数学建模考试题(开卷)
数学建模试题(开放性)
2014-2015学年上学期《数学建模》期中考试试题要求:1.以2-3人为一小组选择5个题做;其中1——38题任选4个,规划问题必做;2.要求思路清晰,结果合理。
3.每个同学都主动积极参与。
4.第15周交。
**************************************************1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。
设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间?2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4(1)求冰块全部融化要多长时间(设气温不变)(2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少?3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间?4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。
5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度?6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐?7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落伞打开后的空气阻力约为0.6试球给伞降兵下落的速度v(t),并求其下落的极限速度。
8. 1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。
大学数学建模课程真题试卷
大学数学建模课程真题试卷一、选择题(每题 5 分,共 20 分)1、在数学建模中,以下哪种模型常用于预测未来的趋势?()A 线性回归模型B 逻辑回归模型C 聚类分析模型D 决策树模型2、对于一个优化问题,若目标函数为凸函数,约束条件为线性,则该问题属于()A 线性规划问题B 非线性规划问题C 凸规划问题D 整数规划问题3、以下哪个方法常用于求解微分方程?()A 有限差分法B 蒙特卡罗方法C 层次分析法D 主成分分析法4、在建模过程中,数据预处理的主要目的是()A 减少数据量B 提高数据质量C 增加数据多样性D 便于数据存储二、填空题(每题 6 分,共 30 分)1、数学建模的基本步骤包括:问题提出、_____、模型假设、模型建立、模型求解、模型分析与检验、_____。
2、线性规划问题的标准形式中,目标函数为_____,约束条件为_____。
3、常见的概率分布有_____、_____、正态分布等。
4、评价模型优劣的指标通常包括准确性、_____、_____等。
5、一个具有 n 个变量,m 个约束条件的线性规划问题,其可行域是由_____个顶点组成的凸多边形。
三、简答题(每题 10 分,共 30 分)1、请简述层次分析法的基本步骤。
2、解释什么是敏感性分析,并说明其在数学建模中的作用。
3、给出一个实际问题,并简述如何将其转化为数学建模问题。
四、应用题(20 分)某工厂生产 A、B 两种产品,已知生产 A 产品每件需要消耗原材料2 千克,劳动力 3 小时,利润为 5 元;生产 B 产品每件需要消耗原材料 3 千克,劳动力 2 小时,利润为 4 元。
现有原材料 180 千克,劳动力 150 小时,问如何安排生产计划,才能使工厂获得最大利润?(1)建立数学模型(8 分)(2)使用软件求解(给出求解过程和结果)(12 分)接下来,我们对这份试卷进行一下分析。
选择题部分主要考查了学生对数学建模中一些基本概念和常见模型方法的理解。
数学建模试卷及参考答案
数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。
A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。
当矩形的面积最大时,求矩形的长和宽。
A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。
求该直线的方程。
A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。
A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。
假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。
求两辆车首次相遇的时间。
A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。
答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。
答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。
《数学建模》考试试卷与参考答案
