2017江西高考数学模拟试题及答案 .doc
2017年江西省全国统一考试理科数学仿真试卷(十)含答案
![2017年江西省全国统一考试理科数学仿真试卷(十)含答案](https://img.taocdn.com/s3/m/1de9bebda8114431b80dd889.png)
理科数学(十)
第Ⅰ卷
一、选择题:本大题共
12 小题,每小项中,只有
1. [2017 广东模拟 ]设集合 A x x≥ 1 ,B x y ln x 2 ,则 A CR B ( )
A . 1 ,2
B. 2 ,
B . 32
C. 42
D .64
12. [2017 云师附中 ]函数 y log3 x 的图象与直线 l1 : y m 从左至右分别交于点 A,B ,
与直线 l2 : y
8 (m 0) 从左至右分别交于点 2m 1
C, D .记线段 AC 和 BD 在 x 轴上的投
影长度分别为 a,b ,则 b 的最小值为(
3 分,求该新生在社团方面获得校本选修课学分分数的分布列及期望.
A . 18
B . 20
C. 21
D . 25
5. [2017 雅礼中学 ]公元 263 年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增
加时, 多边形面积可无限逼近圆的面积, 由此创立了割圆术, 利用割圆术刘徽得到了圆周率
精确到小数点后面两位的近似值 3.14,这就是著名的“徽率”. 如图是利用刘徽的割圆术设
18.( 本小题满分 12 分)[2017 天水一中 ] 如图,在斜三棱柱 ABC A1B1C1 中,侧面 ACC1A1 与侧面 CBB1C1 都是菱形, ACC1 CC1B1 60 , AC 2 .
(1)求证: AB1 CC1; (2)若 AB1 6 ,求二面角 C AB1 A1 的余弦值.
19.(本小题满分 12 分) [2017 正定中学 ] 某学校根据学生的兴趣爱好,分别创建了“摄 影”“棋类”“国学”三个社团, 据资料统计, 新生通过考核选拔能否成功进入这三个社团 是相互独立的, 2016 年某新生入学, 假设他通过考核选拔进入该校的“摄影”“棋类”“国
江西省重点中学2017年高考数学一模试卷(文科) 有答案
![江西省重点中学2017年高考数学一模试卷(文科) 有答案](https://img.taocdn.com/s3/m/964e1fe326fff705cc170a9b.png)
2017年江西省重点中学高考数学一模试卷(文科)一、选择题:本大题12小题,每小题5分,共60分,在每小题四个选项中,只有一项符合题目要求.1.设全集U={x∈N|x<8},集合A={2,0,1,6},B={2,0,1,7},C={2,0,1,5},则∁U ((A∩C)∪B)=()A.{2,0,1,7}B.{0,6,7,8}C.{2,3,4,5}D.{3,4,5,6}2.已知复数z满足iz=|3+4i|﹣i,则z的虚部是()A.﹣5 B.﹣1 C.﹣5i D.﹣i3.向面积为S的平行四边形ABCD中任投一点M,则△MCD的面积小于的概率为()A.B.C.D.4.设0<α<π,且sin()=,则tan()的值是()A.B.﹣C.D.﹣5.已知命题P:若平面向量,,满足(•)•=(•)•,则向量与一定共线.命题Q:若•>0,则向量与的夹角是锐角.则下列选项中是真命题的是()A.P∧Q B.(¬P)∧Q C.(¬P)∧(¬Q)D.P∧(¬Q)6.下列选项中,说法正确的个数是()(1)命题“∃x0∈R,x﹣x0≤0”的否定为“∃x∈R,x2﹣x>0”;(2)命题“在△ABC中,A>30°,则sinA>”的逆否命题为真命题;(3)若统计数据x1,x2,…,x n的方差为1,则2x1,2x2,…,2x n的方差为2;(4)若两个随机变量的线性相关性越强,则相关系数绝对值越接近1.A.1个B.2个C.3个D.4个7.已知椭圆C:=1(a>b>0)的离心率为,双曲线x2﹣y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为8,则椭圆C的方程为()A. +=1 B. +=1 C. +=1 D. +=18.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,f(x)=a n x n+a n﹣1x n﹣1+…+a1x+a0改写成如下形式f(x)=(…((a n x+a n﹣1)x+a n﹣2)x+…a1)x+a0.至今仍是比较先进的算法,特别是在计算机程序应用上,比英国数学家取得的成就早800多年.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为5,2,则输出v的值为()A.130 B.120 C.110 D.1009.一个几何体的三视图如图所示,则这个几何体的体积等于()A.12 B.4 C.D.10.已知数列{a n}是等差数列,其前n项和有最大值,若<﹣1,当其前n项和S n>0时n的最大值是()A.24 B.25 C.47 D.4811.已知f(x)=sinωx﹣cosωx(ω>,x∈R),若f(x)的任何一条对称轴与x轴交点的横坐标都不属于区间(2π,3π),则ω的取值范围是()A.[,]∪[,]B.(,]∪[,]C.[,]∪[,]D.(,]∪[,]12.已知函数f(x)=alnx﹣ax﹣3(a∈R).若函数y=f(x)的图象在点(2,f(2))处切线的倾斜角为,对于任意t∈[1,2]函数g(x)=x3+x2[f′(x)+]在区间(t,3)上总不是单调函数,则实数m 的取值范围是()A.(﹣∞,﹣5) B.(﹣,﹣5)C.(﹣9,+∞)D.(﹣,﹣9)二、填空题:本题共4小题,每小题5分.请将答案填在答题卡对应题号的位置上,答错位置、书写不清、模棱两可均不得分.13.在条件下,目标函数z=x+2y的最小值为.14.已知等差数列{a n}的前n项和S n=n2﹣(t+1)n+t,则数列{a n}的通项公式a n=.15.已知定义域为R的函数f(x)满足下列性质:f(x+1)=f(﹣x﹣1),f(2﹣x)=﹣f(x)则f(3)=.16.如图,三个半径都是10cm的小球放在一个半球面的碗中,小球的顶端恰好与碗的上沿处于同于水平面,则这个碗的半径R是cm.三、解答题(本大题共5小题,每题12分共60分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC 中,角A、B、C所对的边分别为a、b、c,且cosA=.①求的值.②若,求△ABC的面积S的最大值.18.(12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了一次普法知识竞赛.统计局调查队从甲、乙两单位中各随机抽取了5名职工的成绩,如下:位职工对法律知识的掌握更为稳定;(2)用简单随机抽样的方法从乙单位的5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的成绩之差的绝对值至少是4分的概率.19.(12分)如图,等边三角形ABC与等腰直角三角形DBC公共边BC,BC=,DB=DC,AD=.(1)求证:BC⊥AD;(2)求点B到平面ACD的距离.20.(12分)已知椭圆C:=1(a>b>0)的左,右焦点分别是F1,F2,点 D 在椭圆C上,DF1⊥F1F2,|F1F2|=4|DF|,△DFF的面积为.(1)求椭圆C的方程;(2)圆x2+y2=b2的切线l交椭圆C于A,B两点,求|AB|的最大值.21.(12分)已知函数f(x)=lnx﹣a(x+1)(a∈R).(1)若函数h(x)=的图象与函数g(x)=1的图象在区间(0,e 2]上有公共点,求实数a的取值范围;(2)若a>1,且a∈N*,曲线y=f (x)在点(1,f(1))处的切线l与x轴,y轴的交点坐标为A(x0,0 ),B(0,y0),当+取得最小值时,求切线l的方程.请考生在第22、23题中任选一题作答,如果多做,则按所做第一题计分.[选修4-4:极坐标与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为(α为参数)(1)求曲线C的普通方程;(2)在以O为极点,x正半轴为极轴的极坐标系中,直线l方程为ρsin(﹣θ)+1=0,已知直线l与曲线C相交于A,B两点,求|AB|.[选修4-5:不等式选讲](共1小题,满分0分)23.已知a>0,b>0,且a+b=1.(I)若ab≤m恒成立,求m的取值范围;(II)若恒成立,求x的取值范围.2017年江西省重点中学盟校高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题12小题,每小题5分,共60分,在每小题四个选项中,只有一项符合题目要求.1.设全集U={x∈N|x<8},集合A={2,0,1,6},B={2,0,1,7},C={2,0,1,5},则∁U ((A∩C)∪B)=()A.{2,0,1,7}B.{0,6,7,8}C.{2,3,4,5}D.{3,4,5,6}【考点】交、并、补集的混合运算.【分析】用列举法写出全集U,根据交集、并集和补集的定义写出运算结果即可.【解答】解:全集U={x∈N|x<8}={0,1,2,3,4,5,6,7},集合A={2,0,1,6},B={2,0,1,7},C={2,0,1,5},A∩C={2,0,1},(A∩C)∪B={2,0,1,7},∁U((A∩C)∪B)={3,4,5,6}.故选:B.【点评】本题考查了集合的表示法与基本运算问题,是基础题.2.已知复数z满足iz=|3+4i|﹣i,则z的虚部是()A.﹣5 B.﹣1 C.﹣5i D.﹣i【考点】复数代数形式的乘除运算;复数的基本概念.【分析】利用了复数的运算法则、共轭复数与虚部的定义即可得出.【解答】解:复数z满足iz=|3+4i|﹣i,∴﹣i•iz=﹣i(5﹣i),∴z=﹣1﹣5i,则z的虚部是﹣5.故选:A.【点评】本题考查了复数的运算法则、共轭复数与虚部的定义,考查了推理能力与计算能力,属于基础题.3.向面积为S的平行四边形ABCD中任投一点M,则△MCD的面积小于的概率为()A .B .C .D . 【考点】几何概型.【分析】先求出△MCD 的面积等于时,对应的位置,然后根据几何概型的概率公式求相应的面积,即可得到结论【解答】解:设△MCD 的高为ME ,ME 的反向延长线交AB 于F ,当“△MCD 的面积等于”时,即ME,过M 作GH ∥AB ,则满足△MCD 的面积小于的点在▱CDGH 中,由几何概型的个数得到△MCD 的面积小于的概率为;故选C .【点评】本题主要考查几何概型的概率公式的计算,根据面积之间的关系是解决本题的关键.4.设0<α<π,且sin ()=,则tan ()的值是( )A .B .﹣C .D .﹣【考点】两角和与差的正切函数.【分析】由题意求得∈(,),再利用同角三角函数的基本关系,求得tan ()的值.【解答】解:∵0<α<π,且sin ()=∈(,),∴∈(,),∴cos ()=﹣=﹣,则tan ()==﹣,故选:B .【点评】本题主要考查同角三角函数的基本关系的应用,属于基础题.5.已知命题P :若平面向量,,满足(•)•=(•)•,则向量与一定共线.命题Q :若•>0,则向量与的夹角是锐角.则下列选项中是真命题的是( ) A .P ∧Q B .(¬P )∧Q C .(¬P )∧(¬Q ) D .P ∧(¬Q ) 【考点】命题的真假判断与应用.【分析】先判断出命题P和命题Q的真假,进而根据复合命题真假判断的真值表,可得答案.【解答】解:命题P:若平面向量,,满足(•)•=(•)•,则向量与共线或为零向量.故为假命题,命题Q:若•>0,则向量与的夹角是锐角或零解,故为假命题.故命题P∧Q,(¬P)∧Q,P∧(¬Q)均为假命题,命题(¬P)∧(¬Q)为真命题,故选:C【点评】本题以命题的真假判断与应用为载体,考查了复合命题,向量的运算,向量的夹角等知识点,难度中档.6.下列选项中,说法正确的个数是()(1)命题“∃x0∈R,x﹣x0≤0”的否定为“∃x∈R,x2﹣x>0”;(2)命题“在△ABC中,A>30°,则sinA>”的逆否命题为真命题;(3)若统计数据x1,x2,…,x n的方差为1,则2x1,2x2,…,2x n的方差为2;(4)若两个随机变量的线性相关性越强,则相关系数绝对值越接近1.A.1个B.2个C.3个D.4个【考点】命题的真假判断与应用.【分析】写出原命题的否定,可判断(1);根据互为逆否的两个命题真假性相同,可判断(2);根据数据扩大a倍,方差扩大a2倍,可判断(3);根据相关系数的定义,可判断(4)【解答】解:(1)命题“∃x0∈R,x﹣x0≤0”的否定为“∀x∈R,x2﹣x>0”,故错误;(2)命题“在△ABC中,A>30°,则sinA>”为假命题,故其逆否命题为假命题,故错误;(3)若统计数据x1,x2,…,x n的方差为1,则2x1,2x2,…,2x n的方差为4,故错误;(4)若两个随机变量的线性相关性越强,则相关系数绝对值越接近1,故正确.故选:A.【点评】本题以命题的真假判断与应用为载体,考查了命题的否定,四种命题,方差,相关系数等知识点,难度中档.7.已知椭圆C:=1(a>b>0)的离心率为,双曲线x2﹣y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为8,则椭圆C的方程为()A. +=1 B. +=1 C. +=1 D. +=1【考点】椭圆的简单性质.【分析】确定双曲线x2﹣y2=1的渐近线方程为y=±x,根据以这四个交点为顶点的四边形的面积为8,可得()在椭圆上,再结合椭圆的离心率,即可确定椭圆的方程.【解答】解:由题意,双曲线x2﹣y2=1的渐近线方程为y=±x,∵以这四个交点为顶点的四边形的面积为8,∴边长为,∴(,)在椭圆C:=1(a>b>0)上,∴,①∵椭圆的离心率为,∴,则a2=2b2,②联立①②解得:a2=6,b2=3.∴椭圆方程为:.故选:C.【点评】本题考查椭圆及双曲线的性质,考查椭圆的标准方程与性质,考查学生的计算能力,正确运用双曲线的性质是关键,是中档题.8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,f(x)=a n x n+a n﹣1x n﹣1+…+a1x+a0改写成如下形式f(x)=(…((a n x+a n﹣1)x+a n﹣2)x+…a1)x+a0.至今仍是比较先进的算法,特别是在计算机程序应用上,比英国数学家取得的成就早800多年.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为5,2,则输出v的值为()A.130 B.120 C.110 D.100【考点】程序框图.【分析】由题意,模拟程序的运行,依次写出每次循环得到的i,v的值,当i=﹣1时,不满足条件i≥0,跳出循环,输出v的值为130.【解答】解:初始值n=5,x=2,程序运行过程如下表所示:v=1,i=4满足条件i≥0,v=1×2+4=6,i=3满足条件i≥0,v=6×2+3=15,i=2满足条件i≥0,v=15×2+2=32,i=1满足条件i≥0,v=32×2+1=65,i=0满足条件i≥0,v=65×2+0=130,i=﹣1不满足条件i≥0,退出循环,输出v的值为130.故选:A.【点评】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的i,v的值是解题的关键,属于基础题.9.一个几何体的三视图如图所示,则这个几何体的体积等于()A.12 B.4 C.D.【考点】由三视图求面积、体积.【分析】该几何体是四棱锥,底面是直角梯形,一条侧棱垂直底面,根据公式可求体积.【解答】解:由三视图复原几何体,如图,它的底面是直角梯形,一条侧棱垂直底面高为2,这个几何体的体积:,故选B.【点评】本题考查三视图、棱锥的体积;考查简单几何体的三视图的运用;培养同学们的空间想象能力和基本的运算能力;是中档题.10.已知数列{a n}是等差数列,其前n项和有最大值,若<﹣1,当其前n项和S n>0时n的最大值是()A.24 B.25 C.47 D.48【考点】等差数列的性质;数列的函数特性.【分析】由<﹣1,可得<0,由它们的前n项和S n有最大可得a24>0,a25+a24<0,a25<0,从而有a1+a47=2a24>0,a1+a48=a25+a24<0,从而可求满足条件的n的值.【解答】解:因为<﹣1,可得<0,由它们的前n项和S n有最大值,可得数列的d <0∴a24>0,a25+a24<0,a25<0∴a1+a47=2a24>0,a1+a48=a25+a24<0,使得S n>0的n的最大值n=47,故选:C.【点评】本题主要考查了等差数列的性质在求解和的最值中应用,解题的关键是由已知及它们的前n项和S n有最大,推出数列的正项是解决本题的关键点.11.已知f(x)=sinωx﹣cosωx(ω>,x∈R),若f(x)的任何一条对称轴与x轴交点的横坐标都不属于区间(2π,3π),则ω的取值范围是()A.[,]∪[,]B.(,]∪[,]C.[,]∪[,]D.(,]∪[,]【考点】三角函数的最值;三角函数中的恒等变换应用;三角函数的周期性及其求法.【分析】由题意可得,=≥3π﹣2π=π,求得<ω≤1,故排除A、D.检验当ω=时,f(x)=sin(x﹣)满足条件,故排除B,从而得出结论.【解答】解:f(x)=sinωx﹣cosωx=sin(ωx﹣)(ω>,x∈R),若f(x)的任何一条对称轴与x轴交点的横坐标都不属于区间(2π,3π),则=≥3π﹣2π=π,ω≤1,即<ω≤1,故排除A、D.当ω=时,f(x)=sin(x﹣),令x﹣=kπ+,求得x=kπ+,可得函数f(x)的图象的对称轴为x=kπ+,k ∈Z.当k=1时,对称轴为x=<2π,当k=2时,对称轴为x==3π,满足条件:任何一条对称轴与x轴交点的横坐标都不属于区间(2π,3π),故排除B,故选:C.【点评】本题主要考查正弦函数的图象的对称性和周期性,属于中档题.12.已知函数f(x)=alnx﹣ax﹣3(a∈R).若函数y=f(x)的图象在点(2,f(2))处切线的倾斜角为,对于任意t∈[1,2]函数g(x)=x3+x2[f′(x)+]在区间(t,3)上总不是单调函数,则实数m 的取值范围是()A.(﹣∞,﹣5) B.(﹣,﹣5)C.(﹣9,+∞)D.(﹣,﹣9)【考点】直线的方向向量;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】求出函数的导数,利用切线的斜率求出a,利用函数的单调性,任意t∈[1,2]函数g(x)=x3+x2[f′(x)+]在区间(t,3)上总不是单调函数,转化为函数由极值,然后求解函数的值域即可得到结果.【解答】解:由函数f(x)=alnx﹣ax﹣3(a∈R).可得f′(x)=﹣a,得a=﹣2,对于任意t∈[1,2]函数=x3+x2(﹣+2+)在区间(t,3)上总不是单调函数,只需2在(2,3)上不是单调函数,故g'(x)=3x2+(m+4)x﹣2在(2,3)上有零点,即方程在(2,3)上有解,而在(2,3)上单调递减,故其值域为.故选:D.【点评】本题考查函数的导数的应用,函数的极值以及函数的单调性的判断,考查转化思想以及计算能力.二、填空题:本题共4小题,每小题5分.请将答案填在答题卡对应题号的位置上,答错位置、书写不清、模棱两可均不得分.13.在条件下,目标函数z=x+2y的最小值为4.【考点】简单线性规划.【分析】由题意作出其平面区域,利用目标函数的几何意义转化求解可得.【解答】解:由题意作出其平面区域:z=x+2y可化为y=﹣x+,相当于直线y=﹣x+的纵截距,则当过点(2,1)时,有最小值,即z的最小值为2+2=4,故答案为:4.【点评】本题考查了简单线性规划,作图要细致认真,属于中档题.14.已知等差数列{a n}的前n项和S n=n2﹣(t+1)n+t,则数列{a n}的通项公式a n=2n﹣2.【考点】等差数列的性质;等差数列的前n项和.【分析】利用a n=S n﹣S n公式求解即可.﹣1【解答】解:由题意,S n=n2﹣(t+1)n+t,=(n﹣1)2﹣(t+1)(n﹣1)+t,可得:S n﹣1=n2﹣(t+1)n+t﹣[(n﹣1)2﹣(t+1)(n﹣1)+t]=2n﹣2那么:a n=S n﹣S n﹣1当n=1时,通项公式a n满足要求.故答案为:2n﹣2.公式的运用.属于基础题.注意要考查a1是否满足通项.【点评】本题主要考查了a n=S n﹣S n﹣115.已知定义域为R的函数f(x)满足下列性质:f(x+1)=f(﹣x﹣1),f(2﹣x)=﹣f(x)则f(3)=0.【考点】抽象函数及其应用;函数的值.【分析】由已知中f(x+1)=f(﹣x﹣1),f(2﹣x)=﹣f(x)可得:f(3)=﹣f(﹣1)=f(1)=﹣f(1),进而得答案.【解答】解:∵函数f(x)满足下列性质:f(2﹣x)=﹣f(x)∴当x=1时,f(1)=﹣f(1)即f(1)=0,∴当x=3时,f(3)=﹣f(﹣1),又由f(x+1)=f(﹣x﹣1)得:x=0时,f(﹣1)=f(1)=0,故f(3)=0.故答案为:0.【点评】本题考查的知识点是函数求值,抽象函数及其应用,难度中档.16.如图,三个半径都是10cm的小球放在一个半球面的碗中,小球的顶端恰好与碗的上沿处于同于水平面,则这个碗的半径R是cm.【考点】球的体积和表面积.【分析】根据三个小球和碗的相切关系,作出对应的正视图和俯视图,建立球心和半径之间的关系即可得到碗的半径.【解答】解:分别作出空间几何体的正视图和俯视图如图:则俯视图中,球心O(也是圆心O)是三个小球与半圆面的三个切点的中心,∵小球的半径为10cm,∴三个球心之间的长度为20cm,即OA=cm.,在正视图中,球心B,球心O(同时也是圆心O),和切点A构成直角三角形,则OA2+AB2=OB2,其中OB=R﹣10,AB=10,∴,即,∴,即R=10+=cm.故答案为:.【点评】本题主要考查了球的相切问题的计算,根据条件作出正视图和俯视图,确定球半径之间的关系是解决本题的关键,综合性较强,难度较大.三、解答题(本大题共5小题,每题12分共60分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2017•江西一模)在△ABC 中,角A、B、C所对的边分别为a、b、c,且cosA=.①求的值.②若,求△ABC的面积S的最大值.【考点】解三角形.【分析】①根据=﹣,利用诱导公式cos(﹣α)=sinα化简所求式子的第一项,然后再利用二倍角的余弦函数公式化为关于cosA的式子,将cosA的值代入即可求出值;②由cosA的值,利用同角三角函数间的基本关系求出sinA的值,根据三角形的面积公式S=bcsinA表示出三角形的面积,把sinA的值代入得到关于bc的关系式,要求S的最大值,只需求bc的最大值即可,方法为:根据余弦定理表示出cosA,把cosA的值代入,并利用基本不等式化简,把a的值代入即可求出bc的最大值,进而得到面积S的最大值.【解答】解:①∵cosA=,∴==;②,∴,,∴,,∴,.【点评】此题属于解三角形的题型,涉及的知识有:诱导公式,二倍角的正弦、余弦函数公式,同角三角函数间的基本关系,三角形的面积公式,以及基本不等式的应用,熟练掌握公式是解本题的关键.18.(12分)(2017•江西一模)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了一次普法知识竞赛.统计局调查队从甲、乙两单位中各随机抽取了5名职工的成绩,如下:位职工对法律知识的掌握更为稳定;(2)用简单随机抽样的方法从乙单位的5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的成绩之差的绝对值至少是4分的概率.【考点】列举法计算基本事件数及事件发生的概率;众数、中位数、平均数.【分析】(1)先求出甲、乙两个单位职工的考试成立的平均数,以及它们的方差,则方差小的更稳定.(2)从乙单位抽取两名职工的分数,所有基本事件用列举法求得共10种情况,抽取的两名职工的分数差值至少是4的事件用列举法求得共有5个,由古典概型公式求得抽取的两名职工的分数之差的绝对值至少是4的概率.【解答】解:(I),…(2分),…∵,∴甲单位职工对法律知识的掌握更为稳定…(II)设抽取的2名职工的成绩只差的绝对值至少是为事件A,所有基本事件有:(85,89),(85,91),(85,92)(85,93),(89,85),(89,91),(89,92),(89,93),(91,85),(91,89),(91,92),(91,93),(92,85),(92,89),(92,91)(92,93),(93,85),(93,89),(93,91),(93,92),共20个…(8分)事件A包含的基本事件有:(85,89),(85,91),(85,92),(85,93),(89,85),(89,93),(91,85),(92,85),(93,85),(93,89),共10个…(10分)∴…(12分)【点评】本题主要考查平均数和方差的定义与求法,用列举法计算可以列举出基本事件和满足条件的事件,古典概率的计算公式.19.(12分)(2017•江西一模)如图,等边三角形ABC与等腰直角三角形DBC公共边BC,BC=,DB=DC,AD=.(1)求证:BC⊥AD;(2)求点B到平面ACD的距离.【考点】点、线、面间的距离计算;直线与平面垂直的性质.【分析】(1)取BC的中点为E,连接AE、DE.通过证明BC⊥平面AED,然后证明BC⊥AD.(2)设点B到平面ACD的距离为h.由余弦定理求出cos∠ADE,求出底面面积,利用棱锥的体积的和,转化求解即可.【解答】解:(1)证明:取BC的中点为E,连接AE、DE.,…(2)设点B到平面ACD的距离为h.由,,在△ADE中,由余弦定理AD2=AE2+DE2﹣2AE•DE•cos∠ADE,,,由…(12分)【点评】本题考查空间直线与平面垂直的判定定理以及性质定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力.20.(12分)(2017•江西一模)已知椭圆C:=1(a>b>0)的左,右焦点分别是F1,F2,点 D 在椭圆 C 上,DF1⊥F1F2,|F1F2|=4|DF|,△DFF的面积为.(1)求椭圆C的方程;(2)圆x2+y2=b2的切线l交椭圆C于A,B两点,求|AB|的最大值.【考点】椭圆的简单性质;椭圆的标准方程;圆与圆锥曲线的综合.【分析】(1)利用三角形的面积,结合直角三角形,求出a,推出b,然后求解椭圆方程.(2)设ℓ的方程是x=my+n,ℓ与椭圆C的交点A(x1,y1),B(x2,y2).联立直线与椭圆方程,利用韦达定理判别式,通过弦长公式求解即可.【解答】解:依题意:,由Rt△,由⇒椭圆的方程是:…(2)直线ℓ的斜率为O时不合题意,故可设ℓ的方程是x=my+n,ℓ与椭圆C的交点A(x1,y1),B(x2,y2).由ℓ与圆x2+y2=1相切由⇒(m2+4)y2+2mny+n2﹣4=0△=4m2n2=4(m2+4)(n2﹣4)=48>0,…(9分)=当且仅当m2=2,n2=3时|AB|=2…(12分)【点评】本题考查直线与椭圆的位置关系的应用,考查椭圆方程的求法,考查转化思想以及计算能力.21.(12分)(2017•江西一模)已知函数f(x)=lnx﹣a(x+1)(a∈R).(1)若函数h(x)=的图象与函数g(x)=1的图象在区间(0,e 2]上有公共点,求实数a的取值范围;(2)若a>1,且a∈N*,曲线y=f (x)在点(1,f(1))处的切线l与x轴,y轴的交点坐标为A(x0,0 ),B(0,y0),当+取得最小值时,求切线l的方程.【考点】利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(1)问题转化为在x∈(0,e2]上有解,即a=x﹣lnx在x∈(0,e2]上有解;(2)求出A,B的坐标,得出+的表达式,即可得出+的取得最小值时,切线l的方程.【解答】解:(1)问题转化为在x∈(0,e2]上有解,即a=x﹣lnx在x∈(0,e2]上有解令φ(x)=x﹣lnx,x∈(0,e2],∴φ(x)在(0,1)上单减,在(1,e2)上单增,∴φ(x)min=φ(1)=1,x→0时,φ(x)→+∞,当x∈(0,e2]时,φ(x)的值域为[1,+∞),∴实数a的取值范围是[1,+∞)…(2),切线斜率k=f'(1)=1﹣a,切点为(1,﹣2a),所以切线l的方程为y+2a=(1﹣a)(x﹣1),分别令y=0,x=0,得切线与x轴,y轴的交点坐标为A(,0),B(0,﹣1﹣a),∴,∴,当,即时,取得最小值,但a>1且a∈N*,所以当a=2时,取得最小值.此时,切线l的方程为y+4=(1﹣2)(x﹣1),即x+y+3=0.…(12分)【点评】本题考查导数知识的综合运用,考查函数的单调性与几何意义,考查学生分析解决问题的能力,属于中档题.请考生在第22、23题中任选一题作答,如果多做,则按所做第一题计分.[选修4-4:极坐标与参数方程]22.(10分)(2017•黄冈模拟)在直角坐标系xOy中,曲线C的参数方程为(α为参数)(1)求曲线C的普通方程;(2)在以O为极点,x正半轴为极轴的极坐标系中,直线l方程为ρsin(﹣θ)+1=0,已知直线l与曲线C相交于A,B两点,求|AB|.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)把参数方程中的x,y平方相加即可得普通方程;(2)把直线l方程为ρsin(﹣θ)+1=0化为普通方程为:x﹣y+1=0,然后根据弦长公式计算即可.【解答】解:(1)曲线C的参数方程为(α为参数),x,y平方相加可得:x2+y2=2,①(2)直线l方程为ρsin(﹣θ)+1=0化为普通方程为:x﹣y+1=0,②由②得:y=x+1,③把③带入①得:2x2+2x﹣1=0,∴,∴|AB|=|x1﹣x2|===【点评】本题主要考查参数方程和普通方程的互化以及弦长公式,属于中档题.[选修4-5:不等式选讲](共1小题,满分0分)23.(2017•江西一模)已知a>0,b>0,且a+b=1.(I)若ab≤m恒成立,求m的取值范围;(II)若恒成立,求x的取值范围.【考点】函数恒成立问题.【分析】(Ⅰ)由基本不等式可得;(Ⅱ)问题转化为|2x﹣1|﹣|x+1|≤4,去绝对值化为不等式,解不等式可得.【解答】解:(Ⅰ)∵a>0,b>0,且a+b=1,∴ab≤()2=,当且仅当a=b=时“=”成立,由ab≤m恒成立,故m≥;(Ⅱ)∵a,b∈(0,+∞),a+b=1,∴+=(+)(a+b)=5++≥9,故恒成立,则|2x﹣1|﹣|x+2|≤9,当x≤﹣2时,不等式化为1﹣2x+x+2≤9,解得﹣6≤x≤﹣2,当﹣2<x <,不等式化为1﹣2x﹣x﹣2≤9,解得﹣2<x<,当x≥时,不等式化为2x﹣1﹣x﹣2≤9,解得≤x≤12综上所述x的取值范围为[﹣6,12].【点评】本题考查了绝对值不等式的解法,分段函数知识,考查运算能力,转化思想以及分类讨论思想,是一道中档题.21。
江西省南昌市2017届高三第一次模拟考试数学(理)试题 Word版含答案
![江西省南昌市2017届高三第一次模拟考试数学(理)试题 Word版含答案](https://img.taocdn.com/s3/m/e30fc15f33687e21af45a95d.png)
