二元一次方程组的解的情况及应用-二元一次方程组的应用讲解

合集下载

高中数学课堂教学优秀案例分析 ——解二元一次方程组的方法与应用

高中数学课堂教学优秀案例分析 ——解二元一次方程组的方法与应用

高中数学课堂教学优秀案例分析——解二元一次方程组的方法与应用解二元一次方程组的方法与应用在高中数学课堂中,解二元一次方程组是一个重要的内容,掌握解题方法和应用技巧对学生的数学能力提升具有重要作用。

本文将分析一个优秀的高中数学课堂教学案例,探讨解二元一次方程组的方法与应用。

教学目标:1. 理解二元一次方程组的概念和解的几何意义;2. 掌握解二元一次方程组的代入消元和加减消元法;3. 运用所学知识解决实际问题。

教学案例分析:一、导入:教师通过提问,引导学生回顾一元一次方程的求解方法,并通过图示“两直线相交于一点”引入二元一次方程组的概念。

通过这种方式,激发学生的学习兴趣,为后续的学习做好铺垫。

二、解法讲解:1. 代入消元法:教师以一个简单的例子展示代入消元法的基本思想和步骤。

通过将其中一个方程表达式代入到另一个方程中,消去其中一个变量,然后求解得到另一个变量的值。

通过具体的示例,教师让学生理解代入消元法的原理和应用。

2. 加减消元法:教师以另一个例子讲解加减消元法的基本思想和步骤。

通过对方程组进行适当的加减运算,使得其中一个变量的系数相等或相反,从而相消掉。

最后利用解得的变量值回代到方程中,求解另一个变量。

通过实际的例子,让学生掌握加减消元法的原理和应用。

三、技巧总结:在讲解完解法后,教师总结出代入消元法和加减消元法的应用场景和注意事项。

比如,对于系数较小的方程组可以选择代入消元法,而对于系数较大的方程组则可以选择加减消元法。

此外,要特别注意方程组的形式和变量系数的选择,以便简化计算过程。

四、应用实例:为了提高学生对解二元一次方程组应用的理解和能力,教师给出一些实际问题,如两人一起搬砖完成工作、商品打折优惠等,要求学生利用所学知识建立方程组,并求解出变量的解释。

通过解决实际问题,让学生感受到解二元一次方程组的实际应用价值,培养他们解决问题的能力。

五、拓展应用:为了拓展学生的思维,教师设计了一些更复杂的问题,如三元一次方程组的求解和应用。

二元一次方程组的解法及应用

二元一次方程组的解法及应用

二元一次方程组的解法及应用一、引言二元一次方程组是数学中常见的问题,其解法及应用在实际生活中有着重要的意义。

本文将介绍二元一次方程组的解法及其应用领域。

二、二元一次方程组的解法二元一次方程组是由两个未知数和两个方程所组成的方程组。

解决这种方程组的问题需要运用代数的方法进行计算。

1. 消元法消元法是解决二元一次方程组最常用的方法之一。

该方法的主要思想是通过消去一个未知数,将方程组转化为只有一个未知数的方程。

举例来说,假设我们有以下的二元一次方程组:方程一:2x + 3y = 7方程二:3x - 2y = 4我们可以通过将方程一的两边同时乘以2,方程二的两边同时乘以3,然后将两个方程相加得到一个新的方程:11x = 22。

从中我们可以解得x=2。

将x的值带入其中一个方程,比如方程一,可以解得y=1。

2. 代入法代入法也是解决二元一次方程组的常用方法之一。

该方法的主要思想是通过将一个方程中的一个未知数表示为另一个方程中未知数的函数,然后将其代入到另一个方程中进行求解。

举例来说,假设我们有以下的二元一次方程组:方程一:2x + 3y = 7方程二:3x - 2y = 4我们可以通过将方程一求解出y的表达式:y = (7 - 2x) / 3,然后将其代入到方程二中,得到一个新的方程:3x - 2(7 - 2x) / 3 = 4。

从中我们可以解得x=2。

将x的值代入其中一个方程,比如方程一,可以解得y=1。

三、二元一次方程组的应用二元一次方程组的解法在实际生活中有着广泛的应用,涉及到各个领域。

1. 经济学中的应用二元一次方程组可以用于经济学中的定量分析和决策制定。

例如,在市场经济中,供求关系是决定价格和数量的重要因素。

通过建立供求方程组,可以求解出市场均衡的价格和数量。

2. 工程学中的应用二元一次方程组可以用于工程学中的问题求解。

例如,在电路分析中,可以利用欧姆定律和基尔霍夫电流定律建立二元一次方程组,求解出电路中各个节点的电流。

二元一次方程组解法及应用___知识要点+典型例题+配套练习

二元一次方程组解法及应用___知识要点+典型例题+配套练习

七下数学--第八章 二元一次方程组要点一:二元一次方程组的解法 【知识要点】1.二元一次方程:含有两个未知数,且未知项的次数为1,这样的方程叫二元一次方程。

①二元一次方程左右两边的代数式必须是整式;(不是整式的化成整式) ②二元一次方程必须含有两个未知数;③二元一次方程中的“一次”是指含有未知数的项的次数,而不是某个未知数的次数。

2.二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解任何一个二元一次方程都有无数解。

3.二元一次方程组:①由两个或两个以上的整式方程组成,常用“ ”把这些方程联合在一起; ②整个方程组中含有两个不同的未知数,且方程组中同一未知数代表同一数量; ③方程组中每个方程经过整理后都是一次方程, 4.二元一次方程组的解:注意:方程组的解满足方程组中的每个方程,而每个方程的解不一定是方程组的解。

