指令时,控制器会根据传感器的反馈信号计算出姿态调整量,并调整旋翼的转速,使飞行器能够实现各种动作。
综上所述,四轴飞行器的原理是通过四个电动机带动螺旋桨产生升力,通过传感器感知姿态信息,通过控制器计算姿态调整量,再通过调整电机转速来实现飞行器的平衡飞行、悬停和各种动作。
四轴飞行器的原理比较复杂,需要了解飞行控制系统、传感器、控制器、执行器等相关知识,才能更好地掌握四轴飞行器的飞行原理。
四轴飞行器设计概述
四轴飞行器设计概述四轴飞行器(Quadcopter)是一种利用四个独立推进器和旋翼来产生升力和推动力的航空器。
在近年来,四轴飞行器越来越受到人们的关注和喜爱,主要应用于航拍、科研、军事等领域。
本文将对四轴飞行器的设计进行概述,包括结构设计、控制系统、动力系统及其应用。
首先,四轴飞行器的结构设计是实现其飞行功能的基础。
四轴飞行器通常由机身、四个电动机和旋翼组成。
机身主要由轻质材料如碳纤维复合材料制成,以降低重量并提高强度。
电动机安装在机身四个角上,旋翼通过电动机旋转产生升力。
旋翼通常为螺旋桨形状,具有高效的升力产生能力。
此外,四轴飞行器还常配备传感器如陀螺仪、加速度计和磁力计等,用于测量姿态和方向,从而实现稳定的飞行。
其次,四轴飞行器的控制系统扮演着关键的角色。
目前常用的控制系统是基于惯性测量单元(IMU)和比例-积分-微分(PID)控制器。
IMU由陀螺仪和加速度计组成,通过测量飞行器的姿态和加速度信息,并将其传递给PID控制器。
PID控制器根据测量值和目标值之间的误差,并计算出适当的控制信号来调整电动机转速以及旋翼的角度。
通过不断调整,PID 控制器能够实现飞行器的稳定控制。
最后,四轴飞行器的应用非常广泛。
在航拍领域,四轴飞行器可以搭载高清摄像头或无人机相机,实现高空拍摄。
在科研领域,四轴飞行器可以搭载各种传感器进行数据采集,如气象、环境监测等。
在军事领域,四轴飞行器可以用于侦查目标、提供实时视频监控等。
此外,四轴飞行器还可以用于无人驾驶、快递物流等领域,方便高效。
综上所述,四轴飞行器的设计概述包括结构设计、控制系统、动力系统及其应用。
结构设计主要包括机身、电动机和旋翼的设计;控制系统采用IMU和PID控制器实现稳定飞行;动力系统采用锂电池和电调提供动力;四轴飞行器的应用广泛,如航拍、科研、军事等。
四轴飞行器作为无人机的代表之一,具有巨大的发展潜力,将在未来的各个领域发挥更大的作用。
四轴飞行器介绍
四轴飞行器介绍四轴飞行器(四旋翼飞行器)也称为四旋翼直升机,是一种有4个螺旋桨且螺旋桨呈十字形交叉的飞行器。
四轴飞行器结构:四旋翼平台呈十字形交叉,有四个独立电机驱动螺旋桨组成。
当飞行器工作时,平台中心对角的螺旋桨转向相同,相邻的螺旋桨转向相反同时增加减少四个螺旋桨的速度,飞行器就垂直上下运动;相反的改变中心对角的螺旋桨速度,可以产生滚动、俯仰等运动。
四旋翼飞行器的控制系统分为两个部分:飞行控制系统和无刷直流电机调速系统。
飞行控制系统通过IMU惯性测量单位(由陀螺传感器和加速度传感器组成)检测飞行姿态,通过无线通讯模块与地面遥控器通信。
4个无刷直流电机调速系统通过I²C总线与飞行控制器通信,通过改变4个无刷直流电机的转速来改变飞行姿态。
四轴飞行器作为一种飞行稳定、能任意角度灵活移动的飞行器,在没有外力并且重量分布平均时,四个螺旋桨以同样的转速转动,当螺旋桨向上的拉力大于整机的重量时,四轴飞行器就会向上升;在拉力与重量相等时,四轴飞行器就可以在空中悬停;在四轴的前方受到向下的外力时,前方马达加快转速,以抵消外力的影响从而保持水平,同样其他几个方向受到外力时四轴也可以通过这种动作保持水平.当需要控制四轴向前飞时,前方的马达减速,而后方的马达加速,这样四轴就会向前倾斜,也相应地向前飞行.同理,其他的飞行姿态也可实现。
四轴飞行器是微型飞行器的其中一种,也是一种智能机器人。
是最初是由航空模型爱好者自制成功,后来很多自动化厂商发现它可以用于多种用途而积极参于研制。
它利用有四个旋翼作为飞行引擎来进行空中飞行,它的尺寸较小、重量较轻、适合携带和使用的无人驾驶飞行器一样能够携带一定的任务载荷,具备自主导航飞行能力。
在复杂、危险的环境下完成特定的飞行任务。
瑞伯达四轴飞行器。
RBD坚持创新, 以技术和产品为核心,通过完美的产品带来前所未有的飞行体验。
四轴飞行器姿态控制系统设计_刘峰
控制技术计算机测量与控制.2011.19(3) Com puter Measurement &C ontrol ·583·收稿日期:2010-07-05; 修回日期:2010-08-15。
作者简介:刘 峰(1987-),男,江西吉安人,在读硕士研究生,主要从事无人机控制技术方向的研究。