《数学建模》试卷 第 1 页 共 4 页《数学建模》试题一、填空题(每题5分,满分20分):1. 设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为 .2. 设年利率为0.05,则10年后20万元的现值按照复利计算应为 .3. 所谓数学建模的五步建模法是指下列五个基本步骤,按一般顺序可以写出为 .4. 设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 .二、分析判断题(每题10分,满分20分):1. 从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决。
2. 某公司经营的一种产品拥有四个客户,由公司所辖三个工厂生产,每月产量分别为3000,5000和4000件.公司已承诺下月出售4000件给客户1,出售3000件给客户2以及至少1000件给客户3,另外客户3和4都想尽可能多购剩下的件数.已知各厂运销一件产品给客户可得到的净利润如表1所示,问该公司应如何拟订运销方案,才能在履行诺言的前提下获利最多?表1单位:元/件上述问题可否转化为运输模型?若可以则转化之(只需写出其产销平衡运价表即可),否则说明理由。
三、计算题(每题20分,满分40分):1. 有一批货物要从厂家A 运往三个销售地B 、C 、D ,中间可经过9个转运站.,,,,,,,,321321321G G G F F F E E E 从A 到321,,E E E 的运价依次为3、8、7;从1E 到21,F F 的运价为4、3;从2E 到321,,F F F 的运价为2、8、4;从3E 到32,F F 的运价为7、6;从1F 到21,G G 的运价为10、12;从2F 到321,,G G G 的运价为13、5、7;从3F 到32,G G 的运价为6、8;从密线封层次报读学校专业姓名317《数学建模》试卷 第 2 页 共 4 页1G 到C B ,的运价为9、10;从2G 到D C B ,,的运价为5、10、15;从3G 到D C ,的运价为8、7。
数学建模试题(带答案)
数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
数学建模考试题(开卷)
2015-2016学年下学期数学建模考试题(开卷)完成方式:一人单独完成,8页以上)交卷形式:纸质文档+电子文档,纸质文档的第一页必须写好姓名、学号、所选题名。
成绩评定以纸质文档为依据,电子文档主要验证作业的真实性(没交电子文档将扣分).交卷时间:纸质文档在6月23日上课时交,论文一律用A4纸双面打印,上、下边距2cm,左右边距2,到时候没交答卷(纸质文档)的同学做缺考处理.交卷地点:纸质文档(计算机打印文稿,手写文稿一律不接收),电子文档到465933341@ ,主题栏写提交者的班级+姓名学号+所选题名(字体:大标题二号字,小标题四号字,其他均为5号字注意:如有雷同两份答卷同时计0分,如查实为抄袭网上已有论文计0分。
提交论文的要求:论文基本内容和格式大致分三大部分:一、标题、摘要部分1.题目:应写出较确切的题目;(不能只写第1题、第2题等)2.姓名、班级、学号、联系方式;3.摘要(含关键词)200-300字,包括模型的主要特点、建模方法和主要结果;二、正文正文要求把求解的思路与过程描述清除,注意排版格式的整齐美观。
必须包括以下部分:1.问题分析2.模型假设即补充一些假设条件,使问题简化,但需合理(是此次比赛论文好坏的关键) 3.符号说明4.模型建立与求解(必要时包括计算方法设计及计算机实现(MATLAB))5.结果分析与检验(简述)6.讨论模型的优缺点,改进方向,推广新思想(简述)7.参考文献(参考文献要在论文中引用)参考文献在正文引用处用方括号标示参考文献的编号,如[1][3]等,引用书籍还必须指出页码。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)论文一律用A4纸双面打印,上、下边距2cm,左右边距2三、附录部分(如果有下列内容的话)1.计算程序,框图;(计算采用Matlab完成,图、表用Matlab生成后贴到word文档中,并附计算程序。
数学建模试卷及参考答案
数学建模试卷及参考答案一.概念题〔共3小题,每题5分,本大题共15分〕1、一般状况下,建立数学模型要经过哪些步骤?〔5分〕答:数学建模的一般步骤包括:模型打算、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。
2、学习数学建模应留意培育哪几个实力?(5分)答:视察力、联想力、洞察力、计算机应用实力。
3、人工神经网络方法有什么特点?(5分)答:〔1〕可处理非线性;〔2〕并行构造.;〔3〕具有学习和记忆实力;〔4〕对数据的可容性大;〔5〕神经网络可以用大规模集成电路来实现。
二、模型求证题〔共2小题,每题10分,本大题共20分〕1、某人早8:00从山下旅店动身,沿一条途径上山,下午5:00到达山顶并留宿.次日早8:00沿同一途径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记动身时刻为,到达目的时刻为,从旅店到山顶的路程为s.设某人上山途径的运动方程为f(t), 下山运动方程为g(t)是一天内时刻变量,那么f(t)(t)在[]是连续函数。