5.会检验一对数值是不是一个二元一次方程组的解6.二元一次方程组的解法:(1) 代入消元法 (2)加减消元法 三、理解解二元一次方程组的思想转化消元一元一次方程二元一次方程组四、解二元一次方程组的一般步骤(一)、代入法一般步骤:变形——代入——求解——回代——写解 (二)、加减法一般步骤:变形——加减——求解——代入——写解 【典型例题】 一、选择题1、(2009·福州中考)二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是 ( C )A .0,2.x y =⎧⎨=⎩B .2,0.x y =⎧⎨=⎩C .1,1.x y =⎧⎨=⎩D .1,1.x y =-⎧⎨=-⎩2、(2009·百色中考)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解, 则a b -的值为( B ).A .1B .-1C . 2D .33、(2009·内江中考)若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( D )A .1B .3C .5D .24、(2009·日照中考)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+ky x k y x 9,5的解也是二元一次方程632=+y x 的解,则k 的值为 (B. )(A )43- (B )43 (C )34 (D )34-5、(2009·绵阳中考)小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是( B ) A .⊗ = 1,⊕ = 1 B .⊗ = 2,⊕ = 1 C .⊗ = 1,⊕ = 2 D .⊗ = 2,⊕ = 26、(2009·青海中考)已知代数式133m x y --与52n m n x y +是同类项,那么m n 、的值分别是(C )A .21m n =⎧⎨=-⎩B .21m n =-⎧⎨=-⎩C .21m n =⎧⎨=⎩D .21m n =-⎧⎨=⎩7、(2007·丽水中考)方程组5210x y x y +=⎧⎨+=⎩ ,由②-①,得正确的方程是( B )(A )310x = (B ) 5x = (C )35x =- (D )5x =- 8、若5x -6y =0,且xy ≠0,则yx yx 3545--的值等于( )(A )32(B )23(C )1 (D )-1二、填空题9、(2009·定西中考)方程组25211x y x y -=-⎧⎨+=⎩,的解是 .34x y =⎧⎨=⎩,10、(2008·临沂中考)已知x 、y 满足方程组⎩⎨⎧=+=+,42,52y x y x 则x -y 的值为___1_____.11、(2009·呼和浩特中考)如果|21||25|0x y x y -++--=,则x y +的值为 6 三、解答题12、 (2009·湘西中考)解方程:2725x y x y -=⎧⎨+=⎩①②【解析】①+② 得 4x =12,即 x =3 代入① 有6-y =7,即 y =-1所以原方程的解是:⎩⎨⎧-==13y x13、(2007·青岛中考)解方程组:2536x y x y +=-=⎧⎨⎩,.【解析】25,3 6.x y x y +=-=⎧⎨⎩①×3,得 6x +3y =15. ③ ②+③,得 7x =21,x =3. 把x =3代入①,得2×3+y =5,y =-1.14、如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件?15、二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .16、方程组2528x y x y +=⎧⎨-=⎩的解是否满足2x -y=8?满足2x -y=8的一对x ,y 的值是否是方程组① ②2528x y x y +=⎧⎨-=⎩的解? 【配套练习】1.判断下列方程是不是二元一次方程4).1(22=+y x 222).2(x y x x =-+ 6).3(=-y xyy x =).4( 6).5(2=++z y x 811).6(=+yx2.在下列每个二元一次方程组的后面给出了x 与y 的一对值,判断这对值是不是前面方程组的解?(1)⎩⎨⎧=+=-)2(7032)1(53y x y x ⎩⎨⎧==12y x (2)⎩⎨⎧=+=-)2(1147)1(123y x y x ⎩⎨⎧==11y x3.判断(1)由两个二元一次方程组成方程组一定是二元一次方程组( )(2)方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 4.在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 5.任何一个二元一次方程都有( ) (A )一个解;(B )两个解; (C )三个解;(D )无数多个解;6. 关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2;(B )-1;(C )1;(D )-2;7. 与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( ) (A )15x -3y =6 (B )4x -y =7(C )10x +2y =4(D )20x -4y =38. 下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x (C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x9. 已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14(B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =1410. 若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解(B )有唯一一个解 (C )有无数多个解(D )不能确定11. 若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( ) (A )14 (B )-4 (C )-12 (D )1212. .已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( )(A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =-413. 如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________;14已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______;15. 若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;16.若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;17.从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;18.解方程组(1)⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm (2))(6441125为已知数a a y x a y x ⎩⎨⎧=-=+(3)⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x (4)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(5)⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x (6)⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x19. m 取什么整数值时,方程组⎩⎨⎧=-=+0242y x my x 的解:(1)是正数;(2)是正整数?并求它的所有正整数解。

二元一次方程组的应用实例及解题技巧

二元一次方程组的应用实例及解题技巧

二元一次方程组的应用实例及解题技巧二元一次方程组是数学中常见的一种类型,在日常生活以及工作中也有广泛的应用,比如在车辆的行驶距离、快递员派送的路程、工程施工的时间安排等方面都可以用到二元一次方程组来进行解题。

一、车辆的行驶距离假设小明从A点出发,驾驶汽车前往B点,全程共行驶500公里,其中某段路程小明驾驶时速为70公里/小时,另一段路程行驶时速为80公里/小时。

请问两段路程分别是多长?设小明行驶时速为x公里/小时,则另外一段路程时速为y公里/小时,那么根据题意我们可以列出如下二元一次方程组:x + y = 500(两段路程总和为500公里)0.7x + 0.8y = 450(两段路程共耗时450小时)通过解方程可以得到:x = 200,y = 300因此答案是小明在时速70公里/小时的路程上行驶了200公里,在时速80公里/小时的路程上行驶了300公里。