吕 强(1963-),男,博士生导师,主要从事机器人控制技术方向的研究。
文章编号:1671-4598(2011)03-0583-03 中图分类号:TP249文献标识码:A四轴飞行器姿态控制系统设计刘 峰,吕 强,王国胜,王东来(装甲兵工程学院控制工程系,北京 100072)摘要:四轴飞行器具有不稳定、非线性、强耦合等特性,姿态控制是四轴飞行器飞行控制系统的核心;通过分析四轴飞行器的飞行原理,根据其数学模型和系统的功能要求,设计了四轴飞行器的姿态控制系统;该系统采用stm32系列32位处理器作为主控制器,使用ADIS16355惯性测量单元等传感器用于姿态信息检测;系统基于模块化设计的思想,各传感器都使用数字接口进行数据交换,结构简单;使用PID 控制算法进行姿态角的闭环控制,实验结果表明,飞行器能较好的稳定在实验平台上,系统满足四轴飞行器室内飞行姿态控制的要求。
关键词:四轴飞行器;姿态控制;ST M 32Design of Attitude Control System for Q uadrotorLiu Feng ,Lv Qiang ,Wang Guo sheng ,Wang Donglai(Depar tme nt o f Co ntrol Eng ineering ,A cademy of A rmo red Fo rce Enginee ring ,Beijing 100072,China )Abstract :Quadrotor is a complex sy stem with instability ,nonlin ear and high coupling .The attitude control s ystem is the key of quadro -tor .Th e flight theory of qu adrotor is analyzed firs tly .Based on th e math ematical m odel and fligh t control requirement ,the attitu de control system of quadrotor is p roposed .A 32bits microp roces sor of S TM 32series is u sed as th e main p roces sor .The ADIS16355initial m easu re -ment unit and oth er sensors are used for attitude information detection .Based on the m odu larized des ign m ethod ,all th e sensors poss es s of digital interfaces ,w hich are simple and easy to commu nicate w ith th e m ain processor .The PID control method w as u sed for attitu de control -ling .The test results show that the qu adrotor is flyin g s table on the test bed and the sy stem is capab le of indoor attitude con trolling .Key words :quadrotor ;attitu de control ;ST M 320 引言四轴飞行器是一种具有4个对称旋翼的直升机,具有垂直起降、结构简单、操纵方便及机动灵活等优点。
四轴飞行器飞控原理要点
四轴飞行器飞控原理四轴飞行器飞控原理 (1)一、六种姿态控制原理示意 (3)二、四轴翼飞行器系统建模 (4)2.1假设条件: (4)2.2建立坐标系: (5)2.3转换矩阵推导: (6)2.4非线性模型 (7)2.5模型线性化 (11)三、基于PID的飞行控制 (15)四、硬件设计与实现 (17)4.1四轴飞行器硬件电路 (17)五、国内外四轴飞行器 (17)5.1 Kesterl (17)5.2 Unav3500 (18)5.3 MikroKoper (18)5.4 ArduPilot (19)5.5 Crazyflie (20)一、六种姿态控制原理示意图1 上下(高度)控制,就是四个螺旋桨同时增加(减小)转速;图2 前进、后退图3 左飞、右飞图4 类似打方向盘,改变航向二、四轴翼飞行器系统建模2.1假设条件:微小型四旋翼飞行器在三维空间中可视为刚体,飞行器在空间中的运动具有六个自由度,即飞行器质心在空间中的三个平移自由度和三个旋转自由度。