作协助函数F(t)(t)(t),它也是连续的,那么由f(a)=0(b)>0和g(a)>0(b)=0,可知F 〔a 〕<0, F(b)>0, 由介值定理知存在t0属于()使F(t0)=0, 即f(t0)(t0) 。
2、三名商人各带一个随从乘船过河,一只小船只能包容二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权驾驭在商人们手中,商人们怎样才能平安渡河呢?(15分) 解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,1,2,........,k x ,k y =0,1,2,3。
将二维向量k s =〔k x ,k y 〕定义为状态。
平安渡河条件下的状态集合称为允许状态集合,记做S 。
()}{2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x 〔3分〕记第k 次渡船上的商人数为k u 随从数为k v 将二维向量k d =〔k u ,k v 〕定义为决策。
2023全国数学建模题目
2023全国数学建模题目一、选择题(每题3分,共15分)下列哪个数不是质数?A. 2B. 3C. 9D. 13若一个圆的半径是5cm,则它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π下列哪个方程表示的是一条直线?A. y = x²B. y = 2x + 1C. y = 1/xD. xy = 1下列哪个数最接近√10?A. 2B. 3C. 4D. 5一个三角形的两边长分别为3和4,第三边的取值范围是多少?A. 1 < x < 7B. 2 < x < 8C. 3 < x < 9D. 4 < x < 10二、填空题(每题4分,共20分)绝对值等于5的数是_______。
已知|a - 3| + (b + 2)² = 0,则 a + b = _______。
已知一个正方体的棱长是6cm,则它的体积是_______ cm³。
方程2x - 3 = 5 的解是x = _______。
已知扇形的圆心角为120°,半径为3cm,则扇形的面积是_______ cm²。
三、计算题(每题10分,共30分)计算:√27 - | - 2| + (1/2)^(-1) - (π - 3)^0。
解方程组:{x + 2y = 5,3x - y = 8.}已知一个矩形的面积是48cm²,一边长为6cm,求另一边长。
四、应用题(每题15分,共30分)某商店购进一批苹果,进价为每千克5元,售价为每千克8元。
若商店想要获得至少300元的利润,则至少需要售出多少千克的苹果?一辆汽车从A地开往B地,前两小时行驶了120km,后三小时行驶了180km。
求这辆汽车的平均速度。
哈理工数学建模考试试题(开卷)
2004哈尔滨理工大学数学建模试题(开卷)1.要用40块方形瓷砖铺如图所示形状的地面,但当时市场上只有长方形瓷砖,每块大小等于方形的两块。
一人买了20块长方形的瓷砖,试着铺地面,结果弄来弄去始终铺不好。
问是这人功夫不到家还是这个问题根本就无解?2.一摞硬币共m 枚,每枚硬币均正面朝上。
取最上面的1枚,将它翻面后放回原处,然后取最上面的2枚硬币,将它们一起翻面后再放回原处。
再取3枚、4枚、…,直到整摞硬币都按上面方法处理过。
接下来再从这摞硬币最上面的一枚开始,重复刚才的做法。
这样一直做下去,直到这摞硬币中的每一个都正面朝上为止。
问这种情形是否一定会出现?如果出现,则一共需要做多少次翻面?3.社会学的某些调查结果表明儿童受教育的水平依赖于他们父母受教育的水平。
调查过程是将人们划分为三类:E 类:这类人具有初中或初中以下文化程度;S 类:这类人具有高中文化程度;C 类:这类人受过高等教育。
当父或母(指文化程度较高者)是这三类人中的一类型时,其子女将属于这三类型中的任一种的概率由下表给出:问(1)属于S 类的人口中,其第三代将受高等教育的概率是多少?(2)假设不同的调查结果表明,如果父母之一受过高等教育,那么他们的子女总是可以进入大学的,修改上面的转移矩阵。
(3)根据(2)1594.有r 个人在一楼进入电梯,楼上有n 层。
设每个乘客在任何一层楼出电梯的概率相同,试建立一个数学模型,求直到电梯中的乘客下完时,电梯需停次数的数学期望。
5.磁盘的最大存储量。
微型计算机把数据存储在磁盘上。
磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。
磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。
磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit )。
为了保障磁盘的分辨率,磁道宽必需大于t ρ,每比特所占用的磁道长度不得小于b ρ。
为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。
初中数学建模大赛试卷