江西省南昌市2017届高三第一次模拟数学(理)试题第Ⅰ卷(选择题部分 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =,集合{lg }A x y x ==,集合{1}B y y ==,那么()U A C B =( )A .φB .(0,1]C .(0,1)D .(1,)+∞ 2.若复数321z i=+,其中i 为虚数单位,则复数z 的虚部是( ) A .-1 B .i - C .1 D .i3.已知,αβ均为第一象限的角,那么αβ>是sin sin αβ>的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.设某中学的高中女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(,)i i x y (1,2,3,i =…,n ),用最小二乘法近似得到回归直线方程为^0.8585.71y x =-,则下列结论中不正确的是( )A .y 与x 具有正线性相关关系B .回归直线过样本的中心点(,)x yC .若该中学某高中女生身高增加1cm ,则其体重约增加0.85kgD .若该中学某高中女生身高为160cm ,则可断定其体重必为50.29kg . 5.若圆锥曲线C :221x my +=的离心率为2,则m =( )A .BC .13-D .136.执行如图所示的程序框图,输出S 的值为( )A .2log 101-B .22log 31-C .92D .6 7.已知函数()sin()f x A x ωϕ=+(0,0,02A πωϕ>><<)的周期为π,若()1f α=,则3()2f πα+=( ) A .-2 B .-1 C .1 D .28.如图,在平面直角坐标系xOy 中,直线21y x =+与圆224x y +=相交于,A B 两点,则cos AOB ∠=( )A .10 B .10- C .910 D .910-9.我国古代数学名著《九章算术》中有如下问题:今有甲乙丙三人持钱,甲语乙丙:各将公等所持钱,半以益我,钱成九十(意思是把你们两个手上的钱各分我一半,我手上就有90钱);乙复语甲丙,各将公等所持钱,半以益我,钱成七十;丙复语甲乙:各将公等所持钱,半以益我,钱成五十六,则乙手上有( )钱.A .28B .32C .56D .7010.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )A .323 B .643C .16D .32 11.抛物线28y x =的焦点为F ,设11(,)A x y ,22(,)B x y 是抛物线上的两个动点,若124x x AB ++=,则AFB ∠的最大值为( ) A .3π B .34π C .56π D .23π12.定义在R 上的偶函数()f x 满足(2)()f x f x -=,且当[1,2]x ∈时,()ln 1f x x x =-+,若函数()()g x f x mx =+有7个零点,则实数m 的取值范围为( )A .1ln 21ln 2(,)86--⋃ln 21ln 21(,)68-- B .ln 21ln 21(,)68-- C .1ln 21ln 2(,)86-- D .1ln 2ln 21(,)86-- 第Ⅱ卷(非选择题部分,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.在多项式65(12)(1)x y ++的展开式中,3xy 项的系数为 .14.已知单位向量12,e e 的夹角为3π,122a e e =-,则a 在1e 上的投影是 .15.如图,直角梯形ABCD 中,AD DC ⊥,//AD BC ,222BC CD AD ===,若将直角梯形绕BC 边旋转一周,则所得几何体的表面积为 .16.已知224x y +=,在这两个实数,x y 之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列{}n a 的前n 项和为n S ,且11a =,345S S S +=. (1)求数列{}n a 的通项公式;(2)令11(1)n n n n b a a -+=-,求数列{}n b 的前2n 项和2n T .18. 某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300)该社团将该校区在2016年100天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.(1)请估算2017年(以365天计算)全年空气质量优良的天数(未满一天按一天计算); (2)该校2017年6月7、8、9日将作为高考考场,若这三天中某天出现5级重度污染,需要净化空气费用10000元,出现6级严重污染,需要净化空气费用20000元,记这三天净化空气总费用X 元,求X 的分布列及数学期望.19. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为等腰梯形,//AB CD ,2AD DC BC ===,4AB =,PAD ∆为正三角形.(1)求证:BD ⊥平面PAD ;(2)设AD 的中点为E ,求平面PEB 与平面PDC 所成二面角的平面角的余弦值.20.已知椭圆2222:1x y C a b +=(0a b >>)的左、右顶点分别为12,A A ,左、右焦点分别为12,F F ,离心率为12,点(4,0)B ,2F 为线段1A B 的中点.(1)求椭圆C 的方程;(2)若过点B 且斜率不为0的直线l 与椭圆C 的交于,M N 两点,已知直线1A M 与2A M 相交于点G ,试判断点G 是否在定直线上?若是,请求出定直线的方程;若不是,请说明理由.21. 已知函数2()(24)(2)x f x x e a x =-++(0,x a R >∈,e 是自然对数的底数). (1)若()f x 是(0,)+∞上的单调递增函数,求实数a 的取值范围;(2)当1(0,)2a ∈时,证明:函数()f x 有最小值,并求函数()f x 最小值的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 过点(,1)P a,其参数方程为1x a y ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)已知曲线1C 与曲线2C 交于,A B 两点,且2PA PB =,求实数a 的值. 23.选修4-5:不等式选讲已知函数()21f x x a x =-+-,a R ∈.(1)若不等式()21f x x ≤--有解,求实数a 的取值范围; (2)当2a <时,函数()f x 的最小值为3,求实数a 的值.理科数学参考答案及评分标准一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.13.120; 14. 32; 15. (3)π; 三、解答题:本大题共6小题,共70分. 解答应写出文字说明.证明过程或演算步骤. 17. (Ⅰ)设等差数列{}n a 的公差为d ,由345S S S +=可得1235a a a a ++=, 即253a a =,所以3(1)14d d +=+,解得2d =. ∴ 1(1)221n a n n =+-⨯=-.(Ⅱ)由(Ⅰ)可得:112(1)(21)(21)(1)(41)n n n b n n n --=-⋅-+=-⋅-.∴ 22222122(411)(421)(431)(441)(1)4(2)1n n T n -⎡⎤=⨯--⨯-+⨯--⨯-++-⋅⨯-⎣⎦22222241234(21)(2)n n ⎡⎤=-+-++--⎣⎦22(21)4(1234212)4842n n n n n n +=-+++++-+=-⨯=-- . 18.(Ⅰ)由直方图可估算2017年(以365天计算)全年空气质量优良的天数为 (0.10.2)3650.3365109.5110+⨯=⨯=≈(天).(Ⅱ)由题可知,X 的所有可能取值为:0,10000,20000,30000,40000,50000,60000, 则:3464(0)()5125P X ===,1231424(10000)()105125P X C ==⨯⨯=221233141410827(20000)()()()()105105500125P X C C ==⨯⨯+⨯⨯==31132111449(30000)()10101051000P X C C ==+⨯⨯⨯⨯=222233111427(40000)()()10101051000P X C C ==⨯⨯+⨯⨯=223113(50000)()10101000P X C ==⨯⨯=311(60000)()101000P X ===. ∴ X 的分布列为101000020000300004000050000600001252501251000100010001000EX =⨯+⨯+⨯+⨯+⨯+⨯+⨯ 9000=(元).19.(Ⅰ)在等腰梯形ABCD 中,过点D 作DE AB ⊥于点E ,如图所示:有1,AE DE BD ===∴在ABD ∆中,有222AB AD BD =+,即AD BD ⊥又因为平面PAD ⊥平面ABCD 且交线为AD ,∴BD ⊥平面PAD .(Ⅱ) 由平面PAD ⊥平面ABCD ,且PAD ∆为正三角形,E 为AD 的中点, ∴PE AD ⊥,得PE ⊥平面ABCD .如图所示,以D 为坐标原点,DA 所在直线为x 轴,DB 所在直线为y 轴,过点D 平行于PE 所在直线为z 轴,建立空间直角坐标系.由条件2AD D C BC ===,则1AE DE ==,PE =BD = 则(0,0,0)D ,(1,0,0)E,B,P .------- 6分在等腰梯形ABCD 中,过点C 作BD 的平行线交AD 延长线于点F 如图所示:则在Rt CDF ∆中,有CF =,1DF =,∴(C -.(另解:可不做辅助线,利用2AB DC =求点C 坐标)∴(1,CD =,(1,0,PD =- ,设平面PDC 的法向量1111(,,)n x y z =则11111100n CD x n PD x ⎧⋅==⎪⎨⋅=-=⎪⎩,取1x =11y =,11z =-, ∴面PDC的法向量1,1)n =-.同理有(0,0,PE =,(PB =- ,设平面PBE 的法向量2222(,,)n x y z =则22222200n PE n PB x ⎧⋅==⎪⎨⋅=-+=⎪⎩, 取21y =,则2x =20z =,∴面PBE的法向量2n =.--10分设平面PEB 与平面PDC 所成二面角的平面角为θ,∴12cos cos ,n n θ=<>==. 即平面PEB 与平面PDC. 20.(Ⅰ)设点12(,0),(,0)A a F c -,由题意可知:42a c -+=,即42a c =- ① 又因为椭圆的离心率12c e a ==,即2a c = ② 联立方程①②可得:2,1a c ==,则2223b a c =-= 所以椭圆C 的方程为22143y x +=. (Ⅱ)方法一:根据椭圆的对称性猜测点G 是与y 轴平行的直线0x x =上. 假设当点M 为椭圆的上顶点时,直线l40y +-=,此时点N 8(5,则联立直线120A M l y -+和直线220A N l y +-可得点G 据此猜想点G 在直线1x =上,下面对猜想给予证明:设1122(,),(,)M x y N x y ,联立方程22(4143)x y k x y +-==⎧⎪⎨⎪⎩可得:2222(34)3264120,0k x k x k +-+-=∆>由韦达定理可得21223234k x x k +=+,2122641234k x x k -=+ (*)因为直线111:(2)2A M y l y x x =++,222:(2)2A N y l y x x =--, 联立两直线方程得1212(2)(2)22y y x x x x +=-+-(其中x 为G 点的横坐标)即证:1212322y y x x -=+-, 即12213(4)(2)(4)(2)k x x k x x -⋅-=--⋅+,即证1212410()160x x x x -++= 将(*)代入上式可得22222224(6412)1032160163203403434k k k k k k k⋅-⨯-+=⇔--++=++ 此式明显成立,原命题得证.所以点G 在定直线上1x =上. 方法二:设112233(,),(,),(,)M x y N x y G x y ,123,,x x x 两两不等,因为,,B M N2212222122222212123(1)3(1)444(4)(4)(4)(4)x x y y y x x x x x --=⇒=⇒=-----, 整理得:121225()80x x x x -++= 又1,,A M G112y x =+ ①又2,,A N222y x =- ② 将①与②两式相除得: 222221233212121222231231212123(1)(2)22(2)(2)(2)(2)4()2(2)2(2)(2)(2)3(1)(2)4x x x x y x y x x x x y x x x x y x x x -+++++++=⇒===-------- 即2321121231212122(2)(2)2()4()2(2)(2)2()4x x x x x x x x x x x x x x ++++++==----++, 将121225()80x x x x -++=即12125()402x x x x =+-=代入得:2332()92x x +=- 解得34x =(舍去)或31x =,所以点G 在定直线1x =上.方法三:显然l 与x 轴不垂直,设l 的方程为(4)y k x =-,1122(,),(,)M x y N x y . 由22(4)143y k x x y =-⎧⎪⎨+=⎪⎩得2222(34)3264120,0k x k x k +-+-=∆>.设112233(,),(,),(,)M x y N x y G x y ,123,,x x x 两两不等,则212232k x x +=,21226412k x x -=,12||x x -==由1,,A M G 112yx =+ ①由2,,A N 222y x =- ② ①与②两式相除得:32121121212312121212122(2)(4)(2)()3()812(2)(4)(2)3()()83x y x k x x x x x x x x x y x k x x x x x x x x ++-+-++--====------++-+ 解得34x =(舍去)或31x =,所以点G 在定直线1x =上. 21.(Ⅰ)'()2(24)2(2)(22)2(2)x x x f x e x e a x x e a x =+-++=-++, 依题意:当0x >时,函数'()0f x ≥恒成立,即(22)22x x e a x -≥-+恒成立,记(22)()2xx e g x x -=+,则22(2)(22)'()(2)x x xe x x e g x x +--==+22(222)0(2)x x x e x ++>+, 所以()g x 在(0,)+∞上单调递增,所以()(0)1g x g >=-,所以21a -≤-,即12a ≥; (Ⅱ)因为['()]'220x f x xe a =+>,所以'()y f x =是(0,)+∞上的增函数, 又'(0)420f a =-<,'(1)60f a => ,所以存在(0,1)t ∈使得'()0f t = 且当0a →时1t →,当12a →时0t →,所以t 的取值范围是(0,1).又当(0,)x t ∈,'()0f x <,当(,)x t ∈+∞时,'()0f x >, 所以当x t =时,2min()()(24)(2)tf x f t t e a t ==-++.且有(1)'()02tt e f t a t -=⇒=-+∴2min ()()(24)(1)(2)(2)t t t f x f t t e t t e e t t ==---+=-+-.记2()(2)t h t e t t =-+-,则22'()(2)(21)1)t t th t e t t e t e t t =-+-+-+=--(-0<,所以(1)()(0)h h t h <<,即最小值的取值范围是(2,2)e --. 22.(Ⅰ)曲线1C参数方程为1x a y ⎧=⎪⎨=⎪⎩,∴其普通方程10x y a --+=,由曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=,∴222cos 4cos 0ρθρθρ+-= ∴22240x x x y +--=,即曲线2C 的直角坐标方程24y x =.(Ⅱ)设A 、B 两点所对应参数分别为12,t t,联解241y xx a y ===+⎧⎪⎪⎨⎪⎪⎩得22140t a -+-=要有两个不同的交点,则242(14)0a ∆=-⨯->,即0a >,由韦达定理有1212142t t a t t +=-⋅=⎧⎪⎨⎪⎩根据参数方程的几何意义可知122,2PA t PB t ==, 又由2PA PB =可得12222t t =⨯,即122t t =或122t t =- ∴当122t t =时,有2122212311036422t t t a t t t a ⎧⎪⇒=>⎨⎪⎩+==-⋅==,符合题意. 当122t t =-时,有21222121442902t t t t t a a t ⎧⎪⇒=>⎨⎪+=-=-⋅=-=⎩,符合题意. 综上所述,实数a 的值为136a =或94. 23.(Ⅰ)由题()21f x x ≤--,即为||112ax x -+-≤.而由绝对值的几何意义知||1|1|22a ax x -+-≥-,------- 2分由不等式()21f x x ≤--有解,∴|1|12a-≤,即04a ≤≤.∴实数a 的取值范围[0,4].------- 5分(Ⅱ)函数()21f x x a x =-+-的零点为2a 和1,当2a <时知12a< ∴31()2()1(1)231(1)a x a x a f x x a x x a x ⎧-++<⎪⎪⎪=-+≤≤⎨⎪-->⎪⎪⎩------- 7分如图可知()f x 在(,)2a -∞单调递减,在[,)2a+∞单调递增,∴min ()()1322a a f x f ==-+=,得42a =-<(合题意),即4a =-.。
【江西省南昌市】2017届高三第一次模拟数学(理科)试卷-答案
![【江西省南昌市】2017届高三第一次模拟数学(理科)试卷-答案](https://img.taocdn.com/s3/m/7787b44683c4bb4cf7ecd19a.png)
14. 3 2
15. (3 2)π
16. 3 10 2
三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明.证明过程或演算步骤. 17.【解析】(Ⅰ)设等差数列{an} 的公差为 d ,由 S3 S4 S5 可得 a1 a2 a3 a5 , 即 3a2 a5 ,所以 3(1 d ) 1 4d ,解得 d 2 . ∴ an 1 (n 1) 2 2n 1 .
x3 2 y1(x2 2)
x3 2
y12 (x2 2)2
3(1
x12 4
)( x2
2)2
(x1 2)(x2 2)
即 ( x3 2)2 (x2 2)(x1 2) x1x2 2(x1 x2 ) 4 , x3 2 (x1 2)(x2 2) x1x2 2(x1 x2 ) 4
:
y
y2 (x 2) , x2 2
联立两直线方程得 y1 (x 2) y2 (x 2) (其中 x 为 G 点的横坐标)即证: 3y1 y2 ,
x1 2
x2 2
x1 2 x2 2
即 3k(x1 4) (x2 2) k(x2 4) (x1 2) ,即证 4x1x2 10(x1 x2 ) 16 0
又 f '(0) 4a 2 0 , f '(1) 6a 0 ,所以存在 t (0,1) 使得 f '(t) 0
且当 a 0时 t 1 ,当 a 1 时 t 0 ,所以 t 的取值范围是 (0,1) . 2
又当 x (0,t) , f '(x) 0 ,当 x (t, ) 时, f '(x) 0 ,
江西省百所重点高中2017届高三模拟理数试题 含答案 精
![江西省百所重点高中2017届高三模拟理数试题 含答案 精](https://img.taocdn.com/s3/m/0c1f5f02af45b307e871979f.png)
2017届百所重点高中高三模拟考试数学试卷(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|60}A x x x =--≥,{|33}B x x =-≤≤,则AB =( )A .[3,2]--B .[2,3]C .[3,2]{3}--D .[2,3]{3}- 2.设复数z a bi =+(,,0a b R b ∈>),且2z z =,则z 的虚部为( )A .12 B .2 C .32 3.若1sin()2sin()2αβαβ+=-=,则sin cos αβ的值为( ) A .38 B .38- C .18 D .18-4.在ABC ∆中,,D E 分别为,BC AB 的中点,F 为AD 的中点,若1AB AC =-,22AB AC ==,则CE AF 的值为( )A .34 B .38 C. 18 D .145.下图是函数()y f x =求值的程序框图,若输出函数()y f x =的值域为[4,8],则输入函数()y f x =的定义域不可能为( )A .[3,2]--B .[3,2){2}-- C. [3,2]- D .[3,2]{2}-- 6.函数()sin()(||)2f x x ππθθ=+<的部分图象如图,且1(0)2f =-,则图中m 的值为( )A . 1B .43 C. 2 D .43或2 7.在公差大于0的等差数列{}n a 中,71321a a -=,且136,1,5a a a -+成等比数列,则数列1{(1)}n n a --的前21项和为( )A .21B . -21 C. 441 D .-4418.中国古代数学名著《九章算术》卷第五“商功”共收录28个题目,其中一个题目如下:今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺,问积几何?其译文可用三视图来解释:某几何体的三视图如图所示(其中侧视图为等腰梯形,长度单位为尺),则该几何体的体积为( )A .3795000立方尺B .2024000立方尺 C. 632500立方尺 D .1897500立方尺9.已知1k ≥-,实数,x y 满足约束条件4326x y x y y k+≤⎧⎪-≥⎨⎪≥⎩,且1y x +的最小值为k ,则k 的值为( ) A .25.25±C. 32 D.3210.设12,F F 分别是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,双曲线上存在一点P 使得1260F PF ∠=,||3OP b =(O 为坐标原点),则该双曲线的离心率为( )A .43 B.3 C. 76 D.611.体积为A BCD -的每个顶点都在半径为R 的球O 的球面上,球心O 在此三棱锥内部,且:2:3R BC =,点E 为线段BD 上一点,且2DE EB =,过点E 作球O 的截面,则所得截面圆面积的取值范围是( )A .[4,12]ππB .[8,16]ππ C. [8,12]ππ D .[12,16]ππ12.定义在(0,)+∞上的函数()f x 的导函数'()f x'1()2x <,则下列不等式中,一定成立的是( )A .(9)1(4)(1)1f f f -<<+B .(1)1(4)(9)1f f f +<<- C. (5)2(4)(1)1f f f +<<- D .(1)1(4)(5)2f f f -<<+第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若公比为2的等比数列{}n a 满足274127a a =,则{}n a 的前7项和为 .14. 34(2)(1)x x -+的展开式中2x 的系数为 .15.已知圆C 过抛物线24y x =的焦点,且圆心在此抛物线的准线上,若圆C 的圆心不在x 轴上,且与直线30x -=相切,则圆C 的半径为 .16.已知函数2,0()21,0xe xf x x x a x ⎧≤⎪=⎨-++>⎪⎩,若函数()()1g x f x ax =--有4个零点,则实数a 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知tan 2sin a B b A =.(1)求B ;(2)若b =512A π=,求ABC ∆的面积. 18. 某地区建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标,现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标问题中随机抽取3个问题,已知这6个招标问题中,甲公司可正确回答其中的4道题目,而乙公司能正确回答每道题目的概率均为23,甲、乙两家公司对每题的回答都是相互独立,互不影响的.(1)求甲、乙两家公司共答对2道题目的概率;(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?19. 如图,在三棱锥111ABC A B C -中,侧面11ACC A ⊥底面ABC ,1A AC ∆为等边三角形,1AC A B ⊥.(1)求证:AB BC =;(2)若90ABC ∠=,求1A B 与平面11BCC B 所成角的正弦值.20. 已知椭圆C :22221(0)x y a b a b +=>>的短轴长为2,且函数26516y x =-的图象与椭圆C 仅有两个公共点,过原点的直线l 与椭圆C 交于,M N 两点.(1)求椭圆C 的标准方程;(2)点P 为线段MN 的中垂线与椭圆C 的一个公共点,求PMN ∆面积的最小值,并求此时直线l 的方程. 21. 已知函数1()x f x eax -=+,a R ∈.(1)讨论函数()f x 的单调区间;(2)若[1,)x ∀∈+∞,()ln 1f x x a +≥+恒成立,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos 2sin x y αα=+⎧⎨=+⎩(α为参数),直线2C 的方程为y =,以O 为极点,以x 轴正半轴为极轴,建立极坐标系, (1)求曲线1C 和直线2C 的极坐标方程; (2)若直线2C 与曲线1C 交于,A B 两点,求11||||OA OB +. 23.选修4-5:不等式选讲 已知函数()|||3|f x x x =+-. (1)求不等式()62x f <的解集;(2)若0k >且直线5y kx k =+与函数()f x 的图象可以围成一个三角形,求k 的取值范围.试卷答案一、选择题1-5: CCABC 6-10: BADCD 11、12:BA二、填空题13. 1 14. -6 15. 14 16. (0,1)三、解答题17.(1)由ta n 2s i n a Bb A =,得s i n si n 2s i n s i n c o s BA B A B=,由于sin 0A ≠,sin 0B ≠,故有1cos 2B =, 因为0B π<<,所以3B π=.(2)因为512A π=,3B π=,所以4C π=, 又sin sin()sin cos cos sin 4A B C B C B C=+=+=, 由正弦定理得:sin sin bcB C=,解得:c =所以113sin 2244ABC S bc A ∆===. 18.(1)由题意可知,所求概率122111234242333662221()(1)(1)33315C C C C P C C C =⨯-+⨯-=. (2)设甲公司正确完成面试的题数为X ,则X 的取值分别为1,2,3,1242361(1)5C C P X C ===,2142363(2)5C C P X C ===,3042361(3)5C C P X C ===, 则X 的分布列为∴131()1232555E X =⨯+⨯+⨯=, 2221312()(12)(22)(32)5555D X =-⨯+-⨯+-⨯=设乙公司正确完成面试的题数为Y ,则Y 取值分别为0,1,2,31(0)27P Y ==,123212(1)()339P Y C ==⨯⨯=, 2213214(2)()()339P Y C ==⨯⨯=,328(3)()327P Y ===,则Y 的分布列为:∴1248()01232279927E Y =⨯+⨯+⨯+⨯=(或2(3,)3Y B ,∴2()323E Y =⨯=) 222212482()(02)(12)(22)(32)2799273D Y =-⨯+-⨯+-⨯+-⨯=(或212()3333D Y =⨯⨯=)由()()E X E Y =,()()D X D Y <可得,甲公司竞标成功的可能性更大. 19.(1)证明:取AC 的中点O ,连接1,OA OB , ∵点O 为等边1A AC ∆中边AC 的中点, ∴1AC OA ⊥,∵1AC A B ⊥,111OA A B A =,∴AC ⊥平面1OA B ,又OB ⊂平面1OA B , ∴AC OB ⊥,∵点O 为AC 的中点,∴AB BC =.(2)由(1)知,AB BC =,又90ABC ∠=,故ABC ∆是以AC 为斜边的等腰直角三角形,∵1AO AC ⊥,侧面11ACC AO ⊥底面上ABC ,1A ⊥底面ABC 以线段1,,OB OC OA 所在的直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系设2AC =,则(0,1,0)A -,1A ,(1,0,0)B ,(0,1,0)C , ∴(1,1,0)BC =-,11(0,1BB AA ==,1(1,0,A B =, 设平面11BCC B 的一个法向量0000(,,)n x y z =,则有00100n BC n BB ⎧=⎪⎨=⎪⎩,即000000x y y -+=⎧⎪⎨+=⎪⎩,令0y则0x =,01z =-,∴0(3,1)n =- 设1A B 与平面11BCC B 所成角为θ, 则01010121sin |cos ,|7||||n A B n A B n A B θ=<>==. 20.(1)由题意可知,22b =,则1b =,联立2221(1)x y a a+=>与26516y x =-,得:42221658149()0816x x a ⨯+-+= 根据椭圆C 与抛物线26515y x =-的对称性,可得221658149()0864a ⨯∆=--= ∴21656388a -=±,又1a >, ∴2a =,∴椭圆C 的标准方程为2214x y +=. (2)①当直线l 的斜率不存在时,1222PMN S b a ∆=⨯⨯=;当直线l 的斜率为0时,1222PMN S a b ∆=⨯⨯=,②当直线l 的斜率存在且不为0时,设直线l 的方程为y kx =,由2214x y y kx ⎧+=⎪⎨⎪=⎩,得2222214414x k k y k =⎪⎪+⎨⎪=⎪+⎩,∴||MN == 由题意可知线段MN 的中垂线方程为1y x k =-,由22141x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,得222224444k x k y k ⎧=⎪⎪+⎨⎪=⎪+⎩,∴||OP ==∴22222214(1)4(1)8||||(14)(4)5(1)2522PMNk k S MN OP k k k ∆++=⨯⨯=≥==++++ 即85PMN S ∆≥,当且仅当22144k k +=+,即1k =±时等号成立,此时PMN ∆的面积取得最小值85, ∵825>,∴PMN ∆的面积的最小值为85,此时直线l 的方程为y x =±.21.(1)'1()x f x ea -=+,(ⅰ)当0a ≥时,'()0f x >,函数()f x 在R 上单调递增;(ⅱ)当0a <时,令'()0f x =,则ln()1x a =-+,当'()0f x >,即ln()1x a >-+时,函数()f x 单调递增; 当'()0f x <,即ln()1x a <-+时,函数()f x 单调递减.综上,当0a ≥时,函数()f x 在R 上单调递增;当0a <时,函数()f x 的单调递增区间是(ln()1,)a -++∞,单调递减区间是(,ln()1)a -∞-+.(2)令1a =-,由(1)可知,函数1()x f x e x -=-的最小值为(1)0f =,所以10x e x --≥,即1x ex -≥.()ln 1f x x a +≥+恒成立与()ln 10f x x a +--≥恒成立等价,令()()ln 1g x f x x a =+--,即1()(1)ln 1(1)x g x e a x x x -=+-+-≥,则'11()x g x e a x-=++, ①当2a ≥-时,'111()20x g x ea x a x a a x x x-=++≥++≥+=+≥(或令11()x x e x ϕ-=+,则'121()x x e xϕ-=-在[1,)+∞上递增,∴''()(1)0x ϕϕ≥=,∴()x ϕ在[1,)+∞上递增,∴()(1)2x ϕϕ≥=,∴'()0g x ≥)∴()g x 在区间[1,)+∞上单调递增, ∴()(1)0g x g ≥=,∴()ln 1f x x a +≥+恒成立,②当2a <-时,令11()x h x ea x -=++,则21'12211()x x x e h x e x x---=-=, 当1x ≥时,'()0h x ≥,函数()h x 单调递增. 又(1)20h a =+<,11111(1)110111a h a ea a a a a a---=++≥-++=+>---, ∴存在0(1,1)x a ∈-,使得0()0h x =,故当0(1,)x x ∈时,0()()0h x h x <=,即'()0g x <,故函数()g x 在0(1,)x 上单调递减;当0(,)x x ∈+∞时,0()()0h x h x >=,即'()0g x >,故函数()g x 在0(,)x +∞上单调递增. ∴min 0()()(1)0g x g x g =<=,即[1,)x ∀∈+∞,()ln 1f x x a +≥+不恒成立, 综上所述,a 的取值范围是[2,)-+∞.22.(1)曲线1C 的普通方程为22(2)(2)1x y -+-=, 则1C 的极坐标方程为24cos 4sin 70ρρθρθ--+=,由于直线2C 过原点,且倾斜角为3π,故其极坐标为()3R πθρ=∈(或tan θ=(2)由24cos 4sin 703ρρθρθπθ⎧--+=⎪⎨=⎪⎩得:22)70ρρ-+=,故122ρρ+=,127ρρ=,∴121211||||||||||||OA OB OA OB OA OB ρρρρ+++===. 23.(1)由()62xf <,即|||3|622x x +-<, 得:3236x x ⎧≥⎪⎨⎪-<⎩或03236x ⎧<<⎪⎨⎪<⎩或0236x x ⎧≤⎪⎨⎪-+<⎩, 解得:39x -<<,∴不等式()62xf <的解集为(3,9)-. (2)作出函数23,0()3,0323,3x x f x x x x -+≤⎧⎪=<<⎨⎪-≥⎩的图象,如图所示,∵直线(5)y k x =+经过定点(5,0)A -,∴当直线(5)y k x =+经过点(0,3)B 时,35k =, ∴当直线(5)y k x =+经过点(3,3)C 时,38k =, ∴当33(,]85k ∈时,直线(5)y k x =+与函数()f x 的图象可以围成一个三角形. 24.。