由于该飞行器一般为低空低速飞行,因此可以对其动力学模型的建立做如下假设:1)微小型四旋翼飞行器在研究中视为刚体,忽略其弹性影响,总质量m 为常数;2)将地球视为惯性系统,忽略地球自转和公转对飞行器的影响;3)假设地面为水平平面,忽略地球曲率的影响;4)重力加速度g为常数,不随地理位置和飞行高度的变化而变化;5)飞行器机机体几何外形完全对称且质量分布均勻,质心与几何中心重合。
2.2建立坐标系:图5机体坐标系B、地面坐标系EФ绕X轴方向的横滚角(rad);θ绕轴方向的俯仰角(rad);ψ绕Z轴方向的偏航角(rad):2.3转换矩阵推导:(可以查阅高等数学方向余弦,矩阵论中的旋转矩阵等资料)公式(1)公式(2)2.4非线性模型由于作用到飞行器上的合力和合力矩是四个螺旋奖所产生的力与力矩的矢量和,因此,他们之间存在极大地交叉耦合特性。
例如,横滚(俯仰)力矩的改变将会对侧向(纵向)加速度有一个直接的影响。
四轴飞行器控制系统
中心控制智能体和四个旋翼控制智能体的信息交流格式
在本文中四个旋翼控制器的的PCA参数,或是地面控制 站发送而来的,或是中心主控智能体经过传感器采集后,通过 一定的算法得出的。 例如:系统要求四旋翼飞行器以悬停状态飞行。根据试 验测得飞行器悬停状态的飞行器的PCA参数依次为: [旋翼控制器0x11的PCA_PH=0xF3] , [旋翼控制器0x12的PCA_PH=OxFl], [旋翼控制器0x13的PCA_PH=OxF3], [旋翼控制器0x14的PCA_PH=OxFl],则地面控制站只要 通过上位机操作软件发送数据流为: [Ox 11 ] [Ox12] [Ox13] [Ox14] [OxF3 ] [OxF1 ] [OxF3] [OxF1]。
四轴飞行器飞行原理
系统总体框图
机载系统
CAN总线 无线摄像头
无线
传 wifi
输
电机控制器
无刷直流电机
PC机
机载主控芯片
Zigbee传输
电机控制器
无刷直流电机
电机控制器
无刷直流电机
姿态方位参考系统 (AHRS) 电机控制器 无刷直流电机
无线网络标准的比较
wifi的网络结构
• WiFi是一种可以将个人பைடு நூலகம்脑、手持设备(如PDA、手机)等终 端以无线方式互相连接的技术。简单来说其实就是IEEE802.11的 别称,但是WI-FI只使用了802.11的媒体访问控制层(MAC)和物 理层(PHY)。下图为IEEE802.11逻辑结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逻辑链路控制层(LLC)
介质访问控制层(MAC)
CC2420通信流程图
• CC2420 的通信过程主要分为 3 部分,分别是初始化部分、 发送部分和接收部分。
数据发送流程图
CC2420通信流程图
数据接收流程图
四轴多智能体系统控制问题的描述
• 将Agent的思想引入四轴无人飞行器系统后,每个轴的控制器就相当于
ቤተ መጻሕፍቲ ባይዱ
一个Agent。中心主控制器把其他的四个轴控制器连接成一个网,并在 它们之间建立适当的联系,表示为AGENT={agentl,agent2, agent3, agent4}。 • 中心主控Agent接到请求后如果发现该飞行控制任务可由另一个或 几个Agent完成,则可以向这些Agent提出协作要求,收到合作要求信息 的Agent有权决定是否接受该合作请求,并给中心主控Agent以反馈,如 此数次反复直至达成控制目标。
信息流的格式要求: • 每个旋翼控制智能体都有独立的地址、自身的状态信息、群 组信息等等,每个旋翼控制智能体都可以 得到其它旋翼控制 智能体的状态信息,因此信息流的格式定义至少应该包括: 1.旋翼控制智能体的ID; 2.群组识别码; 3.接收方ID; 4.信息的详细描述
中心控制智能体和四个旋翼控制智能体的信息交流格式
[Messege]=[发送者][接收者][正文内容] [ [发送者]=[SenderlD]
设中心控制智能体的ID号定义为0x10。但由于釆用的 CAN总线通信,一次最多只能发送8个字节,而且中心控制 智能体只有一个,因此由于数据长度的限制,中心主控智能 体作为发送者的ID号省略。
[接收者]=[ReceiverlD]
四轴飞行器网络控制系统
组长: 蒋盛锋 组员: 江义 余国良 袁续凯 赵梓乔 2013年10月22号
分工与合作
• 蒋盛锋:四轴飞行器网络化系统的综述 • 江义:基于wifi的无线视频通信 • 余国良:基于zigbee的无线数据传输 • 袁续凯:机载中心主控器和四轴控制器之间的CAN通信
• 赵梓乔:四轴飞行器的导航与电机控制
四轴飞行器概述
