基本不等式完整版(非常全面)
不等式基本原理专题 ---(非常全面)
不等式基本原理专题 ---(非常全面)不等式基本原理专题 - 完整版概述在数学不等式中,有一些基本的原理和定理,这些定理不仅在不等式证明中起到重要的作用,而且在实际问题中也有着广泛的应用。
在本文中,将阐述几个不同的不等式基本原理,并通过相关例题进行演示。
一、加减法原理不等式加减法原理指的是,如果两个不等式关系成立,则将它们加起来或从其中一个减去另一个,得到的结果仍然是不等式关系。
例如:如果 $a>b$ 且 $c>d$,则 $a+c>b+d$如果 $a>b$ 且 $c>d$,则 $a-c>b-d$二、乘法原理不等式乘法原理指的是,如果不等式关系的两侧均为正或均为负,则将它们相乘,得到的结果仍然是不等式关系,而如果一侧为正,另一侧为负,则将它们相乘,则得到一种新的不等式关系。
例如:如果 $a>b>0$ 且 $c>d>0$,则 $ac>bd$如果 $a>b>0$ 且 $c<d<0$ 或 $a<b<0$ 且 $c>d>0$,则 $ac<bd$三、倒数性质不等式倒数性质指的是,如果 $a>b>0$,则$\frac{1}{a}<\frac{1}{b}$。
例如:如果 $3>2>0$,则$\frac{1}{3}<\frac{1}{2}$。
四、平均值不等式平均值不等式是一个常用的不等式概念,它指的是对于一组实数 $a_1,a_2,...,a_n$,它们的算术平均值、几何平均值与调和平均值有以下关系:$\frac{a_1+a_2+...+a_n}{n}\geq \sqrt[n]{a_1 a_2 ... a_n}\geq\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}}$。
例如:对于一组实数 $1,2,3$,它们的算术平均值是 $2$,几何平均值是 $\sqrt[3]{6}$,调和平均值是$\frac{3}{\frac{1}{1}+\frac{1}{2}+\frac{1}{3}}=\frac{9}{5}$。
最新基本不等式完整版(非常全面)
基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab ba ≥+2(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab总结:当两个正数的积为定植时,它们的和有最小值;当两个正数的和为定植时,它们的积有最小值;特别说明:以上不等式中,当且仅当b a =时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论 (1)若0x >,则12x x+≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab ba +≤+≤≤+特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式(1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有 222(a a a ++⋅⋅⋅+)222)b b b ++⋅⋅⋅+(2()a b a b a b ≥++⋅⋅⋅+二、题型分析题型一:利用基本不等式证明不等式1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知cb a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知1a b c ++=,求证:22213a b c ++≥ 4、已知,,a b c R+∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥---5、已知,,a b c R+∈,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 223322-≥-题型二:利用不等式求函数值域1、求下列函数的值域 (1)22213x x y += (2))4(x x y -=(3))0(1>+=x x x y (4))0(1<+=x xx y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。
基本不等式(完整版)
2b+a≥2,ab>0; ab
a+b 3ab≤ 2 2,a,b∈R;
当且仅当 a=b 时 等号成立.
4a2+b2≥
a+b 2
2,a,b∈R
2
(5) 2 ab a b a2 b2 (a 0,b 0) .
11
2
2
ab
一、直接法
【例 1】以下结论,正确的是( ) A.y=x+ ≥4
B.ex+ >2
A. 2
B.2
C.2 2
D.4
解析:由1+2= ab知 a>0,b>0,所以 ab=1+2≥2 2 ,即 ab≥2 2,
ab
ab
ab
1=2,
ab 当且仅当 1+2=
即 a=4 2,b=2 4 2时取“=”,所以 ab 的最小值为 2 ab,
2.故选 C
ab
变式 1:若实数 x、y 满足 2x+2y=1,则 x+y 的取值范围是( )
证明: (a b)2 0 a2 2ab b2 0 a2 b2 2ab
推论: ab a2 b2 ( a,b R ). 2
2、如果 a 0 , b 0 ,则 a b 2 ab ,(当且仅当 a b 时取等号“=”).
推论: ab
(a b )2 ( a
a2 0 ,b 0 );
C.x(1﹣x)≤(
)2 =
D.sinx+
(0<x<π)的最小值是 2
解:A:当 x<0 时,不满足题意;B:
C:由基本不等式可得,x(1﹣x) 等号,故 C 符合题意; D:当 0<x<π时,0<sinx≤1,则 故选:C.