二、快递员派送的路程假设某快递公司的快递员根据客户的需求,需要前往以下几个地址派送快递:地址A(距离公司5公里)、地址B(距离公司8公里)以及地址C(距离公司15公里)。

公司规定,在前往每个地址的路上,快递员的平均速度为20公里/小时,但是在派送快递时,他的平均速度要降低到15公里/小时。

请问快递员从公司出发到回到公司所需的时间是多少?设快递员从公司出发到地址A、B、C分别需要的时间分别为t1、t2、t3,则根据题意我们可以列出如下二元一次方程组:t1 + t2 + t3 = 2/3(快递员的平均速度为20公里/小时,在前往每个地址的路上所需的时间占总时间的2/3)5t1 + 8t2 + 15t3 = 1(快递员前往每个地址的路程之和为1)通过解方程可以得到:t1 = 0.0588,t2 = 0.3824,t3 = 0.1765因此快递员从公司出发到回到公司所需的时间为:t1 + t2 + t3 + (5 + 8 + 15) / 15 = 1.8235小时三、工程施工的时间安排假设某建筑工程需要从A点开工,分三个工段进行施工,最后在B点结束,其中每个工段的施工时间不同。

数学二元一次方程组解法讲解和实例分析的完整教案

数学二元一次方程组解法讲解和实例分析的完整教案

数学二元一次方程组解法讲解和实例分析的完整教案:大家好!今天来给大家讲解一下数学中的二元一次方程组解法,并且使用实例展示这个解法的具体应用情况。

一、二元一次方程组的概念二元一次方程组是指由两个含有两个未知数的线性方程所组成的方程组。

一般形式为:$$\begin{cases} ax+by=c \\ dx+ey=f \end{cases}$$其中,a、b、c、d、e、f都是已知数,x、y是未知数。

解方程组就是求出x和y的值,使得这两个方程组成立。

二、二元一次方程组的解法1、代数法采用代数方法解二元一次方程组,我们可以先通过其中一个方程将其中一个未知数表示成另一个未知数的函数。

将这个函数式代入另一个方程中,就会得到只含有一个未知数的一元一次方程,从而可以解出这个未知数的值。

接着,将求解出的值代入函数式中,可以得到另一个未知数的值。

二元一次方程组的代数解法具有操作简单、过程规范等特点。

我们可以通过实例来解释这个方法的正确性。

例1:用代数法解下列方程组:$$\begin{cases} 3x+5y=12 \\ 4x+2y=10 \end{cases}$$解:由第二个方程式得:$$y=\frac{10-4x}{2}=5-2x$$于是,方程组变成为:$$\begin{cases} 3x+5(5-2x)=12 \\ \\ 4x+2y=10\end{cases}$$将y=5-2x带入第一个方程式,可以消去y,得到:$$x=1$$将x=1代入y=5-2x,可以得到:$$y=3$$所以,这个方程组的解是(1,3)。

2、消元法消元法也是解二元一次方程组的一种方法。

它的核心思想是将两个含有两个未知数的方程中的一个未知数系数相等再作差,通过消元得到一个一元一次方程。

最后代入到其中一个方程,解出另一个未知数。

消元法解方程组的步骤如下:1)将其中一个方程两边同乘以一个数,使得两个未知数的系数相等或相反(决定于方便操作,一般情况下选择系数小的未知数)2)将两个方程加起来,消去某个未知数,从而得到另一个未知数的值3)代入其中一个方程式中,求出另一个未知数的值通过实例来解释这个方法的正确性。

(word完整版)二元一次方程组解法详解

(word完整版)二元一次方程组解法详解

一、二元一次方程组解法总结1、二元一次方程组解法的基本思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,就可以先解出一个未知数,然后再设法求另一个未知数,这种将未知数的个数由多化少,逐一简化的思想方法,叫做消元思想。

即二元一次方程组形如:ax=b(a,b为已知数)的方程。

2、代入消元法由方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程的解,这种方法叫做代入消元法,简称代入法.3、用代入消元法解二元一次方程组的步骤(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来。

(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.4、加减消元法两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.5、加减消元法解二元一次方程组的一般步骤(1)把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数的值;(5)把求出的未知数的值写成的形式。

6、二元一次方程组解的情况若二元一次方程组(a1,a2,b1,b2,c1,c2均为不等于0的已知数),则(1)当时,这个方程组只有唯一解;(2)当时,这个方程组无解;(3)当时,这个方程组有无穷多个解.二、重难点知识归纳二元一次方程组的解的理解,二元一次方程组的解法,运用有关概念解决相关数学问题.三、典型例题讲解例1、(1)下列方程中是二元一次方程的有( )①②③④mn+m=7 ⑤x+y=6A.1个B.2个C.3个D.4个(2)在方程(k2-4)x2+(2-k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k的值为()A.2 B.-2 C.±2D.以上都不对分析:一个方程是否是二元一次方程,必须看它是否满足或使它满足三个条件:①含有两个未知数;②未知数项的次数为1;③整式方程.解答:(1)∵方程①③不是整式方程,∴它们不是二元一次方程.∵mn的次数为2,∴方程④不是二元一次方程.∵方程②⑤满足二元一次方程的三个条件,∴方程②⑤是二元一次方程.故此题应选择B.(2)∵方程(k2-4)x2+(2-k)x+(k+1)y+3k=0是二元一次方程,∴它应满足条件:k2-4=0且2-k≠0且k+1≠0,解得k=±2且k≠2且k≠-1.∴k=-2.例2、在方程3x-ay=0中,如果是它的一个解,那么a的值为_____..由于方程的解必使方程左右两边的值相等,所以只需将代入方程中,解关于a的一次方程即可.解答:∵是方程3x-ay=0的一个解,∴3×3-a·2=0,例3、甲、乙两人同时解方程组乙因抄错c,解得求a、b、c 的值.将正确的解代入方程组中可直接求出c的值,但不能求a、b的值.错误解有什么作用呢?方程组的解应满足每一个方程,因此正确解满足ax+by=2,错误的解同样能满足方程ax+by=2,那么就可以建立a、b的方程组,于是a、b、c的值均可求出.解答:都是方程①的解.又∵是方程②的解,∴c+3=-2,∴c=-5.故a、b、c的值分别为例4、解下列方程组.(1)先将①化简为3y=4x+5,再代入②即可消去y,从而求出x的值。