2017年江西省九校联考高考数学一模试卷(理科)(解析版)
![2017年江西省九校联考高考数学一模试卷(理科)(解析版)](https://img.taocdn.com/s3/m/588cdba4960590c69ec376bf.png)
2017年江西省九校联考高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2﹣2x﹣3≤0},B={x|y=ln(2﹣x)},则A∩B=()A.(1,3) B.(1,3]C.[﹣1,2)D.(﹣1,2)2.已知复数z满足•z=3+4i,则|z|=()A.2 B.C.5 D.53.已知R上的奇函数f(x)满足:当x>0时,f(x)=x2+x﹣1,则f[f(﹣1)]=()A.﹣1 B.1 C.2 D.﹣24.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()cm3.A.4+B.4+πC.6+D.6+π5.下列命题正确的个数为()•①“∀x∈R都有x2≥0”的否定是“∃x0∈R使得x02≤0”;‚②“x≠3”是“|x|≠3”成立的充分条件;ƒ③命题“若m≤,则方程mx2+2x+2=0有实数根”的否命题为真命题.A.0 B.1 C.2 D.36.美索不达米亚平原是人类文明的发祥地之一.美索不达米亚人善于计算,他们创造了优良的计数系统,其中开平方算法是最具有代表性的.程序框图如图所示,若输入a,n,ξ的值分别为8,2,0.5,(每次运算都精确到小数点后两位)则输出结果为()A.2.81 B.2.82 C.2.83 D.2.847.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.附表:由K2=算得,K2=≈9.616参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C.有99%以上的把握认为“生育意愿与城市级别有关”D.有99%以上的把握认为“生育意愿与城市级别无关”8.若x,y满足条件,则目标函数z=x2+y2的最小值是()A.B.2 C.4 D.9.已知A(1,2),B(2,11),若直线y=(m﹣)x+1(m≠0)与线段AB相交,则实数m的取值范围是()A.[﹣2,0)∪[3,+∞)B.(﹣∞,﹣1]∪(0,6]C.[﹣2,﹣1]∪[3,6] D.[﹣2,0)∪(0,6]10.已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈(,),则sinx0的值为()A.B.C.D.11.设双曲线=1(a>0,b>0)的左焦点为F1,左顶点为A,过F1作x 轴的垂线交双曲线于P、Q两点,过P作PM垂直QA于M,过Q作QN垂直PA于N,设PM与QN的交点为B,若B到直线PQ的距离大于a+,则该双曲线的离心率取值范围是()A.(1﹣)B.(,+∞) C.(1,2)D.(2,+∞)12.若函数f(x)=[x3+3x2+9(a+6)x+6﹣a]e﹣x在区间(2,4)上存在极大值点,则实数a的取值范围是()A.(﹣∞,﹣8)B.(﹣∞,﹣7)C.(﹣8,﹣7)D.(﹣8,﹣7]二、填空题(本大题共4小题,每小题5分,共20分,请将正确答案填在答题卷相应位置)13.(1﹣)(1+x)4的展开式中含x2项的系数为.14.(2x+)dx=.15.已知半径为1的球O内切于正四面体A﹣BCD,线段MN是球O的一条动直径(M,N是直径的两端点),点P是正四面体A﹣BCD的表面上的一个动点,则的取值范围是.16.△ABC中,sin(A﹣B)=sinC﹣sinB,D是边BC的一个三等分点(靠近点B),记,则当λ取最大值时,tan∠ACD=.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.等差数列{a n}的前n项和为S n,数列{b n}是等比数列,满足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3.(1)求数列{a n}和{b n}的通项公式;(2)令c n=a n•b n,设数列{c n}的前n项和为T n,求T n.18.在如图所示的多面体ABCDEF中,四边形ABCD为正方形,底面ABFE为直角梯形,∠ABF为直角,,平面ABCD⊥平面ABFE.(1)求证:DB⊥EC;(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.19.一个正四面体的“骰子”(四个面分别标有1,2,3,4四个数字),掷一次“骰子”三个侧面的数字的和为“点数”,连续抛掷“骰子”两次.(1)设A为事件“两次掷‘骰子’的点数和为16”,求事件A发生的概率;(2)设X为两次掷“骰子”的点数之差的绝对值,求随机变量X的分布列和数学期望.20.已知椭圆C:=1(a>b>0)的离心率为,F1、F2分别是椭圆的左、右焦点,M为椭圆上除长轴端点外的任意一点,且△MF1F2的周长为4+2.(1)求椭圆C的方程;(2)过点D(0,﹣2)作直线l与椭圆C交于A、B两点,点N满足(O 为原点),求四边形OANB面积的最大值,并求此时直线l的方程.21.已知函数f(x)=e x+ax,(a∈R),其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2(1)求a的取值范围;(2)证明:;(f′(x)为f(x)的导函数)(3)设点C在函数f(x)的图象上,且△ABC为等边三角形,记,求(t﹣1)(a+)的值.[选修4-4:参数方程与坐标系]22.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为(1,2),点M的极坐标为,若直线l过点P,且倾斜角为,圆C以M为圆心,3为半径.(Ⅰ)求直线l的参数方程和圆C的极坐标方程;(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|•|PB|.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x+|(a>0)(a<0)(1)当a=2时,求不等式f(x)>3的解集(2)证明:.2017年江西省九校联考高考数学一模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2﹣2x﹣3≤0},B={x|y=ln(2﹣x)},则A∩B=()A.(1,3) B.(1,3]C.[﹣1,2)D.(﹣1,2)【考点】交集及其运算.【分析】化简集合A、B,求出A∩B即可.【解答】解:∵集合A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3}=[﹣1,3],B={x|y=ln(2﹣x)}={x|2﹣x>0}={x|x<2}=(﹣∞,2);∴A∩B=[﹣1,2).故选:C.2.已知复数z满足•z=3+4i,则|z|=()A.2 B.C.5 D.5【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:===i,复数z满足•z=3+4i,∴iz=3+4i,∴﹣i•iz=﹣i(3+4i),∴z=4﹣3i,则|z|==5.故选:D.3.已知R上的奇函数f(x)满足:当x>0时,f(x)=x2+x﹣1,则f[f(﹣1)]=()A.﹣1 B.1 C.2 D.﹣2【考点】函数奇偶性的性质.【分析】由f(x)为奇函数即可得出f(﹣1)=﹣f(1),进而得出f[f(﹣1)]=﹣f[f(1)],而根据x>0时f(x)的解析式即可求出f(1)=1,从而可求出f[f (﹣1)]的值.【解答】解:根据条件,f[f(﹣1)]=f[﹣f(1)]=﹣f[f(1)]=﹣f(1)=﹣1.故选A.4.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()cm3.A.4+B.4+πC.6+D.6+π【考点】由三视图求面积、体积.【分析】由三视图还原原图形,得到原几何体是一个半圆柱与一个直三棱柱的组合体,然后利用柱体体积公式求得答案.【解答】解:由三视图还原原几何体如图,是一个半圆柱与一个直三棱柱的组合体,半圆柱的底面半径为1,高为3;直三棱柱底面是等腰直角三角形(直角边为2),高为3.∴V=.故选:D.5.下列命题正确的个数为()•①“∀x∈R都有x2≥0”的否定是“∃x0∈R使得x02≤0”;‚②“x≠3”是“|x|≠3”成立的充分条件;ƒ③命题“若m≤,则方程mx2+2x+2=0有实数根”的否命题为真命题.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①,“∀x∈R都有x2≥0”的否定是“∃x0∈R使得x02<0”;②,当“x≠3”时“|x|=3”成立;③,当m时,△=4﹣8m<0,方程mx2+2x+2=0无实数根,【解答】解:对于•①,“∀x∈R都有x2≥0”的否定是“∃x0∈R使得x02<0”,故错;对于 ②,当“x≠3”时“|x|=3”成立,故错;对于 ③,命题“若m≤,则方程mx2+2x+2=0有实数根”的否命题为:“若方程mx2+2x+2=0无实数根”,则“m>“,当m时,△=4﹣8m<0,方程mx2+2x+2=0无实数根,故正确,故选:B6.美索不达米亚平原是人类文明的发祥地之一.美索不达米亚人善于计算,他们创造了优良的计数系统,其中开平方算法是最具有代表性的.程序框图如图所示,若输入a,n,ξ的值分别为8,2,0.5,(每次运算都精确到小数点后两位)则输出结果为()A.2.81 B.2.82 C.2.83 D.2.84【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算n值并输出,模拟程序的运行过程,即可得到答案.【解答】解:模拟程序的运行,可得a=8,n=2,ξ=0.5m=4,n=3不满足条件|m﹣n|<0.5,m=2.67,n=2.84满足条件|m﹣n|<0.5,退出循环,输出n的值为2.84.故选:D.7.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.附表:由K2=算得,K2=≈9.616参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C.有99%以上的把握认为“生育意愿与城市级别有关”D.有99%以上的把握认为“生育意愿与城市级别无关”【考点】独立性检验.【分析】根据K2=≈9.616>6.635,有99%以上的把握认为“生育意愿与城市级别有关”,即可求得答案.【解答】解:根据列联表所给的数据,代入随机变量的观测值公式,K2=≈9.616>6.635,∴有99%以上的把握认为“生育意愿与城市级别有关”,故选:C.8.若x,y满足条件,则目标函数z=x2+y2的最小值是()A.B.2 C.4 D.【考点】简单线性规划.【分析】由约束条件作出可行域,再由z=x2+y2的几何意义,即可行域内的动点与原点距离的平方求解.【解答】解:由约束条件作出可行域如图,z=x2+y2的几何意义为可行域内的动点与原点距离的平方,∵原点O到直线x+y﹣2=0的距离d=,∴z=x2+y2的最小值是2.故选:B.9.已知A(1,2),B(2,11),若直线y=(m﹣)x+1(m≠0)与线段AB相交,则实数m的取值范围是()A.[﹣2,0)∪[3,+∞)B.(﹣∞,﹣1]∪(0,6]C.[﹣2,﹣1]∪[3,6] D.[﹣2,0)∪(0,6]【考点】两条直线的交点坐标;直线的斜率.【分析】由题意知,两点A,B分布在直线的两侧,利用直线两侧的点的坐标代入直线的方程中的左式,得到的结果为异号,得到不等式,解之即得m的取值范围【解答】解:由题意得:两点A(1,2),B(2,11)分布在直线y=(m﹣)x+1(m≠0)的两侧,∴(m﹣﹣2+1)[2(m﹣)﹣11+1]≤0,解得:﹣2≤m≤﹣1或3≤m≤6,故选:C.10.已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈(,),则sinx0的值为()A .B .C .D .【考点】由y=Asin (ωx +φ)的部分图象确定其解析式.【分析】由函数的最值求出A ,由周期求出ω,由五点法作图求出φ的值,求出函数的解析式.再由f (x 0)=3求出sin (x 0+)的值,可得cos (x 0+)的值,再由两角差的正弦公式求得sinx 0 =sin [(x 0+ )﹣]的值.【解答】解:由函数的图象可得A=5,且 =,解得ω=1再由五点法作图可得 1•+φ=,解得 φ=.故函数的解析式为 f (x )=5sin (x + ).再由f (x 0)=3,x 0∈(,),可得 5sin (1•x 0+)=3,解得 sin (x 0+ )=,故有cos (x 0+ )=﹣,sinx 0 =sin [(x 0+ )﹣]=sin (x 0+ )cos﹣cos (x 0+)sin =﹣(﹣)=.故选A .11.设双曲线=1(a >0,b >0)的左焦点为F 1,左顶点为A ,过F 1作x轴的垂线交双曲线于P 、Q 两点,过P 作PM 垂直QA 于M ,过Q 作QN 垂直PA于N ,设PM 与QN 的交点为B ,若B 到直线PQ 的距离大于a +,则该双曲线的离心率取值范围是()A.(1﹣)B.(,+∞) C.(1,2)D.(2,+∞)【考点】双曲线的简单性质.【分析】根据双曲线的对称性,则B(x,0),由k BP•k AQ=﹣1,求得c+x=﹣,由B到直线PQ的距离d=x+c,由丨﹣丨>a+,即可求得>1,利用双曲线的离心率公式即可求得e的取值范围.【解答】解:由题意可知:A(﹣a,0),P(﹣c,),Q(﹣c,﹣),由双曲线的对称性可知B在x轴上,设B(x,0),则BP⊥AQ,则k BP•k AQ=﹣1,∴•=﹣1,则c+x=﹣,由B到直线PQ的距离d=x+c,∴丨﹣丨>a+,则>c2﹣a2=b2,∴>1,由椭圆的离心率e==>,双曲线的离心率取值范围(,+∞),故选B.12.若函数f(x)=[x3+3x2+9(a+6)x+6﹣a]e﹣x在区间(2,4)上存在极大值点,则实数a的取值范围是()A.(﹣∞,﹣8)B.(﹣∞,﹣7)C.(﹣8,﹣7)D.(﹣8,﹣7]【考点】利用导数研究函数的极值.【分析】f′(x)=[﹣x3﹣(9a+48)x+10a+48]e﹣x,令g(x)=﹣x3﹣(9a+48)x+10a+48,则g(2)>0,g(4)<0,即可求出实数a的取值范围【解答】解:f′(x)=[﹣x3﹣(9a+48)x+10a+48]e﹣x令g(x)=﹣x3﹣(9a+48)x+10a+48,则g(2)>0,g(4)<0,∴﹣8<a<﹣7∴实数a的取值范围为(﹣8,﹣7).故选C.二、填空题(本大题共4小题,每小题5分,共20分,请将正确答案填在答题卷相应位置)13.(1﹣)(1+x)4的展开式中含x2项的系数为2.【考点】二项式系数的性质.【分析】根据(1+x)4的展开式通项公式,分析(1﹣)(1+x)4的展开式中含x2项是如何构成的,从而求出结果.【解答】解:(1﹣)(1+x)4的展开式中,=•x r,(r=0,1,2,3,4).设(1+x)4的通项公式为T r+1则(1﹣)(1+x)4的展开式中含x2项的系数为﹣=2.故答案为:2.14.(2x+)dx=1+.【考点】定积分.【分析】利用定积分的运算性质,根据定积分的几何意义,即可求得答案,【解答】解:(2x+)dx=2xdx+dx,由定积分的几何意义可知:dx表示单位圆面积的,即dx=,2xdx=x2=1,∴(2x+)dx=1+,故答案为:1+.15.已知半径为1的球O内切于正四面体A﹣BCD,线段MN是球O的一条动直径(M,N是直径的两端点),点P是正四面体A﹣BCD的表面上的一个动点,则的取值范围是[0,8] .【考点】向量在几何中的应用.【分析】运用向量的加减运算和数量积的性质:向量的平方即为模的平方,讨论P位于切点E和顶点时分别取得最值,即可得到所求取值范围.【解答】解:由题意M,N是直径的两端点,可得+=,•=﹣1,则=(+)•(+)=2+•(+)+•=2+0﹣1=2﹣1,即求正四面体表面上的动点P到O的距离的范围.当P位于E(切点)时,OP取得最小值1;当P位于A处时,OP即为正四面体外接球半径最大即为3.设正四面体的边长为a,由O为正四面体的中心,可得直角三角形ABE中,AE=a,BE=a,OE=a,AO=a,综上可得2﹣1的最小值为1﹣1=0,最大值为9﹣1=8.则的取值范围是[0,8].故答案为:[0,8].16.△ABC中,sin(A﹣B)=sinC﹣sinB,D是边BC的一个三等分点(靠近点B),记,则当λ取最大值时,tan∠ACD=2+.【考点】正弦定理.【分析】由sin(A﹣B)=sinC﹣sinB,得sinB=2cosAsinB,cosA=,可得:A=,由已知得,利用和a2=b2+c2﹣bc可得λ取最值时,a、b、c间的数量关系.【解答】解:∵sin(A﹣B)=sinC﹣sinB,∴sinAcosB﹣cosAsinB=sinC﹣sinB=sinAcosB+cosAsinB﹣sinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,由A∈(0,π),可得:A=,在△ADB中,由正弦定理可将,变形为则,∵=∴即a2λ2=4c2+b2+2bc…①在△ACB中,由余弦定理得:a2=b2+c2﹣bc…②由①②得令,,f′(t)=,令f′(t)=0,得t=,即时,λ最大.结合②可得b=,a=c在△ACB中,由正弦定理得⇒,⇒tanC=2+故答案为:2+.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.等差数列{a n}的前n项和为S n,数列{b n}是等比数列,满足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3.(1)求数列{a n}和{b n}的通项公式;(2)令c n=a n•b n,设数列{c n}的前n项和为T n,求T n.【考点】数列的求和;等差数列与等比数列的综合.【分析】(1)利用等差数列与等比数列的通项公式即可得出.(2)利用“错位相减法”、等比数列的求和公式即可得出.【解答】解:(1)设数列{a n}的公差为d,数列{b n}的公比为q,则由,得,解得,所以a n=3+2(n﹣1)=2n+1,.…(2)由(1)可知c n=(2n+1)•2n﹣1.∴T n=3+5×2+7×22+…+(2n+1)•2n﹣1,…①…②①﹣②得:﹣T n=3+2×(2+22+…+2n﹣1)﹣(2n+1)•2n=1+2+22+…+2n﹣(2n+1)•2n=2n+1﹣1﹣(2n+1)•2n=(1﹣2n)•2n﹣1,∴T n=(2n﹣1)•2n+1.…18.在如图所示的多面体ABCDEF中,四边形ABCD为正方形,底面ABFE为直角梯形,∠ABF为直角,,平面ABCD⊥平面ABFE.(1)求证:DB⊥EC;(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的性质.【分析】(1)推导出AE⊥AB,BF⊥AB,从而BF⊥BC,设AE=t,以BA,BF,BC 所在的直线分别为x,y,z轴坐标系,利用向量法能证明DB⊥EC.(2)求出平面BEF的一个法向量和平面CEF的一个法向量,利用向量法能求出二面角C﹣EF﹣B的余弦值.【解答】证明:(1)∵底面ABFE为直角梯形,AE∥BF,∠EAB=90°,∴AE⊥AB,BF⊥AB,∵平面ABCD⊥平面ABFE,平面ABCD∩平面ABFE=AB,∴AE⊥平面ABCD.BF⊥平面ABCD,∴BF⊥BC,设AE=t,以BA,BF,BC所在的直线分别为x,y,z轴建立如图坐标系,则B(0,0,0),C(0,0,1),D(1,0,1),E(1,t,0)∵=0,∴DB⊥EC.…解:(2)由(1)知是平面BEF的一个法向量,设=(x,y,z)是平面CEF的一个法向量,AE=AB=1,E(1,1,0),F(0,2,0),∴=(1,1,﹣1),=(0,2,﹣1),则,取z=2,=(1,1,2),∴cos<>==,即二面角C﹣EF﹣B的余弦值为.19.一个正四面体的“骰子”(四个面分别标有1,2,3,4四个数字),掷一次“骰子”三个侧面的数字的和为“点数”,连续抛掷“骰子”两次.(1)设A为事件“两次掷‘骰子’的点数和为16”,求事件A发生的概率;(2)设X为两次掷“骰子”的点数之差的绝对值,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)两次点数之和为16,即两次的底面数字为:(1,3),(2,2),(3,1),可得P(A).(2)X的可能取值为0,1,2,3,利用相互独立与古典概率计算公式即可得出.【解答】解:(1)两次点数之和为16,即两次的底面数字为:(1,3),(2,2),(3,1),P(A)==.…(2)X的可能取值为0,1,2,3且P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.…则X的分布列为E(X)=0×+1×+2×+3×=.…20.已知椭圆C:=1(a>b>0)的离心率为,F1、F2分别是椭圆的左、右焦点,M为椭圆上除长轴端点外的任意一点,且△MF1F2的周长为4+2.(1)求椭圆C的方程;(2)过点D(0,﹣2)作直线l与椭圆C交于A、B两点,点N满足(O 为原点),求四边形OANB面积的最大值,并求此时直线l的方程.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(1)利用椭圆的离心率公式及焦点三角形的周长公式,求得a和c的值,b2=a2﹣c2=1,即可求得椭圆方程;(2)确定四边形OANB为平行四边形,则S OANB=2S△OAB,表示出面积,利用基本不等式,即可求得最大值,从而可得直线l的方程.【解答】解:(1)由离心率为e==,①则△MF1F2的周长l=2a+2c=4+2,则a+c=2+,②则a=2,c=,则b2=a2﹣c2=1,∴椭圆C的方程;(2)由,则四边形OANB为平行四边形,当直线l的斜率不存在时显然不符合题意;当直线l的斜率存在时,设直线l的方程为y=kx﹣2,l与椭圆交于A(x1,y1),B(x2,y2)两点,由得(1+4k2)x2﹣16kx+12=0…由△=162k2﹣48(1+4k2)>0,得k2>∴x1+x2=,x1x2=…=丨OD丨•丨x1﹣x2丨=丨x1﹣x2丨,∵S△OAB=2丨x1﹣x2丨=2,∴四边形OANB面积S=2S△OAB=2,=2,=8,…令4k2﹣3=t,则4k2=t+3(由上可知t>0),S=8=8≤8=8=2,当且仅当t=4,即k2=时取等号;∴当k=±,平行四边形OANB面积的最大值为2,此时直线l的方程为y=±x﹣2.…21.已知函数f(x)=e x+ax,(a∈R),其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2(1)求a的取值范围;(2)证明:;(f′(x)为f(x)的导函数)(3)设点C在函数f(x)的图象上,且△ABC为等边三角形,记,求(t﹣1)(a+)的值.【考点】利用导数研究函数的单调性.【分析】(1)讨论a的符号,判断f(x)的单调性,计算f(x)的极值,根据零点个数得出f(x)的极小值为负数,列出不等式解出a;(2)计算f′(),根据函数单调性判断f′()的符号,根据f′(x)的单调性得出结论;(3)用x1,x2表示出P点坐标,根据等边三角形的性质列方程化简即可求出t和a的关系,再计算(t﹣1)(a+)的值.【解答】解:(1)∵f(x)=e x+ax,∴f'(x)=e x+a,若a≥0,则f'(x)>0,则函数f(x)在R上单调递增,这与题设矛盾.∴a<0,令f′(x)>0得x>ln(﹣a),令f′(x)<0得x<ln(﹣a),∴f(x)在(﹣∞,ln(﹣a))上单调递减,在(ln(﹣a),+∞)上单调递增,∴f(x)有两个零点,∴f min(x)=f(ln(﹣a))=﹣a+aln(﹣a),∴﹣a+aln(﹣a)<0,解得a<﹣e.(2)证明:∵x1,x2是f(x)的零点,∴,两式相减得:a=﹣.记=s,则f′()=e﹣= [2s﹣(e s﹣e﹣s)],设g(s)=2s﹣(e s﹣e﹣s),则g′(s)=2﹣(e s+e﹣s)<0,∴g(s)是减函数,∴g(s)<g(0)=0,又>0,∴f′()<0.∵f′(x)=e x+a是增函数,∴f′()<f′()<0.(3)由得,∴e=﹣a,设P(x0,y0),在等边三角形ABC中,易知,y0=f(x0)<0,由等边三角形性质知y0=﹣,∴y0+=0,即,∴﹣a+(x1+x2)+=0,∵x1>0,∴,∴﹣at+(t2+1)+(t2﹣1)=0,即(a+)t2﹣2at+a﹣=0,∴[(a+)t+](t﹣1)=0,∵t>1,∴(a+)t+=0,∴,∴.[选修4-4:参数方程与坐标系]22.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为(1,2),点M的极坐标为,若直线l过点P,且倾斜角为,圆C以M为圆心,3为半径.(Ⅰ)求直线l的参数方程和圆C的极坐标方程;(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|•|PB|.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)根据题意直接求直线l的参数方程和圆C的极坐标方程.(II)把代入x2+(y﹣3)2=9,利用参数的几何意义,即可得出结论.【解答】解:(Ⅰ)直线l的参数方程为(t为参数),(答案不唯一,可酌情给分)圆的极坐标方程为ρ=6sinθ.(Ⅱ)把代入x2+(y﹣3)2=9,得,设点A,B对应的参数分别为t1,t2,∴t1t2=﹣7,则|PA|=|t1|,|PB|=|t2|,∴|PA|•|PB|=7.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x+|(a>0)(a<0)(1)当a=2时,求不等式f(x)>3的解集(2)证明:.【考点】不等式的证明;绝对值不等式的解法.【分析】(1)分类讨论,解不等式,即可得出结论;(2)f(m)+f(﹣)=|m+a|+|m+|+|﹣+a|+|﹣+|,利用三角不等式,及基本不等式即可证明结论.【解答】解:(1)当a=2时,f(x)=|x+2|+|x+|,原不等式等价于或或解得:x<﹣或x∈∅或,所以不等式的解集为{x|x<﹣或…(2)f(m)+f(﹣)=|m+a|+|m+|+|﹣+a|+|﹣+|=…2017年4月4日。
【江西省南昌】2017届高三第一次模拟数学年(理科)试题
![【江西省南昌】2017届高三第一次模拟数学年(理科)试题](https://img.taocdn.com/s3/m/a0e5b425581b6bd97f19ea39.png)
a3 23
an 2n
n2
n ……①,
∴当 n
2
时,
a1 2
a2 22
a3 23
an1 2n1
(n
1)2
n 1②
①-② 得
an 2n
2n(n
2) ,∴ an
n
2n1(n 2) .
又∵当 n
1 时,
a1 2
11,∴ a1
4 ,∴ an
n
sin cosn, DE n DE n DE
4 3 3 3
3
3
3
16 1 3 3 3 1 7
99
∴直线 DE 与平面 PBC 所成角的正弦值 3 . 7
20.【答案】(Ⅰ)设直线 l 上任意一点 P(x, y) 关于直线 y x 1对称点为 P0 (x0 , y0 )
设 h(x) g'(x) ex 2x 6 ,则 h'(x) ex 2 ,
∵1 x m ,有 h'(x) 0 ,∴ h(x) 在区间1, m 上是减函数,
又∵ h(1) 4 e1 0, h(2) 2 e2 0, h(3) e3 0 ,
1
1)x12
8kx1
0
,
∴ xM
8k ,∴ 4k 2 1
yM
1 4k 2
.