=2,不符合题意; = ,当且仅当 x=1﹣x 即 x= 时取
最全基本不等式(一步到位)
若正数a,b满足ab a b 3,求ab的取值范围。
若正数a,b满足ab a b 3,求a b的取值范围。
正数x,y满足x+2y=1,求证 1 1 3 2 2 xy
已知a, b (0, ), 且a 基本不等式总结
(a b)2 0
a2 b2 2ab
左边构造完全平方
右边构造完全平方
(a b)2 4ab 2(a2 b2 ) (a b)2
( a b)2 ab 2
a2 b2 (a b)2
2
2
a2 b2 ( a b )2 ab
2
2
开方 (a 0,b 0)
a2 b2 a b
mn
在平面直角坐标系xOy中,过坐标原点的一条直线与函 数f(x)= 2 的图象交于P,Q两点,求线段PQ长的最小值。
x
若不等式x2 ax 1 0对一切x (0,1]恒成立,求a的最小值。
若对任意x
0,
x2
x 3x
1
a恒成立,求实数a的取值范围。
已知x 0, y 0, x, a,b, y成等差数列,x, c, d, y成等比数列,则
(a b)2 的最小值是 ( ) cd
A.0
B.1
C.2
D.4
设x, y为实数,若4x2 y2 xy 1, 求2x y的最大值。
11 (2) 8
a2 b2
设a,b, c都是正数,求证:bc ca ab a b c. ab c
已知a>b>0,求证:a2 16 16 b(a b)
求函数y x2 5 的最小值。 x2 4
求函数y sin2 x 4 的最小值。 sin2 x
高中6个基本不等式的公式
高中6个基本不等式的公式高中6个基本不等式的公式总的来说,高中数学中的6个基本不等式公式是:(一)、二次不等式:ax²+bx+c>0;(二)、三角不等式:sinα+cosα>1;(三)、平方和不等式:a²+b²>2ab;(四)、指数不等式:an>bn;(五)、对数不等式:lnA<lnB;(六)、比较不等式:a>b。
一、二次不等式所谓的二次不等式,指的是形如ax²+bx+c>0的不等式结构,它是十分重要的,用来描述我们一类由双曲线组成的函数。
双曲线函数是一类非线性函数,受到各种外部因素的作用不会改变函数的存在形式,尽管其具体的参数可能会发生变化。
二、三角不等式三角不等式是一类与三角学相关的不等式,它们非常重要,有助于我们正确推理出三角形的其他特征。
其中最为重要的是sinα+cosα>1,这个不等式说明了在三角形内,任意一个角的正弦值是小于它的余弦值的,而它们的和则要大于1.三、平方和不等式平方和不等式有助于我们正确推断出空间里的形状的特性,它的形式如a²+b²>2ab,它推断了如果有两个边的长度为a和b,其和的平方要大于两者的乘积,也就是说任何一个正方形都有其两条边之和要大于两边乘积的特性。
四、指数不等式指数不等式是一类非常重要的数学不等式,它们由an>bn构成,例如4²>2³,这种不等式用来推断出当前指数的大小的变化,即指数不等式可以用来推断出更大的数值要比较小的数值大。
五、对数不等式对数不等式是由lnA<lnB构成的一类逆函数,即任何一个大于0的数值,当它们取反数之后所得到的值都是小于0的,但是它们仍然可以用来推断出比较大小的特性。
六、比较不等式比较不等式是一类用来推断出大小的不等式,它们最为重要的形式就是a>b,它们能够用来快速准确的推断出大数比小数大的情况,不需要拆分细节就可以迅速的把握出其大小之间的差异。
基本不等式完整版(非常全面)[整理]
基本不等式完整版(非常全面)[整理]
基本不等式可以指几乎所有组成分析和数学的基础。
它可以使许多不同的数学问题变
得更容易理解,因此使用它们进行计算是极其重要的。
基本不等式包括了三类不等式:大
小不等式,加法不等式和乘法不等式。
以下是一些基本的不等式定义。
1、大小不等式:大小不等式表示一个数与另一个数之间的存在或缺失的关系。
例如,如果A > B,则表示A大于B,而A ≤ B表示A小于或等于B,A ≠ B表示A与B之间存
在某种不同。
2、加法不等式:加法不等式表示两个数相加时的结果。
例如,A + B > C的意思是A
与B的和大于C,A + B ≤ C的意思是A与B的和小于或等于C,A + B = C的意思是A
与B的和等于C。
一般地,一个数与另一个数之间的关系可以用不等式来表示,但也可以用不等式来表
示多个数之间的关系:
1、省略不等式:3x + 2y = 4z,这表示3x + 2y至少等于4z的意思。
基本不等式可以用来处理大量数学问题,比如解一元不等式、求函数的极值以及进行
多元函数分析等。
它们对于熟悉数学理论和解决数学问题都极其重要。
(完整版)基本不等式及其应用
基本不等式及其应用1.ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0; (2)等号成立的条件:当且仅当a =b 时取等号.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b .3.算术平均数与几何平均数(1)设a ≥0,b ≥0,则a ,b 的算术平均数为a +b2,几何平均数为ab .(2)基本不等式可叙述为两个非负数的算术平均数不小于它们的几何平均数;也可以叙述为两个正数的等差中项不小于它们正的等比中项.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值s 24; (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p .选择题:设x >0,y >0,且x +y =18,则xy 的最大值为( )A .80B .77C .81D .82解析 ∵x >0,y >0,∴x +y 2≥xy ,即xy ≤(x +y2)2=81,当且仅当x =y =9时,(xy )max =81若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( ) A.43 B.53 C .2 D.54解析 由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2若2x +2y =1,则x +y 的取值范围是( )A .[0,2]B .[-2,0]C .[-2,+∞)D .