一、选择题(每题5分,共20分)1. 下列哪项不是数学建模的基本步骤?A. 提出问题B. 收集数据C. 分析问题D. 解决问题2. 下列哪个公式是求解一元二次方程的公式?A. \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)B. \( y = mx + b \)C. \( z = \frac{a}{b} \)D. \( \sin(\theta) = \frac{opposite}{hypotenuse} \)3. 在下列函数中,哪个函数的图像是一条直线?A. \( f(x) = x^2 + 2x + 1 \)B. \( f(x) = 2x + 3 \)C. \( f(x) = \sqrt{x} \)D. \( f(x) = \log_2(x) \)4. 下列哪个单位是测量长度的国际单位?A. 米(m)B. 千克(kg)C. 秒(s)D. 安培(A)5. 在下列几何图形中,哪个图形是轴对称的?A. 正方形B. 长方形C. 三角形D. 圆形二、填空题(每题5分,共20分)6. 若一个长方体的长、宽、高分别为a、b、c,则其体积V可以表示为______。
7. 若一个圆的半径为r,则其周长C可以表示为______。
8. 若一个等差数列的首项为a1,公差为d,第n项为an,则an可以表示为______。
9. 若一个等比数列的首项为a1,公比为q,第n项为an,则an可以表示为______。
10. 若一个直角三角形的两条直角边分别为a和b,斜边为c,则根据勾股定理,c 可以表示为______。
三、解答题(每题15分,共45分)11. (15分)某学校计划组织一次校园运动会,共有50名学生报名参加。
已知参加100米短跑的学生有20人,参加200米中长跑的学生有15人,参加跳远的学生有10人。
请根据这些信息,建立一个数学模型来分析参加不同运动项目的学生人数之间的关系。
12. (15分)某商店销售一种新产品,已知每件产品的成本为100元,售价为150元。
(完整版)数学建模试卷(附答案)
2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。
二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。
(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。
(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。
2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。
随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。
后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。
谁料,DDT 同样杀死澳洲瓢虫。
结果,介壳虫增加起来,澳洲瓢虫反倒减少了。
试建立数学模型解释这个现象。
3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。
数学建模试卷及答案
《数学模型》试卷一、基本问题。
(本大题共2小题,每小题20分,共40分)1.在七项全能中对于跳高运动的记分点方法由下式给出:c b m a P )(-=其中m c b a ,348.1,0.75,84523.1===是跳的高度(按cm 计)。
求跳的高度为183cm 的记分点,并确定积分1000点需要跳的高度。
2.铁匠用直条铁做蹄铁,把直条铁弯成通常铁蹄的形状。
为求得铁条需要的长度,要测量蹄的宽度(W 英寸),并用下列形式的公式:b aW L +=求得需要的条长度(L 英寸)。
试用下列数据求的a 和b 的估计值。
并得出该公式的估计式。
宽W (英寸) 长L (英寸)6.50 12.005.75 13.50二、渔场捕捞问题。
(本大题共3小问,每小问20分。
满分共60分。
)三、在渔场中捕鱼,从长远利益而言,通常希望既使渔场中鱼量保持不变,又能达到最大的捕获量。
假设:(1)在无捕捞的情况下,鱼量的变化符合Logistic 模型:)1(Nx rx dt dx -=,其中:r 为固有增长率,N 是渔场资源条件下最大鱼量;(2)在捕捞的情况下,设单位时间的捕捞量与渔场中的鱼量成正比。
1.建立在有捕捞的情况下,渔场的产量模型;2.研究该模型鱼量的稳定性;3.找出该模型下适合的捕捞量。
《数学建模》考试卷(答案)一、1.解:把183,348.1,0.75,84523.1====m c b a 代入记分公式,得348.1)0.75183(84523.1)(-⨯=-=c b m a P =348.110884523.1⨯(=1016.5)由公式c b m a P )(-=,有c b m a P )(-=,解得公式:b a P m c +=1)( 把1000,348.1,0.75,84523.1====P c b a 代入上式,得b aP m c +=1)( 0.7594.5410.75)84523.11000(74184.0348.11+=+= (=106.7+75.0=181.7)2.解:把两组数据00.12,50.6==L W 和50.13,75.5==L W 分别代入公式 b aW L +=得方程组:⎩⎨⎧+=+=b a b a 75.55.135.60.12 解得:⎩⎨⎧=-=252b a 所以b a ,的估计值为:25,2^^=-=b a 。
2023数学建模国赛题