• 四轴飞行器同时也叫四旋翼无人飞行器、四旋翼无人机, 国外又称(Four-rotor,4 rotors helicopter,X4flyer,Quad-rotor)等等,是一种能够垂直起降的飞行 器,它具有四个螺旋桨,并且四个螺旋桨呈十字形结构分 布。由于尺寸较小、重量较轻、适合携带,具备自主导航 飞行能力。所以适用于在复杂、危险的环境下完成特定的 飞行任务,同样也可以用于娱乐。
基于多智能体的四轴协作规划 • 整个系统的控制策略主 要是将中心主控器和四 个旋翼控制器看成一组 由5个智能体组成的多 智能体(Agent),由 一个主控智能体进行决 策,由4个旋翼智能体相 互协作的完成系统的飞 行任务。
四轴协同工作系统结构
各个智能体之间的信息交流
CAN通信的主体: • 1、中心控制智能体和四个旋翼控制智能体的信息交 流; • 2、旋翼智能体之间的信息交流 。
物理层(PHY)
wifi的传输框图
本系统通过UART把摄像头和USR-wifi232连接起来。USRwifi232作为STA,工作在桥接模式。模块连接到AP后,这样 所有USR-wifi232上的数据都可由数据接收终端来管理。
摄像头
UART
USR-wifi232
无线网络
无线路由器
PC机
wifi的协议传输模式流程
中心主控制智能体每次都同时向四个旋翼控制智能体发 送信息数据,因此在此处的ReceiverlD分别为系统定义的四个 旋翼控制智能体的ID号,即:0x11, 0x12, 0x13 和 0x14。
中心控制智能体和四个旋翼控制智能体的信息交流格式
[正文内容]=[旋翼控制器0x11的PCA_PH][旋翼控制器0x12的PCA_PH] [旋翼控制器0x13的PCA_PH][旋翼控制器0x14的PCA_PH]
• wifi的协议传输流程主要分为:用户设备发送数据和用户设 备请求模块发送数据。下面将分别介绍:
用户发送数 据到模块:
模块发送数 据到用户:
Zigbee网络体系架构
应用层由 APS 子层(应用支持子层), ZDO(ZigBee 设备对象包括ZDO 管理 平台),厂商定义的应用。 网络层中包括数据服务实体(NLDE)和 管理服务实体(NLME)两个服务实体。 MAC 层主要负责协调器产生网络信标、 CSMA-CA 信道访问机制、支持PAN 的关联和解关联操作、处理和维护保 证时隙机制。 IEEE802.15.4 物理层定义了 868MHz、 915MHz 和 2.4GHz 三个频段ZigBee 通常不能同时兼容这三个频段,应该 根据设备使用地的规定来选择ZigBee 设备。
四轴飞行器飞行原理
• 四轴飞行器通过调节四个电机转速来改变旋翼转速,实现升力的 变化,从而控制飞行器的姿态和位置。四旋翼飞行器在空间共有 6 个自由度(分别沿 3 个坐标轴作平移和旋转动作),这 6 个 自由度的控制都可以通过调节不同电机的转速来实现。基本运动 状态分别是:(1)垂直运动;(2)俯仰运动;(3)滚转运动; (4)偏航运动;(5)前后运动;(6)侧向运动。
在本文中四个旋翼控制器的的PCA参数,或是地面控制 站发送而来的,或是中心主控智能体经过传感器采集后,通过 一定的算法得出的。 例如:系统要求四旋翼飞行器以悬停状态飞行。根据试 验测得飞行器悬停状态的飞行器的PCA参数依次为: [旋翼控制器0x11的PCA_PH=0xF3] , [旋翼控制器0x12的PCA_PH=OxFl], [旋翼控制器0x13的PCA_PH=OxF3], [旋翼控制器0x14的PCA_PH=OxFl],则地面控制站只要 通过上位机操作软件发送数据流为: [Ox 11 ] [Ox12] [Ox13] [Ox14] [OxF3 ] [OxF1 ] [OxF3] [OxF1]。
视觉/惯性全自主导航基本流程图
• 以往,无人机主要依靠惯性导航系统(Inertial Navigation System, INS)和全球定位系统(Global Position System, GPS)进行导航,然而,导航过程中惯性器件具有累积误差, 且对初始值过于敏感,本四轴飞行器系统采用视觉/惯性全自 主导航。
四轴飞行器飞行原理
系统总体框图
机载系统
CAN总线 无线摄像头
无线
传 wifi
输
电机控制器
无刷直流电机
PC机
机载主控芯片
Zigbee传输
电机控制器
无刷直流电机
电机控制器
无刷直流电机
姿态方位参考系统 (AHRS) 电机控制器 无刷直流电机
无线网络标准的比较
wifi的网络结构
• WiFi是一种可以将个人电脑、手持设备(如PDA、手机)等终 端以无线方式互相连接的技术。简单来说其实就是IEEE802.11的 别称,但是WI-FI只使用了802.11的媒体访问控制层(MAC)和物 理层(PHY)。下图为IEEE802.11逻辑结构。