(-∞,-2] 解析 22x +y ≤2x +2y =1,∴2x +y ≤14,即2x +y ≤2-2,∴x +y ≤-2若实数x ,y 满足xy >0,则x x +y +2yx +2y的最大值为( ) A .2- 2 B .2+ 2 C .4+2 2 D .4-2 2 解析x x +y+2y x +2y=x (x +2y )+2y (x +y )(x +y )(x +2y )=x 2+4xy +2y 2x 2+3xy +2y 2=1+xy x 2+3xy +2y 2=1+1x y +3+2y x≤1+13+2=4-22,当且仅当x y =2yx ,即x 2=2y 2时取等号若函数()f x =x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +my (m >0)的最小值为3,则m 等于( ) A .2 B .2 2 C .3 D .4解析 由2x -3=(12)y 得x +y =3,1x +m y =13(x +y )(1x +m y )=13(1+m +y x +mx y )≥13(1+m +2m ),(当且仅当y x =mx y 时取等号),∴13(1+m +2m )=3,解得m =4已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( )A .9B .8C .4D .2解析 圆x 2+y 2-2y -5=0化成标准方程,得x 2+(y -1)2=6,∴圆心为C (0,1) ∵直线ax +by +c -1=0经过圆心C ,∴a ×0+b ×1+c -1=0,即b +c =1 ∴4b +1c =(b +c )(4b +1c )=4c b +b c +5 ∵b ,c >0,∴4c b +bc ≥24c b ·b c =4,当且仅当4c b =b c 时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c 取得最小值9已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( )A.32B.53C.94D.256解析 由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 1q 6=a 1q 5+2a 1q 4, ∴q 2-q -2=0,解得q =2或q =-1(舍去)a m a n =4a 1,∴q m +n -2=16,∴2m +n -2=24,∴m +n =6 ∴1m +4n =16(m +n )(1m +4n )=16(5+n m +4m n )≥16(5+2n m ·4m n )=32当且仅当n m =4m n 时,等号成立,故1m +4n 的最小值等于32在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5a 6的最大值是( ) A .3 B .6 C .9 D .36解析 ∵a 1+a 2+…+a 10=30,∴5(a 1+a 10)=30,即a 1+a 10=a 5+a 6=6,∵a 5+a 6≥2a 5a 6,∴6≥2a 5a 6,即a 5a 6≤9,当且仅当a 5=a 6时取等号,∴a 5a 6的最大值为9若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A.2 B .2 C .2 2 D .4 解析 依题意知a >0,b >0,则1a +2b ≥22ab =22ab,当且仅当1a =2b ,即b =2a 时,“=”成立.∵1a +2b =ab ,∴ab ≥22ab ,即ab ≥22,∴ab 的最小值为2 2已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是( ) A .3 B .4 C .5 D .6解析 由题意知:ab =1,∴m =b +1a =2b ,n =a +1b =2a ,∴m +n =2(a +b )≥4ab =4若a ,b 都是正数,则⎝ ⎛⎭⎪⎫1+b a ·⎝ ⎛⎭⎪⎫1+4a b 的最小值为( ) A .7 B .8 C .9 D .10 解析 ∵a ,b 都是正数,∴⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b =5+b a +4a b ≥5+2b a ·4ab =9,当且仅当b =2a >0时取等号已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24 解析 由3a +1b ≥m a +3b ,得m ≤(a +3b )(3a +1b )=9b a +ab +6又9b a +ab +6≥29+6=12,∴m ≤12,∴m 的最大值为12已知a >0,b >0,a +b =1a +1b ,则1a +2b 的最小值为( )A .4B .22C .8D .16 解析 由a >0,b >0,a +b =1a +1b =a +b ab ,得ab =1,则1a +2b ≥21a ·2b =2 2.当且仅当1a =2b ,即a =22,b 2时等号成立已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( ) A.72 B .4 C.92 D .5 解析 依题意,得1a +4b =12(1a +4b )·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92,当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4ab ,a >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 3解析由题意得⎩⎪⎨⎪⎧ab >0,ab ≥0,3a +4b >0,∴⎩⎨⎧a >0,b >0.又log 4(3a +4b )=log 2ab ,∴log 4(3a +4b )=log 4ab ,∴3a +4b =ab ,故4a +3b =1. ∴a +b =(a +b )(4a +3b )=7+3a b +4ba ≥7+23ab ·4b a =7+43,当且仅当3a b =4b a 时取等号若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是( )A .1B .6C .9D .16解析 ∵正数a ,b 满足1a +1b =1,∴b =a a -1>0,解得a >1,同理可得b >1,∴1a -1+9b -1=1a -1+9a a -1-1=1a -1+9(a -1)≥21a -1·9(a -1)=6,当且仅当1a -1=9(a -1),即a =43时等号成立,∴最小值为6设()f x =ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A .q =r <p B .q =r >p C .p =r <q D .p =r >q 解析 ∵0<a <b ,∴a +b2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数,故f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=12ln a +12ln b =ln(ab )12=f (ab )=p ,故p =r <q已知函数()f x =x +px -1(p 为常数,且p >0),若f (x )在(1,+∞)上的最小值为4,则实数p 的值为( ) A .1 B .2 C.94 D.74 解析 由题意得x -1>0,f (x )=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号, ∵f (x )在(1,+∞)上的最小值为4,∴2p +1=4,解得p =94填空题:已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________解析 1=x +4y ≥24xy =4xy ,∴xy ≤(14)2=116,当且仅当x =4y =12,即⎩⎪⎨⎪⎧x =12y =18时,(xy )max =116已知实数m ,n 满足m ·n >0,m +n =-1,则1m +1n 的最大值为________解析 ∵m ·n >0,m +n =-1,∴m <0,n <0,∴1m +1n =-(m +n )⎝ ⎛⎭⎪⎫1m +1n =-⎝ ⎛⎭⎪⎫2+n m +m n ≤-2-2n m ·mn=-4,当且仅当m =n =-12时,1m +1n 取得最大值-4已知x <54,则()f x =4x -2+14x -5的最大值为________解析 ∵x <54,∴5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1函数y =x 2+2x -1(x >1)的最小值为________解析 y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2当且仅当(x -1)=3(x -1),即x =3+1时,等号成立函数y =x -1x +3+x -1的最大值为________解析 令t =x -1≥0,则x =t 2+1,∴y =t t 2+1+3+t =tt 2+t +4当t =0,即x =1时,y =0;当t >0,即x >1时,y =1t +4t +1, ∵t +4t ≥24=4(当且仅当t =2时取等号),∴y =1t +4t +1≤15,即y 的最大值为15(当t =2,即x =5时y 取得最大值).若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________解析 由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )(15y +35x )=95+45+3x 5y +12y 5x ≥135+125=5已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________ 解析 由已知得x =9-3y1+y ,∵x >0,y >0,∴y <3,∴x +3y =9-3y 1+y +3y =3y 2+91+y=3(1+y )2-6(1+y )+121+y=121+y+(3y +3)-6≥2121+y ·(3y +3)-6=6, 当且仅当121+y=3y +3,即y =1,x =3时,(x +3y )min =6已知函数()f x =x 2+ax +11x +1(a ∈R ),若对于任意x ∈N +,()f x ≥3恒成立,则a 的取值范围是______解析 对任意x ∈N +,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3设g(x)=x+8x,x∈N+,则g(2)=6,g(3)=173∵g(2)>g(3),∴g(x)min=173,∴-(x+8x)+3≤-83,∴a≥-83,故a的取值范围是[-83,+∞)已知x>0,y>0,且1x+2y=1,则x+y的最小值是________解析∵x>0,y>0,∴x+y=(x+y)(1x+2y)=3+yx+2xy≥3+22(当且仅当y=2x时取等号),∴当x=2+1,y=2+2时,(x+y)min=3+2 2函数y=1-2x-3x(x<0)的最小值为________解析∵x<0,∴y=1-2x-3x=1+(-2x)+(-3x)≥1+2(-2x)·3-x=1+26,当且仅当x=-62时取等号,故y的最小值为1+2 6若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________解析分离变量得-(4+a)=3x+43x≥4,得a≤-8设a+b=2,b>0,则12|a|+|a|b取最小值时,a的值为________解析∵a+b=2,∴12|a|+|a|b=24|a|+|a|b=a+b4|a|+|a|b=a4|a|+b4|a|+|a|b≥a4|a|+2b4|a|×|a|b=a4|a|+1,当且仅当b4|a|=|a|b时等号成立又a+b=2,b>0,∴当b=-2a,a=-2时,12|a|+|a|b取得最小值若当x>-3时,不等式a≤x+2x+3恒成立,则a的取值范围是________解析设f(x)=x+2x+3=(x+3)+2x+3-3,∵x>-3,所以x+3>0,故f(x)≥2(x+3)×2x+3-3=22-3,当且仅当x=2-3时等号成立,∴a的取值范围是(-∞,22-3]若对于任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________解析 xx 2+3x +1=13+x +1x ,∵x >0,∴x +1x ≥2(当且仅当x =1时取等号),则13+x +1x ≤13+2=15,即x x 2+3x +1的最大值为15,故a ≥15.解答题:已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值.解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy . ∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg10=1,∴当x =5,y =2时,u =lg x +lg y 有最大值1. (2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝⎛⎭⎪⎫7+25y x ·2x y =7+21020, 当且仅当5y x =2xy 时,等号成立.由⎩⎨⎧2x +5y =20,5y x =2xy ,解得⎩⎨⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020专项能力提升设x ,y 均为正实数,且32+x +32+y=1,则xy 的最小值为( ) A .4 B .4 3 C .9 D .16解析 由32+x +32+y=1得xy =8+x +y , ∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立), 即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,∴xy 的最小值为16设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( ) A .0 B .1 C.94 D .3 解析 由已知得z =x 2-3xy +4y 2,(*)则xyz =xyx 2-3xy +4y2=1x y +4y x -3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,∴2x +1y -2z =1y +1y -1y 2=-⎝ ⎛⎭⎪⎫1y -12+1≤1已知m >0,a 1>a 2>0,则使得m 2+1m ≥|a i x -2|(i =1,2)恒成立的x 的取值范围是( )A .[0,2a 1]B .[0,2a 2]C .[0,4a 1]D .