4k 2 1
同理: xN
8k1 4k12
1
8k 4 k2
,
yN
1 4k12 4k12 1
2017届江西省南昌市高考数学适应性试卷Word版含解析
![2017届江西省南昌市高考数学适应性试卷Word版含解析](https://img.taocdn.com/s3/m/71f1fb2687c24028915fc395.png)
2016年江西省赣中南五校联考高考数学适应性试卷一、选择题(每空5分,共60分)1.已知y=f(x)是奇函数,当x<0时,f(x)=x2+ax,且f(3)=6,则a的值为()A.5 B.1 C.﹣1 D.﹣32.在下列区间中,函数f(x)=3x﹣x2有零点的区间是()A.[0,1]B.[1,2]C.[﹣2,﹣1]D.[﹣1,0]3.某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π4.直线(2m+1)x+(m+1)y﹣7m﹣4=0过定点()A.(1,﹣3)B.(4,3)C.(3,1)D.(2,3)5.若直线2ax+by﹣2=0(a,b∈R+)平分圆x2+y2﹣2x﹣4y﹣6=0,则+的最小值是()A.1 B.5 C.4D.3+26.以下命题:①在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直;②已知平面α,β的法向量分别为,则α⊥β⇔=0;③两条异面直线所成的角为θ,则0≤θ≤;④直线与平面所成的角为φ,则0≤φ≤.其中正确的命题是()A.①②③B.②③④C.①②④D.①③④7.公差不为零的等差数列{a n}的前n项和为S n.若a4是a3与a7的等比中项,S8=32,则S10等于()A.18 B.24 C.60 D.908.对于任意实数a,b,c,d,以下四个命题中①ac2>bc2,则a>b;②若a>b,c>d,则a+c>b+d;③若a>b,c>d,则ac>bd;④a>b,则>.其中正确的有()A.1个B.2个C.3个D.4个9.设非零向量、、满足,则向量与向量的夹角为()A.150°B.120°C.60°D.30°10.已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i11.在△ABC中,角A,B,C的对边分别是a,b,c,且A=2B,则等于()A.B.C.D.12.函数f(x)=x3+4x+5的图象在x=1处的切线在x轴上的截距为()A.10 B.5 C.﹣1 D.二、填空题(每空4分,共20分)13.A={(x,y)|y=2x+5},B={(x,y)|y=1﹣2x},则A∩B=.14.如图是一个算法流程图,则输出的n的值是.15.函数的值域为.16.已知实数满足,则的取值范围是.17.已知长方形ABCD中,AB=4,BC=1,M为AB的中点,则在此长方形内随机取一点P,P与M的距离小于1的概率为.三、综合题18.已知函数f(x)=2cos2x+cos(2x+).(1)若f(α)=+1,0<a<,求sin2α的值;(2)在锐角△ABC中,a,b,c分别是角A,B,C的对边;若f(A)=﹣,c=3,△ABC的面积S△ABC=3,求a的值.19.已知正四棱柱ABCD﹣A1B1C1D1.AB=1,AA1=2,点E为CC1中点,点F为BD1中点.(1)证明EF为BD1与CC1的公垂线;(2)求点D1到面BDE的距离.20.从某学校高三年级共800名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.(1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;(2)求第六组、第七组的频率并补充完整频率分布直方图;(3)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为x、y,求满足“|x﹣y|≤5”的事件的概率.21.如图,P是抛物线C:上横坐标大于零的一点,直线l过点P并与抛物线C在点P处的切线垂直,直线l与抛物线C相交于另一点Q.(1)当点P的横坐标为2时,求直线l的方程;(2)若,求过点P,Q,O的圆的方程.22.设函数f(x)=lnx﹣ax,a∈R.(1)当x=1时,函数f(x)取得极值,求a的值;(2)当0<a<时,求函数f(x)在区间[1,2]上的最大值;(3)当a=﹣1时,关于x的方程2mf(x)=x2(m>0)有唯一实数解,求实数m的值.选做题:请考生在第23/24/25三题中任选一题作答.如果多做,则按所做的第一题计分.作答前请标明题号.[选修4-1:证明选讲]23.在△ABC中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D.(1)求证:;(2)若AC=3,求APAD的值.[选修4-4:坐标系与参数方程]24.在直角坐标系xOy中,曲线C1的参数方程为为参数),P为C1上的动点,Q为线段OP的中点.(Ⅰ)求点Q的轨迹C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴(两坐标系取相同的长度单位)的极坐标系中,N为曲线ρ=2sinθ上的动点,M为C2与x轴的交点,求|MN|的最大值.[选修4-5:不等式选讲]25.关于x的不等式|x﹣1|+|x+m|>3的解集为R,求实数m的取值范围.2016年江西省赣中南五校联考高考数学适应性试卷参考答案与试题解析一、选择题(每空5分,共60分)1.已知y=f(x)是奇函数,当x<0时,f(x)=x2+ax,且f(3)=6,则a的值为()A.5 B.1 C.﹣1 D.﹣3【考点】函数奇偶性的性质.【专题】计算题;函数的性质及应用.【分析】推出f(﹣3)的值代入函数表达式可得a.【解答】解:∵y=f(x)是奇函数,且f(3)=6,∴f(﹣3)=﹣6,∴9﹣3a=﹣6.解得a=5.故选A.【点评】考查了奇函数的性质,属于基础题.2.在下列区间中,函数f(x)=3x﹣x2有零点的区间是()A.[0,1]B.[1,2]C.[﹣2,﹣1]D.[﹣1,0]【考点】函数零点的判定定理.【专题】计算题.【分析】根据实根存在性定理,在四个选项中分别作出区间两个端点的对应函数值,检验是否符合两个函数值的乘积小于零,当乘积小于零时,存在实根.【解答】解:∵f(0)=1,f(1)=2,∴f(0)f(1)>0,∵f(2)=5,f(1)=2∴f(2)f(1)>0,∵f(﹣2)=,f(﹣1)=,∴f(﹣2)f(﹣1)>0,∵f(0)=1,f(﹣1)=,∴f(0)f(﹣1)<0,总上可知只有(﹣1,0)符合实根存在的条件,故选D.【点评】本题考查实根存在的判定定理,是一个基础题,函数的零点是一个新加的内容,考查的机会比较大,题目出现时应用原理比较简单,是一个必得分题目.3.某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】由三视图求面积、体积.【专题】压轴题;图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力4.直线(2m+1)x+(m+1)y﹣7m﹣4=0过定点()A.(1,﹣3)B.(4,3)C.(3,1)D.(2,3)【考点】恒过定点的直线.【专题】计算题;转化思想;综合法;直线与圆.【分析】直线方程整理后,列出关于x与y的方程组,求出方程组的解得到x与y的值,即可确定出直线过的定点.【解答】解:直线方程整理得:2mx+x+my+y﹣7m﹣4=0,即(2x+y﹣7)m+(x+y﹣4)=0,∴,解得:,则直线过定点(3,1),故选:C.【点评】此题考查了恒过定点的直线,将直线方程就行适当的变形是解本题的关键.5.若直线2ax+by﹣2=0(a,b∈R+)平分圆x2+y2﹣2x﹣4y﹣6=0,则+的最小值是()A.1 B.5 C.4D.3+2【考点】直线与圆的位置关系.【专题】不等式的解法及应用;直线与圆.【分析】求出圆心,根据直线平分圆,得到直线过圆心,得到a,b的关系,利用基本不等式即可得到结论.【解答】解:圆的标准方程为(x﹣1)2+(y﹣2)2=11,即圆心为(1,2),∵直线2ax+by﹣2=0(a,b∈R+)平分圆x2+y2﹣2x﹣4y﹣6=0,∴直线过圆心,即2a+2b﹣2=0,∴a+b=1,则+=(+)(a+b)=2+1+,当且仅当,即a=时取等号,故+的最小值是3+,故选:D.【点评】本题主要考查基本不等式的应用,利用直线和圆的位置关系得到a+b=1是解决本题的关键.6.以下命题:①在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直;②已知平面α,β的法向量分别为,则α⊥β⇔=0;③两条异面直线所成的角为θ,则0≤θ≤;④直线与平面所成的角为φ,则0≤φ≤.其中正确的命题是()A.①②③B.②③④C.①②④D.①③④【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】①根据三垂线定理可知正确;②利用面面垂直的判定与性质定理可得α⊥β⇔=0;③利用异面直线所成的角定义可得:0<θ≤;④利用线面角的范围即可判断出正误.【解答】解:①在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直,根据三垂线定理可知正确;②已知平面α,β的法向量分别为,则α⊥β⇔=0,正确;③两条异面直线所成的角为θ,则0<θ≤,因此不正确;④直线与平面所成的角为φ,则0≤φ≤,正确.其中正确的命题是①②④.【点评】本题考查了三垂线定理、空间角的范围、面面垂直与法向量的关系,考查了推理能力与理解能力,属于基础题.7.公差不为零的等差数列{a n}的前n项和为S n.若a4是a3与a7的等比中项,S8=32,则S10等于()A.18 B.24 C.60 D.90【考点】等差数列的前n项和;等差数列的通项公式.【专题】计算题.【分析】由等比中项的定义可得a42=a3a7,根据等差数列的通项公式及前n项和公式,列方程解出a1和d,进而求出s10.【解答】解:∵a4是a3与a7的等比中项,∴a42=a3a7,即(a1+3d)2=(a1+2d)(a1+6d),整理得2a1+3d=0,①又∵,整理得2a1+7d=8,②由①②联立,解得d=2,a1=﹣3,∴,故选:C.【点评】本题考查了等差数列的通项公式、前n项和公式和等比中项的定义,比较简单.8.对于任意实数a,b,c,d,以下四个命题中①ac2>bc2,则a>b;②若a>b,c>d,则a+c>b+d;③若a>b,c>d,则ac>bd;④a>b,则>.其中正确的有()A.1个B.2个C.3个D.4个【考点】不等式的基本性质.【专题】不等式的解法及应用.【分析】由不等式的性质,逐个选项验证可得.【解答】解:选项①ac2>bc2,则a>b正确,由不等式的性质可得;选项②若a>b,c>d,则a+c>b+d正确,由不等式的可加性可得;选项③若a>b,c>d,则ac>bd错误,需满足abcd均为正数才可以;选项④a>b,则>错误,比如﹣1>﹣2,但<.故选:B【点评】本题考查不等式的性质,属基础题.9.设非零向量、、满足,则向量与向量的夹角为()A.150°B.120°C.60°D.30°【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】由+=可得﹣=,两边平方,结合向量的数量积的性质和定义,即可得到所求夹角.【解答】解:设||=||=||=t,由+=可得﹣=,平方可得,(﹣)2=2,即有||2+||2﹣2=||2,即为2=||2=t2,即有2t2cos<,>=t2,即为cos<,>=,则向量与向量的夹角为60°.故选:C.【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于中档题.10.已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法法则,求得z的值.【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.11.在△ABC中,角A,B,C的对边分别是a,b,c,且A=2B,则等于()A.B.C.D.【考点】正弦定理.【专题】解三角形.【分析】由已知及三角形内角和定理,诱导公式可得===,再结合正弦定理即可得解.【解答】解:∵A+B+C=π,A=2B,∴===.再结合正弦定理得:.故选:D.【点评】本题主要考查了三角形内角和定理,诱导公式,正弦定理的应用,熟练掌握相关定理是解题的关键,属于基础题.12.函数f(x)=x3+4x+5的图象在x=1处的切线在x轴上的截距为()A.10 B.5 C.﹣1 D.【考点】导数的几何意义.【专题】计算题.【分析】由导函数的几何意义可知函数图象在切点处的切线的斜率值即为其点的导函数值,由此求得切线的斜率值,再根据x=1求得切点的坐标,最后结合直线的方程求出切线在x轴上的截距即得.【解答】解:∵f(x)=x3+4x+5,∴f′(x)=3x2+4,∴f′(1)=7,即切线的斜率为7,又f(1)=10,故切点坐标(1,10),∴切线的方程为:y﹣10=7(x﹣1),当y=0时,x=﹣,切线在x轴上的截距为﹣,故选D.【点评】本小题主要考查导数的几何意义、直线方程的概念、直线在坐标轴上的截距等基础知识,属于基础题.二、填空题(每空4分,共20分)13.A={(x,y)|y=2x+5},B={(x,y)|y=1﹣2x},则A∩B={(﹣1,3)}.【考点】交集及其运算.【专题】计算题.【分析】联立A与B中两方程,求出方程组的解即可确定出两集合的交集.【解答】解:由A={(x,y)|y=2x+5},B={(x,y)|y=1﹣2x},联立得:,解得:,则A∩B={(﹣1,3)}.故答案为:{(﹣1,3)}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.14.如图是一个算法流程图,则输出的n的值是5.【考点】程序框图.【专题】算法和程序框图.【分析】算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.【解答】解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.15.函数的值域为[,+∞).【考点】函数的值域.【专题】函数思想;综合法;函数的性质及应用.【分析】可得函数的定义域为[,+∞),函数单调递增,进而可得函数的最小值,可得值域.【解答】解:由2x﹣1≥0可得x≥,∴函数的定义域为:[,+∞),又可得函数f(x)=+x在[,+∞)上单调递增,∴当x=时,函数取最小值f()=,∴函数f(x)的值域为:[,+∞),故答案为:[,+∞).【点评】本题考查函数的值域,得出函数的单调性是解决问题的关键,属基础题.16.已知实数满足,则的取值范围是.【考点】简单线性规划.【专题】计算题;数形结合.【分析】本题考查的知识点是简单线性规划的应用,我们先画出满足约束条件的可行域,然后分析的几何意义,分析可行域内点的情况,即可得到的取值范围.【解答】解:满足约束条件的可行域,如下图示:∵表示可行域内任一点与原点的连线的低利率故当x=3,y=1时,有最小值;故当x=1,y=2时,有最大值2;故的取值范围为:[,2];故答案为:[,2]【点评】平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.17.已知长方形ABCD中,AB=4,BC=1,M为AB的中点,则在此长方形内随机取一点P,P与M的距离小于1的概率为.【考点】几何概型.【专题】计算题;规律型;数形结合;转化法;概率与统计.【分析】本题利用几何概型解决,这里的区域平面图形的面积.欲求取到的点P到M的距离大于1的概率,只须求出圆外的面积与矩形的面积之比即可.【解答】解:根据几何概型得:取到的点到M的距离小1的概率:p====.故答案为:.【点评】本题主要考查几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.三、综合题18.已知函数f(x)=2cos2x+cos(2x+).(1)若f(α)=+1,0<a<,求sin2α的值;(2)在锐角△ABC中,a,b,c分别是角A,B,C的对边;若f(A)=﹣,c=3,△ABC的面积S△ABC=3,求a的值.【考点】余弦定理;三角函数中的恒等变换应用;正弦定理.【专题】三角函数的求值.【分析】(1)化简可得f(x)=cos(2x+)+1,由题意易得cos(2α+)=,进而可得sin(2α+)=,而sin2α=sin(2α+﹣),代入两角差的正弦公式计算可得;(2)由(1)易得cos(2A+)=﹣,结合A的范围可得A=,再由面积公式可得b=4,由余弦定理可得.【解答】解:(1)化简可得f(x)=2cos2x+cos(2x+)=1+cos2x+cos2x﹣sin2x=cos2x﹣sin2x+1=cos(2x+)+1,∴f(α)=cos(2α+)+1=+1,∴cos(2α+)=,∵0<α<,∴0<2α+<,∴sin(2α+)==,∴(2)∵f(x)=cos(2x+)+1,∴f(A)=cos(2A+)+1=﹣,∴cos(2A+)=﹣,又∵A∈(0,),∴2A+∈(,),∴2A+=,解得A=又∵c=3,S△ABC=bcsinA=3,∴b=4由余弦定理得a2=b2+c2﹣2bccosA=13,∴a=【点评】本题考查余弦定理,涉及两角和与差的三角函数公式和三角形的面积公式,属基础题.19.已知正四棱柱ABCD﹣A1B1C1D1.AB=1,AA1=2,点E为CC1中点,点F为BD1中点.(1)证明EF为BD1与CC1的公垂线;(2)求点D1到面BDE的距离.【考点】点、线、面间的距离计算;棱柱的结构特征.【专题】计算题;证明题.【分析】(1)欲证明EF 为BD 1与CC 1的公垂线,只须证明EF 分别与为BD 1与CC 1垂直即可,可由四边形EFMC 是矩形→EF ⊥CC 1.由EF ⊥面DBD 1→EF ⊥BD 1.(2)欲求点D 1到面BDE 的距离,将距离看成是三棱锥的高,利用等体积法:V E ﹣DBD1=V D1﹣DBE.求解即得. 【解答】解:(1)取BD 中点M .连接MC ,FM . ∵F 为BD 1中点,∴FM ∥D 1D 且FM=D 1D . 又EC CC 1且EC ⊥MC , ∴四边形EFMC 是矩形∴EF ⊥CC 1.又FM ⊥面DBD 1. ∴EF ⊥面DBD1.∵BD 1⊂面DBD 1.∴EF ⊥BD 1. 故EF 为BD 1与CC 1的公垂线.(Ⅱ)解:连接ED 1,有V E ﹣DBD1=V D1﹣DBE . 由(Ⅰ)知EF ⊥面DBD 1, 设点D 1到面BDE 的距离为d .则.∵AA 1=2,AB=1.∴,,∴.∴故点D1到平面DBE的距离为.【点评】本小题主要考查线面关系和四棱柱等基础知识,考查空间想象能力和推理能力.20.从某学校高三年级共800名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.(1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;(2)求第六组、第七组的频率并补充完整频率分布直方图;(3)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为x、y,求满足“|x﹣y|≤5”的事件的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【专题】概率与统计.【分析】(1)由频率分布直方图前五组频率为0.82,从而后三组频率为0.18,由此能求出这所学校高三年级全体男生身高在180cm以上(含180cm)的人数.(2)由频率分布直方图得第八组频率为0.04,人数为2,设第六组人数为m,则第七组人数为9﹣2﹣m=7﹣m,从而求出第六组人数为4,第七组人数为3,由此能求出其完整的频率分布直方图.(3)由(2)知身高在[180,185)内的人数为4,身高在[190,195]内的人数为2,由此利用列举法能求出事件“|x﹣y|≤5”的概率.【解答】解:(1)由频率分布直方图得:前五组频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,后三组频率为1﹣0.82=0.18,人数为0.18×50=9,∴这所学校高三年级全体男生身高在180cm以上(含180cm)的人数为800×0.18=144.….(3分)(2)由频率分布直方图得第八组频率为0.008×5=0.04,人数为0.04×50=2,设第六组人数为m,则第七组人数为9﹣2﹣m=7﹣m,又m+2=2(7﹣m),解得m=4,所以第六组人数为4,第七组人数为3,频率分别等于0.08,0.06.分别等于0.016,0.012.其完整的频率分布直方图如图.…(7分)(3)由(2)知身高在[180,185)内的人数为4,设为a、b、c、d,身高在[190,195]内的人数为2,设为A、B,若x,y∈[180,185)时,有ab、ac、ad、bc、bd、cd共6种情况;若x,y∈[190,195]时,有AB共1种情况;若x,y分别在[180,185)和[190,195]内时,有aA、bA、cA、dA、aB、bB、cB、dB,共8种情况.所以基本事件总数为6+1+8=15,….(10分)事件“|x﹣y|≤5”所包含的基本事件个数有6+1=7,∴P(|x﹣y|≤5)=.….(12分)【点评】本题考查频率分布直方图的应用,考查概率的求法,解题时要认真审题,注意列举法的合理运用.21.如图,P是抛物线C:上横坐标大于零的一点,直线l过点P并与抛物线C在点P处的切线垂直,直线l与抛物线C相交于另一点Q.(1)当点P的横坐标为2时,求直线l的方程;(2)若,求过点P,Q,O的圆的方程.【考点】圆与圆锥曲线的综合;直线的点斜式方程;直线与圆锥曲线的综合问题.【专题】综合题.【分析】(Ⅰ)先求点P的坐标,利用导数求过点P的切线的斜率,从而可得直线l的斜率,即可求出直线l的方程;(Ⅱ)设P(x0,y0),求出直线l的方程为,利用,可得过点P,Q,O的圆的圆心为PQ的中点,将直线与抛物线联立,即可求出PQ的中点的坐标与圆的半径,从而可得过点P,Q,O的圆的方程.【解答】解:(Ⅰ)把x=2代入,得y=2,∴点P的坐标为(2,2).…(1分)由,①得y'=x,=2,…(2分)∴过点P的切线的斜率k切直线l的斜率k1==,…(3分)∴直线l的方程为y﹣2=,即x+2y﹣6=0…(4分)(Ⅱ)设P(x0,y0),则.=x0,因为x0≠0.∵过点P的切线斜率k切∴直线l的斜率k1==,直线l的方程为.②…(5分)设Q(x1,y1),且M(x,y)为PQ的中点,因为,所以过点P,Q,O的圆的圆心为M(x,y),半径为r=|PM|,…(6分)且,…(8分)所以x0x1=0(舍去)或x0x1=﹣4…(9分)联立①②消去y,得由题意知x0,x1为方程的两根,所以,又因为x0>0,所以,y0=1;所以,y1=4…(11分)∵M是PQ的中点,∴…(12分)∴…(13分)所以过点P,Q,O的圆的方程为…(14分)【点评】本题考查利用导数研究抛物线切线的方程,考查向量知识,考查圆的方程,解题的关键是直线与抛物线联立,确定圆的圆心的坐标与半径.22.设函数f(x)=lnx﹣ax,a∈R.(1)当x=1时,函数f(x)取得极值,求a的值;(2)当0<a<时,求函数f(x)在区间[1,2]上的最大值;(3)当a=﹣1时,关于x的方程2mf(x)=x2(m>0)有唯一实数解,求实数m的值.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】导数的综合应用.【分析】(1)先求函数的定义域,然后求出导函数,根据f(x)在x=1处取得极值,则f'(1)=0,求出a的值,然后验证即可;(2)由a的范围,然后利用导数研究函数的单调性,从而求出函数f(x)在区间[1,2]的最大值;(3)研究函数是单调性得到函数的极值点,根据函数图象的变化趋势,判断何时方程2mf (x)=x2有唯一实数解,得到m所满足的方程,解方程求解m.【解答】解:(1)f(x)的定义域为(0,+∞),所以f′(x)=﹣a=.…(2分)因为当x=1时,函数f(x)取得极值,所以f′(1)=1﹣a=0,所以a=1.经检验,a=1符合题意.(不检验不扣分)…(4分)(2)f′(x)=﹣a=,x>0.令f′(x)=0得x=.因为0<a<,1≤x≤2,∴0<ax<1,∴1﹣ax>0,∴f′(x)>0,∴函数f(x)在[1,2]上是增函数,∴当x=2时,f(x)max=f(2)=ln2﹣2a.(3)因为方程2mf(x)=x2有唯一实数解,所以x2﹣2mlnx﹣2mx=0有唯一实数解,设g(x)=x2﹣2mlnx﹣2mx,则g′(x)=,令g′(x)=0,x2﹣mx﹣m=0.因为m>0,x>0,所以x1=<0(舍去),x2=,当x∈(0,x2)时,g′(x)<0,g(x)在(0,x2)上单调递减,当x∈(x2,+∞)时,g′(x)>0,g(x)在(x2,+∞)单调递增,当x=x2时,g(x)取最小值g(x2).…(10分)则即所以2mlnx2+mx2﹣m=0,因为m>0,所以2lnx2+x2﹣1=0(*),设函数h(x)=2lnx+x﹣1,因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解.因为h(1)=0,所以方程(*)的解为x2=1,即=1,解得m=.…(12分)【点评】本题主要考查了利用导数研究函数的极值,以及利用导数研究函数在闭区间上的最值,是一道综合题,有一定的难度,属于中档题.选做题:请考生在第23/24/25三题中任选一题作答.如果多做,则按所做的第一题计分.作答前请标明题号.[选修4-1:证明选讲]23.在△ABC中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D.(1)求证:;(2)若AC=3,求APAD的值.【考点】相似三角形的性质;相似三角形的判定.【专题】计算题;证明题.【分析】(1)先由角相等∠CPD=∠ABC,∠D=∠D,证得三角形相似,再结合线段相等即得所证比例式;(2)由于∠ACD=∠APC,∠CAP=∠CAP,从而得出两个三角形相似:“△APC~△ACD”结合相似三角形的对应边成比例即得APAD的值.【解答】解:(1)∵∠CPD=∠ABC,∠D=∠D,∴△DPC~△DBA,∴又∵AB=AC,∴(5分)(2)∵∠ACD=∠APC,∠CAP=∠CAP,∴△APC~△ACD∴,∴AC2=APAD=9(5分)【点评】本小题属于基础题.此题主要考查的是相似三角形的性质、相似三角形的判定,正确的判断出相似三角形的对应边和对应角是解答此题的关键.[选修4-4:坐标系与参数方程]24.在直角坐标系xOy中,曲线C1的参数方程为为参数),P为C1上的动点,Q为线段OP的中点.(Ⅰ)求点Q的轨迹C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴(两坐标系取相同的长度单位)的极坐标系中,N为曲线ρ=2sinθ上的动点,M为C2与x轴的交点,求|MN|的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【专题】计算题.【分析】(Ⅰ)设Q(x,y),利用Q为线段OP的中点,可得点P(2x,2y),利用P为C1上的动点,曲线C1的参数方程为,即可求得点Q的轨迹C2的方程;(Ⅱ)由(Ⅰ)可得点M(1,0),且曲线ρ=2sinθ上的直角坐标方程为x2+(y﹣1)2=1,从而可求|MN|的最大值.【解答】解:(Ⅰ)设Q(x,y),则∵Q为线段OP的中点,∴点P(2x,2y),又P为C1上的动点,曲线C1的参数方程为∴(t为参数)∴(t为参数)∴点Q的轨迹C2的方程为(t为参数);(Ⅱ)由(Ⅰ)可得点M(1,0),∵曲线ρ=2sinθ∴ρ2=2ρsinθ∴x2+y2=2y∴x2+(y﹣1)2=1即曲线ρ=2sinθ的直角坐标方程为x2+(y﹣1)2=1∴|MN|的最大值为.【点评】本题重点考查轨迹方程的求解,考查代入法求轨迹方程,考查极坐标与直角坐标方程的互化,属于基础题.[选修4-5:不等式选讲]25.关于x的不等式|x﹣1|+|x+m|>3的解集为R,求实数m的取值范围.【考点】绝对值不等式的解法.【专题】转化思想;综合法;不等式的解法及应用.【分析】根据绝对值的意义可得|x﹣1|+|x+m|的最小值为|m+1|,再由|m+1|>3 求得实数m的取值范围.【解答】解:|x﹣1|+|x+m|的几何意义就是数轴上的x对应点到1和﹣m对应点的距离之和,它的最小值为|m+1|,由题意可得|m+1|>3,解得m>2或m<﹣4.【点评】根本题考查了绝对值的几何意义,解绝对值不等式问题,是一道基础题.。
2017年江西省赣州市、吉安市、抚州市七校联考高考数学模拟试卷(文科)(2)(解析版)
![2017年江西省赣州市、吉安市、抚州市七校联考高考数学模拟试卷(文科)(2)(解析版)](https://img.taocdn.com/s3/m/c99429ccc1c708a1294a4408.png)