数学解二元一次方程组的方法与应用

数学解二元一次方程组的方法与应用

数学解二元一次方程组的方法与应用教案主题:数学解二元一次方程组的方法与应用一、引言简要介绍二元一次方程组的概念和解法的重要性,以及解方程组在实际生活中的应用。

二、方法一:代入法1. 解释代入法的基本思想和步骤。

2. 通过一个实际例子,演示代入法的具体应用。

3. 练习题:提供几个实际问题,要求学生运用代入法解决。

三、方法二:消元法1. 解释消元法的基本思想和步骤。

2. 通过一个实际例子,演示消元法的具体应用。

3. 练习题:提供几个实际问题,要求学生运用消元法解决。

四、方法三:图解法1. 介绍图解法的概念和基本原理。

2. 通过一个具体的实例,演示如何利用图解法解决二元一次方程组。

3. 练习题:提供几个实际问题,要求学生通过图解法求解。

五、方法四:矩阵法1. 介绍矩阵法的基本概念和步骤。

2. 通过一个实际问题,演示如何利用矩阵法求解二元一次方程组。

3. 练习题:提供几个实际问题,要求学生应用矩阵法解决。

六、方法比较与应用场景1. 比较四种解二元一次方程组的方法,分析各自的优缺点。

2. 基于不同情境,讨论何时应选择哪种方法,以及为什么。

3. 练习题:提供多个实际问题,要求学生根据不同情境选择合适的方法。

七、应用实例:解决实际问题1. 提供几个与实际生活相关的问题。

2. 要求学生运用所学的解方程组的方法,解决这些问题。

3. 引导学生思考,将数学知识与现实问题结合,培养解决实际问题的能力。

八、总结与拓展1. 总结本节课所学的内容,强调解二元一次方程组的重要性和应用。

2. 引导学生思考,是否还存在其他解方程组的方法,鼓励他们自主拓展。

3. 布置作业:让学生独立解决几个实际问题,并总结解题思路和方法。

以上是一份关于解二元一次方程组方法与应用的教案大纲,通过引导学生学习不同的解方程组方法,并结合实际问题进行练习和应用,旨在培养学生解决实际问题的数学思维和能力。

同时,通过比较不同解法的优缺点和应用场景,引导学生灵活选择解方程组的方法,提高问题解决能力。

《二元一次方程组》知识讲解及例题解析

《二元一次方程组》知识讲解及例题解析

《二元一次方程组》知识讲解及例题解析◆知识讲解1.二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.3.二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.◆例题解析例1 已知21xy=⎧⎨=⎩是方程组2(1)21x m ynx y+-=⎧⎨+=⎩的解,求(m+n)的值.【分析】由方程组的解的定义可知21xy=⎧⎨=⎩,同时满足方程组中的两个方程,将21xy=⎧⎨=⎩代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值.【解答】把x=2,y=1代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得22(1)12211m n ⨯+-⨯=⎧⎨+=⎩ 由①得m=-1,由②得n=0.所以当m=-1,n=0时,(m+n )=(-1+0)=-1.【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程. 例2 “5.12”汶川大地震后,灾区急需大量帐篷.•某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000•顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;•若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【解答】(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y 顶,则210523178x y x y +=⎧⎨+=⎩ 解得:x=41;y=32答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务.可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.例3 某商场正在热销2008年北京奥运会吉祥物“福娃”和徽章两种奥运商品,根据下图提供的信息,•求一盒“福娃”玩具和一枚徽章的价格各是多少元?【分析】本题以图文形式提供了部分信息,主要考查学生运用二元一次方程组解决实际问题的能力.【解答】设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得214523280x y x y +=⎧⎨+=⎩解这个方程组,得12510x y =⎧⎨=⎩ 故一盒“福娃”玩具的价格为125元,一枚徽章的价格为10元.例4 为满足用水量不断增长的需求,昆明市最近新建甲,乙,•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B •型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)【分析】(1)可设甲水厂的日供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3,由三个水厂的日供水量总和为11.8万m 3,可列方程x+3x+12x+1=11.8; (2)设每辆A 型汽车每次运土石xt ,B 型车每辆每次运土石yt ,•依题意可列方程组30206001530600x y x y +=⎧⎨+=⎩解方程后可求解.【解答】(1)设甲水厂的供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3. 由题意得:x+3x+12x+1=11.8,解得x=2.4. 则3x=7.2,x+1=2.2.答:甲水厂日供水量是2.4万m 3,乙水厂日供水量是7.2万m 3,•丙水厂日供水量是2.2万m 3.(2)设每辆A 型汽车每次运土石xt ,每辆B 型汽车每次运土石yt ,由题意得: 30206001530600x y x y +=⎧⎨+=⎩ ∴1015x y =⎧⎨=⎩答:每辆A型汽车每次运土石10t,每辆B型汽车每次运土石15t.【点评】本例系统地考查了一元一次方程和二元一次方程组这两个重要内容,在同一背景下提供不同的动作方案是近年中考应用题的发展方法.。