[0,4a 2]解析 ∵m 2+1m =m +1m ≥2(当且仅当m =1时等号成立),∴要使不等式恒成立, 则2≥|a i x -2|(i =1,2)恒成立,即-2≤a i x -2≤2,∴0≤a i x ≤4, ∵a 1>a 2>0,∴⎩⎪⎨⎪⎧0≤x ≤4a 1,0≤x ≤4a 2,即0≤x ≤4a 1,∴使不等式恒成立的x 的取值范围是[0,4a 1]已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________ 解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22,∴6-(x 2+4y 2)≤x 2+4y 22, ∴x 2+4y 2≥4(当且仅当x =2y 时取等号).又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12(当且仅当x =-2y 时取等号) 综上可知4≤x 2+4y 2≤1211设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为________解析 由题意知3a ·3b =3,即3a +b =3,∴a +b =1,∵a >0,b >0,∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b ≥2+2b a ·a b =4,当且仅当a =b =12时,等号成立点(a ,b )为第一象限内的点,且在圆(x +1)2+(y +1)2=8上,则ab 的最大值为________解析 由题意知a >0,b >0,且(a +1)2+(b +1)2=8,化简得a 2+b 2+2(a +b )=6,则6≥2ab +4ab (当且仅当a =b 时取等号),令t =ab (t >0),则t 2+2t -3≤0,解得0<t ≤1,则0<ab ≤1,∴ab 的最大值为1.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是________解析 ∵a >0,b >0,1a +9b =1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b ≥10+29=16,由题意,得16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立,而x 2-4x -2=(x -2)2-6,∴x 2-4x -2的最小值为-6,∴-6≥-m ,即m ≥6.。
基本不等式大全
基本不等式大全基本不等式是数学中的一个重要概念,有许多种不同的形式和用途。
以下是一些常见的基本不等式:1.均值不等式:a+b≥2\sqrt{ab} ,当且仅当a=b 时等号成立。
2.柯西不等式:如果a_i > 0, i=1,2,...,n, 则\sum_{i=1}^{n} a_i * b_i≥(\sum_{i=1}^{n} a_i)(\sum_{i=1}^{n} b_i)。
3.伯努利不等式:如果x > 0, n > 0, 则(1 + x)^n ≥1 + nx。
4.赫尔德不等式:如果f(x) 是[a, b] 上的非负连续函数,则对于所有满足a ≤x ≤b 的x,有\int_{a}^{b} f(x) dx ≤(b-a) * f(a) + f(b)。
5.琴声不等式:如果a_i > 0, i=1,2,...,n, 则\sum_{i=1}^{n} a_i^n ≥(\sum_{i=1}^{n} a_i)^n。
6.杨氏不等式:对于任意的实数a, b,都有a^2+b^2≥2ab,当且仅当a=b时等号成立。
7.三角不等式:对于任意的实数x, y,都有|x+y|≤|x|+|y|,当且仅当x与y同号时等号成立。
8.绝对值不等式:对于任意的实数x, y,都有|x-y|≤|x|+|y|,当且仅当x与y异号时等号成立。
9.权方和不等式:如果a_i > 0, i=1,2,...,n, 则\sum_{i=1}^{n} a_i *\frac{b_i}{a_i} ≥(\sum_{i=1}^{n} b_i)(\sum_{i=1}^{n} \frac{1}{a_i})。
以上这些基本不等式在数学学习和应用中都非常重要,希望能帮助到你。
基本不等式公式总结大全
基本不等式公式总结大全在数学中,不等式是比较两个数或者表达式大小关系的数学式子。
而基本不等式则是指那些在数学中应用最为广泛、最为基础的不等式。
基本不等式在数学推导和证明中起着非常重要的作用,它们是我们解决各种数学问题的基础。
以下是一些常见的基本不等式公式:1. 两个正数的不等式,若a>b,则a+c>b+c,a-c>b-c(c为正数),ac>bc(c为正数),a/c>b/c(c为正数且不为0)。
2. 两个负数的不等式,若a<b,则a+c<b+c,a-c<b-c(c为正数),ac<bc(c为正数),a/c<b/c(c为正数且不为0)。
3. 绝对值不等式,|a+b|≤|a|+|b|,|a-b|≥||a|-|b||。
4. 平均值不等式,对于任意非负实数a和b,有(a+b)/2≥√(ab)。
5. 柯西-施瓦茨不等式,对于任意实数a1, a2, ..., an和b1,b2, ..., bn,有|(a1b1 + a2b2 + ... + anbn)| ≤ √(a1^2 +a2^2 + ... + an^2) √(b1^2 + b2^2 + ... + bn^2)。
6. 阿贝尔不等式,若a1, a2, ..., an和b1, b2, ..., bn为实数且满足a1≤a2≤...≤an和b1≥b2≥...≥bn,则有a1b1 +a2b2 + ... + anbn ≤ (a1 + a2 + ... + an) (b1 + b2 + ... + bn)。
这些基本不等式公式在数学中有着广泛的应用,可以用来证明其他数学定理,解决各种数学问题,以及在实际生活中的应用。
熟练掌握这些基本不等式公式,对于提高数学推理和解决问题的能力非常重要。
希望这些基本不等式公式能够帮助你更好地理解和运用数学知识。
高中基本不等式公式大全
高中基本不等式公式大全1. 基本不等式。
- 对于任意实数a,b,有a^2+b^2≥slant2ab,当且仅当a = b时等号成立。
- 证明:(a - b)^2=a^2-2ab + b^2≥slant0,移项可得a^2+b^2≥slant2ab。
2. 均值不等式(算术 - 几何平均不等式)- 若a>0,b>0,则(a + b)/(2)≥slant√(ab),当且仅当a = b时等号成立。
- 证明:因为(√(a)-√(b))^2≥slant0(a,b>0),展开得a - 2√(ab)+b≥slant0,移项可得(a + b)/(2)≥slant√(ab)。
- 推广:对于n个正实数a_1,a_2,·s,a_n,有frac{a_1+a_2+·s+a_n}{n}≥slantsqrt[n]{a_1a_2·s a_n},当且仅当a_1=a_2=·s=a_n时等号成立。
3. 基本不等式的变形。
- ab≤slant((a + b)/(2))^2(a,b∈ R),当且仅当a = b时等号成立。
- 若a>0,b>0,a + b≥slant2√(ab),则a + b为定值m时,ab≤slantfrac{m^2}{4};ab为定值n时,a + b≥slant2√(n)。