2023数学建模国赛题一、选择题(每题3分,共30分)下列函数中,最小正周期为π的是()A. y=sin2xB. y=cos2xC. y=tanxD. y=∣sinx∣若实数a,b满足a>b,则下列不等式一定成立的是()A. a2>b2B. ac2>bc2C. a+a1>b+b1D. ab<1已知loga2<logb2<0,则下列不等式成立的是()A. a>b>1B. b>a>1C. 0<a<b<1D. 0<b<a<1二、填空题(每题4分,共16分)已知等差数列{an}的前n项和为Sn,若a1=1,S5=15,则公差d= _______。
已知圆x2+y2=4与直线y=kx+b相切,且直线在y轴上的截距为2,则k= _______。
若a,b是两个不共线的向量,且AB⟶=2a+kb,CB⟶=a+b,CD⟶=−2a−b,则k= _______时,A,B,D三点共线。
三、解答题(共54分)1.(本题满分12分)已知函数f(x)=lnx−xa。
(1)求函数f(x)的单调区间;(2)若函数f(x)在[1,e]上的最小值为23,求实数a的值。
2.(本题满分14分)在ΔABC中,角A,B,C的对边分别为a,b,c,且a=2,b=3,cosC=41。
(1)求sinC的值;(2)求ΔABC的面积。
3.(本题满分14分)已知椭圆C:a2x2+b2y2=1(a>b>0)的离心率为23,且过点P(1,23)。
(1)求椭圆C的方程;(2)过点E(4,0)的直线l与椭圆C交于A,B两点,若线段AB的中点坐标为(m,n),求m的取值范围。
4.(本题满分14分)已知函数f(x)=31x3−21x2+cx+d有极值点x1,x2,且x1<x2,x1+2x2=0。
(1)求c的取值范围;(2)证明:f(x1)>41。
《数学建模》开卷考试试题
06-07学年第二学期《数学建模》开卷考试试题要求1.本试题共有3题共大家任选其中一题来做;可独自一人完成,也可按组(2~3人)完成.2.格式要求:按照论文的格式,即:论文的摘要、关键词;(正文)提出问题、模型假设,建立模型,对模型求解与检验、解释及模型改进等,并用A4纸打印.注意须加论文首页(见最后页).3.在规定的交卷时间内,需做好答辩的准备并带上打印好的论文、源程序,并亲自来交.◆交卷时间:07月04日( 周三) 5:30 —9:00 p.m.◆交卷地点:三教704室A题:交友策略(在大学校园里)“男生追求女生”屡见不鲜,有人主张不顾一切的猛追,必会得到该女生的好感直至爱情。
而有人则认为过分追求,有可能带来适得其反的负面效果。
试就这个“交友”问题谈谈你的高见,并从数学理论的角度来支撑你的观点。
B题:宾馆的经营策略问题拉斯维加斯是一个著名的赌城,城内宾馆主要提供举办会议和赌客使用。
客房通过电话或互联网预定,这种预定具有很大的不确定性,客户很可能由于各种原因取消预定。
宾馆为了争取更大的利润,一方面要争取客户,另一方面要降低客户取消预定遭受的损失。
为此,宾馆采用一些措施。
首先,要求客户提供信用卡号,预付第一天房租作为定金。
如果客户在前一天中午以前取消预定,定金将如数退还,否则定金将被没收。
其次,宾馆采用变动价格,根据市场需求情况调整价格,一般来说周末价格比较高。
1. 试建立客房预定价格的数学模型,并对以下实例作分析。
表1给出了某宾馆8周标准房价格(单位: 美元),用你的模型说明价格变动的规律,并据此估计第9周和第10周的标准房参考价格。
你还可以收集更多的数据来佐证你模型的价值(要求注明出处)。
表B 某宾馆8周标准房价格 (单位: 美元)失。
当然这样做可能会带来新的风险, 因为万一届时有超出客房数的客户出现, 宾馆要通过升级客房档次或赔款来解决纠纷, 为此宾馆还会承担信誉风险. 某宾馆有总统套房20套,豪华套房100套,标准间500套。
初中数学建模试卷
本试卷共分为三个部分,分别为选择题、填空题和解答题。
选择题和填空题主要考察学生对基础知识的应用能力,解答题则考察学生的数学建模能力和实际问题解决能力。
请认真阅读题目,独立完成。
二、选择题(每题5分,共20分)1. 下列哪个选项不是数学建模的基本步骤?()A. 提出问题B. 收集数据C. 分析问题D. 得出结论2. 下列哪个选项不属于数学建模的方法?()A. 逻辑推理B. 概率统计C. 系统分析D. 财务计算3. 下列哪个函数可以表示一辆汽车行驶的距离与时间的关系?()A. y = 2x + 3B. y = x^2C. y = 3x + 5D. y = x^34. 下列哪个选项不是数学建模在实际生活中的应用?()A. 预测天气B. 分析人口增长C. 设计电路D. 创作音乐5. 下列哪个选项不是数学建模的成果?()A. 方程B. 图表C. 结论D. 程序三、填空题(每题5分,共25分)1. 数学建模的基本步骤包括:提出问题、________、分析问题、建立模型、求解模型、检验模型、得出结论。
2. 在数学建模过程中,常用的数学方法有:逻辑推理、概率统计、系统分析、________、优化等。
3. 某工厂生产一种产品,每天生产100件,每件产品成本为10元,售价为15元。
若每天生产的产品全部售出,则每天利润为________元。
4. 某人从A地出发,以每小时10公里的速度匀速行驶,行驶2小时后到达B地。
若此人继续以每小时15公里的速度匀速行驶,则从B地到C地的时间为________小时。