解二元一次方程组及二元一次方程组应用题的方法

解二元一次方程组及二元一次方程组应用题的方法

解二元一次方程组及二元一次方程组应用题的方法一、代入消元法解二元一次方程组:1、基本思路:未知数由多变少。

2、消元法的基本方法:将二元一次方程组转化为一元一次方程。

3、代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

4、代入法解二元一次方程组的一般步骤:①从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”。

②将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。

③解出这个一元一次方程,求出x的值,即“解”。

④把求得的x值代入y=ax+b中求出y的值,即“回代”。

⑤把x、y的值用,联立起来即“联”。

代入消元法例:解方程组x+y=5①6x+13y=79②解:由①得x=5-y③把③带入②,得6(5-y)+13y=79y=7把y=7带入③,x=5-7即x=-2∴x=-2y=7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。

二、加减消元法解二元一次方程组1、两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

2、用加减消元法解二元一次方程组的步骤:①方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。

②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,即“加减”。

③解这个一元一次方程,求得一个未知数的值,即“解”。

④将这个求得的未知数的值代入原方程组中任意一个方程中,求出另一个未知数的值即“回代”。

二元一次方程组的解法与应用

二元一次方程组的解法与应用

二元一次方程组的解法与应用一、引言二元一次方程组是指包含两个未知数的两个一次方程,并且这两个方程是同时成立的。

解决二元一次方程组问题是数学中的重要内容,它不仅具有理论价值,而且在实际生活中也有着广泛的应用。

本文将介绍解二元一次方程组的几种常见方法,并探讨其在实际问题中的应用。

二、常见解法1. 代入法代入法是解决二元一次方程组最常用的方法之一。

首先从其中一个方程中解出一个未知数,然后将其代入另一个方程,从而得到只含有一个未知数的一次方程,解出该未知数后再带入原方程求解另一个未知数。

2. 消元法消元法是解决二元一次方程组的另一种常用方法。

通过对两个方程进行加减运算,使得其中一个未知数消失,从而得到只含有一个未知数的一次方程,解出该未知数后再带入原方程求解另一个未知数。

3. 公式法如果二元一次方程组的系数符合一定的条件,可以利用公式解法来求解。

例如,当系数满足方程组的行列式不等于零时,可以使用克拉默法则来求解未知数的值。

三、应用案例1. 货币兑换问题假设一种货币A与另一种货币B的兑换比例为1:2,某人用货币A购买了若干商品,花费了50个货币A,问他购买了多少个货币B的商品?设购买的货币B商品数量为x,根据题意可得以下方程组:1A + 2B = 50解此二元一次方程组可得x=25,即该人购买了25个货币B的商品。

2. 面积问题某个长方形的长度是宽度的两倍,而且周长是24,求该长方形的面积。

设长方形的宽度为x,长度为2x,根据题意可得以下方程组:2x + 2(x+2x) = 24解此二元一次方程组可得x=4,即长方形的宽度为4,长度为8,面积为32。

四、解法选择与注意事项在解决二元一次方程组问题时,选择合适的解法是非常重要的。

如果方程较为简单,可以考虑使用代入法或消元法;如果方程的系数符合特定条件,可以使用公式法。

此外,注意方程组是否有解,以及解是否唯一也是需要注意的。

五、总结二元一次方程组在数学中具有重要地位,不仅是数学学习的基础内容,而且在实际应用中也有广泛的运用。

二元一次方程组的应用

二元一次方程组的应用

二元一次方程组的应用二元一次方程组是数学中常见的问题形式,可以通过解方程组来求解未知数的取值。

在实际生活和工作中,二元一次方程组有着广泛的应用。

本文将讨论二元一次方程组的一些常见应用场景。

一、消费问题在购物中,我们常常需要计算多个商品的总价。

假设商品A的价格为x元,商品B的价格为y元,购买A商品m件,B商品n件,总花费为p元。

此时可以列出如下二元一次方程组:mx + ny = p (1)m + n = t (2)其中,t为商品的总件数,p为总花费金额。

通过求解方程组,可以得到商品A和商品B的价格。

二、速度问题在物理学中,速度问题通常为二元一次方程组的典型应用。

设一个物体的速度恒定不变,物体在t秒内运动了s米,根据匀速运动的定义,可以得到如下方程组:vt - s = 0 (3)v' - v = 0 (4)其中,v为物体的速度,s为物体的位移,v'为物体的平均速度。

通过解方程组,可以求解物体的速度和位移。

三、投资问题在投资领域,经常需要计算不同投资项目的收益率。

假设我们有两个投资项目A和B,投资A的金额为x元,投资B的金额为y元,A项目的收益率为r1,B项目的收益率为r2,可以列出如下方程组:rx = r1x + r2y (5)x + y = t (6)其中,t为总投资金额。