- 对于a>0,b>0,(2)/(frac{1){a}+(1)/(b)}≤slant√(ab)≤slant(a +b)/(2)≤slant√(frac{a^2)+b^{2}{2}},当且仅当a = b时等号成立。
- 证明(2)/(frac{1){a}+(1)/(b)}≤slant√(ab):因为(1)/(a)+(1)/(b)≥slant(2)/(√(ab))(a,b>0),所以(2)/(fra c{1){a}+(1)/(b)}≤slant√(ab)。
- 证明(a + b)/(2)≤slant√(frac{a^2)+b^{2}{2}}:(√(frac{a^2)+b^{2}{2}})^2-((a + b)/(2))^2=frac{a^2+b^2}{2}-frac{a^2+2ab + b^2}{4}=frac{2a^2+2b^2-a^2-2ab -b^2}{4}=frac{(a - b)^2}{4}≥slant0,所以(a + b)/(2)≤slant√(frac{a^2)+b^{2}{2}}。
基本不等式公式大全
基本不等式公式大全基本不等式是数学中非常重要的概念,它在数学推导和解题过程中起着至关重要的作用。
本文将对基本不等式的相关公式进行全面的介绍和总结,希望能够对读者有所帮助。
1. 一元一次不等式。
一元一次不等式是最简单的不等式形式,一般表示为ax+b>0或ax+b<0,其中a和b为实数,且a≠0。
解一元一次不等式的关键在于求出不等式的解集,常用的方法有图解法和代入法。
2. 一元二次不等式。
一元二次不等式是一元二次方程不等式,一般表示为ax^2+bx+c>0或ax^2+bx+c<0,其中a、b和c为实数,且a≠0。
解一元二次不等式的关键在于求出不等式的解集,常用的方法有配方法、图解法和代入法。
3. 绝对值不等式。
绝对值不等式是含有绝对值符号的不等式,一般表示为|ax+b|>c或|ax+b|<c,其中a、b和c为实数,且a≠0。
解绝对值不等式的关键在于将绝对值不等式转化为对应的复合不等式,并求出不等式的解集。
4. 分式不等式。
分式不等式是含有分式的不等式,一般表示为f(x)>0或f(x)<0,其中f(x)为有理函数。
解分式不等式的关键在于求出不等式的定义域和分子分母的符号,然后根据符号表确定不等式的解集。
5. 复合不等式。
复合不等式是由多个不等式组合而成的不等式,一般表示为f(g(x))>0或f(g(x))<0,其中f(x)和g(x)为函数。
解复合不等式的关键在于将复合不等式转化为对应的简单不等式,并求出不等式的解集。
以上是关于基本不等式的相关公式和解题方法的介绍,希望能够对读者有所帮助。
在实际应用中,不等式是数学建模和优化问题中的重要工具,掌握不等式的相关知识对于解决实际问题具有重要意义。
希望读者能够通过学习和实践,更加熟练地运用不等式解决实际问题,提高数学解题能力。
基本不等式完整版(非常全面)
基本不等式专题一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab ba ≥+2(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab总结:当两个正数的积为定植时,它们的和有最小值;当两个正数的和为定植时,它们的积有最小值;4、求最值的条件:“一正,二定,三相等”5、常用结论 (1)若0x >,则12x x+≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)(3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a ba ab ba +≤+≤≤+ 二、题型分析题型一:利用不等式求函数值域1、求下列函数的值域(1)22213x x y += (2))4(x x y -=(3))0(1>+=x x x y (4))0(1<+=x xx y题型二:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型三:利用不等式求最值 (二)(凑系数)1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。
基本不等式(很全面)
基本不等式(很全面).(精选)知识框架】1、基本不等式原始形式若a,b∈R,则a2+b2≥2ab2)若a,b∈R,则ab≤(a+b)2/42、基本不等式一般形式(均值不等式)若a,b∈R*,则a+b≥2ab3、基本不等式的两个重要变形1)若a,b∈R*,则a+b/2≥√(ab)2)若a,b∈R,则ab≤(a2+b2)/2总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。
特别说明:以上不等式中,当且仅当a=b时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论1)若x>1,则x+1/x≥2(当且仅当x=1时取“=”)2)若x<1,则x+1/x≤-2(当且仅当x=-1时取“=”)3)若ab>0,则a+b/2≥√(ab)(当且仅当a=b时取“=”)4)若a,b∈R,则ab≤(a2+b2)/25)若a,b∈R*,则a+b/2≤√(ab)≤(a+b)/2≤√(a2+b2)/26、柯西不等式1)若a,b,c,d∈R,则(a2+b2)(c2+d2)≥(ac+bd)22)若a1,a2,a3,b1,b2,b3∈R,则有:(a12+a22+a32)(b12+b22+b32)≥(a1b1+a2b2+a3b3)23)设a1,a2,…,an与b1,b2,…,bn是两组实数,则有(a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn)2题型归纳】题型一:利用基本不等式证明不等式题目1、设a,b均为正数,证明不等式:ab≥(a+b)2/4题目2、已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca题目3、已知a+b+c=1,求证:a2+b2+c2≥1/3题目4、已知a,b,c∈R+,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc题目5、已知a,b,c∈R+,且a+b+c=1,求证:(1-a)(1-b)(1-c)≤abc/8题目6:设$a,b,c$均为正数,且$a+b+c=1$,证明:frac{1}{a^2b^2c^2}\geq\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\geq \frac{1}{3abc}$$ 题型二:利用不等式求函数值域题目1:求下列函数的值域1)$y=3x^2+\frac{1}{2x^2}$2)$y=x(4-x)$3)$y=x+\frac{11}{x}$,其中$x>0$4)$y=x+\frac{1}{x}$,其中$x\neq 0$题型三:利用不等式求最值(一)(凑项)1、已知$x>2$,求函数$y=2x-4+\frac{4}{x}$的最小值;变式1:已知$x>2$,求函数$y=2x+\frac{4}{x}$的最小值;变式2:已知$x<2$,求函数$y=2x+\frac{4}{x}$的最大值;变式3:已知$x<2$,求函数$y=2x+\frac{4x}{2-x}$的最大值;练:1、已知$x>\frac{5}{4}$,求函数$y=4x-2+\frac{4}{4x-5}$的最小值;题目2、已知$x<\frac{5}{4}$,求函数$y=4x-2+\frac{4}{4x-5}$的最大值;题型四:利用不等式求最值(二)(凑系数)题目1:当$0<x<4$时,求$y=x(8-2x)$的最大值;变式1:当$0<x<4$时,求$y=4x(8-2x)$的最大值;变式2:设$0<x<\frac{3}{2}$,求函数$y=4x(3-2x)$的最大值。