2017年江西省赣州市、吉安市、抚州市七校联考高考数学模拟试卷(文科)(2)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U={1,2,3,4},集合A={x∈N|x2﹣5x+4<0},则∁U A等于()A.{1,2}B.{1,4}C.{2,4}D.{1,3,4}2.已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.33.在等差数列{a n}中,已知a3+a8=6,则3a2+a16的值为()A.24 B.18 C.16 D.124.设0<a<b<1,则下列不等式成立的是()A.a3>b3B.C.a b>1 D.lg(b﹣a)<05.已知函数f(x)=x2+,则“0<a<2”是“函数f(x)在(1,+∞)上为增函数”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6.运行如图所示框图的相应程序,若输入a,b的值分别为log43和log34,则输出M的值是()A.0 B.1 C.3 D.﹣17.某几何体的三视图如图所示,则该几何体的体积为()A .24B .48C .54D .728.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c=2,b=2,C=30°,则角B 等于(A .30°B .60°C .30°或60°D .60°或120°9.已知函数,若,则实数a 的取值范围是( )A .B .(﹣1,0]C .D .10.如图F 1,F 2是双曲线与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限内的公共点,若|F 1F 2|=|F 1A |,则C 2的离心率是( )A .B .C .D .11.函数y=(其中e 为自然对数的底)的图象大致是( )A .B .C .D .12.设x ,y 满足约束条件,若目标函数2z=2x +ny (n >0),z 的最大值为2,则的图象向右平移后的表达式为()A.B.C.D.y=tan2x二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知直线x+2y﹣1=0与直线2x+my+4=0平行,则m=.14.设D为△ABC所在平面内一点,,若,则x+2y=.15.已知m∈R,命题p:对任意实数x,不等式x2﹣2x﹣1≥m2﹣3m恒成立,若¬p为真命题,则m的取值范围是.16.设曲线y=x n+1(x∈N*)在点(1,1)处的切线与x轴的交点横坐标为x n,则log2016x1+log2016x2+log2016x3+…+log2016x2015的值为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.等差数列{a n}中,已知a n>0,a2+a5+a8=33,且a1+2,a2+5,a3+13构成等比数列{b n}的前三项.(1)求数列{a n},{b n}的通项公式;(2)记,求数列{c n}的前n项和T n.18.已知函数的最小正周期是π.(1)求函数f(x)在区间x∈(0,π)的单调递增区间;(2)求f(x)在上的最大值和最小值.19.如图,AB为圆O的直径,点E,F在圆O上,AB∥EF,矩形ABCD所在的平面和圆(x﹣1)2+y2=1所在的平面互相垂直,且AB=2,AD=EF=1,∠BAF=60°.(1)求证:AF⊥平面CBF;(2)设FC的中点为M,求三棱锥M﹣DAF的体积V1与多面体CD﹣AFEB的体积V2之比的值.20.已知椭圆C: +=1(a>b>0),与y轴的正半轴交于点P(0,b),右焦点F(c,0),O为坐标原点,且tan∠PFO=.(1)求椭圆的离心率e;(2)已知点M(1,0),N(3,2),过点M任意作直线l与椭圆C交于C,D 两点,设直线CN,DN的斜率k1,k2,若k1+k2=2,试求椭圆C的方程.21.已知f(x)=|xe x|.(1)求函数f(x)的单调区间;(2)若g(x)=f2(x)+tf(x)(t∈R),满足g(x)=﹣1的x有四个,求t的取值范围.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线,曲线C2的参数方程为:,(θ为参数),以O为极点,x轴的正半轴为极轴的极坐标系.(1)求C1,C2的极坐标方程;(2)射线与C1的异于原点的交点为A,与C2的交点为B,求|AB|.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+|x+5﹣a|(1)若不等式f(x)﹣|x﹣a|≤2的解集为[﹣5,﹣1],求实数a的值;(2)若∃x0∈R,使得f(x0)<4m+m2,求实数m的取值范围.2017年江西省赣州市、吉安市、抚州市七校联考高考数学模拟试卷(文科)(2)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U={1,2,3,4},集合A={x∈N|x2﹣5x+4<0},则∁U A等于()A.{1,2}B.{1,4}C.{2,4}D.{1,3,4}【考点】补集及其运算.【分析】化简集合A,求出∁U A.【解答】解:集合U={1,2,3,4},集合A={x∈N|x2﹣5x+4<0}={x∈N|1<x<4}={2,3},所以∁U A={1,4}.故选:B.2.已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.3【考点】复数代数形式的混合运算.【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.3.在等差数列{a n}中,已知a3+a8=6,则3a2+a16的值为()A.24 B.18 C.16 D.12【考点】等差数列的通项公式;等差数列的性质.【分析】由已知结合等差数列的性质整体运算求解.【解答】解:∵a3+a8=6,∴3a2+a16=2a2+a2+a16=2a2+2a9=2(a3+a8)=12.故选:D.4.设0<a<b<1,则下列不等式成立的是()A.a3>b3B.C.a b>1 D.lg(b﹣a)<0【考点】不等关系与不等式.【分析】直接利用条件,通过不等式的基本性质判断A、B的正误;指数函数的性质判断C的正误;对数函数的性质判断D的正误;【解答】解:因为0<a<b<1,由不等式的基本性质可知:a3<b3,故A不正确;,所以B不正确;由指数函数的图形与性质可知a b<1,所以C不正确;由题意可知b﹣a∈(0,1),所以lg(b﹣a)<0,正确;故选D.5.已知函数f(x)=x2+,则“0<a<2”是“函数f(x)在(1,+∞)上为增函数”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】求出函数的导数,问题转化为2x3≥a在区间(1,+∞)上恒成立,求出a的范围,结合集合的包含关系判断即可.【解答】解:f′(x)=2x﹣≥0,即2x3≥a在区间(1,+∞)上恒成立,则a≤2,而0<a<2⇒a≤2,故选:A.6.运行如图所示框图的相应程序,若输入a,b的值分别为log43和log34,则输出M的值是()A.0 B.1 C.3 D.﹣1【考点】程序框图.【分析】确定log34>log43,可得M=log34•log43﹣2,计算可得结论.【解答】解:∵log34>1,0<log43<1,∴log34>log43,∴M=log34•log43﹣2=﹣1,故选:D.7.某几何体的三视图如图所示,则该几何体的体积为()A.24 B.48 C.54 D.72【考点】由三视图求面积、体积.【分析】由三视图还原为如图所示的直视图,即可得出.【解答】解:还原为如图所示的直视图,.故选:A.8.在△ABC中,角A,B,C的对边分别为a,b,c,若c=2,b=2,C=30°,则角B等于(A.30°B.60°C.30°或60°D.60°或120°【考点】余弦定理.【分析】由已知及正弦定理可求得sinB==,由范围B∈(30°,180°)利用特殊角的三角函数值即可得解.【解答】解:∵c=2,b=2,C=30°,∴由正弦定理可得:sinB===,∵b>c,可得:B∈(30°,180°),∴B=60°或120°.故选:D.9.已知函数,若,则实数a的取值范围是()A.B.(﹣1,0]C.D.【考点】分段函数的应用.【分析】利用分段函数,结合已知条件,列出不等式组,转化求解即可.【解答】解:由题意,得或,解得或﹣1<a≤0,即实数a的取值范围为,故选C.10.如图F1,F2是双曲线与椭圆C2的公共焦点,点A是C1,C2在第一象限内的公共点,若|F1F2|=|F1A|,则C2的离心率是()A.B.C.D.【考点】圆锥曲线的综合;双曲线的简单性质.【分析】利用椭圆以及双曲线的定义,转化求解椭圆的离心率即可.【解答】解:由题意F1,F2是双曲线与椭圆C2的公共焦点可知,|F1F2|=|F1A|=6,∵|F1A|﹣|F2A|=2,∴|F2A|=4,∴|F1A|+|F2A|=10,∵2a=10,∴C2的离心率是.故选:C.11.函数y=(其中e为自然对数的底)的图象大致是()A.B. C.D.【考点】利用导数研究函数的极值;函数的图象.【分析】利用函数的导数,求出函数的极大值,判断函数的图形即可.【解答】解:当x≥0时,函数y==,y′=,有且只有一个极大值点是x=2,故选:A.12.设x,y满足约束条件,若目标函数2z=2x+ny(n>0),z的最大值为2,则的图象向右平移后的表达式为()A.B.C.D.y=tan2x【考点】简单线性规划.【分析】画出约束条件的可行域,利用目标函数的最值求出n,然后利用三角函数的平移变换求解即可.【解答】解:作出可行域与目标函数基准线,由线性规划知识,可得当直线过点B(1,1)时,z取得最大值,即,解得n=2;则的图象向右平移个单位后得到的解析式为.故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知直线x+2y﹣1=0与直线2x+my+4=0平行,则m=4.【考点】直线的一般式方程与直线的平行关系.【分析】由直线x+2y﹣1=0与直线2x+my+4=0平行,可得,即可求出m的值.【解答】解:由直线x+2y﹣1=0与直线2x+my+4=0平行,可得,∴m=4.故答案为4.14.设D为△ABC所在平面内一点,,若,则x+2y=﹣4.【考点】平面向量的基本定理及其意义.【分析】由已知得,从而,由此能求出x+2y的值.【解答】解:∵,∴,即,∴x=6,y=﹣5,∴x+2y=﹣4.故答案为:﹣4.15.已知m∈R,命题p:对任意实数x,不等式x2﹣2x﹣1≥m2﹣3m恒成立,若¬p为真命题,则m的取值范围是(﹣∞,1)∪(2,+∞).【考点】命题的真假判断与应用.【分析】由对任意x∈R,不等式x2﹣2x﹣1≥m2﹣3m恒成立,运用二次函数的最值求法,可得m2﹣3m≤﹣2,解不等式可得m的范围,再由¬p为真命题时,则P为假命题,即可得到所求m的范围.【解答】解:∵对任意x∈R,不等式x2﹣2x﹣1≥m2﹣3m恒成立,∴,即m2﹣3m≤﹣2,即有(m﹣1)(m﹣2)≤0,解得1≤m≤2.因此,若¬p为真命题时,则P为假命题,可得m的取值范围是(﹣∞,1)∪(2,+∞).故答案为:(﹣∞,1)∪(2,+∞).16.设曲线y=x n+1(x∈N*)在点(1,1)处的切线与x轴的交点横坐标为x n,则log2016x1+log2016x2+log2016x3+…+log2016x2015的值为﹣1.【考点】利用导数研究曲线上某点切线方程.【分析】求出函数y=x n+1(n∈N*)在(1,1)处的切线方程,取y=0求得x n,然后利用对数的运算性质得答案.【解答】解:由y=x n+1,得y′=(n+1)x n,∴y′|x=1=n+1,∴曲线y=x n+1(n∈N*)在(1,1)处的切线方程为y﹣1=(n+1)(x﹣1),取y=0,得x n=.∴x1x2x3•…•x2015==则log2016x1+log2016x2+…+log2016x2015=log2016(x1x2x3•…•x2015)=﹣1.故答案为:﹣1.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.等差数列{a n}中,已知a n>0,a2+a5+a8=33,且a1+2,a2+5,a3+13构成等比数列{b n}的前三项.(1)求数列{a n},{b n}的通项公式;(2)记,求数列{c n}的前n项和T n.【考点】数列的求和;等差数列与等比数列的综合.【分析】(1)利用等差数列与等比数列的通项公式即可得出.(2)利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(1)设等差数列{a n}的公差为d,则由已知得:a2+a5+a8=33,即a5=11.又(11﹣4d+2)(11﹣2d+13)=(11﹣3d+5)2,解得d=2或d=﹣28(舍),a1=a5﹣4d=3,∴a n=a1+(n﹣1)d=2n+1.又b1=a1+2=5,b2=a2+5=10,∴q=2,∴.(2)=+1,∴,,两式相减得,∴.18.已知函数的最小正周期是π.(1)求函数f(x)在区间x∈(0,π)的单调递增区间;(2)求f(x)在上的最大值和最小值.【考点】正弦函数的单调性;三角函数的最值.【分析】(1)化函数f(x)为正弦型函数,根据f(x)的最小正周期是π求出ω,写出f(x)解析式;根据正弦函数的单调性求出f(x)在x∈(0,π)上的单调递增区间;(2)根据x∈[,]时2x﹣的取值范围,再求出对应函数f(x)的最值即可.【解答】解:(1)函数f(x)=4cosωxsin(ωx﹣)=4cosωx(sinωx﹣cosωx)=2sinωxcosωx﹣2cos2ωx+1﹣1=sin2ωx﹣cos2ωx﹣1=2sin(2ωx﹣)﹣1,且f(x)的最小正周期是,所以ω=1;从而f(x)=2sin(2x﹣)﹣1;令,解得,所以函数f(x)在x∈(0,π)上的单调递增区间为和.(2)当x∈[,]时,2x∈[,],所以2x﹣∈[,],2sin(2x﹣)∈[,2],所以当2x﹣=,即x=时f(x)取得最小值1,当2x﹣=,即x=时f(x)取得最大值﹣1;所以f(x)在上的最大值和最小值分别为.19.如图,AB为圆O的直径,点E,F在圆O上,AB∥EF,矩形ABCD所在的平面和圆(x﹣1)2+y2=1所在的平面互相垂直,且AB=2,AD=EF=1,∠BAF=60°.(1)求证:AF⊥平面CBF;(2)设FC的中点为M,求三棱锥M﹣DAF的体积V1与多面体CD﹣AFEB的体积V2之比的值.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(1)证明CB⊥AB,CB⊥AF,推出AF⊥BF,然后证明AF⊥平面CBF;(2)设DF的中点为H,连接MH,证明∥平面DAF.求出三棱锥M﹣DAF的体积V1,多面体CD﹣AFEB的体积可分成三棱锥C﹣BEF与四棱锥F﹣ABCD的体积之和,q求出多面体CD﹣AFEB的体积V2,即可求解V1:V2.【解答】(1)证明:∵矩形ABCD所在的平面和平面ABEF互相垂直,且CB⊥AB,∴CB⊥平面ABEF,又AF⊄平面ABEF,所以CB⊥AF,又AB为圆O的直径,得AF ⊥BF,BF∩CB=B,∴AF⊥平面CBF.(2)解:设DF的中点为H,连接MH,则∴,又,∴,∴OAHM为平行四边形,OM∥AH,又∵OM⊄平面DAF,∴OM∥平面DAF.显然,四边形ABEF为等腰梯形,∠BAF=60°,因此△OAF为边长是1的正三角形.三棱锥M﹣DAF的体积;多面体CD﹣AFEB的体积可分成三棱锥C﹣BEF与四棱锥F﹣ABCD的体积之和,计算得两底间的距离.所以,,所以,∴V1:V2=1:5.20.已知椭圆C: +=1(a>b>0),与y轴的正半轴交于点P(0,b),右焦点F(c,0),O为坐标原点,且tan∠PFO=.(1)求椭圆的离心率e;(2)已知点M(1,0),N(3,2),过点M任意作直线l与椭圆C交于C,D 两点,设直线CN,DN的斜率k1,k2,若k1+k2=2,试求椭圆C的方程.【考点】椭圆的简单性质.【分析】(1)tan∠PFO=,可得=,c=b,a==b.即可得出.(2)直线l的斜率不为0时,设直线l的方程为:ty=x﹣1.设C(x1,y1),D(x2,y2).直线方程与椭圆方程联立化为:(t2+3)y2+2ty+1﹣3b2=0,由k1+k2=2,即+=2,化为:ty1•y2=y1+y2,利用根与系数的关系代入即可得出.直线l的斜率为0时也成立.【解答】解:(1)∵tan∠PFO=,∴=,∴c=b,a==b.∴==.(2)直线l的斜率不为0时,设直线l的方程为:ty=x﹣1.设C(x1,y1),D(x2,y2).联立,化为:(t2+3)y2+2ty+1﹣3b2=0,y1+y2=,y1•y2=,∵k1+k2=2,∴+=2,化为:(y1﹣2)(ty2﹣2)+(y2﹣2)(ty1﹣2)=2(ty1﹣2)(ty2﹣2),即:ty1•y2=y1+y2,∴t•=,对∀t∈R都成立.化为:b2=1,直线l的斜率为0时也成立,∴b2=1,∴椭圆C的方程为.21.已知f(x)=|xe x|.(1)求函数f(x)的单调区间;(2)若g(x)=f2(x)+tf(x)(t∈R),满足g(x)=﹣1的x有四个,求t的取值范围.【考点】利用导数研究函数的单调性;根的存在性及根的个数判断.【分析】(1)通过讨论x的范围,去掉绝对值号,求出函数的导数,求出函数的单调区间即可;(2)做出函数f(x)=|x•e x|的图象,根据图象可判断在(,+∞)上可有一个跟,在(0,)上可有三个根,根据二次函数的性质可得出y()<0,求解即可.【解答】解:(1)x≥0时,f(x)=xe x,f′(x)=(x+1)e x>0,f(x)在[0,+∞)递增,x<0时,f(x)=﹣xe x,f′(x)=﹣(x+1)e x,令f′(x)>0,解得:x<﹣1,令f′(x)<0,解得:﹣1<x<0,故f(x)在(﹣∞,﹣1)递增,在(﹣1,0)递减;(2)g(x)=﹣1的x有四个,∴f2(x)+tf(x)﹣1=0有4个根,f(x)=|x•e x|的图象如图:在x<0时,有最大值f(﹣1)=,故要使有四个解,则f2(x)+tf(x)﹣1=0一根在(0,)中间,一根在(,+∞),∴+t+1<0,∴t﹣<﹣﹣1,∴t<﹣﹣e=﹣.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线,曲线C2的参数方程为:,(θ为参数),以O为极点,x轴的正半轴为极轴的极坐标系.(1)求C1,C2的极坐标方程;(2)射线与C1的异于原点的交点为A,与C2的交点为B,求|AB|.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)将代入曲线C1方程可得曲线C1的极坐标方程.曲线C2的普通方程为,将代入,得到C2的极坐标方程.(2)射线的极坐标方程为,与曲线C1的交点的极径为ρ1,射线与曲线C2的交点的极径满足,解得ρ2.可得|AB|=|ρ1﹣ρ2|.【解答】解:(1)将代入曲线C1方程:(x﹣1)2+y2=1,可得曲线C1的极坐标方程为ρ=2cosθ,曲线C2的普通方程为,将代入,得到C2的极坐标方程为ρ2(1+sin2θ)=2.(2)射线的极坐标方程为,与曲线C1的交点的极径为,射线与曲线C2的交点的极径满足,解得所以.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+|x+5﹣a|(1)若不等式f(x)﹣|x﹣a|≤2的解集为[﹣5,﹣1],求实数a的值;(2)若∃x0∈R,使得f(x0)<4m+m2,求实数m的取值范围.【考点】绝对值不等式的解法.【分析】(1))问题转化为|x+5﹣a|≤2,求出x的范围,得到关于a的不等式组,解出即可;(2)问题转化为4m+m2>f(x)min,即4m+m2>5,解出即可.【解答】解:(1)∵|x+5﹣a|≤2,∴a﹣7≤x≤a﹣3,∵f(x)﹣|x﹣a|≤2的解集为:[﹣5,﹣1],∴,∴a=2.(2)∵f(x)=|x﹣a|+|x+5﹣a|≥5,∵∃x0∈R,使得f(x0)<4m+m2成立,∴4m+m2>f(x)min,即4m+m2>5,解得:m<﹣5,或m>1,∴实数m的取值范围是(﹣∞,﹣5)∪(1,+∞).2017年4月2日。
2017年江西省百校联盟高考数学模拟试卷(理科)(2月份)(解析版)
![2017年江西省百校联盟高考数学模拟试卷(理科)(2月份)(解析版)](https://img.taocdn.com/s3/m/f5725b0aa216147917112861.png)
2017年江西省百校联盟高考数学模拟试卷(理科)(2月份)一、选择题:每小题5分,共60分1.(5分)已知集合A={x|﹣5+21x﹣4x2<0},B={x∈Z|﹣3<x<6},则(∁R A)∩B的元素的个数为()A.3 B.4 C.5 D.62.(5分)若一个复数的实部与虚部互为相反数,则称此复数为“理想复数”.已知z=+bi (a,b∈R)为“理想复数”,则()A.a﹣5b=0 B.3a﹣5b=0 C.a+5b=0 D.3a+5b=03.(5分)已知角α的终边经过点(,),若α=,则m的值为()A.27 B.C.9 D.4.(5分)已知f(x)为奇函数,当x<0时,f(x)=a+x+log2(﹣x),其中a∈(﹣4,5),则f(4)>0的概率为()A.B.C.D.5.(5分)若直线y=2x+与抛物线x2=2py(p>0)相交于A,B两点,则|AB|等于()A.5p B.10p C.11p D.12p6.(5分)《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::(+1),试用以上给出的公式求得△ABC的面积为()A.B.C.D.7.(5分)某程序框图如图所示,其中t∈Z,该程序运行后输出的k=2,则t的最大值为()A.11 B.2057 C.2058 D.20598.(5分)已知函数f(x)=的图象与g(x)的图象关于直线x=对称,则g(x)的图象的一个对称中心为()A.(,0)B.(,0)C.(,0)D.(,0)9.(5分)设a>0,若关于x,y的不等式组,表示的可行域与圆(x﹣2)2+y2=9存在公共点,则z=x+2y的最大值的取值范围为()A.[8,10] B.(6,+∞)C.(6,8]D.[8,+∞)10.(5分)过双曲线C:﹣=1(a>0,b>0)的右焦点F作x轴的垂线,交双曲线C 于M,N两点,A为左顶点,设∠MAN=θ,双曲线C的离心率为f(θ),则f()﹣f()等于()A.B.C.D.11.(5分)某几何体的三视图如图所示,已知三视图中的圆的半径均为2,则该几何体的体积为()A.B.12πC.D.16π12.(5分)若函数f(x)=a(x﹣2)e x+lnx+在(0,2)上存在两个极值点,则a的取值范围为()A.(﹣∞,﹣)B.(﹣,)∪(1,+∞)C.(﹣∞,﹣)D.(﹣∞,﹣)∪(﹣﹣,﹣)二、填空题:每小题5分,共20分13.(5分)在(4﹣x﹣1)(2x﹣3)5的展开式中,常数项为.14.(5分)某设备的使用年数x与所支出的维修总费用y的统计数据如下表:根据上标可得回归直线方程为=1.3x+,若该设备维修总费用超过12万元,据此模型预测该设备最多可使用年.15.(5分)设向量,满足|+|=3,|﹣|=2,则的取值范围为.16.(5分)在底面是菱形的四棱锥P﹣ABCD中,PA⊥底面ABCD,∠BAD=120°,点E为棱PB 的中点,点F在棱AD上,平面CEF与PA交于点K,且PA=AB=3,AF=2,则点K到平面PBD 的距离为.三、解答题17.(12分)已知数列{a n}的前n项和为S n,数列{}的公差为1的等差数列,且a2=3,a3=5.(1)求数列{a n}的通项公式;(2)设b n=a n•3n,求数列{b n}的前n项和T n.18.(12分)以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:(1)计算该炮兵连这8周中总的命中频率p0,并确定第几周的命中频率最高;(2)以(1)中的p0作为该炮兵连炮兵甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射3次,记命中的次数为X,求X的数学期望;(3)以(1)中的p0作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99?(取lg0.4=﹣0.398)19.(12分)如图,在四棱锥P﹣ABCD中,侧面PAB⊥底面ABCD,△PAB为正三角形.AB⊥AD,CD⊥AD,点E、M为线段BC、AD的中点,F,G分别为线段PA,AE上一点,且AB=AD=2,PF=2FA.(1)确定点G的位置,使得FG∥平面PCD;(2)试问:直线CD上是否存在一点Q,使得平面PAB与平面PMQ所成锐二面角的大小为30°,若存在,求DQ的长;若不存在,请说明理由.20.(12分)已知焦距为2的椭圆W:+=1(a>b>0)的左、右焦点分别为A1,A2,上、下顶点分别为B1,B2,点M(x0,y0)为椭圆W上不在坐标轴上的任意一点,且四条直线MA1,MA2,MB1,MB2的斜率之积为.(1)求椭圆W的标准方程;(2)如图所示,点A,D是椭圆W上两点,点A与点B关于原点对称,AD⊥AB,点C在x 轴上,且AC与x轴垂直,求证:B,C,D三点共线.21.(12分)已知函数f()=﹣x3+x2﹣m,g(x)=﹣x3+mx2+(a+1)x+2xcosx﹣m.(1)若曲线y=f(x)仅在两个不同的点A(x1,f(x1)),B(x1,f(x2))处的切线都经过点(2,t),求证:t=3m﹣8,或t=﹣m3+m2﹣m.(2)当x∈[0,1]时,若f(x)≥g(x)恒成立,求a的取值范围.四、选做题:4-4:坐标系与参数方程22.(10分)在平面直角坐标系xOy中,曲线C的方程为y=3+.(1)写出曲线C的一个参数方程;(2)在曲线C上取一点P,过点P作x轴,y轴的垂线,垂足分别为A,B,求矩形OAPB的周长的取值范围.五、选修4-5:不等式选讲23.已知函数f(x)=x2+|x|﹣|x﹣5|+2.(1)求不等式f(x)<0的解集;(2)若关于x的不等式|f(x)|≤m的整数解仅有11个,求m的取值范围.2017年江西省百校联盟高考数学模拟试卷(理科)(2月份)参考答案与试题解析一、选择题:每小题5分,共60分1.(5分)(2017•江西模拟)已知集合A={x|﹣5+21x﹣4x2<0},B={x∈Z|﹣3<x<6},则(∁A)∩B的元素的个数为()RA.3 B.4 C.5 D.6【分析】先分别求出集合A,B,从而求出C R A,进而求出(∁R A)∩B,由此能求出(∁R A)∩B的元素的个数.【解答】解:∵集合A={x|﹣5+21x﹣4x2<0}={x|x<或x>5},B={x∈Z|﹣3<x<6}={﹣2,﹣1,0,1,2,3,4,5},∴C R A={x|},∴(∁R A)∩B={1,2,3,4,5},∴(∁R A)∩B的元素的个数为5.故选:C.【点评】本题考查交集中元素个数的求法,是基础题,解题时要认真审题,注意补集、交集定义的合理运用.2.(5分)(2017•江西模拟)若一个复数的实部与虚部互为相反数,则称此复数为“理想复数”.已知z=+bi(a,b∈R)为“理想复数”,则()A.a﹣5b=0 B.3a﹣5b=0 C.a+5b=0 D.3a+5b=0【分析】利用复数代数形式的乘除运算化简,结合已知得答案.【解答】解:∵z=+bi=.由题意,,则3a+5b=0.故选:D.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(5分)(2017•江西模拟)已知角α的终边经过点(,),若α=,则m的值为()A.27 B.C.9 D.【分析】利用任意角的三角函数的定义,诱导公式,求得m的值.【解答】解:角α的终边经过点(,),若α=,则tan=tan===,则m=,故选:B.【点评】本题主要考查任意角的三角函数的定义,诱导公式的应用,属于基础题.4.(5分)(2017•江西模拟)已知f(x)为奇函数,当x<0时,f(x)=a+x+log2(﹣x),其中a∈(﹣4,5),则f(4)>0的概率为()A.B.C.D.【分析】求出f(4)>0时a的范围,以长度为测度,即可求出概率.【解答】解:由题意,f(4)=﹣f(﹣4)=﹣(a﹣4+log24)>0,∴a<2,∵a∈(﹣4,5),∴a∈(﹣4,2),∴所求概率为=,故选D.【点评】本题考查几何概型,考查概率的计算,比较基础.5.(5分)(2017•江西模拟)若直线y=2x+与抛物线x2=2py(p>0)相交于A,B两点,则|AB|等于()A.5p B.10p C.11p D.12p【分析】直线方程代入抛物线方程,可得x2﹣4px﹣p2=0,利用韦达定理及抛物线的定义,即可得出结论.【解答】解:直线方程代入抛物线方程,可得x2﹣4px﹣p2=0,设A(x1,y1),B(x2,y2),则x1+x2=4p,∴y1+y2=9p∵直线过抛物线的焦点,∴|AB|=y1+y2+p=10p,故选:B.【点评】本题考查直线与抛物线位置关系的运用,考查抛物线的定义与性质,考查学生分析解决问题的能力,属于中档题.6.(5分)(2017•江西模拟)《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::(+1),试用以上给出的公式求得△ABC的面积为()A.B.C.D.【分析】由题意和正弦定理求出a:b:c,结合条件求出a、b、c的值,代入公式求出△ABC 的面积.【解答】解:因为sinA:sinB:sinC=(﹣1)::(+1),所以由正弦定理得,a:b:c=(﹣1)::(+1),又△ABC的周长为2+,则a=(﹣1)、b=、c=(+1),所以△ABC的面积S====,故选:A.【点评】本题考查正弦定理,以及新定义的应用,属于基础题.7.(5分)(2017•江西模拟)某程序框图如图所示,其中t∈Z,该程序运行后输出的k=2,则t的最大值为()A.11 B.2057 C.2058 D.2059【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用,可得11≤t<2059,即可求得t的最大值.【解答】解:模拟程序的运行,可得k=10,S=0满足条件S≤t,执行循环体,S=1,k=8满足条件S≤t,执行循环体,S=3,k=6满足条件S≤t,执行循环体,S=11,k=4满足条件S≤t,执行循环体,S=2059,k=2由题意,此时不满足条件S≤t,退出循环,输出S的值为2059.可得:11≤t<2059,则t的最大值为2058.故选:C.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.(5分)(2017•江西模拟)已知函数f(x)=的图象与g(x)的图象关于直线x=对称,则g(x)的图象的一个对称中心为()A.(,0)B.(,0)C.(,0)D.(,0)【分析】由已知利用函数的对称性可求g(x),进而利用余弦函数的图象和性质即可得解.【解答】解:∵函数f(x)=的图象与g(x)的图象关于直线x=对称,设P(x,y)为函数g(x)图象上的任意一点,则P关于直线x=的对称点P′(﹣x,y)在f(x)图象上,∴满足y=f(﹣x)==2cos2x,可得:g(x)=2cos2x,∴由2x=kπ+,k∈Z,解得x=+,k∈Z,∴当k=0时,则g(x)的图象的对称中心为(,0).故选:C.【点评】本题主要考查了函数的对称性,余弦函数的图象和性质,考查了转化思想,属于基础题.9.(5分)(2017•江西模拟)设a>0,若关于x,y的不等式组,表示的可行域与圆(x﹣2)2+y2=9存在公共点,则z=x+2y的最大值的取值范围为()A.[8,10] B.(6,+∞)C.(6,8]D.[8,+∞)【分析】由题意画出图形,化目标函数为直线方程的斜截式,由图得到使目标函数取得最大值的最优解的点的位置得答案.【解答】解:如图,圆(x﹣2)2+y2=9是以(2,0)为圆心,以3为半径的圆,而直线ax﹣y+2=0恒过定点B(0,2),化目标函数z=x+2y为y=,由图可知,使目标函数取得最大值的点在x=2(y>2)上,∴z=x+2y的最大值的取值范围为(6,+∞).故选:B.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,正确画出可行域是关键,属中档题.10.(5分)(2017•江西模拟)过双曲线C:﹣=1(a>0,b>0)的右焦点F作x轴的垂线,交双曲线C于M,N两点,A为左顶点,设∠MAN=θ,双曲线C的离心率为f(θ),则f()﹣f()等于()A.B.C.D.【分析】利用离心率的定义,分别求出f()、f().即可求出f()﹣f().【解答】解:由题意,M(c,),θ=,tan=,∴e=+1,即f()=+1;θ=,tan=,∴e=+1,即f()=+1,∴f()﹣f()=,故选A.【点评】本题考查离心率的定义,考查双曲线的性质,属于中档题.11.(5分)(2017•江西模拟)某几何体的三视图如图所示,已知三视图中的圆的半径均为2,则该几何体的体积为()A.B.12πC.D.16π【分析】由已知中的三视图,可知该几何体是一个球有两处挖去球的八分之一后,在上面放两个半径为2的四分之一的圆柱,所以几何体的体积是即得.【解答】解:由已知中的三视图,可知该几何体是一个球有两处挖去球的八分之一后,在上面放两个半径为2的四分之一的圆柱,那么:,两处挖去球的八分之一,即挖去了.放两个半径为2的四分之一的圆柱,所以几何体的体积是=8π+4π=12π.故选B.【点评】本题考查的知识点是由三视图求体积,解决本题的关键是得到该几何体的形状.属于中档题.12.(5分)(2017•江西模拟)若函数f(x)=a(x﹣2)e x+lnx+在(0,2)上存在两个极值点,则a的取值范围为()A.(﹣∞,﹣)B.(﹣,)∪(1,+∞)C.(﹣∞,﹣)D.(﹣∞,﹣)∪(﹣﹣,﹣)【分析】函数f(x)在(0,2)上存在两个极值点,等价于f′(x)在(0,2)上有两个零点,令f′(x)=0,求出x=1和ae x+=0,且x≠1,x∈(0,2);求出a=﹣,x∈(0,1)∪(1,2);设t(x)=e x•x2,x∈(0,1)∪(1,2),求出t(x)的取值范围,即得a的取值范围.【解答】解:函数f(x)=a(x﹣2)e x+lnx+在(0,2)上存在两个极值点,等价于f′(x)=a(x﹣1)e x+﹣在(0,2)上有两个零点,令f′(x)=0,则a(x﹣1)e x+=0,即(x﹣1)(ae x+)=0,∴x﹣1=0或ae x+=0,∴x=1满足条件,且ae x+=0(其中x≠1且x∈(0,2));∴a=﹣,其中x∈(0,1)∪(1,2);设t(x)=e x•x2,其中x∈(0,1)∪(1,2);则t′(x)=(x2+2x)e x>0,∴函数t(x)是单调增函数,∴t(x)∈(0,e)∪(e,4e2),∴a∈(﹣∞,﹣)∪(﹣,﹣).故选:D.【点评】本题考查了函数导数的综合应用问题,也考查了函数极值与零点的应用问题,考查转化思想与计算能力,是综合性题目.二、填空题:每小题5分,共20分13.(5分)(2017•江西模拟)在(4﹣x﹣1)(2x﹣3)5的展开式中,常数项为﹣27.【分析】化(4﹣x﹣1)(2x﹣3)5=(2﹣2x﹣1)(﹣35+•34•2x﹣•33•22x﹣…),写出展开式中的常数项构成是常数项与常数项的积再加上含2﹣2x与22x的积.【解答】解:∵(4﹣x﹣1)(2x﹣3)5=(2﹣2x﹣1)(﹣35+•34•2x﹣•33•22x﹣…)∴在其展开式中,常数项为:﹣1×(﹣35)+2﹣2x•(﹣•33•22x)=35﹣•33=﹣27.故答案为:﹣27.【点评】本题考查了二项展开式通项的记忆与应用问题,是基础题.14.(5分)(2017•江西模拟)某设备的使用年数x与所支出的维修总费用y的统计数据如下表:根据上标可得回归直线方程为=1.3x+,若该设备维修总费用超过12万元,据此模型预测该设备最多可使用9年.【分析】计算、,根据回归直线方程过样本中心点求出的值,写出回归直线方程,利用回归方程求≥12时x的取值即可.【解答】解:计算=×(2+3+4+5+6)=4,=×(1.5+4.5+5.5+6.5+7.0)=5,又回归直线方程=1.3x+过样本中心点,∴=﹣1.3=5﹣1.3×4=﹣0.2,∴回归直线方程为=1.3x﹣0.2;令=1.3x﹣0.2≥12,解得x≥9.4≈9,∴据此模型预测该设备最多可使用9年.故答案为:9.【点评】本题考查了样本中心点满足回归直线的方程的应用问题,是基础题目.15.(5分)(2017•江西模拟)设向量,满足|+|=3,|﹣|=2,则的取值范围为(0,).【分析】根据模长公式,把|+|=3,|﹣|=2两边平方,求出•与||的取值范围,再求的取值范围.【解答】解:向量,满足|+|=3,|﹣|=2,∴=+2•+=9①,=﹣2•+=4②,①﹣②得,4•=5,∴•=;∴=||;①+②得,2+2=13,∴=﹣<,∴0<||<,∴0<||<;∴的取值范围是(0,).故答案为:(0,).【点评】本题考查了平面向量的数量积与模长公式的应用问题,是基础题目.16.(5分)(2017•江西模拟)在底面是菱形的四棱锥P﹣ABCD中,PA⊥底面ABCD,∠BAD=120°,点E为棱PB的中点,点F在棱AD上,平面CEF与PA交于点K,且PA=AB=3,AF=2,则点K到平面PBD的距离为.【分析】如图所示,以AP为z轴,AD为y轴,取BC的中点M,以AM为x轴,建立空间直角坐标系.设K(0,0,m),则=+b,可得K坐标.设平面PBD的法向量为=(x,y,z),则,利用点K到平面PBD的距离d=即可得出.【解答】解:如图所示,以AP为z轴,AD为y轴,取BC的中点M,以AM为x轴,建立空间直角坐标系.