通过求解方程组,可以得到投资项目A和B的收益率。

四、运动员的成绩在体育竞技中,运动员的成绩常常可以用二元一次方程组来表示。

假设运动员A和运动员B分别参加了两个项目,A在第一个项目中获得了x分,在第二个项目中获得了y分,B在第一个项目中获得了p分,在第二个项目中获得了q分。

根据成绩的计算方法,可以列出如下方程组:x + y = t (7)p + q = t (8)其中,t为满分。

通过解方程组,可以得到运动员A和运动员B在两个项目中的得分情况。

五、人员分配问题在人员分配和调度问题中,可以利用二元一次方程组来求解不同人数的分配。

二元一次方程组的解法及应用

二元一次方程组的解法及应用

二元一次方程组的解法及应用在数学中,二元一次方程组是由两个未知数和两个方程组成的方程组。

解二元一次方程组的过程非常重要,不仅可以帮助我们求解实际问题,还可以培养我们的逻辑思维和分析能力。

本文将介绍二元一次方程组的解法以及其在实际生活中的应用。

一、二元一次方程组的解法解二元一次方程组的常用方法有三种:代入法、消元法和等式法。

下面将分别介绍这三种方法的具体步骤。

1. 代入法代入法是解二元一次方程组最简单的方法之一。

其基本思想是将一个方程的解代入另一个方程中,从而得到另一个方程只含有一个未知数的一次方程,然后通过求解这个一次方程来确定未知数的值。

具体步骤如下:(1)选择一个方程,将其中的一个未知数用另一个未知数的表达式代替。

(2)将代入后的方程代入另一个方程中,得到只含有一个未知数的一次方程。

(3)求解得到一个未知数的值。

(4)将求得的未知数的值代入代入步骤(1)中的方程,求解得到第二个未知数的值。

通过多次代入和求解,可以得到整个二元一次方程组的解。

2. 消元法消元法是解二元一次方程组的另一种常用方法。

其基本思想是通过将方程组中某个方程的两边乘以适当的系数,使得两个方程的某个未知数的系数相等或者互为相反数,然后将这两个方程相加或相减,从而消去某个未知数,求解另一个未知数的值。

具体步骤如下:(1)通过适当的乘法将两个方程的某个未知数的系数相等或互为相反数。

(2)将这两个方程相加或相减,消去某个未知数。

(3)求解得到一个未知数的值。

(4)将求得的未知数的值代入其中一个方程,求解得到第二个未知数的值。

通过多次消元和求解,可以得到整个二元一次方程组的解。

3. 等式法等式法是解二元一次方程组的另一种有效的方法。

其基本思想是通过将两个方程进行相减或相加,得到只含有一个未知数的一次方程,然后通过求解这个一次方程来确定未知数的值。

具体步骤如下:(1)通过适当的乘法或加减法将两个方程相减或相加,得到一个只含有一个未知数的一次方程。

二元一次方程组的解法和应用

二元一次方程组的解法和应用

二元一次方程组的解法和应用一、引言二元一次方程组是数学中常见的问题,通过求解方程组的解可以帮助我们解决一系列实际问题。

本文将介绍二元一次方程组的解法以及其在实际生活中的应用。

二、二元一次方程组的解法1. 消元法消元法是解二元一次方程组的常用方法。

假设我们有以下方程组:```a₁x + b₁y = c₁a₂x + b₂y = c₂```我们可以通过以下步骤进行求解:Step 1: 为了消去x的系数,我们可以将第一个方程乘以a₂,第二个方程乘以a₁,得到:```a₁a₂x + b₁a₂y = c₁a₂a₁a₂x + b₂a₁y = c₂a₁```Step 2: 接下来我们可以将第二个方程减去第一个方程,得到:```(b₂a₁ - b₁a₂)y = c₂a₁ - c₁a₂```通过求解这个一元一次方程,我们可以得到y的值。

Step 3: 将y的值代入任意一个原始方程,可以求得x的值。

2. 代入法代入法也是解二元一次方程组的一种常见方法。

假设我们有以下方程组:```a₁x + b₁y = c₁a₂x + b₂y = c₂```我们可以通过以下步骤进行求解:Step 1: 将第一个方程解出x,得到:```x = (c₁ - b₁y) / a₁```Step 2: 将x的值代入第二个方程,得到:```a₂((c₁ - b₁y) / a₁) + b₂y = c₂```通过求解这个一元一次方程,我们可以得到y的值。