(完整版)基本不等式链
均值不等式链基本不等式链:若b a 、都是正数,则2211222b a b a ab b a +≤+≤≤+,当且仅当b a =时等号成立。
注:算术平均数---2b a +;几何平均数---ab ;调和平均数---b a ab ba +=+2112;平方平均数---222b a +。
证明1(1 (2 (3 证明2如图,图1:图2:图3:综上,2211222b a b a ab ba +≤+≤≤+,当且仅当b a =时”“=成立。
证明3:(几何法)作梯形ABCD ,使CD BC AD B BC AD =+︒=∠,,90//,令)(a b b BC a AD >==,,,F E 、分别是CD AB 、的中点,过E 作CD EG ⊥于G ,过G 作AB GH ⊥于H ,在EB 上截取2a b EN -=,则F E 、分别是CD AB 、的中点,2a b EF +=⇒,ED 平分ADC ∠ab AB EA EG ===⇒21, b a DG BC CG AD GH b a GC DG BC GC DA DG +⋅+⋅=⇒=⇒==,,即b a ab GH +=2, 2a b EN -=222b a NF +=⇒, 显然,FN EF EG GH <<<,∴22222b a b a ab b a ab +≤+≤≤+ 当“b a =”时,22222b a b a ab b a ab +=+==+。
证明4:(几何法)作梯形ABCD ,使AB BC AD B BC AD =+︒=∠,,90//,令)(a b b BC a AD >==,,,在AB 上截取b BC AF a AD AE ====,,则a BF b BE ==,H , 过E 作AB EG ⊥交CD 于G ,过F 作CD FO ⊥于O ,过O 作AB OH ⊥于在GO EH 、上分别取点N M 、,使梯形EGNM 与梯形MNOH 相似,则BC AF BF AD ==,,2212222b a CD OF DO CO b a CF DF +====⇒+==⇒, 22b a BC AD OH OD OC +=+=⇒=,ba ab b a AE BC BE AD EG b BE a AE +=+⋅+⋅=⇒==2,, 梯形EGNM 与梯形MNOH 相似ab OH EG MN OH MN MN EG =⋅=⇒=⇒ 显然,OF OH MN EG <<<,∴22222b a b a ab b a ab +≤+≤≤+ 当“b a =”时,22222b a b a ab b a ab +=+==+。
(完整版)基本不等式链
均值不等式链基本不等式链:若b a 、都是正数,则2211222b a b a ab b a +≤+≤≤+,当且仅当b a =时等号成立。
注:算术平均数---2b a +;几何平均数---ab ;调和平均数---b a ab ba +=+2112;平方平均数---222b a +。
证明1(1 (2 (3 证明2如图,图1:图2:图3:综上,2211222b a b a ab ba +≤+≤≤+,当且仅当b a =时”“=成立。
证明3:(几何法)作梯形ABCD ,使CD BC AD B BC AD =+︒=∠,,90//,令)(a b b BC a AD >==,,,F E 、分别是CD AB 、的中点,过E 作CD EG ⊥于G ,过G 作AB GH ⊥于H ,在EB 上截取2a b EN -=,则F E 、分别是CD AB 、的中点,2a b EF +=⇒,ED 平分ADC ∠ab AB EA EG ===⇒21, b a DG BC CG AD GH b a GC DG BC GC DA DG +⋅+⋅=⇒=⇒==,,即b a ab GH +=2, 2a b EN -=222b a NF +=⇒, 显然,FN EF EG GH <<<,∴22222b a b a ab b a ab +≤+≤≤+ 当“b a =”时,22222b a b a ab b a ab +=+==+。
证明4:(几何法)作梯形ABCD ,使AB BC AD B BC AD =+︒=∠,,90//,令)(a b b BC a AD >==,,,在AB 上截取b BC AF a AD AE ====,,则a BF b BE ==,H , 过E 作AB EG ⊥交CD 于G ,过F 作CD FO ⊥于O ,过O 作AB OH ⊥于在GO EH 、上分别取点N M 、,使梯形EGNM 与梯形MNOH 相似,则BC AF BF AD ==,,2212222b a CD OF DO CO b a CF DF +====⇒+==⇒, 22b a BC AD OH OD OC +=+=⇒=,ba ab b a AE BC BE AD EG b BE a AE +=+⋅+⋅=⇒==2,, 梯形EGNM 与梯形MNOH 相似ab OH EG MN OH MN MN EG =⋅=⇒=⇒ 显然,OF OH MN EG <<<,∴22222b a b a ab b a ab +≤+≤≤+ 当“b a =”时,22222b a b a ab b a ab +=+==+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab ba ≥+2(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab总结:当两个正数的积为定植时,它们的和有最小值;当两个正数的和为定植时,它们的积有最小值;特别说明:以上不等式中,当且仅当b a =时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论 (1)若0x >,则12x x+≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab ba +≤+≤≤+特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式(1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有 222(a a a ++⋅⋅⋅+)222)b b b ++⋅⋅⋅+(2()a b a b a b ≥++⋅⋅⋅+二、题型分析题型一:利用基本不等式证明不等式1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知cb a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知1a b c ++=,求证:22213a b c ++≥ 4、已知,,a b c R+∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥---5、已知,,a b c R+∈,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 223322-≥-题型二:利用不等式求函数值域1、求下列函数的值域 (1)22213x x y += (2))4(x x y -=(3))0(1>+=x x x y (4))0(1<+=x xx y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。