则A(0,0,0),P(0,0,3),D(0,3,0),F(0,2,0),B(,﹣,0),C(,,0),E(,﹣,),设K(0,0,m),则=+b,∴(0,0,m)=,∴a﹣b=0,=0,a=m,解得m=,a=,b=.=,=(0,3,﹣3).设平面PBD的法向量为=(x,y,z),则,,取=(,1,1).=.∴点K到平面PBD的距离d===.故答案为:.【点评】本题考查了空间位置关系、平面向量基本定理、法向量的应用、点到平面的距离公式,考查了推理能力与计算能力,属于中档题.三、解答题17.(12分)(2017•江西模拟)已知数列{a n}的前n项和为S n,数列{}的公差为1的等差数列,且a2=3,a3=5.(1)求数列{a n}的通项公式;(2)设b n=a n•3n,求数列{b n}的前n项和T n.【分析】(1)数列{}的公差为1的等差数列,可得=a1+n﹣1,S n=n(a1+n﹣1),分别取n=2,3,及其a2=3,a3=5.解得a1=1.可得S n=n2.利用递推关系即可得出.(2)b n=a n•3n=(2n﹣1)•3n,利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(1)数列{}的公差为1的等差数列,∴=a1+n﹣1,可得S n=n(a1+n﹣1),∴a1+a2=2(a1+1),a1+a2+a3=3(a1+2),且a2=3,a3=5.解得a1=1.∴S n=n2.∴n≥2时,a n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1(n=1时也成立).∴a n=2n﹣1.(2)b n=a n•3n=(2n﹣1)•3n,∴数列{b n}的前n项和T n=3+3×32+5×33+…+(2n﹣1)•3n,∴3T n=32+3×33+…+(2n﹣3)•3n+(2n﹣1)•3n+1,∴﹣2T n=3+2×(32+33+…+3n)﹣(2n﹣1)•3n+1=3+2×﹣(2n﹣1)•3n+1,可得T n=3+(n﹣1)•3n+1.【点评】本题考查了数列递推关系、“错位相减法”与等比数列的求和公式,考查了推理能力与计算能力,属于中档题.18.(12分)(2017•江西模拟)以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:(1)计算该炮兵连这8周中总的命中频率p0,并确定第几周的命中频率最高;(2)以(1)中的p0作为该炮兵连炮兵甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射3次,记命中的次数为X,求X的数学期望;(3)以(1)中的p0作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99?(取lg0.4=﹣0.398)【分析】(1)先求出这8周总总命中炮数和总未命中炮数,由此能求出该炮兵连这8周中总的命中频率,从而根据表中数据能求出第8周的命中率最高.(2)由题意知X~B(3,0.6),由此能求出X的数学期望.(3)由1﹣(1﹣P0)n>0.99,得0.4n<0.01,由此能求出至少要用6枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99.【解答】解:(1)这8周总总命中炮数为:40+45+46+49+47+49+53+52=381,总未命中炮数为32+34+30+32+35+33+30+28=254,∴该炮兵连这8周中总的命中频率p0=,∵,∴根据表中数据知第8周的命中率最高.(2)由题意知X~B(3,0.6),则X的数学期望为E(X)=3×0.6=1.8.(3)由1﹣(1﹣P0)n>0.99,解得0.4n<0.01,∴n>log0.40.01==﹣=≈5.025,∴至少要用6枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99.【点评】本题考查频率的求法及应用,考查概率的求法及应用,是中档题,解题时要认真审题,注意二项分布的合理运用.19.(12分)(2017•江西模拟)如图,在四棱锥P﹣ABCD中,侧面PAB⊥底面ABCD,△PAB 为正三角形.AB⊥AD,CD⊥AD,点E、M为线段BC、AD的中点,F,G分别为线段PA,AE 上一点,且AB=AD=2,PF=2FA.(1)确定点G的位置,使得FG∥平面PCD;(2)试问:直线CD上是否存在一点Q,使得平面PAB与平面PMQ所成锐二面角的大小为30°,若存在,求DQ的长;若不存在,请说明理由.【分析】(1)在AD上取AN=AD,过N作NG∥DC,交AE于G,连结FG,FN,利用平面与平面平行的判定定理证明平面FNG∥平面PCD,推出FG∥平面PCD.(2)作PO⊥AB于O,BA所在直线为x轴,OP所在直线为z轴,在平面ABCD内作AB的垂线为y轴,求出平面PAB的法向量,平面PMQ的法向量,利用平面PAB与平面PMQ所成锐二面角的大小为30°,求解得λ推出CD的大小.【解答】解:(1)在AD上取AN=AD,过N作NG∥DC,交AE于G,连结FG,FN,∵PF=2FA.可得FA=PA,所以FN∥PD,又NG∥DC,FN∩NG=N,PD∩DC=D,可得平面FNG∥平面PCD,FG⊂平面FNG,所以FG∥平面PCD.(2)作PO⊥AB于O,BA所在直线为x轴,OP所在直线为z轴,在平面ABCD内作AB的垂线为y轴,如图:平面PAB的法向量为:=(0,1,0),A(1,0,0),Q(λ,2,0),M(1,1,0),P(0,0,),则=(﹣1,﹣1,),=(λ﹣1,1,0),设平面PMQ的法向量为:=(x,y,z),由,可得:,令x=1,则y=1﹣λ,z=,平面PAB与平面PMQ所成锐二面角的大小为30°,可得:cos30°===,解得λ=3或.此时DQ=2在CD的延长线上,或DQ=在CD线段上.【点评】本题考查直线与平面平行的判定定理以及二面角的平面角的求法,考查空间想象能力以及计算能力.20.(12分)(2017•江西模拟)已知焦距为2的椭圆W:+=1(a>b>0)的左、右焦点分别为A1,A2,上、下顶点分别为B1,B2,点M(x0,y0)为椭圆W上不在坐标轴上的任意一点,且四条直线MA1,MA2,MB1,MB2的斜率之积为.(1)求椭圆W的标准方程;(2)如图所示,点A,D是椭圆W上两点,点A与点B关于原点对称,AD⊥AB,点C在x 轴上,且AC与x轴垂直,求证:B,C,D三点共线.【分析】(1)由c=1,a2﹣b2=1,求得四条直线的斜率,由斜率乘积为,代入求得a和b的关系,即可求得a和b的值,求得椭圆W的标准方程;(2)设A,D的坐标,代入椭圆方程,作差法,求得直线AD的斜率,由k AD•k AB=﹣1,代入求得=,由k BD﹣k BC=0,即可求证k BD=k BC,即可求证B,C,D三点共线.【解答】解:(1)由题意可知:2c=2,c=1,a2﹣b2=1,∵M(x0,y0)为椭圆W上不在坐标轴上的任意一点,∴,=(a2﹣),=(b2﹣),•••=•••=•,=•=()2=,则a2=2b2,∴a2=2,b2=1,∴椭圆W的标准方程;(2)证明:不妨设点A(x1,y1),D(x2,y2),B的坐标(﹣x1,﹣y1),C(x1,0),∵A,D在椭圆上,,=0,即(x1﹣x2)(x1+x2)+2(y1﹣y2)(y1+y2)=0,∴=﹣,由AD⊥AB,∴k AD•k AB=﹣1,•=﹣1,•(﹣,)=﹣1,∴=,∴k BD﹣k BC=﹣=﹣=0,k BD=k BC,∴B,C,D三点共线.【点评】本题考查椭圆的简单几何性质,直线的斜率公式,考查计算能力,考查分析问题及解决问题的能力,属于中档题.21.(12分)(2017•江西模拟)已知函数f()=﹣x3+x2﹣m,g(x)=﹣x3+mx2+(a+1)x+2xcosx﹣m.(1)若曲线y=f(x)仅在两个不同的点A(x1,f(x1)),B(x1,f(x2))处的切线都经过点(2,t),求证:t=3m﹣8,或t=﹣m3+m2﹣m.(2)当x∈[0,1]时,若f(x)≥g(x)恒成立,求a的取值范围.【分析】(1)求出f(x)的导数,可得A,B处的切线方程,代入点(2,t),可得x1,x2为方程t﹣(﹣x3+mx2﹣m)=(﹣3x2+2mx)(2﹣x)的两个不等实根,化简整理可得,2x3﹣(m+6)x2+4mx﹣m﹣t=0,令g(x)=2x3﹣(m+6)x2+4mx﹣m﹣t,求出导数,由题意可得g(x)必有一个极值为0,计算即可得到证明;(2)由题意可得﹣x3+mx2﹣m≥﹣x3+mx2+(a+1)x+2xcosx﹣m,即有x3+(a+1)x+2xcosx ≤0,讨论x=0,显然成立;当0<x≤1时,运用参数分离和构造函数法,求出导数,判断单调性,求出最值,即可得到所求a的范围.【解答】解:(1)证明:由f()=﹣x3+x2﹣m,可得f(x)=﹣x3+mx2﹣m,f′(x)=﹣3x2+2mx,可得A处的切线方程:y﹣(﹣x13+mx12﹣m)=(﹣3x12+2mx)(x﹣x1),同理可得B处的切线方程:y﹣(﹣x23+mx22﹣m)=(﹣3x22+2mx)(x﹣x2),代入点(2,t),可得x1,x2为方程t﹣(﹣x3+mx2﹣m)=(﹣3x2+2mx)(2﹣x)的两个不等实根,化简整理可得,2x3﹣(m+6)x2+4mx﹣m﹣t=0,令g(x)=2x3﹣(m+6)x2+4mx﹣m﹣t,g′(x)=6x2﹣2(m+6)x+4m=2(3x﹣m)(x﹣2),由g′(x)=0,可得x=2或x=.g(2)=3m﹣8﹣t,g()=﹣m3+m2﹣m﹣t,由题意可得g(x)必有一个极值为0,则t=3m﹣8,或t=﹣m3+m2﹣m;(2)当x∈[0,1]时,若f(x)≥g(x)恒成立,即为﹣x3+mx2﹣m≥﹣x3+mx2+(a+1)x+2xcosx﹣m,即有x3+(a+1)x+2xcosx≤0,当x=0时,上式显然成立;当0<x≤1时,即有﹣a﹣1≥x2+2cosx恒成立,令m(x)=x2+2cosx,m′(x)=x﹣2sinx,m′′(x)=1﹣2cosx,由0<x≤1时,1<2cos1≤2cosx<2,则1﹣2cosx<0,y=x﹣2sinx在(0,1]递减,可得x﹣2sinx<0,则m(x)在(0,1]递减,可得m(x)<m(0)=2,则﹣a﹣1≥2,解得a≤﹣3.a的取值范围是(﹣∞,﹣3].【点评】本题考查导数的运用:求切线的方程和不等式恒成立问题解法,注意运用分类讨论的思想方法和转化思想,构造函数法,运用单调性,考查化简整理的运算能力,属于中档题.四、选做题:4-4:坐标系与参数方程22.(10分)(2017•江西模拟)在平面直角坐标系xOy中,曲线C的方程为y=3+.(1)写出曲线C的一个参数方程;(2)在曲线C上取一点P,过点P作x轴,y轴的垂线,垂足分别为A,B,求矩形OAPB的周长的取值范围.【分析】(1)采用平方法,化简曲线C,根据x=ρcosθ,y=ρsinθ即可得曲线C的一个参数方程;(2)由(1)可知曲线C,曲线C上取一点P的参数坐标,利用三角函数的有界限求解矩形OAPB的周长的取值范围【解答】解:(1)曲线C的方程为y=3+.化简可得:(y﹣3)2=﹣x2+8x﹣15,(y≥3,3≤x≤5)即:x2+y2﹣8x﹣6y+24=0,可知圆心为(4,3),半径r=1,曲线C的一个参数方程为:(θ为参数)(2)由(1)可知曲线C圆心为(4,3),半径r=1,(y≥3,3≤x≤5)的半圆.设一点P的参数坐标为(4+cosθ,3+sinθ)(0≤θ≤π),过点P作x轴,y轴的垂线,垂足分别为A,B,∴|PA|=3+sinθ,|PB|=4+cosθ∴矩形OAPB的周长l=2|PA|+2|PB|=2|3+sinθ+4+cosθ|=2[7+sin()],(0≤θ≤π)当θ=时,周长l最大为14+2.当θ=π时,周长l最小为12.故得矩形OAPB的周长的取值范围是[12,]【点评】本题考查了普通方程化参数方程和利用参数坐标转化为三角函数的有界限问题求解范围问题,属于中档题.五、选修4-5:不等式选讲23.(2017•江西模拟)已知函数f(x)=x2+|x|﹣|x﹣5|+2.(1)求不等式f(x)<0的解集;(2)若关于x的不等式|f(x)|≤m的整数解仅有11个,求m的取值范围.【分析】(1)讨论x的取值,去掉绝对值,化简f(x),求出不等式f(x)<0的解集;(2)由(1)写出f(x)解析式,画出f(x)的图象,结合图象,求出不等式|f(x)|≤m的整数解仅有11个时,求出m的取值范围.【解答】解:(1)当x≤0时,f(x)=x2﹣x+x﹣5+2=x2﹣3,由x2﹣3<0解得﹣<x<,取﹣<x≤0;当0<x<5时,f(x)=x2+x+x﹣5+2=x2+2x﹣3,由x2+2x﹣3<0解得﹣3<x<1,取0<x<1;当x≥5时,f(x)=x2+x﹣x+5+2=x2+7,由x2+7<0无解;综上,不等式f(x)<0的解集为(﹣,1);(2)由(1)知,f(x)=,画出f(x)的图象如图所示;若关于x的不等式|f(x)|≤m的整数解仅有11个,当m=32时,由x2+7≤32,解得x≤5;由x2﹣3≤32,解得﹣≤x,满足不等式|f(x)|≤m的整数解仅有11个;当m=33时,由x2+7≤33,解得x≤;由x2﹣3≤33,解得﹣6≤x,满足不等式|f(x)|≤m的整数解仅有12个;不满足题意;当m=31时,由x2+7≤31,解得x≤;由x2﹣3≤31,解得﹣≤x,满足不等式|f(x)|≤m的整数解仅有10个;不满足题意;综上,m的取值范围是[32,33).【点评】本题考查了绝对值不等式的解法与应用问题,也考查了分类讨论思想与数形结合思想的应用问题,是综合性题目.。
2017年江西省赣州市高考数学一模试卷(理科)
![2017年江西省赣州市高考数学一模试卷(理科)](https://img.taocdn.com/s3/m/4eedd52c3968011ca30091fe.png)
2017年江西省赣州市高考数学一模试卷(理科)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin15°+cos165°的值为()A.B.C.D.2.设命题p:函数y=f(x)不是偶函数,命题q:函数y=f(x)是单调函数,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.如图是一个几何体挖去另一个几何体所得的三视图,若主视图中长方形的长为2,宽为1,则该几何体的体积为()A.B.C. D.4.抛物线C:y2=2px(p>0)的焦点为F,A是C上一点,若A到F的距离是A 到y轴距离的两倍,且三角形OAF的面积为1(O为坐标原点),则p的值为()A.1 B.2 C.3 D.45.若(x﹣2y)2n+1的展开式中前n+1项的二项式系数之和为64,则该展开式中x4y3的系数是()A.﹣B.70 C.D.﹣706.二战中盟军为了知道德国“虎式”重型坦克的数量,采用了两种方法,一种是传统的情报窃取,一种是用统计学的方法进行估计,统计学的方法最后被证实比传统的情报收集更精确,德国人在生产坦克时把坦克从1开始进行了连续编号,在战争期间盟军把缴获的“虎式”坦克的编号进行记录,并计算出这些编号的平均值为675.5,假设缴获的坦克代表了所有坦克的一个随机样本,则利用你所学过的统计知识估计德国共制造“虎式”坦克大约有()A.1050辆B.1350辆C.1650辆D.1950辆7.复数z1、z2满足|z1|=|z2|=1,z1﹣z2=,则z1•z2=()A.1 B.﹣1 C.i D.﹣i8.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图,f()=﹣1,则f(0)的值为()A.1 B.C.D.9.秦九韶是我国南宋时代的数学家,其代表作《数书九章》是我国13世纪数学成就的代表之一,秦九韶利用其多项式算法,给出了求高次代数方程的完整算法,这一成就比西方同样的算法早五六百年,如图是该算法求函数f(x)=x3+x+1零点的程序框图,若输入x=﹣1,c=1,d=0.1,则输出的x的值为()A.﹣0.6 B.﹣0.69 C.﹣0.7 D.﹣0.7110.已知函数f(x)=|2x﹣2|+b的两个零点分别为x1,x2(x1>x2),则下列结论正确的是()A.1<x1<2,x1+x2<2 B.1<x1<2,x1+x2<1C.x1>1,x1+x2<2 D.x1>1,x1+x2<111.在三棱锥ABCD中,BC⊥CD,Rt△BCD斜边上的高为1,三棱锥ABCD的外接球的直径是AB,若该外接球的表面积为16π,则三棱锥ABCD体积的最大值为()A.B.C.1 D.12.在△ABC中,D、E是BC边上两点,BD、BA、BC构成以2为公比的等比数列,BD=6,∠AEB=2∠BAD,AE=9,则三角形ADE的面积为()A.31.2 B.32.4 C.33.6 D.34.8二、填空题(本大题共4小题,每小题5分,共20分)13.设向量=(1,x),=(x,1),若•=﹣||•||,则x=.14.设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为.15.设f(x)=的图象在点(1,1)处的切线为l,则曲线y=f(x),直线l及x轴所围成的图形的面积为.16.已知双曲线C的方程为﹣=1(a>0,b>0),若C的右支上存在两点A、B,使∠AOB=120°,其中O为坐标原点,则曲线C的离心率的取值范围是.三、解答题17.设等差数列{a n}的公差d>0,前n项和为S n,已知3是﹣a2与a9的等比中项,S10=﹣20.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n(n≥6).18.如图,在斜三棱柱ABC﹣A1B1C1中,侧面ACC1A1⊥底面ABC,底面ABC是等腰直角三角形,CA=CB,A1B⊥AC1.(1)求证:平面A1BC⊥平面ABC1;(2)若直线AA1与底面ABC所成的角为60°,求直线AA1与平面ABC1所成角的正弦值.19.《最强大脑》是江苏卫视推出国内首档大型科学类真人秀电视节目,该节目集结了国内外最顶尖的脑力高手,堪称脑力界的奥林匹克,某校为了增强学生的记忆力和辨识力也组织了一场类似《最强大脑》的PK赛,A、B两队各由4名选手组成,每局两队各派一名选手PK,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分,假设每局比赛两队选手获胜的概率均为0.5,且各局比赛结果相互独立.(1)求比赛结束时A队的得分高于B队的得分的概率;(2)求比赛结束时B队得分X的分布列和期望.20.设离心率为的椭圆E: +=1(a>b>0)的左、右焦点为F1,F2,点P是E上一点,PF1⊥PF2,△PF1F2内切圆的半径为﹣1.(1)求E的方程;(2)矩形ABCD的两顶点C、D在直线y=x+2,A、B在椭圆E上,若矩形ABCD的周长为,求直线AB的方程.21.设函数f(x)=e x+ax2(a∈R).(1)若函数f(x)在R上单调,且y=f′(x)有零点,求a的值;(2)若对∀x∈[0,+∞),有≥1,求a的取值范围.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C:ρ2﹣4ρcosθ+1=0,直线l:(t为参数,0≤α<π).(1)求曲线C的参数方程;(2)若直线l与曲线C相切,求直线l的倾斜角及切点坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x|﹣|x﹣1|.(1)若关于x的不等式f(x)≥|m﹣1|的解集非空,求实数m的取值集合M.(2)记(1)中数集M中的最大值为k,正实数a,b满足a2+b2=k,证明:a+b ≥2ab.2017年江西省赣州市高考数学一模试卷(理科)参考答案与试题解析一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin15°+cos165°的值为()A.B.C.D.【考点】两角和与差的正弦函数;两角和与差的余弦函数.【分析】利用诱导公式,把要求的式子化为sin15°﹣cos15°=sin(45°﹣30°)﹣cos (45°﹣30°),再利用两角差的正弦、余弦公式,进一步展开运算求得结果.【解答】解:sin15°+cos165°=sin15°﹣cos15°=sin(45°﹣30°)﹣cos(45°﹣30°)=sin45°cos30°﹣cos45°sin30°﹣cos45°cos30°﹣sin45°sin30°=﹣﹣﹣=,故选B.2.设命题p:函数y=f(x)不是偶函数,命题q:函数y=f(x)是单调函数,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由q⇒p,反之不成立.例如取f(x)=(x﹣1)2不是偶函数,但是此函数在R上不单调.【解答】解:命题p:函数y=f(x)不是偶函数,命题q:函数y=f(x)是单调函数,则q⇒p,反之不成立.例如f(x)=(x﹣1)2不是偶函数,但是此函数在R上不单调.则p是q的必要不充分条件.故选:B.3.如图是一个几何体挖去另一个几何体所得的三视图,若主视图中长方形的长为2,宽为1,则该几何体的体积为()A.B.C. D.【考点】由三视图求面积、体积.【分析】由题意,几何体是圆柱挖去圆锥所得,利用圆柱、圆锥的体积公式可得体积.【解答】解:由题意,几何体是圆柱挖去圆锥所得,体积为=.故选C.4.抛物线C:y2=2px(p>0)的焦点为F,A是C上一点,若A到F的距离是A 到y轴距离的两倍,且三角形OAF的面积为1(O为坐标原点),则p的值为()A.1 B.2 C.3 D.4【考点】抛物线的简单性质.【分析】根据A是C上一点,若A到F的距离是A到y轴距离的两倍,且三角形OAF的面积为1,建立方程,即可求出p的值.【解答】解:设A(a,b),则b2=2pa,=1,a+=2a,解得p=2,故选B.5.若(x﹣2y)2n+1的展开式中前n+1项的二项式系数之和为64,则该展开式中x4y3的系数是()A.﹣B.70 C.D.﹣70【考点】二项式系数的性质.【分析】根据(x﹣2y)2n+1展开式中前n+1项的二项式系数之和等于后n+1项的和,求出n的值,再利用展开式的通项公式求出x4y3的系数.【解答】解:(x﹣2y)2n+1展开式中共有2n+2项,其前n+1项的二项式系数之和等于后n+1项和,∴22n+1=64×2,解得n=3;∴(x﹣2y)7展开式中通项公式为=••(﹣2y)r,T r+1令r=3,得展开式中x4y3的系数是••(﹣2)3=﹣.故选:A.6.二战中盟军为了知道德国“虎式”重型坦克的数量,采用了两种方法,一种是传统的情报窃取,一种是用统计学的方法进行估计,统计学的方法最后被证实比传统的情报收集更精确,德国人在生产坦克时把坦克从1开始进行了连续编号,在战争期间盟军把缴获的“虎式”坦克的编号进行记录,并计算出这些编号的平均值为675.5,假设缴获的坦克代表了所有坦克的一个随机样本,则利用你所学过的统计知识估计德国共制造“虎式”坦克大约有()A.1050辆B.1350辆C.1650辆D.1950辆【考点】系统抽样方法.【分析】由题意=675.5,即可得出结论.【解答】解:由题意=675.5,∴n=1350,故选B.7.复数z1、z2满足|z1|=|z2|=1,z1﹣z2=,则z1•z2=()A.1 B.﹣1 C.i D.﹣i【考点】复数代数形式的乘除运算.【分析】z1﹣z2==﹣2i,由|z1|=|z2|=1,设z1=cosα+isinα,z2=cosβ+isinβ,可得cosα=cosβ,sinα﹣sinβ=﹣2,即可得出.【解答】解:z1﹣z2====﹣2i,由|z1|=|z2|=1,设z1=cosα+isinα,z2=cosβ+isinβ,∴cosα=cosβ,sinα﹣sinβ=﹣2,∴cosα=cosβ=0,sinα=﹣1,sinβ=1,∴z1=﹣i,z2=i,则z1•z2=﹣i•i=1.故选:A.8.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图,f()=﹣1,则f(0)的值为()A.1 B.C.D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由周期求出ω,由五点法作图求出φ的值,由函数的特殊值求出A,可得函数的解析式,从而求得f(0)的值.【解答】解:根据函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象,可得==﹣,∴ω=3.再根据五点法作图可得3•+φ=,∴φ=,故f(x)=Asin(3x+).∵f()=Asin(+)=﹣Acos=﹣A•=﹣1,∴A=,则f(0)=sin=1,故选:A.9.秦九韶是我国南宋时代的数学家,其代表作《数书九章》是我国13世纪数学成就的代表之一,秦九韶利用其多项式算法,给出了求高次代数方程的完整算法,这一成就比西方同样的算法早五六百年,如图是该算法求函数f(x)=x3+x+1零点的程序框图,若输入x=﹣1,c=1,d=0.1,则输出的x的值为()A.﹣0.6 B.﹣0.69 C.﹣0.7 D.﹣0.71【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的x的值,即可得出结论.【解答】解:x=﹣1,f(﹣1)=﹣1<0,c>d,x=﹣1+1=0,第二次循环,x=0,f(0)=1>0,x=0﹣1=﹣1,c=0.1=d,x=﹣0.9第3次循环,x=﹣0.9,f(﹣0.9)<0,x=﹣0.8,第3次循环,x=﹣0.8,f(﹣0.8)<0,x=﹣0.7,第4次循环,x=﹣0.7,f(﹣0.7)<0,x=﹣0.6,第5次循环,x=﹣0.6,f(﹣0.6)>0,x=﹣0.7,c=0.01<d停止循环,输出﹣0.7,故选C.10.已知函数f(x)=|2x﹣2|+b的两个零点分别为x1,x2(x1>x2),则下列结论正确的是()A.1<x1<2,x1+x2<2 B.1<x1<2,x1+x2<1C.x1>1,x1+x2<2 D.x1>1,x1+x2<1【考点】函数零点的判定定理.【分析】函数f(x)=|2x﹣2|+b的有两个零点,即y=|2x﹣2|与y=﹣b有两个交点,交点的横坐标就是x1,x2(x1>x2),在同一坐标系中画出y=|2x﹣2|与y=﹣b 的图象,根据图象可判定.【解答】解:函数f(x)=|2x﹣2|+b的有两个零点,即y=|2x﹣2|与y=﹣b有两个交点,交点的横坐标就是x1,x2(x1>x2),在同一坐标系中画出y=|2x﹣2|与y=﹣b的图象(如下),可知1<x1<2,,,⇒,⇒x1+x2<2.故选:A.11.在三棱锥ABCD中,BC⊥CD,Rt△BCD斜边上的高为1,三棱锥ABCD的外接球的直径是AB,若该外接球的表面积为16π,则三棱锥ABCD体积的最大值为()A.B.C.1 D.【考点】棱柱、棱锥、棱台的体积.【分析】当AD⊥平面BCD时,以CB、CD、CA为棱构造长方体,此时三棱锥ABCD的外接球即该长方体的外接球,其直径为AB,由已知得当a=b=时,AC=2,此时三棱锥ABCD体积为V=.由此排除A,B,C选项.【解答】解:当AD⊥平面BCD时,以CB、CD、CA为棱构造长方体,此时三棱锥ABCD的外接球即该长方体的外接球,其直径为AB,∵该外接球的表面积为16π,∴AB=4,设BC=a,CD=b,∵在三棱锥ABCD中,BC⊥CD,Rt△BCD斜边上的高为1,∴BD=,设Rt△BCD斜边上的高为CE,则CE=1,由,得BD==ab,∵a>0,b>0,∴=ab≥,即ab≥2,当且仅当a=b=时,取等号,∴当a=b=时,=2,解得AC=2,此时三棱锥ABCD体积为V===.由此排除A,B,C选项,故选:D.12.在△ABC中,D、E是BC边上两点,BD、BA、BC构成以2为公比的等比数列,BD=6,∠AEB=2∠BAD,AE=9,则三角形ADE的面积为()A.31.2 B.32.4 C.33.6 D.34.8【考点】正弦定理.【分析】由已知及等比数列的性质可得:BD=6,AB=12,AE=9,设∠BAD=α,则∠AEB=2α,在△ABE中,由正弦定理可得:sinB=sin2α,在△ABD中,由正弦定理可得AD==9cosα,进而利用余弦定理可cosα=,利用同角三角函数基本关系式,二倍角公式计算可得sinα,sin2α,cos2α,可求AD=,则在△ADE中,由余弦定理可得DE的值,进而利用三角形面积公式即可计算得解.【解答】解:由题意可得:BD=6,AB=12,AE=9,设∠BAD=α,则∠AEB=2α,∵在△ABE中,由正弦定理可得:,可得:sinB=sin2α,在△ABD中,由正弦定理可得:,可得:AD==9cosα,∴由余弦定理可得:62=122+(9cosα)2﹣2×12×(9cosα)×cosα,整理可得:cosα=,∴sinα=,sin2α=,cos2α=,AD=,则在△ADE中,由余弦定理可得:()2=DE2+92﹣2×9×DE×,整理可得:5DE2﹣54DE+81=0,∴解得:DE=9,或1.8(舍去),=AE•DE•sin2α=×9×9×=32.4.∴S△ADE故选:B.二、填空题(本大题共4小题,每小题5分,共20分)13.设向量=(1,x),=(x,1),若•=﹣||•||,则x=﹣1.【考点】平面向量数量积的运算.【分析】可先求出,,然后代入即可得到关于x的方程,解出x即可.【解答】解:,;∴由得:2x=﹣(x2+1);解得x=﹣1.故答案为:﹣1.14.设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为10.【考点】简单线性规划.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=2x+3y+1对应的直线进行平移,由此可得当x=3,y=﹣1时,目标函数取得最大值为10.【解答】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(3,1),B(0,﹣2),C(0,2)设z=F(x,y)=2x+3y+1,将直线l:z=2x+3y+1进行平移,当l经过点A(3,1)时,目标函数z达到最大值3,1)=10∴z最大值=F(故答案为:1015.设f(x)=的图象在点(1,1)处的切线为l,则曲线y=f(x),直线l及x轴所围成的图形的面积为.【考点】利用导数研究曲线上某点切线方程.【分析】根据导数的几何意义即可求出切线方程;根据定积分的几何意义即可求出所围成的图形的面积.【解答】解:由f(x)=的导数为f′(x)=,则切线l的斜率k=y′|x=1=,切线l的方程为y﹣1=(x﹣1)即y=(x+1),由x=0可得y=;y=0可得x=﹣1.所求的图形的面积S=×1×+(x+﹣)dx=+(x2+x﹣x)|=++﹣=.故答案为:.16.已知双曲线C的方程为﹣=1(a>0,b>0),若C的右支上存在两点A、B,使∠AOB=120°,其中O为坐标原点,则曲线C的离心率的取值范围是(2,+∞).【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,由题意可得>tan60°=,由a,b,c的关系和离心率公式,计算即可得到所求范围.【解答】解:由C的右支上存在两点A、B,使∠AOB=120°,而渐近线方程为y=±x,可得>tan60°=,即为b>a,即为b2>3a2,即c2﹣a2>3a2,即有c2>4a2,即c>2a,e=>2,故答案为:(2,+∞).三、解答题17.设等差数列{a n}的公差d>0,前n项和为S n,已知3是﹣a2与a9的等比中项,S10=﹣20.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n(n≥6).【考点】数列的求和;数列递推式.【分析】(1)利用等比数列的通项公式与性质、等差数列的通项公式与求和公式即可得出.(2)分类讨论,利用“裂项求和”方法即可得出.【解答】解:(1)∵3是﹣a2与a9的等比中项,∴=﹣a2•a9,又S10=﹣20.∴﹣(a1+d)(a1+8d)=45,10a1+d=﹣20,联立解得a1=﹣11,d=2.∴a n=﹣11+2(n﹣1)=2n﹣13.(2)1≤n≤5时,b n===﹣.n≥6,b n===,∴n≥6时,数列{b n}的前n项和T n=﹣+=﹣.18.如图,在斜三棱柱ABC﹣A1B1C1中,侧面ACC1A1⊥底面ABC,底面ABC是等腰直角三角形,CA=CB,A1B⊥AC1.(1)求证:平面A1BC⊥平面ABC1;(2)若直线AA1与底面ABC所成的角为60°,求直线AA1与平面ABC1所成角的正弦值.【考点】直线与平面所成的角;平面与平面垂直的判定.【分析】(1)推导出BC⊥侧面ACC1A1,所以AC1⊥BC,再由A1B⊥AC1,得到AC1⊥面A1BC,由此能证明面ABC1⊥面A1BC.(2)利用等体积方法,求出A1到平面ABC1的距离,即可求直线AA1与平面ABC1所成角的正弦值.【解答】(1)证明:因为底面ABC是等腰直角三角形,CA=CB,所以BC⊥AC因为侧面ACC1A1⊥底面ABC,侧面ACC1A1∩底面ABC=AC,所以BC⊥侧面ACC1A1,所以AC1⊥BC,又A1B⊥AC1,而A1B∩BC=B,所以AC1⊥面A1BC,又AC1⊂面ABC1,所以面ABC1⊥面A1BC;(2)解:由题意,∠A1AC=60°,四边形ACC1A1是菱形.设AC=2,则AB=2,AC1=2,BC1=2,∴==设A1到平面ABC1的距离为h,则=,∴h=,∴直线AA 1与平面ABC 1所成角的正弦值==.19.