Step 3: 将y的值代入任意一个原始方程,可以求得x的值。

三、二元一次方程组的应用1. 几何问题二元一次方程组可以被广泛应用于几何问题中。

例如,我们可以通过方程组的解来确定两条直线的交点坐标,从而解决线段相交等问题。

2. 商业问题在商业领域中,二元一次方程组可以帮助我们解决成本、利润、销量等变量之间的关系。

例如,我们可以利用方程组的解来确定最大利润出现的情况,或者计算销售量达到平衡的条件。

3. 工程问题在工程领域中,二元一次方程组可以应用于电路分析、力学问题等。

二元一次方程组的解法与应用的实际问题

二元一次方程组的解法与应用的实际问题

二元一次方程组的解法与应用的实际问题一、引言二元一次方程组是数学中常见且重要的一个概念,它涉及到解方程以及应用解方程的实际问题。

本文将探讨二元一次方程组的解法以及如何将其应用于实际问题中,从而提供读者在解决相关问题时的指导和启示。

二、二元一次方程组的解法二元一次方程组通常采用消元法、代入法和加减法等解法。

接下来将分别介绍这些解法的基本原理和步骤。

1. 消元法消元法是解二元一次方程组常用的方法之一。

它通过消去一个变量,将方程组转化为只含有一个变量的方程,从而求解另外一个变量的值。

具体步骤如下:(1) 确定一个方程,将其中一个变量表示为另一个变量的函数。

(2) 将该函数代入另外一个方程,将原方程组转化为只含有一个变量的方程。

(3) 求解得到该变量的值。

(4) 将求得的变量值代入初始方程中,求解另一个变量的值。

2. 代入法代入法也是解二元一次方程组常用的方法之一。

它通过利用一个方程将其中一个变量表示为另一个变量的函数,然后将该函数代入另外一个方程,从而求解变量的值。

具体步骤如下:(1) 确定一个方程,将其中一个变量表示为另一个变量的函数。

(2) 将该函数代入另外一个方程中,将二元一次方程组转化为只含有一个变量的方程。

(3) 求解得到该变量的值。

(4) 将求得的变量值代入初始方程中,求解另一个变量的值。

3. 加减法加减法也是解二元一次方程组常用的方法之一。

它通过将两个方程相加或相减来消去一个变量,从而求解另一个变量的值。

具体步骤如下:(1) 将两个方程相加或相减,从而消去一个变量,得到只含有一个变量的方程。

(2) 求解得到该变量的值。

(3) 将求得的变量值代入初始方程中,求解另一个变量的值。

三、二元一次方程组的应用实例二元一次方程组在实际生活中有着广泛的应用。

下面将介绍几个例子,以展示它们的应用价值。

1. 商品价格问题假设有两种商品A和B,知道A和B的总价格为100元,且已知A 的价格是B的两倍。

我们可以通过求解二元一次方程组来确定A和B的具体价格,从而帮助我们了解两种商品的定价和销售策略。

二元一次方程组的解法解析

二元一次方程组的解法解析

考点名称:二元一次方程组的解法∙(一)二元一次方程组的解:使二元一次方程组的两个方程都成立的一对未知数的值,叫做方程组的解,即其解是一对数。

∙∙(二)二元一次方程组解的情况:一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

求方程组的解的过程,叫做解方程组。

一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有以下三种情况:1、有一组解。

如方程组:x+y=5①6x+13y=89②x=-24/7y=59/7 为方程组的解2、有无数组解。

如方程组:x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3、无解。

如方程组:x+y=4①2x+2y=10②,因为方程②化简后为x+y=5这与方程①相矛盾,所以此类方程组无解。

可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组:ax+by=cdx+ey=f当a/d≠b/e 时,该方程组有一组解。

当a/d=b/e=c/f 时,该方程组有无数组解。

当a/d=b/e≠c/f 时,该方程组无解。

∙∙(三)二元一次方程组的解法:解方程的依据—等式性质1.a=b←→a+c=b+c2.a=b←→ac=bc (c>0)一、消元法:1)代入消元法用代入消元法的一般步骤是:①选一个系数比较简单的方程进行变形,变成y = ax +b 或x = ay + b的形式;②将y = ax + b 或x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;③解这个一元一次方程,求出x 或y 值;④将已求出的x 或y 值代入方程组中的任意一个方程(y = ax +b 或x = ay + b),求出另一个未知数;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。

例:解方程组:x+y=5①{6x+13y=89②解:由①得x=5-y③把③代入②,得6(5-y)+13y=89即y=59/7把y=59/7代入③,得x=5-59/7即x=-24/7∴x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。

二元一次方程组知识点归纳及解题技巧

二元一次方程组知识点归纳及解题技巧

二元一次方程组知识点归纳及解题技巧一、基本定义:二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。

二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。

二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。

二、解的情况:二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。

三、二元一次方程的解法:1、一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种:1、代入消元法2、加减消元法3、教科书中没有的几种解法(一)加减-代入混合使用的方法.例:13x+14y=41 (1)14x+13y=40 (2)解:(2)-(1)得x-y=-1 x=y-1 (3)把(3)代入(1)得13(y-1)+14y=41y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例3:x:y=1:45x+6y=29令x=t, y=4t 则方程2可写为:5t+6×4t=2929t=29t=1 所以x=1,y=4四、列方程(组)解应用题(一)、其具体步骤是:⑴审题。

理解题意。

弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。

①直接未知数②间接未知数(往往二者兼用)。

一般来说,未知数越多,方程越易列,但越难解。

掌握解二元一次方程组的应用技巧

掌握解二元一次方程组的应用技巧

掌握解二元一次方程组的应用技巧解二元一次方程组是初中数学中一个重要的知识点,也是解决实际问题的基础。

掌握解二元一次方程组的应用技巧对于我们理解和解决问题非常有帮助。

本文将介绍一些解二元一次方程组的常见应用技巧。

一、联立方程法在解决问题时,我们常常会遇到需要用到两个未知数的情况。

此时,我们可以通过联立方程的方法解决问题。

联立方程的基本思路是将问题中的条件转化为方程,然后解得未知数的值。

例如,有一道题目如下:某商店出售A、B两种产品。

A产品的售价为x元,B产品的售价为y元,现有一张购物清单,清单上显示购买A产品和B产品的总金额为100元,购买数量分别为a个和b个,且a+b=10。

已知购买A产品的收入为20元。

问购买B产品的收入是多少?解题思路:设购买B产品的收入为b_income,则有如下方程:x*a + y*b = 100 (方程1)x*a = 20 (方程2)将方程2代入方程1中得到:20 + y*b = 100y*b = 80根据等式右边的值可知,b_income = 80元,即购买B产品的收入为80元。

二、替换法替换法也是解二元一次方程组的一种常用方法。

当我们遇到问题中含有多个未知数的时候,可以通过替换法将一个未知数用另一个未知数表示,从而化简方程。

例如,有一道题目如下:甲、乙两地相距500公里,两地之间有一辆火车和两辆汽车同行。

火车的速度是每小时100公里,汽车1的速度是每小时60公里,汽车2的速度是每小时80公里。

已知两辆汽车同时从甲地出发,并且汽车1比汽车2先出发20分钟,请问两辆汽车相遇在离甲地多远的地方?解题思路:设汽车1行驶的时间为t小时,则汽车2行驶的时间为(t-20/60)小时。

设两辆汽车相遇的地点距离甲地x公里,则有如下方程:60t + 80(t-20/60) = 500解以上方程,可以得出t=4小时。

将t=4代入方程60t + 80(t-20/60)= 500中,得出x=260。

二元一次方程组的应用的解题步骤

二元一次方程组的应用的解题步骤

二元一次方程组的应用的解题步骤
(实用版)
目录
1.二元一次方程组的概念
2.解二元一次方程组的步骤
3.应用举例
正文
二元一次方程组是由两个含有两个未知数的一次方程组成的方程组,其中每个方程的次数都是一次。