5. 下列方程中,表示一辆汽车行驶的距离与时间的关系的是:________。
四、解答题(每题15分,共45分)1. 题目:某小区共有100户居民,小区物业计划对小区绿化进行改造。
已知绿化改造前,小区绿化覆盖率为30%。
若绿化改造后,绿化覆盖率需提高至60%。
请问,物业需要购买多少平方米的绿化植物?解答:(1)设绿化改造前绿化覆盖面积为S1,绿化改造后绿化覆盖面积为S2。
2023年全国数学建模竞赛赛试题
2023年全国数学建模竞赛赛试题一、选择题(每题3分,共30分)下列运算正确的是( )A. 3a + 2b = 5abB. a6÷a2=a3C. (a+b)2=a2+b2D. a3⋅a2=a5下列函数中,是正比例函数的是( )A. y=2xB. y=2x+1C. y=x1D. y=x2下列调查方式中,最适合采用全面调查(普查)的是( )A. 对重庆市中学生每天学习所用时间的调查B. 对端午节期间市场上粽子质量情况的调查C. 对某校七年级(1)班学生视力情况的调查D. 对“神舟十二号”飞船零部件安全性能的检查下列几何体中,主视图是三角形的是_______。
下列说法正确的是_______。
A. 有理数就是有限小数和无限小数的统称B. 一个数的绝对值等于它本身,则这个数是正数C. 数轴上的点仅能表示整数D. 两个数互为相反数,则它们的和为零下列计算正确的是_______。
下列事件中,是必然事件的是_______。
下列各组线段中,能组成三角形的是_______。
若分式x−1x2−1 的值为零,则 x 的值为_______。
在平面直角坐标系中,点P(−2,3)关于 y 轴对称的点的坐标是_______。
二、填空题(每题3分,共18分)若∣x−3∣=5,则 x= _______。
多项式2x2y−3xy+5是_______ 次_______ 项式。
计算:(−a2)3= _______。
若关于 x 的方程 2x+m=3 的解是正数,则 m 的取值范围是_______。
已知一个圆锥的底面半径为 3cm,母线长为 5cm,则这个圆锥的侧面积为_______ cm2。
在平面直角坐标系中,点 A(2,0),点 B(0,4),以原点 O 为位似中心,相似比为 21,把线段 AB 缩小,则点 A 的对应点A′的坐标为_______。
三、解答题(共72分)(8分)解下列方程:(1)3(x−2)+x=4(x−1);(2)32x−1−610x+1=1。
数学建模试题(带答案)大全
(14 分)
得分
四、(满分 10 分) 雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘
滞系数的量纲[ ]= L1MT 1 1,用量纲分析方法给出速度 v 的表达式.
解:设 v , , , g 的关系为 f ( v , , , g ) =0.其量纲表达式为
[ v ]=LM0T-1,
学分 5 4 4
4
数据结构
3
5
应用统计
4
6
计算机模拟 3
7
计算机编程 2
8
预测理论
2
9
数学实验
3
所属类别 数学 数学 数学;运筹学
数学;计算机 数学;运筹学
计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
微积分;线性代 数 计算机编程 微积分;线性代 数 计算机编程
应用统计 微积分;线性代 数
由 U 0, U 0 可得到最优价格:
p1
p2
1
T
1
3T
p1 2b [a b(q0
)] 4
P2 2b [a b(q0 4 )]
前期销售量
T、(2 a
0
bp1
)dt
后期销售量
T
T /2 (a p2 )dt
总销售量
Q0
=
aT
bT 2
(
p1
p2 )
在销售量约束条件下 U 的最大值点为
~p1
a b
Q0 bT
T 8
,
P~2
a b
Q0 bT
T 8
7. (1)雨水淋遍全身, s 2(ab bc ac) 2*(1.5*0.5 0.5*0.2 1.5*0.2) 2.2m2
(完整版)数学建模试卷(附答案)
2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。
二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。
(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。
(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。
2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。
随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。
后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。
谁料,DDT 同样杀死澳洲瓢虫。
结果,介壳虫增加起来,澳洲瓢虫反倒减少了。
试建立数学模型解释这个现象。
3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。
2023年数学建模大赛试题