《最强大脑》是江苏卫视推出国内首档大型科学类真人秀电视节目,该节目集结了国内外最顶尖的脑力高手,堪称脑力界的奥林匹克,某校为了增强学生的记忆力和辨识力也组织了一场类似《最强大脑》的PK 赛,A 、B 两队各由4名选手组成,每局两队各派一名选手PK ,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分,假设每局比赛两队选手获胜的概率均为0.5,且各局比赛结果相互独立.(1)求比赛结束时A 队的得分高于B 队的得分的概率; (2)求比赛结束时B 队得分X 的分布列和期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式. 【分析】(1)设事件“比赛结束时A 队的得分高于B 队的得分”为A ,事件“比赛结束时B 队的得分高于a 队的得分”,事件“比赛结束时A 队的得分等于B 队的得分”为事件C ,根据:每局比赛两队选手获胜的概率均为0.5,可得P (A )=P (B ),P (A )+P (B )+P (C )=1,P (C )=0.即可得出P (A ).(2)X 的可能取值为0,1,2,3,4,5.根据相互独立与互斥事件的概率计算公式即可得出.【解答】解:(1)设事件“比赛结束时A 队的得分高于B 队的得分”为A ,事件“比赛结束时B 队的得分高于a 队的得分”,事件“比赛结束时A 队的得分等于B 队的得分”为事件C ,根据:每局比赛两队选手获胜的概率均为0.5, 则P (A )=P (B ),P (A )+P (B )+P (C )=1,P (C )=0. ∴P (A )=.(2)X 的可能取值为0,1,2,3,4,5.P (X=0)==,P (X=1)==,P (X=2)=+=,P (X=3)=+×=,P (X=4)==,P (X=5)==.E(X)=0×+1×+2×+3×+4×+5×=.20.设离心率为的椭圆E: +=1(a>b>0)的左、右焦点为F1,F2,点P是E上一点,PF1⊥PF2,△PF1F2内切圆的半径为﹣1.(1)求E的方程;(2)矩形ABCD的两顶点C、D在直线y=x+2,A、B在椭圆E上,若矩形ABCD的周长为,求直线AB的方程.【考点】直线与椭圆的位置关系.【分析】(1)由椭圆的离心率求得a=c,根据勾股定理及椭圆的定义,求得a﹣c=﹣1.b2=a2﹣c2=1,即可求得椭圆的标准方程;(2)设直线l的方程,代入椭圆方程,由韦达定理及弦长公式求得丨AB丨,由两平行之间的距离公式,由矩形的周长公式2(丨AB丨+d)=,代入即可求得m的值,求得直线AB的方程.【解答】解:(1)∵离心率为e==,则a=c,①由PF1⊥PF2,则丨PF1丨2+丨PF2丨2=丨F1F2丨2=4c2,由椭圆的定义可知;丨PF1丨+丨PF2丨=2a,则丨F1F2丨2=(丨PF1丨+丨PF2丨)2﹣2丨PF丨•丨PF2丨,1∴丨PF1丨•丨PF2丨=2a2﹣2c2,,△PF1F2的面积S,S=丨PF1丨•丨PF2丨=×R×(丨PF1丨+丨PF2丨+丨F1F2丨),则a﹣c=﹣1.②由①②解得:a=,c=1,b2=a2﹣c2=1,∴椭圆E的方程为.(2)由题意设直线l的方程:y=x+m,A(x1,y1)、B(x2,y2),则,整理得:3x2+4mx+2m2﹣2=0,由△=16m2﹣4×3(2m2﹣2)=﹣2m2+3>0,解得﹣<m<,由韦达定理可知:x1+x2=﹣,x1x2=,则丨AB丨=•=•=,直线AB,CD之间的距离d==,由矩形ABCD的周长为,则2(丨AB丨+d)=,则2(+)=,解得:m=1,则直线AB的方程为y=x+1.21.设函数f(x)=e x+ax2(a∈R).(1)若函数f(x)在R上单调,且y=f′(x)有零点,求a的值;(2)若对∀x∈[0,+∞),有≥1,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,通过讨论a的范围结合函数的单调性以及函数的零点求出a的值即可;(2)通过讨论a的范围,根据函数的单调性求出函数的最值,从而确定满足条件的a的范围即可.【解答】解:(1)f′(x)=e x+2ax,记g(x)=e x+2ax,则g′(x)=e x+2a,①a=0时,f(x)=e x,显然不合题意;②a>0时,g′(x)>0,f′(x)在R递增,∵f′(0)=1>0,f′(﹣)<0,故y=f′(x)有唯一零点x1,显然x∈(﹣∞,x1)时,f′(x)<0,x∈(x1,+∞)时,f′(x)>0,f(x)在R不单调,不合题意;③a<0时,由g′(x)=0得x=ln(﹣2a),于是f′(x)在(﹣∞,ln(﹣2a))递减,在(ln(﹣2a),+∞)递增,因此要满足条件,必须且只需f′[ln(﹣2a)]=0,即﹣2a+2aln(﹣2a)=0,解得:a=﹣;(2)a<0时,若x>﹣,则ax+1<0,根据指数函数和幂函数的增长速度知:存在x0,当x>x0时,必有e x>﹣ax2,即e x+ax2>0,因此x>max{﹣,x0},有<0,显然不合题意,当a≥0时,记h(x)=e x+ax2﹣ax﹣1,则≥1当且仅当h(x)≥0,h′(x)=e x+2ax﹣a,显然h′(x)在[0,+∞)递增,①a≤1时,由h′(0)=1﹣a<1,h′(1)=e+a>0,得h′(x)=0在[0,+∞)上有且只有1个实数根,不妨设该实根为x1,当0<x<x1时,h′(x)<0,从而h(x)在(0,x1)递减,故x∈(0,x1)时,h(x)<h(0)=0,不合题意,综上,a的范围是[0,1].[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C:ρ2﹣4ρcosθ+1=0,直线l:(t为参数,0≤α<π).(1)求曲线C的参数方程;(2)若直线l与曲线C相切,求直线l的倾斜角及切点坐标.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)由曲线C的极坐标方程,求出曲线C的直角坐标方程,得到曲线C是以C(2,0)为圆心,以r=为半径的圆,由此能求出曲线C的参数方程.(2)直线l消去参数t,得直线l的直角坐标方程为:cosαx﹣sinαy﹣4cosα=0.由直线l与曲线C相切,知圆心C(2,0)到直线l的距离d等于圆半径r,由此能求出结果.【解答】解:(1)∵曲线C:ρ2﹣4ρcosθ+1=0,∴曲线C的直角坐标方程为x2+y2﹣4x+1=0,即(x﹣2)2+y2=3,∴曲线C是以C(2,0)为圆心,以r=为半径的圆,∴曲线C的参数方程为.(2)∵直线l:(t为参数,0≤α<π).∴消去参数t,得直线l的直角坐标方程为:cosαx﹣sinαy﹣4cosα=0.∵直线l与曲线C相切,∴圆心C(2,0)到直线l的距离d等于圆半径r,即d==2cosα=,∴cos,∵0≤α<π,∴直线l的倾斜角α=,∴直线l的方程为x﹣y﹣4=0,联立,得x=,y=﹣,∴切点坐标为(,﹣).[选修4-5:不等式选讲]23.已知函数f(x)=|x|﹣|x﹣1|.(1)若关于x的不等式f(x)≥|m﹣1|的解集非空,求实数m的取值集合M.(2)记(1)中数集M中的最大值为k,正实数a,b满足a2+b2=k,证明:a+b ≥2ab.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)求出函数的解析式,然后求解函数的最大值,通过|m﹣1|≤1,求解m的范围,得到m的最大值M.(2)利用分析法,证明不等式成立的充分条件即可.【解答】解:(1)由已知可得f(x)=,所以f max(x)=1,…所以只需|m﹣1|≤1,解得﹣1≤m﹣1≤1,∴0≤m≤2,所以实数m的最大值M=2…(2)因为a>0,b>0,所以要证a+b≥2ab,只需证(a+b)2≥4a2b2,即证a2+b2+2ab≥4a2b2,所以只要证2+2ab≥4a2b2,…即证2(ab)2﹣ab﹣1≤0,即证(2ab+1)(ab﹣1)≤0,因为2ab+1>0,所以只需证ab≤1,下证ab≤1,因为2=a2+b2≥2ab,所以ab≤1成立,所以a+b≥2ab…2017年4月22日。
2017年江西省高考数学试卷与解析word(理科)(全国新课标Ⅰ)
![2017年江西省高考数学试卷与解析word(理科)(全国新课标Ⅰ)](https://img.taocdn.com/s3/m/f46f5a37bd64783e09122bee.png)
2017年江西省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p44.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年江西省高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p4【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.8【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D6.(5分)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选C.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A11.(5分)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时(n∈N),数列{a n}的前N项和为数列{b n}的前n项和,+即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=2.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S=acsinB=,△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+b,(b≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,,x1x2=,则=====﹣1,又b≠1,∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.【解答】解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x=的二次函数,g(x)=|x+1|+|x﹣1|=,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x=,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
江西省南昌市2017届高三第二次模拟考试数学(理)试题-Word版含解析
![江西省南昌市2017届高三第二次模拟考试数学(理)试题-Word版含解析](https://img.taocdn.com/s3/m/2801e8f8168884868762d69f.png)
- 1 -第二次模拟测试卷理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 注意事项:1.答卷前,考生务必将自已的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人的准考证号、姓名是否一致. 2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答题无效. 3.考试结束后,监考员将答题卡收回.第Ⅰ卷(选择题部分,共60分)一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{lg(32)}A x y x ==-,2{4}B x x =≤, 则A B =U ( )A. 3{2}2x x -≤< B. {2}<x x C. 3{2}2x x -<< D. {2}≤x x2.若ii 12ia t +=+(i 为虚数单位,,a t R ∈),则t a +等于( ) A. 1- B. 0 C. 1 D. 2 3.已知随机变量ξ服从正态分布2(,)N μσ,若(2)(6)P P ξξ<=>0.15=,则(24)P ξ≤<等于( )A. 0.3B. 0.35C. 0.5D. 0.7 4.已知函数()f x 在R 上可导,则“0'()0f x =”是“0()f x 为 函数()f x 的极值”的( )- 2 -DC A zyoxA. 充分不必要条件B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件 5.执行如右图程序框图,输出的S 为( )A.17 B. 27 C. 47 D. 676.已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为( )A. 110B. 55C. 50D. 不能确定7.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是1(0,0,0),(1,0,1,(0,1,1),(,1,0)2),绘制该四面体三视图时, 按照如下图所示的方向画正视图,则得到左视图可以为( )- 3 -xyoπ2xyoπ21234xyoπ28.《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈;上棱长2丈,无宽,高1丈(如图).问它的体积是多少? ”这个问题的答案是( )A. 5立方丈B. 6立方丈C. 7立方丈D. 9立方丈9.已知抛物线2:4C y x =,过焦点F 3C 相交于,P Q 两点,且,P Q 两点在准线上的投影分别为,M N 两点,则MFN S ∆=( )A.83 B. 833 C. 163D. 3310.函数22sin 33([,0)(0,])1441x y x xππ=∈-+U 的图像大致是( ) xy oπ2A. B. C. D. 11.若对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,|34||349|x y a x y -++--的取值与,x y 无关,则实数a 的取值范围是( )A. 4a ≤-B. 46a -≤≤C. 4a ≤-或6a ≥D. 6a ≥ 12.已知递增数列{}n a 对任意*n N ∈均满足*,3nn a a N a n ∈=,记123(*)n n b a n N -⋅=∈ ,则数列{}n b 的前n 项和等于( )A. 2nn + B. 121n +- C.1332n n +- D. 1332n +- 第Ⅱ卷(非选择题部分,共90分)- 4 -本卷包括必考题和选考题两个部分. 第13题~第21题为必考题,每个考生都必须作答. 第22题~第23题为选考题,考生根据要求作答. 二.填空题:本大题共4小题,每小题5分,共20分.13.已知向量(3,4)a =r ,(,1)b x =r ,若()a b a -⊥r r r,则实数x 等于 .14.设2521001210(32)x x a a x a x a x -+=++++L ,则1a 等于 .15.已知等腰梯形ABCD 中AB //CD ,24,60AB CD BAD ==∠=︒,双曲线以,A B 为焦点,且与线段CD (包括端点C 、D )有两个交点,则该双曲线的离心率的取值范围是 .- 5 -16.网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2017年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足231x t =-+函数关系式.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是 万元. 三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数()2sin sin(+)3f x x x π=⋅.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)锐角ABC ∆的角,,A B C 所对边分别是,,a b c ,角A 的平分线交BC 于D ,直线x A = 是函数()f x 图像的一条对称轴,22AD BD ==,求边a .18.(本小题满分12分)近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从70后和80后的员工中随机调查了100位,得到数据如下表:愿意被外派 不愿意被外派 合计70后 20 20 40 80后402060合计 60 40 100(Ⅰ)并- 6 -说明理由;(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排6名参与调查的70后、80后员工参加.70后员工中有愿意被外派的3人和不愿意被外派的3人报名参加,从中随机选出3人,记选到愿意被外派的人数为x ;80后员工中有愿意被外派的4人和不愿意被外派的2人报名参加,从中随机选出3人,记选到愿意被外派的人数为y ,求x y <的概率. 参考数据:2()P K k >0.15 0.10 0.05 0.025 0.010 0.005k2.072 2.7063.841 5.024 6.635 7.879(参考公式:2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++).- 7 -FED CSx yF 2F 1PNMB A O19.(本小题满分12分)已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=︒,5,7SA SD SB ===点E 是棱AD 的中点,点F 在棱SC 上,且SF SC λ=u u u r u u u r ,SA //平面BEF .(Ⅰ)求实数λ的值;(Ⅱ)求二面角S BE F --的余弦值.20.(本小题满分12分)如图,椭圆2222:1(0)x y C a b a b+=>>的右顶点为(2,0)A ,左、右焦点分别为1F 、2F ,过点A 且斜率为12的直线与y 轴交于点P , 与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点1F (Ⅰ)求椭圆C 的标准方程; (Ⅱ)过点P 且斜率大于12的直线与椭圆交于,M N 两点 (||||PM PN >),若:PAM PBN S S λ∆∆=,求实数λ的取值范围.21.(本小题满分12分)已知函数2()ln(1)f x x x ax bx =--+(,,,a b R a b ∈为常数,e 为自然对数的底数).(Ⅰ)当1a =-时,讨论函数()f x 在区间1(1,1)e e++上极值点的个数;- 8 -(Ⅱ)当1a =,2b e =+时,对任意的(1,)x ∈+∞都有12()x f x ke <成立,求正实数k 的取值范围.请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程为133x t y t=+⎧⎪⎨=⎪⎩(t 为参数).在以坐标原点O 为极点,x 轴非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为24cos 23sin 40ρρθρθ--+=. (Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 交于,A B 两点,求||||OA OB ⋅.23.(本小题满分10分)选修4-5:不等式选讲 已知()|23||21|f x x x =+--. (Ⅰ)求不等式()2f x <的解集;(Ⅱ)若存在x R ∈,使得()|32|f x a >-成立,求实数a 的取值范围.第二次模拟测试卷 理科数学参考答案及评分标准一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.- 9 -题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DABCABBABADD1、D 【解析】因为{lg(32)}{320}{}2A x y x x x x x ==-=->=<,{22}B x x =-≤≤.所以{2}A B x x =≤U ,故答案选D .2.A 【解析】因为ii i i (12i)=i -2t 12i a t a t t +=⇒+=⋅++,则122t a a t=⎧⇒=-⎨=-⎩.所以 1t a +=-,故答案选A .3.B 【解析】由题意可得10.152(24)0.352P ξ-⨯≤<==,故答案选B . 4.C 【解析】由“0'()0f x =”不可以推出“0()f x 为函数()f x 的极值”,同时由“0()f x 为函数()f x 的极值”可以推出“0'()0f x =”,所以“0'()0f x =”是“0()f x 为函数()f x 的极值”的必要不充分条件.故答案选C .5、A 【解析】考虑进入循环状态,根据程序框图可知,当1i =时,有27S =;当2i =时,有47S =;当3i =时,有17S =;当4i =时,有27S =;当5i =时,有47S =;当6i =时,有17S =;所以可知其循环的周期为3T =,当退出循环结构时632i ==⨯,所以输出的17S =,故答案选A . 6.B【解析】78111622(6)(7)5a a a d a d a d a -=+-+=+=,1111161111552a a S a +=⨯==.故答案选B . 7.B 【解析】满足条件的四面体如左图,依题意投影到yOz 平面为正投影,所以左(侧)视方向如图所示,所以得到左视图效果如右图,故答案选B .- 10 -8.A 【解析】将该几何体分成一个直三棱柱,两个四棱锥, 即113122131523V =⨯⨯⨯+⨯⨯⨯⨯=,故答案选A .9.B 【解析】由题意可得直线:3(1)PQ y x =-与抛物线24y x =联解得:231030x x -+=,所以点(3,23)P ,123(,33Q -,则23832333MN ==MNF ∆中,MN 边上的高2h =,则1838322MNF S ∆=⨯=,故答案选B . 方法二:不防设交点P 在x 轴上方,由抛物线焦点弦性质得||||PF PM =,||||QF QN =且1121||||PF QF p +==, ||||||||1||||||||2PM QN PF QF PM QN PF QF --==++,故||4PF =,4||3QF =, 所以114383||(4)2223MNF S MN p ∆=⨯⨯=⨯+=,故答案选B . 10.A 【解析】因为函数22sin ()11xy f x x ==+可化简为222sin ()1x x f x x =+可知函数为奇函数关于原点对称,可排除答案C ;同时有42224sin 2cos 2cos ''()(1)x x x x x xy f x x ++==+ 3222(2sin cos cos )(1)x x x x x x x ++=+,则当(0,)2x π∈ '()0f x >,可知函数在2x π=处附近单调递增,排除答案B 和D ,故答案选A .- 11 -11.D 【解析】要使符合题意,则圆上所有点在直线12:340,:3490l x y a l x y -+=--=之间,因为圆心到直线2l 的距离22213(4)d ==>+-且314190⨯-⨯-<,则所有圆心到直线1l 的距离12213(4)d =≥+-,且31410a ⨯-⨯+≥,解得6a ≥,故答案选D .12.D 【解析】法一:1133a a a =⇒≤,讨论:若11111a a a a =⇒==,不合;若1223a a =⇒=;若11333a a a a =⇒==,不合;即122,3a a ==,2366a a a =⇒=,所以3699a a a =⇒=,所以6918a a a == ,91827a a a ==,182754a a a ==,275481a a a ==,猜测3nn b =,所以数列{}n b 的前n 项和等于113333132n n ++--=-.故答案选D . 法二:*3,n a n a n a N =⇒∈,结合数列的单调性分析得122,3a a ==,13b =,而3,n a a n =3a na n a a ⇒=,同时3a na n a a =,故33n n a a =,又1221233232333n n n n nb a a a b ----⋅⨯⋅⋅====,数列{}n b 为等比数列,即其前n 项和等于113333132n n ++--=-.故答案选D .二.填空题:本大题共4小题,每小题5分,共20分.13.7【解析】因为(3,3)a b x -=-r r ,所以()a b a -⊥⇒r r r(3)33407x x -⨯+⨯=⇒=,故答 案为7.14.240-【解析】250514255(32)(23)(23)x x C x C x x -+=-+-+L ,所以01411552(3)a C C =-240=-,故答案为240-.15.31,)+∞【解析】双曲线过点C 时,2312c ABe a CA CB===-,开口越大,离心- 12 -率越大,故答案为31,)+∞.16.37.5【解析】由题知213t x =--,(13)x <<,所以月利润:(48)3232ty x x t x=+---11163163232t x x x =--=-+--145.5[16(3)]3x x=--+-45.521637.5≤-=,当且仅当114x =时取等号,即月最大利润为37.5万元. 另解:利润1632t y x =--(利润=12⨯进价- 12⨯安装费-开支),也可留t 作为变量求最值.三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.17.【解析】(Ⅰ)因为213()2sin (sin )3cos sin 2f x x x x x x x ==+ 31112cos 2sin(2)22262x x x π=-+=-+, 令222,262k x k k Z πππππ-≤-≤+∈,解得,63k x k k z ππππ-≤≤+∈,所以递增区间是[,]()63k k k Z ππππ-+∈; (Ⅱ)直线x A =是函数()f x 图像的一条对称轴, 则2,6223k A k A k z πππππ-=+⇒=+∈,由02A π<<得到3A π=, 所以角6BAD π∠=,由正弦定理得2sin sin sin BD AD B BAD B =⇒=∠所以4B π=,53412C ππππ=--=,5561212CDA ππππ∠=--=,- 13 -z yx FE D CB ASG所以2AC AD ==,52cos6212DC AD π=⋅= 所以6a BD AD =+=.18.【解析】(Ⅰ)222()100(20204020)()()()()60406040n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯ 4004001002.778 2.7065760000⨯⨯=≈>所以有90% 以上的把握认为“是否愿意被外派与年龄有关”(Ⅱ)“x y <”包含:“0,1x y ==”、 “0,2x y ==”、 “0,3x y ==”、 “1,2x y ==”、 “1,3x y ==”、 “2,3x y ==”六个互斥事件且0312334233664(0,1)400C C C C P x y C C ===⨯=,03213342336612(0,2)400C C C C P x y C C ===⨯= 0330334233664(0,3)400C C C C P x y C C ===⨯=,122133423366108(1,2)400C C C C P x y C C ===⨯= 12303342336636(1,3)400C C C C P x y C C ===⨯=,21303342336636(2,3)400C C C C P x y C C ===⨯= 所以:412410836362001()4004002P x y +++++<=== .19.【解析】(Ⅰ)连接AC ,设AC BE G =I ,则平面SAC I 平面EFB FG =,//SA Q 平面EFB ,//SA FG ∴, GEA GBC ∆∆Q :,12AG AE GC BC ∴==, 1123SF AG SF SC FC GC ∴==⇒=,13λ∴=; (Ⅱ)5,,2SA SD SE AD SE ==∴⊥=Q ,- 14 -又2,60AB AD BAD ==∠=︒Q ,3BE ∴=222SE BE SB ∴+=,SE BE ∴⊥,SE ∴⊥平面ABCD ,以,,EA EB ES 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(1,0,0),3,0),(0,0,2)A B S ,平面SEB 的法向量(1,0,0)m EA ==u r u u u r, 设平面EFB 的法向量(,,)n x y z =r,则(,,)3,0)00n EB x y z y ⊥⇒⋅=⇒=r,(,,)(1,0,2)02n GF n AS x y z x z ⊥⇒⊥⇒⋅-=⇒=r u u u r r u u u r,令1z =,得(2,0,1)n =r ,25cos ,5||||m n m n m n ⋅∴<>==⋅u r ru r r u r r ,即所求二面角的余弦值是25. 20.【解析】(Ⅰ)因为1BF x ⊥轴,得到点2(,)b B c a--,所以22222213()21a a bb a ac c a b c ⎧==⎧⎪⎪⎪=⇒=⎨⎨+⎪⎪=⎩⎪=+⎩,所以椭圆C 的方程是22143x y +=. (Ⅱ)因为1sin 22(2)112sin 2PAM PBNPA PM APMS PM PM S PN PN PB PN BPN λλλ∆∆⋅⋅∠⋅===⇒=>⋅⋅⋅∠,所以2PM PN λ=-u u u u r u u ur .由(Ⅰ)可知(0,1)P -,设MN 方程:1y kx =-,1122(,),(,)M x y N x y ,联立方程221143y kx x y=-⎧⎪⎨+=⎪⎩得:22(43)880k x kx +--=.即得122122843843k x x k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩(*)- 15 -又1122(,1),(,1)PM x y PN x y =+=+u u u u r u u u r ,有122x x λ=-,将122x x λ=-代入(*)可得:222(2)1643k k λλ-=+. 因为12k >,有2221616(1,4)3434k k k =∈++, 则2(2)14λλ-<<且2λ>4423λ⇒<<+综上所述,实数λ的取值范围为(4,43)+. 21.【解析】(Ⅰ)1a =-时,'()ln(1)2+1xf x x x b x =-++-,记('()g x f x b =-), 则2232()112'()21(1)(1)x x g x x x x ⋅-=-+=---,3'()02g x x =⇒=, 当13(1,)2x e ∈+时,'()0g x <,3(,1)2x e ∈+时,'()g x 0>,所以当32x =时,()g x 取得极小值6ln 2-,又12(1)2g e e e+=++,1(1)24g e e e+=++,'()0()f x g x b =⇔=-,所以(ⅰ)当6ln 2b -≤-,即ln 26b ≥-时,'()0f x ≥,函数()f x 在区间1(1,1)e e++上无极值点;(ⅱ)当26ln 22b e e -<-<++即22ln 26e b e---<<-时,'()0f x =有两不同解,函数()f x 在区间1(1,1)e e++上有两个极值点;- 16 -(ⅲ)当21224e b e e e ++≤-<++即12242e b e e e---<≤---时,'()0f x =有一解,函数()f x 在区间1(1,1)e e++上有一个极值点;(ⅳ)当124b e e -≥++即124b e e ≤---时,'()0f x ≤,函数()f x 在区间1(1,1)e e++上无极值点;(Ⅱ)当1,2a b e ==+时,对任意的(1,)x ∈+∞都有12()x f x k e<⋅,即22ln(1)(2)x x x x e x ke --++<,即2ln(1)2x e x x e k x--++<⋅记()ln(1)2h x x x e =--++,2()x ex k xφ=⋅, 由12'()111xh x x x -=-=--,当12x <<时'()0h x >,2x >时,'()0h x <, 所以当2x =时,()h x 取得最大值(2)h e =,又222221(2)22'()x x xk e x e e x x k x xφ--==,当12x <<时'()0x φ<,2x >时,'()0x φ>, 所以当2x =时,()x φ取得最小值2ke ,所以只需要2kee <2k ⇒>,即正实数k 的取值范围是(2,)+∞.22.【解析】(Ⅰ)直线l 的普通方程是33(1)y x -=-即3y x =,曲线C 的直角坐标方程是224340x y x y +--+=即22(2)(3)3x y -+=;(Ⅱ)直线l 的极坐标方程是3πθ=,代入曲线C 的极坐标方程得:2540ρρ-+=,- 17 -所以||||||4A B OA OB ρρ⋅==.23.【解析】(Ⅰ)不等式()2f x <等价于32(23)(21)2x x x ⎧<-⎪⎨⎪-++-<⎩或3122(23)(21)2x x x ⎧-≤≤⎪⎨⎪++-<⎩ 或12(23)(21)2x x x ⎧>⎪⎨⎪+--<⎩,解得32x <-或302x -≤<, 所以不等式()2f x <的解集是(,0)-∞;(Ⅱ)()|(23)(21)|4f x x x ≤+--=Q ,max ()4f x ∴=,|32|4a ∴-<,解得实数a 的取值范围是2(,2)3-.。