在实际问题中,二元一次方程组经常出现,例如两个变量的线性关系、物品的购买和销售等。

解决二元一次方程组可以找到这些实际问题中的未知数,从而解决实际问题。

下面,我们来介绍一下解二元一次方程组的步骤。

步骤一:列出方程组
首先,我们需要根据实际问题列出二元一次方程组。

例如,如果我们想要解决一个关于物品购买和销售的问题,我们可能会得到以下方程组:x + y = 10
2x - y = 5
步骤二:消元
然后,我们需要通过加减消元法或代入消元法来消去一个未知数。

例如,在上面的例子中,我们可以通过将第一个方程乘以 2,然后将两个方程相加来消去 y:
2x + 2y = 20
2x - y = 5
------------
3x = 25
步骤三:解方程
现在,我们只剩下一个未知数需要解决。

我们可以将上述方程除以 3,得到:
x = 25/3
步骤四:代入求解
然后,我们可以将 x 的值代入原始方程组中的任意一个方程,解出另一个未知数。

例如,我们可以将 x 的值代入第一个方程,解出 y:25/3 + y = 10
y = 10 - 25/3
因此,我们得到了二元一次方程组的解:x = 25/3,y = 10 - 25/3。

以上就是解二元一次方程组的步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点一:二元一次方程的理解 知识点二:二元一次方程组的解的情况 知识点三:自己的解 知识点四:与别人同解 知识点五:借用别人的解 知识点六:非负数与二元一次方程组结合 知识点七:同类项的概念与二元一次方程组结合 知识点八:求错的解 知识点九:给出关系的解
巩固练习 1
已知关于x、y的二元一次方程组
3、当
a1 b1
a2
b2
时 方程组有唯一的解
知识点一:二元一次方程的理解 知识点二:二元一次方程组的解的情况 知识点三:自己的解 知识点四:与别人同解 知识点五:借用别人的解 知识点六:非负数与二元一次方程组结合 知识点七:同类项的概念与二元一次方程组结合 知识点八:求错的解 知识点九:给出关系的解
x 2y 1 2x 4y 2
1 2 唯一的解 12
1 2 1 2 4 3
无解
1 2 1 无数多解 2 4 2
练习1:下列方程组中,只有一组解(C )
(A)3xxy3y1 0
(B)3xxy3y
0
3
(C)3xxy3y1 3 (D)3xxy3y1 3
知识点一:二元一次方程的理解
已知方程(k2-1)x2+(k+1)x+(k-7)y=k+2
(1)当k= -1 时,方程为一元一次 方程;
(2)当k= 1 时,方程为二元一次方
程。
知识点二:二元一次方程组的解的情况
x 2y 1 x 2y 3
x 2y 1 2x 4y 3
x y 5k x y 9k
的解也是二元一次方
程2x+3y=6的解,求k的值。
有相同的解,求a、b的值。
知识点四:与别人同解
例题2:
已知关于x、y的二元一次方程组
2x 3y 7 ax by 1
2ax

by


9
5x

3y

7
有相同的解,求a、b的值。
练习:
已知关于x、y的二元一次方程组
4x 5x

2y ny

8 n


2
mx 3ny 1 3x - y 6
例题2:
ax by 2 解方程组 cx 7y 8 时,甲同学正确地
解得x 3 ,乙同学因把c看错而解得的解 y 2
x 2 为y 2 ,求a、b、c的值。
知识点九:给出关系的解
例题1:
已知关于x、y的二元一次方程组
3x 4y 7 2ax 3y 2 的解中x与y的
如果 3a7xb y7和-7a24 yb2x 的和是单项式,求x、y值。
知识点八:求错的解
例题1:ax 5y 12 解方程组4x by 10 时,甲同学因看错
了a解得 x 1 ,乙同学因看错了b而

2
y 4
解得
x


3 2 。求a+b的值
y 3
值相等,求a的值。
知识点九:给出关系的解
例题2:
已知关于x、y的二元一次方程组
2x 3y k 3x 5y k 1的解中x与y的值
互为相反数,求k的值。
知识点九:给出关系的解
例题3:
已知关于x、y的二元一次方程组
3x 2y k 2x 3y k 4
的解中x与y的的和为8,求k的值。
x 2 若 y 1 是关于x、y的二元一次方程组
3 ax by 3
2
的解,求a+2b的值。
ax - by 2
知识点四:与别人同解
例题1:
已知关于x、y的二元一次方程组
2x 4x

3y 5y

7 3

ax by 1 ax by 7
练习2:方程组 2xx24yy13的解的情况( B )
(A)有一个解
( B )无解
(C)有无数个解 (D)无法确定
知识点三:自己的解
例题:
已知关于x、y的二元一次方程组
ax by 4 x 2 bx ay 5 的解是 y 1 ,
求a+b的值。
练习:
有相同的解,求m、n的值。
知识点五:借用别人的解
例题:已知关于m、n的二元 f
的解为
m 3 n 1

a(x d(x -
y) b(x y) e(x

y) y)

c f
的解

练习:已知关于m、n二元一次方程组
二元一次方程组 的解及应用
二元一次方程组 a1x b1 y c1
的解的情况有以下三种 a2 x b2 y c2
1、当 a1 b1 c1 时
a2 b2 c2
方程组有无数多解。(∵两个方程等效)
2、当
a1 b1 c1 a2 b2 c2

方程组无解。(∵两个方程是矛盾的)
2m 3n 3m 5n
7 1
的解为nm21

2(x 3(x
1) 1)

3(y 5(y
-
2) 2)
7 1
的解。
知识点六:非负数与二元一次方程 组结合
若(2x-3y)2 x y 2 0 ,
求x、y的值。
知识点七:同类项的概念与二元一 次方程组结合
相关文档
最新文档