2、若02<<x ,求y x x =-()63的最大值;变式:若40<<x ,求)28(x x y -=的最大值;3、求函数)2521(2512<<-+-=x x x y 的最大值;(提示:平方,利用基本不等式)变式:求函数)41143(41134<<-+-=x x x y 的最大值;题型五:巧用“1”的代换求最值问题1、已知12,0,=+>b a b a ,求t a b=+11的最小值;法一:法二:变式1:已知22,0,=+>b a b a ,求t a b=+11的最小值;变式2:已知28,0,1x y x y>+=,求xy 的最小值;变式3:已知0,>y x ,且119x y+=,求x y +的最小值。
变式4:已知0,>y x ,且194x y+=,求x y +的最小值;变式5: (1)若0,>y x 且12=+y x ,求11x y+的最小值;(2)若+∈R y x b a ,,,且1=+yb x a ,求y x +的最小值;变式6:已知正项等比数列{}n a 满足:5672a a a +=,若存在两项n m a a ,,使得14a a a n m =,求nm 41+的最小值;题型六:分离换元法求最值(了解)1、求函数)1(11072-≠+++=x x x x y 的值域;变式:求函数)1(182>-+=x x x y 的值域;2、求函数522++=x x y 的最大值;(提示:换元法)变式:求函数941++=x x y 的最大值;题型七:基本不等式的综合应用1、已知1log log 22≥+b a ,求ba93+的最小值2、(2009天津)已知0,>b a ,求ab b a 211++的最小值;变式1:(2010四川)如果0>>b a ,求关于b a ,的表达式)(112b a a ab a -++的最小值;变式2:(2012湖北武汉诊断)已知,当1,0≠>a a 时,函数1)1(log +-=x y a 的图像恒过定点A ,若点A 在直线0=+-n y mx 上,求nm24+的最小值;3、已知0,>y x ,822=++xy y x ,求y x 2+最小值;变式1:已知0,>b a ,满足3++=b a ab ,求ab 范围;变式2:(2010山东)已知0,>y x ,312121=+++y x ,求xy 最大值;(提示:通分或三角换元)变式3:(2011浙江)已知0,>y x ,122=++xy y x ,求xy 最大值;4、(2013年山东(理))设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最大值时,zy x 212-+的最大值为( )A .0B .1C .49D .3 (提示:代入换元,利用基本不等式以及函数求最值)变式:设z y x ,,是正数,满足032=+-z y x ,求xzy 2的最小值;题型八:利用基本不等式求参数范围1、(2012沈阳检测)已知0,>y x ,且9)1)((≥++yax y x 恒成立,求正实数a 的最小值;2、已知0>>>z y x 且zx n z y y x -≥-+-11恒成立,如果+∈N n ,求n 的最大值;(参考:4) (提示:分离参数,换元法)变式:已知0,>b a 满则241=+ba ,若cb a ≥+恒成立,求c 的取值范围;题型九:利用柯西不等式求最值1、二维柯西不等式),,,,(时等号成立;即当且仅当bc ad dbc a Rd c b a ==∈若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+2、二维形式的柯西不等式的变式bd ac d c b a +≥+⋅+2222)1(),,,,(时等号成立;即当且仅当bc ad dbc a Rd c b a ==∈bdac d c b a +≥+⋅+2222)2(),,,,(时等号成立;即当且仅当bc ad dbc a Rd c b a ==∈2)())()(3(bd ac d c b a +≥++),0,,,(时等号成立;即当且仅当bc ad dbc ad c b a ==≥3、二维形式的柯西不等式的向量形式≤),,,0(等号成立时使或存在实数当且仅当→→→→==ββk a k4、三维柯西不等式若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++),,(332211时等号成立当且仅当b a b ab a R b a i i ==∈5、一般n 维柯西不等式设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有: 22212(n a a a ++⋅⋅⋅+)22212)n b b b ++⋅⋅⋅+(21122()n n a b a b a b ≥++⋅⋅⋅+),,(2211时等号成立当且仅当nn i i b a b a b a R b a ==∈题型分析题型一:利用柯西不等式一般形式求最值1、设,,x y z R ∈,若2224x y z ++=,则z y x 22+-的最小值为 时,=),,(z y x析:]2)2(1)[()22(2222222+-+++≤+-z y x z y x3694=⨯=∴z y x 22+-最小值为6-此时322)2(16221222-=+-+-==-=z y x ∴ 32-=x ,34=y ,34-=z2、设,,x y z R ∈,226x y z --=,求222x y z ++的最小值m ,并求此时,,x y z 之值。
Ans :)34,32,34(),,(;4--==z y x m3、设,,x y z R ∈,332=+-z y x ,求222)1(z y x +-+之最小值为 ,此时=y (析:0)1(32332=+--⇔=+-z y x z y x )4、(2013年湖南卷(理))已知,,,236,a b c a b c ∈++= 则22249a b c ++的最小值是 (12:Ans )5、(2013年湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,23x y z ++=求z y x ++的值;6、求φθφθθcos cos sin cos 3sin 2-+ 的最大值与最小值。
(Ans :最大值为22,最小值为 -22) 析:令→a = (2sin θ,3cos θ,- cos θ),→b = (1,sin φ,cos φ)。