江西省2017年普通高等学校招生全国统一考试仿真卷八理科数学试题Word版含答案
![江西省2017年普通高等学校招生全国统一考试仿真卷八理科数学试题Word版含答案](https://img.taocdn.com/s3/m/40948abb227916888486d7f5.png)
绝密 ★ 启用前江西省2017年普通高等学校招生全国统一考试仿真卷理科数学(八)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2017南阳一中]复数12i z =+,若复数1z ,2z 在复平面内的对应点关于虚轴对称,则12z z =( )A .5-B .5C .34i -+D .34i -【答案】A【解析】由题意可知22i z =-+,所以()()2122i 2i 4i 5z z =+-+=-+=-,故选A .2.[2017正定中学]已知集合{}220P y y y =-->,2{0}Q x x ax b =++≤,若PQ =R ,则(]23PQ =,,则a b +=( )A .-5B .5C .-1D .1【答案】A【解析】{}220{21}P y y y y y y =--=<->>或,而由PQ =R 及(]23PQ =,得[]13Q =-,,所以13-,是方程20x ax b ++=的两根,由根与系数关系得1313235a b a b a b -=-+=-⨯⇒=-=-+=-,,,,选A .3.[2017长沙一中]下列命题中,为真命题的是( ) A .0x ∃∈R ,使得0e 0x ≤ B .1sin 2(π,)sin x x k k x+≠∈Z ≥ C .2,2xx x ∀∈>RD .若命题p :0x ∃∈R ,使得20010x x -+<,则p ⌝:0x ∀∈R ,都有210x x -+≥【答案】D【解析】根据全称命题与存在性命题的关系可知,命题p :0x ∃∈R ,使得20010x x -+<,则p ⌝:0x ∀∈R ,都有210x x -+≥,故选D .4.[2017广东联考]设函数()()1232e 2log 1 2x x f x x x -⎧<⎪=⎨-⎪⎩,,≥,则()()2f f 的值为( ) A .0 B .1 C .2 D .3【答案】C 【解析】()()()()032log 312e 2f f f f ===⨯=,选C .5.[2017长沙一中]如图是用模拟方法估计圆周率π值的程序框图,P 表示估计结果,则图中空白框内应填入( )A .2000MP =B .42000MP =C .2000NP =D .42000NP =【答案】B【解析】由题意得以及程序框图可知,用模拟方法估计圆周率的程序框图,M 是圆周内的点的次数,当i 大于2000时,圆周内的点的次数为4M ,总试验次数为2000,所以要求的概率2000M ,221π1π4==200014M 所以空白框内应填入的表达式是42000M P =,故选B . 6.[2017抚州七校]在ABC △中,,,A B C 的对边分别是,,a b c ,若2cos cos ,2b A a B c a b +===,则ABC △的周长为( )A .B .7C .6D .5【答案】D【解析】∵2cos cos ,2b A a B c a b +===,∴由余弦定理可得:222222222b c a a c b b a c bc ac+-+-⨯+⨯=,整理可得:2322c c =, ∴解得:1c =,则ABC △的周长为5122=++=++c b a ,故选D .7.[2017天水一中]函数()sin()f x A x ωϕ=+的图象如下图所示,为了得到()cos g x A x ω=-的图象,可以将()f x 的图象( )A.向右平移π12个单位长度B.向右平移5π12个单位长度C.向左平移π12个单位长度D.向左平移5π12个单位长度【答案】B【解析】由已知可得:2πππ1,π=2()sin(2)()sin()063A T f x x fωϕϕω===⇒⇒=+⇒-=-+=ππ3π()sin(2),()cos2sin(2)332f x xg x x xϕ⇒=⇒=+=-=+⇒将()f x的图象向左平移3ππ723π212-=⇒将()f x的图象向右平移5π12,故选B.8.[2017皖南八校]某几何体三视图如图,则该几何体体积是()A.4 B.43C.83D.2【答案】B【解析】几何体为一个三棱锥,如图,2222AB AC DO===,,,AB AC⊥,DO⊥面ABC,体积是11222423323D ABC ABCd S-⨯⨯⨯==△,选B.9.[2017重庆一模]已知ABC △的外接圆半径为2,D 为该圆上的一点,且AB AC AD +=,则ABC △的面积的最大值为( ) A .3 B .4C .33D .43【答案】B【解析】由题设AB AC AD +=可知四边形ABDC 是平行四边形,由圆内接四边形的性质可知90BAC ∠=︒,且当AB AC =时,四边形ABDC 的面积最大,则ABC △的面积的最大值为(2max11sin9022422S AB AC =⨯︒=⨯=,应选答案B .10.[2017淮北一中]若直线 :l y ax =将不等式组20600,0x y x y x y -+⎧⎪+-⎨⎪⎩≥≤≥≥,表示的平面区域的面积分为相等的两部分,则实数a 的值为( ) A .711B .911C .713D .513【答案】A【解析】画出可行域如下图所示,由图可知,阴影部分总面积为14,要使7ABC S =△,只需1147,26AC h h ⋅⋅==,将146h =代入60x y +-≤,解得113x =,即147611113a ==.O DCBA11.[2017南固一中]椭圆2222:1(0)x y M a b a b+=>>左右焦点分别为12F F P ,,为椭圆M上任一点且12PF PF 最大值取值范围是2223c c ⎡⎤⎣⎦,,其中22c a b -则椭圆离心率e 取值范围( ) A .21⎫⎪⎪⎣⎭B .32⎣⎦, C .31⎫⎪⎪⎣⎭D .1132⎡⎫⎪⎢⎣⎭,【答案】B【解析】2122122PF PF PF PF a ⎛⎫+=⎪ ⎪⎝⎭≤,即222232a c a c ⎧⎨⎩≤≥32c a 率e 的取值范围是3232⎣⎦,,故选B . 12.[2017南白中学]设()f x ,()g x 分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()0f x g x f x g x ''+>,且(3)0f -=,则不等式()()0f x g x <的解集是( )A .(3,0)(3,)-+∞B .(3,0)(0,3)-C .(,3)(3,)-∞-+∞D .(,3)(0,3)-∞-【答案】D 【解析】由题意得,令()()()h x f x g x =,则当0x <时,()()()()()0h x f x g x f x g x '''=+>,所以当0x <时,函数()h x 为单调递增函数,又由()f x ,()g x 分别是定义在R 上的奇函数和偶函数,所以()h x 是定义在R 上的奇函数,所以当0x >时,函数()h x 为单调递增函数,且(3)(3)0f f -=-=,当0x <时,不等式()()0f x g x <的解集是(,3)x ∈-∞-,当0x >时,不等式()()0f x g x <的解集是(0,3)x ∈,所以不等式()()0f x g x <的解集是(,3)(0,3)-∞-,故选D .第Ⅱ卷本卷包括必考题和选考题两部分。
2017年江西省九江市高考数学一模试卷(理科) Word版含答案
![2017年江西省九江市高考数学一模试卷(理科) Word版含答案](https://img.taocdn.com/s3/m/988759b705087632311212ac.png)
2017年江西省九江市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数为纯虚数(i虚数单位),则实数a=()A.1 B.﹣1 C.2 D.﹣22.已知集合M={x|x2≤1},N={x|log2x<1},则M∩N=()A.[﹣1,2)B.[﹣1,1]C.(0,1]D.(﹣∞,2)3.设等比数列{a n}的前n项和为S n,且满足a6=8a3,则=()A.4 B.5 C.8 D.94.掷一枚均匀的硬币4次,出现正面向上的次数不少于反面向上的次数的概率为()A.B.C.D.5.若双曲线mx2+2y2=2的虚轴长为4,则该双曲线的焦距为()A.B.C. D.6.已知函数f(x)=,给出下列两个命题:命题p:∃m∈(﹣∞,0),方程f(x)=0有实数解;命题q:当m=时,f(f(﹣1))=0,则下列命题为真命题的是()A.p∧q B.(¬p)∧q C.p∧(¬q)D.(¬p)∧(¬q)7.函数f(x)=(1﹣cosx)•sinx,x∈[﹣2π,2π]的图象大致是()A.B. C.D.8.如图所示,网格纸上小正方形的边长为1,粗线画出的是某一无上盖几何体的三视图,则该几何体的表面积等于()A.39πB.48πC.57πD.63π9.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.4810.设x,y满足约束条件,若z=ax+2y仅在点(,)处取得最大值,则a的值可以为()A.﹣8 B.﹣4 C.4 D.811.在平面直角坐标系xOy中,已知椭圆的上下顶点分别为A,B,右顶点为C,右焦点为F,延长BF与AC交于点P,若O,F,P,A四点共圆,则该椭圆的离心率为()A.B.C.D.12.已知函数f(x)=,若关于x的不等式f2(x)+af(x)>0恰有两个整数解,则实数a的取值范围是()A.(﹣,﹣)B.[,)C.(﹣,﹣]D.(﹣1,﹣]二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知为单位向量,若|+|=|﹣|,则在+方向上的投影为.14.二项式(x3﹣)6的展开式中含x﹣2项的系数是.15.已知A,B,C是球O的球面上三点,若三棱锥O﹣ABC体积的最大值为1,则球O的体积为.16.已知数列{a n}为等差数列,a1=1,a n>0,其前n项和为S n,且数列也为等差数列,设b n=,则数列{b n}的前n项和T n=.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知3b=4c,B=2C.(Ⅰ)求sinB的值;(Ⅱ)若b=4,求△ABC的面积.18.在高三一次数学测验后,某班对选做题的选题情况进行了统计,如表.(Ⅰ)求全班选做题的均分;(Ⅱ)据此判断是否有90%的把握认为选做《坐标系与参数方程》或《不等式选讲》与性别有关?(Ⅲ)已知学习委员甲(女)和数学科代表乙(男)都选做《不等式选讲》.若在《不等式选讲》中按性别分层抽样抽取3人,记甲乙两人被选中的人数为,求的数学期望.参考公式:,n=a+b+c+d.下面临界值表仅供参考:19.如图所示,在边长为2的正方形ABCD中,点E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′,O为A′D的中点,连接EF,EO,FO.(Ⅰ)求证:A′D⊥EF;(Ⅱ)求直线BD与平面OEF所成角的正弦值.20.如图所示,抛物线C:y2=2px(p>0)的焦点为F,过点F且斜率存在的直线l交抛物线C于A,B两点,已知当直线l的斜率为1时,|AB|=8.(Ⅰ)求抛物线C的方程;(Ⅱ)过点A作抛物线C的切线交直线x=于点D,试问:是否存在定点M在以AD为直径的圆上?若存在,求点M的坐标;若不存在,请说明理由.21.设函数f(x)=e2x,g(x)=kx+1(k∈R).(Ⅰ)若直线y=g(x)和函数y=f(x)的图象相切,求k的值;(Ⅱ)当k>0时,若存在正实数m,使对任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立,求k的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,已知直线l:(t为参数)与椭圆C:(θ为参数)相交于不同的两点A,B.(Ⅰ)若,求线段AB中点M的坐标;(Ⅱ)若,其中为椭圆的右焦点P,求直线l的斜率.[选修4-5:不等式选讲]23.已知函数f(x)=2|x﹣1|﹣a,g(x)=﹣|x+m|(a,m∈R),若关于x的不等式g(x)>﹣1的整数解有且仅有一个值为﹣3.(Ⅰ)求实数m的值;(Ⅱ)若函数y=f(x)的图象恒在函数y=g(x)的图象上方,求实数a的取值范围.2017年江西省九江市高考数学一模试卷(理科)参考答案与试题解+析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数为纯虚数(i虚数单位),则实数a=()A.1 B.﹣1 C.2 D.﹣2【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、纯虚数的定义即可得出.【解答】解:∵为纯虚数,∴=0,≠0,∴a=﹣1,故选:B.2.已知集合M={x|x2≤1},N={x|log2x<1},则M∩N=()A.[﹣1,2)B.[﹣1,1]C.(0,1]D.(﹣∞,2)【考点】交集及其运算.【分析】解不等式求出集合M,求函数定义域得出集合N,再根据交集的定义写出M∩N.【解答】解:集合M={x|x2≤1}={x|﹣1≤x≤1},N={x|log2x<1}={x|0<x<2},则M∩N={x|0<x≤1}.故选:C.3.设等比数列{a n}的前n项和为S n,且满足a6=8a3,则=()A.4 B.5 C.8 D.9【考点】等比数列的前n项和.【分析】由a6=8a3,利用等比数列项公式q=2,由此能求出.【解答】解:∵等比数列{a n}的前n项和为S n,且满足a6=8a3,∴=q3=8,解得q=2,∴==1+q3=9.故选:D.4.掷一枚均匀的硬币4次,出现正面向上的次数不少于反面向上的次数的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数n=24=16,再求出出现正面向上的次数不少于反面向上的次数包含的基本事件个数,由此能求出出现正面向上的次数不少于反面向上的概率.【解答】解:掷一枚均匀的硬币4次,基本事件总数n=24=16,出现正面向上的次数不少于反面向上的次数包含的基本事件个数为:m==11,∴出现正面向上的次数不少于反面向上的概率P=.故选:D.5.若双曲线mx2+2y2=2的虚轴长为4,则该双曲线的焦距为()A.B.C. D.【考点】双曲线的简单性质.【分析】根据题意,将双曲线的方程变形可得,由双曲线的几何性质,分析可得,代入双曲线的方程可得双曲线的标准方程,计算可得c的值,由焦距的定义即可得答案.【解答】解:根据题意,双曲线的方程为:mx2+2y2=2,变形可得,又由其虚轴长为4,则有,即,则双曲线的标准方程为:y2﹣=1,其中c==,则双曲线的焦距2c=,故选A.6.已知函数f(x)=,给出下列两个命题:命题p:∃m∈(﹣∞,0),方程f(x)=0有实数解;命题q:当m=时,f(f(﹣1))=0,则下列命题为真命题的是()A.p∧q B.(¬p)∧q C.p∧(¬q)D.(¬p)∧(¬q)【考点】命题的真假判断与应用.【分析】根据已知中的分段函数,分别判断命题p,q的真假,进而根据复合命题真假判断的真值表,可得答案.【解答】解:∵函数f(x)=,当x<0时,f(x)=2x∈(0,1),不存在满足f(x)=0的x值;当x≥0时,f(x)=0时,m=x2∈[0,+∞),故命题p为假命题.当m=时,f(f(﹣1))=f()=0∴命题q为真命题,故命题p∧q,p∧(¬q),(¬p)∧(¬q)均为假命题,(¬p)∧q为真命题,故选B.7.函数f(x)=(1﹣cosx)•sinx,x∈[﹣2π,2π]的图象大致是()A.B. C.D.【考点】函数的图象.【分析】利用排除法,即可求解.【解答】解:函数f(x)为奇函数,故排除B.又x∈(0,π)时,f(x)>0,故排除D.又f()=>1,故排除A.故选C.8.如图所示,网格纸上小正方形的边长为1,粗线画出的是某一无上盖几何体的三视图,则该几何体的表面积等于()A.39πB.48πC.57πD.63π【考点】棱柱、棱锥、棱台的体积.【分析】由已知中的三视图可得:该几何体为圆柱中挖去一个圆锥,画出直观图,数形结合可得答案.【解答】解:该几何体直观图为圆柱中挖去一个圆锥,如图所示,∴该几何体的表面积为S==48π,故选B.9.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.48【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.10.设x ,y 满足约束条件,若z=ax +2y 仅在点(,)处取得最大值,则a 的值可以为( ) A .﹣8 B .﹣4 C .4D .8【考点】简单线性规划.【分析】画出约束条件的可行域,求出顶点坐标,利用z=ax +2y 仅在点(,)处取得最大值,利用斜率关系求解即可.【解答】解:如图所示,约束条件所表示的区域为图中阴影部分:其中A (1,0),B (,),C (1,4),依题意z=ax +2y 仅在点(,)处取得最大值,可得,即,a >4.故选:D .11.在平面直角坐标系xOy 中,已知椭圆的上下顶点分别为A ,B ,右顶点为C ,右焦点为F ,延长BF 与AC 交于点P ,若O ,F ,P ,A 四点共圆,则该椭圆的离心率为( )A .B .C .D .【考点】椭圆的简单性质.【分析】由O ,F ,P ,A 四点共圆得,即AC ⊥BP ,∴,b 2=ac ,e 2+e ﹣1=0【解答】解:如图所示,∵O ,F ,P ,A 四点共圆,,∴,即AC⊥BP,∴,∴b2=ac,a2﹣c2=ac,∴e2+e﹣1=0,,故选C.12.已知函数f(x)=,若关于x的不等式f2(x)+af(x)>0恰有两个整数解,则实数a的取值范围是()A.(﹣,﹣)B.[,)C.(﹣,﹣]D.(﹣1,﹣]【考点】利用导数研究函数的单调性.【分析】求出原函数的导函数,得到函数f(x)的单调区间,再由f2(x)+af(x)>0求得f(x)的范围,结合函数f(x)的单调性可得使不等式f2(x)+af(x)>0恰有两个整数解的实数a的取值范围.【解答】解:∵f′(x)=,∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,当a>0时,f2(x)+af(x)>0⇔f(x)<﹣a或f(x)>0,此时不等式f2(x)+af(x)>0有无数个整数解,不符合题意;当a=0时,f2(x)+af(x)>0⇔f(x)≠0,此时不等式f2(x)+af(x)>0有无数个整数解,不符合题意;当a<0时,f2(x)+af(x)>0⇔f(x)<0或f(x)>﹣a,要使不等式f2(x)+af(x)>0恰有两个整数解,必须满足f(3)≤﹣a<f(2),得<a≤,故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知为单位向量,若|+|=|﹣|,则在+方向上的投影为.【考点】平面向量数量积的运算.【分析】由|+|=|﹣|得出⊥,再由、是单位向量得出与+的夹角为45°,由投影的定义写出运算结果即可.【解答】解:∵为单位向量,且|+|=|﹣|,∴=,化简得•=0,∴⊥;∴与+的夹角为45°,∴在+方向上的投影为||cos45°=1×=.故答案为:.14.二项式(x3﹣)6的展开式中含x﹣2项的系数是﹣192.【考点】二项式系数的性质.【分析】利用二项式展开式的通项公式,令x的指数等于﹣2,求出r的值,即可求出展开式中含x﹣2项的系数.【解答】解:二项式(x3﹣)6展开式的通项公式为:T r=•(x3)6﹣r•=•(﹣2)r•x18﹣4r,+1令18﹣4r=﹣2,得r=5,∴展开式中含x﹣2项的系数是:•(﹣2)5=﹣192.故答案为:﹣192.15.已知A,B,C是球O的球面上三点,若三棱锥O﹣ABC体积的最大值为1,则球O的体积为8π.【考点】球的体积和表面积.【分析】当点C位于垂直于面AOB的直径端点且∠AOB=90°时,三棱锥O﹣ABC 的体积最大,利用三棱锥O﹣ABC体积的最大值为1,求出半径,即可求出球O 的体积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点且∠AOB=90°时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC =V C﹣AOB==1,∴R3=6,则球O的体积为=8π.故答案为8π.16.已知数列{a n}为等差数列,a1=1,a n>0,其前n项和为S n,且数列也为等差数列,设b n=,则数列{b n}的前n项和T n=1﹣.【考点】数列的求和.【分析】设等差数列{a n}的公差为d(d≥0),数列为等差数列,取前3项成等差数列,解方程可得d=2,运用等差数列的通项公式和求和公式,可得a n,求得b n===﹣,运用数列的求和方法:裂项相消求和,化简整理即可得到所求和.【解答】解:设等差数列{a n}的公差为d(d≥0),∵,,成等差数列,∴,解得d=2,∴a n=1+(n﹣1)×2=2n﹣1,S n==n2,=n,故数列为等差数列,b n===﹣,则前n项和T n=﹣+﹣+…+﹣=1﹣.故答案为:1﹣.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知3b=4c,B=2C.(Ⅰ)求sinB的值;(Ⅱ)若b=4,求△ABC的面积.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由已知及二倍角的正弦函数公式,正弦定理得6sinCcosC=4sinC,由于sinC≠0,可求cosC,进而可求sinC,sinB的值.(Ⅱ)解法一:由已知可求c,利用二倍角的余弦函数公式可求cosB,利用三角形内角和定理,两角和的正弦函数公式可求sinA,进而利用三角形面积公式即可得解;解法二:由已知可求c,由余弦定理解得a,分类讨论,利用三角形面积公式即可计算得解.【解答】解:(Ⅰ)由3b=4c及正弦定理得3sinB=4sinC,∵B=2C,∴3sin2C=4sinC,即6sinCcosC=4sinC,∵C∈(0,π),∴sinC≠0,∴cosC=,sinC=,∴sinB=sinC=.(Ⅱ)解法一:由3b=4c,b=4,得c=3且cosB=cos2C=2cos2C﹣1=﹣,∴sinA=sin(B+C)=sinBcosC+cosBsinC=+(﹣)×=,=bcsinA==.∴S△ABC解法二:由3b=4c,b=4,得c=3,由余弦定理c2=a2+b2﹣2abcosC,得32=a2+42﹣2a×,解得a=3或a=,当a=3时,则△ABC为等腰三角形A=C,又A+B+C=180°,得C=45°,与cosC=矛盾,舍去,∴a=,=absinC==.∴S△ABC18.在高三一次数学测验后,某班对选做题的选题情况进行了统计,如表.(Ⅰ)求全班选做题的均分;(Ⅱ)据此判断是否有90%的把握认为选做《坐标系与参数方程》或《不等式选讲》与性别有关?(Ⅲ)已知学习委员甲(女)和数学科代表乙(男)都选做《不等式选讲》.若在《不等式选讲》中按性别分层抽样抽取3人,记甲乙两人被选中的人数为,求的数学期望.参考公式:,n=a+b+c+d.下面临界值表仅供参考:【考点】独立性检验的应用;离散型随机变量的期望与方差.【分析】(Ⅰ)根据表中数据,计算全班选做题的平均分即可;(Ⅱ)由表中数据计算观测值,对照临界值表得出结论;(Ⅲ)计算学习委员甲被抽取的概率和数学科代表乙被抽取的概率,从而得出甲乙两人均被选中的概率.【解答】解:(Ⅰ)根据表中数据,计算全班选做题的平均分为=×(14×8+8×6.5+6×7+12×5.5)=6.8.(Ⅱ)由表中数据计算观测值:==≈3.636>2.706,所以,据此统计有90%的把握认为选做《坐标系与参数方程》或《不等式选讲》与性别有关.(Ⅲ)学习委员甲被抽取的概率为,设《不等式选讲》中6名男同学编号为乙,1,2,3,4,5;从中随机抽取2人,共有15种抽法:乙与1,乙与2,乙与3,乙与4,乙与5,1与2,1与3,1与4,1与5,2与3,2与4,2与5,3与4,3与5,4与5,数学科代表乙被抽取的有5种:乙与1,乙与2,乙与3,乙与4,乙与5,数学科代表乙被抽取的概率为=,∴甲乙两人均被选中的概率为×=.19.如图所示,在边长为2的正方形ABCD中,点E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′,O为A′D的中点,连接EF,EO,FO.(Ⅰ)求证:A′D⊥EF;(Ⅱ)求直线BD与平面OEF所成角的正弦值.【考点】直线与平面所成的角;空间中直线与直线之间的位置关系.【分析】(Ⅰ)通过证明A'D⊥A'E,A'D⊥A'F,推出A'D⊥平面A'EF,然后证明A'D⊥EF.(Ⅱ)说明A'E⊥A'F,A'D⊥平面A'EF,以A'E,A'F,A'D为x,y,z轴建立如图所示的空间直角坐标系A'﹣xyz,求出相关点的坐标,求出平面OEF的一个法向量,然后利用空间向量的数量积求解直线BD与平面OEF所成角的正弦值即可.【解答】解:(Ⅰ)在正方形ABCD中,有AD⊥AE,CD⊥CF则A′D⊥A′E,A′D⊥A′F…又A′E∩A′F=A′∴A′D⊥平面A′EF…而EF⊂平面A′EF,∴A′D⊥EF.(Ⅱ)∵正方形ABCD的边长为2,点E是AB的中点,点F是BC的中点,∴BE=BF=A′E=A′F=1∴EF=,∴A′E2+A′F2=EF2,∴A′E⊥A′F由(Ⅰ)得A′D⊥平面A′EF,∴分别以A′E,A′F,A′D为x,y,z轴建立如图所示的空间直角坐标系A′﹣xyz,…则A′(0,0,0),F(1,0,0),E(0,1,0),D(0,0,2),设EF与BD相交于G,则G为EF的中点,∴O(0,0,1),G(,,0),=(0,1,﹣1),=(1,0,﹣1),=(,,﹣2),设平面OEF的一个法向量为=(x,y,z),则由,可取=(1,1,1),令直线DG与平面OEF所成角为α,∴sinα==,∴直线BD与平面OEF所成角的正弦值.20.如图所示,抛物线C:y2=2px(p>0)的焦点为F,过点F且斜率存在的直线l交抛物线C于A,B两点,已知当直线l的斜率为1时,|AB|=8.(Ⅰ)求抛物线C的方程;(Ⅱ)过点A作抛物线C的切线交直线x=于点D,试问:是否存在定点M在以AD为直径的圆上?若存在,求点M的坐标;若不存在,请说明理由.【考点】直线与抛物线的位置关系.【分析】(Ⅰ)由题意设出直线l的方程,与抛物线方程联立,再由抛物线的焦点弦长公式列式求得p,则抛物线方程可求;(Ⅱ)设出A的坐标,得到过A点的切线方程,与抛物线方程联立,利用判别式等于0把切线的斜率用A的纵坐标表示,进一步求得D点坐标,得到以AD为直径的圆的方程,从而得到存在定点M(1,0)在以AD为直径的圆上.【解答】解:(Ⅰ)由题意可得,直线l的方程为y=x﹣,联立方程,消去y整理得,设A(x1,y1),B(x2,y2),则x1+x2=3p,故|AB|=x1+x2+p=4p=8,∴p=2,∴抛物线C方程为y2=4x;(Ⅱ)由(Ⅰ)知,直线x=﹣即x=﹣1,A()(y1≠0),设切线方程为,联立方程,消去x得:,∵△=,∴,即k=,∴切线方程为,则4x﹣,令x=﹣1,得,即D(﹣1,),∴以AD为直径的圆为,由抛物线的对称性,若以AD为直径的圆经过定点,则此定点一定在x轴上,∴令y=0,得,得x=1,故存在定点M(1,0)在以AD为直径的圆上.21.设函数f(x)=e2x,g(x)=kx+1(k∈R).(Ⅰ)若直线y=g(x)和函数y=f(x)的图象相切,求k的值;(Ⅱ)当k>0时,若存在正实数m,使对任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立,求k的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)设切线的坐标为(t,e2t),得到(1﹣2t)e2t=1,令h(x)=(1﹣x)e x,根据函数的单调性求出k的值即可;(Ⅱ)通过讨论k 的范围,结合对任意x ∈(0,m ),都有|f (x )﹣g (x )|>2x恒成立以及函数的单调性求出对应的函数的单调区间,求出k 的具体范围即可.【解答】解:(Ⅰ)设切线的坐标为(t ,e 2t ),由f (x )=e 2x 得f′(x )=2e 2x , ∴切线方程为y ﹣e 2t =2e 2t (x ﹣t ),即y=2e 2t x +(1﹣2t )e 2t , 由已知y=2e 2t x +(1﹣2t )e 2t 和y=kx +1为同一条直线, ∴2e 2t =k ,(1﹣2t )e 2t =1,令h (x )=(1﹣x )e x ,则h′(x )=﹣xe x ,当x ∈(﹣∞,0)时,h′(x )>0,h (x )单调递增, 当x ∈(0,+∞)时,h′(x )<0,h (x )单调递减, ∴h (x )≤h (0)=1, 当且仅当x=0时等号成立, ∴t=0,k=2,(Ⅱ)①当k >2时,由(Ⅰ)知:存在x >0,使得对于任意x ∈(0,x 0),都有f (x )<g (x ), 则不等式|f (x )﹣g (x )|>2x 等价于g (x )﹣f (x )>2x , 即(k ﹣2)x +1﹣e 2x >0,设t (x )=(k ﹣2)x +1﹣e 2x ,t′(x )=k ﹣2﹣2e 2x ,由t′(x )>0,得:x <ln ,由t′(x )<0,得:x >ln,若2<k ≤4, ln≤0,∵(0,x 0)⊆(ln,+∞),∴t (x )在(0,x 0)上单调递减,注意到t (0)=0, ∴对任意x ∈(0,x 0),t (x )<0,与题设不符,若k >4, ln>0,(0, ln)⊆(﹣∞, ln),∴t (x )在(0, ln )上单调递增,∵t (0)=0,∴对任意x ∈(0, ln ),t (x )>0,符合题意,此时取0<m ≤min {x 0, ln },可得对任意x ∈(0,m ),都有|f (x )﹣g(x )|>2x ,②当0<k ≤2时,由(Ⅰ)知e 2x ﹣(2x +1)≥0,(x >0),f(x)﹣g(x)=e2x﹣(2x+1)+(2﹣k)x≥(2﹣k)x≥0对任意x>0都成立,∴|f(x)﹣g(x)|>2x等价于e2x﹣(k+2)x﹣1>0,设φ(x)=e2x﹣(k+2)x﹣1,则φ′(x)=2e2x﹣(k+2),由φ′(x)>0,得x>ln>0,φ′(x)<0得x<ln,∴φ(x)在(0,ln)上单调递减,注意到φ(0)=0,∴对任意x∈(0,ln),φ(x)<0,不符合题设,综上所述,k的取值范围为(4,+∞).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,已知直线l:(t为参数)与椭圆C:(θ为参数)相交于不同的两点A,B.(Ⅰ)若,求线段AB中点M的坐标;(Ⅱ)若,其中为椭圆的右焦点P,求直线l的斜率.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)将椭圆C化为普通方程得,当时,设点M对应的参数为t0,直线l代入方程+y2=1,得,由此能求出点M的坐标.(Ⅱ),将l:代入方程,得,由此利用弦长公式能求出直线l的斜率.【解答】解:(Ⅰ)将椭圆C:化为普通方程得,当时,设点M对应的参数为t0,直线l的参数方程为(t为参数),代入方程+y2=1中,并整理得,设直线l上的点A,B对应的参数分别为t1,t2,,则,∴点M的坐标为.(Ⅱ),将l:代入方程中,得,∴,,∴|AB|=|t1|+|t2|=|t1﹣t2|===,由,得,,,,∴直线l的斜率为.[选修4-5:不等式选讲]23.已知函数f(x)=2|x﹣1|﹣a,g(x)=﹣|x+m|(a,m∈R),若关于x的不等式g(x)>﹣1的整数解有且仅有一个值为﹣3.(Ⅰ)求实数m的值;(Ⅱ)若函数y=f(x)的图象恒在函数y=g(x)的图象上方,求实数a的取值范围.【考点】绝对值三角不等式.【分析】(Ⅰ)由条件解绝对值不等式可得﹣1﹣m<x<1﹣m,再根据不等式的整数解有且仅有一个值为﹣3,可得﹣4≤﹣1﹣m<﹣3<1﹣m≤﹣2,由此求得m的值.(Ⅱ)由题意可得2|x﹣1|+|x+3|>a对任意x∈R恒成立,利用分段函数的性质求得2|x﹣1|+|x+3|的最小值,可得a的范围.【解答】解:(Ⅰ)由g(x)>﹣1,即﹣|x+m|>﹣1,|x+m|<1,∴﹣1﹣m<x<1﹣m,∵不等式的整数解有且仅有一个值为﹣3,则﹣4≤﹣1﹣m<﹣3<1﹣m≤﹣2,解得m=3.(Ⅱ)因为y=f(x)的图象恒在函数y=g(x)的图象上方,故f(x)﹣g(x)>0,∴2|x﹣1|+|x+3|>a对任意x∈R恒成立,设h(x)=2|x﹣1|+|x+3|,则,∴h(x)在(﹣∞,1)单调递减,在(1,+∞)单调递增,∴当x=1时,h(x)取得最小值4,∴4>a,∴实数a的取值范围是(﹣∞,4).2017年3月11日。