高考数学试卷一、单选题1.下列函数中,既是偶函数又在区间(0),-∞上单调递增的是( )A .2(1)f x x =B .()21f x x =+C .()2f x x =D .()2x f x -=2.下列计算正确的是A.()22x y x y +=+B.()2222x y x xy y -=-- C.()()2111x x x +-=- D.()2211x x -=- 3.已知m 3=n 4,那么下列式子中一定成立的是( )A .4m =3nB .3m =4nC .m =4nD .mn =124.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.25255 D.56.设32x y +=,则函数327x y z =+的最小值是( )A.12B.6C.27D.307.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a 的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞8.要得到函数2sin x y e =的图像,只需将函数cos2x y e =的图像( )A .向右平移4π个单位B .向右平移2π个单位C .向左平移4π个单位D .向左平移2π个单位9.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .10010.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是( )A .120B .35C .310D .91011.命题:00x ∃≤,20010x x -->的否定是( )A .0x ∀>,210x x --≤B .00x ∃>,20010x x -->C .00x ∃≤,20010x x --≤D .0x ∀≤,210x x --≤12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2acosA ,则cosA =( )A .13 B .24 C .33 D .63二、填空题13.25(0),()8(0).x x f x x x ⎧+≤⎪=⎨+>⎪⎩14.正方体的棱长扩大到原来的倍,其表面积扩大到原来的( )倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年上学期数学建模考试题(开卷)一、简答题:(50分)1)通过数学建模选修课程的学习,请谈谈对数学建模的认识,学习数学建模课程的收获。
(不少于500字)(30分)2)数学建模有哪些常用方法。
(20分)二、实战建模(50分)(在如下问题中任选一题做建模解答),完成方式:可以一人单独完成,可以2人或三人一组,(2人或3人合作的需在第一页说明每个人在完成论文中的分工,成绩由论文质量与分工任务确定,10页以上)交卷形式:纸质文档+电子文档,纸质文档的第一页必须写好姓名、学号、所选题名。
成绩评定以纸质文档为依据,电子文档主要验证作业的真实性(没交电子文档将扣分).交卷时间:纸质文档在7月10日前交数学建模任课老师(任意一个),7月10日前没交答卷(纸质文档)的同学做缺考处理.交卷地点:纸质文档(计算机打印文稿,手写文稿一律不接收)交319,313,308办公室(任意一间),电子文档到****************** ,主题栏写提交者的班级+姓名学号+所选题名(2人或3人合作的需写清所有同学姓名及学号),字体:大标题二号字,小标题四号字,其他均为5号字注意:如有雷同两份答卷同时计0分,如查实为抄袭网上已有论文计0分。
提交论文的要求:论文基本内容和格式大致分三大部分:一、标题、摘要部分1.题目:应写出较确切的题目;(不能只写第1题、第2题等)2.参赛队员姓名、班级、学号、联系方式;3.摘要(含关键词)200-300字,包括模型的主要特点、建模方法和主要结果;二、正文正文要求把求解的思路与过程描述清除,注意排版格式的整齐美观。
必须包括以下部分:1.问题分析2.模型假设即补充一些假设条件,使问题简化,但需合理(是此次比赛论文好坏的关键) 3.符号说明4.模型建立与求解(必要时包括计算方法设计及计算机实现(MATLAB))5.结果分析与检验(简述)6.讨论模型的优缺点,改进方向,推广新思想(简述)7.参考文献(参考文献要在论文中引用)参考文献在正文引用处用方括号标示参考文献的编号,如[1][3]等,引用书籍还必须指出页码。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)三、附录部分(如果有下列内容的话)1.计算程序,框图;(计算采用Matlab完成,图、表用Matlab生成后贴到word文档中,并附计算程序。
)2.各种求解演算过程,计算中间结果。
第一页格式:2010年上数学建模期末考试试卷题目:姓名:学号:班级:分工:摘要:2010年上学期2008级数学与应用数学,信息与计算科学专业《数学建模》课程考试供选试题第1题4万亿投资与劳动力就业: 2008以来,世界性的金融危机席卷全球,给我国的经济发展带来很大的困难。
沿海地区许多中小企业纷纷裁员,造成大量的人员失业。
据有关资料估计,从2008年底,相继有2000万人被裁员,其中有1000万人是民工。
部分民工返乡虽然能够从一定程度上缓解就业压力,但2009年的600多万毕业大学生给我国就业市场带来巨大压力。
但可喜的是,我国有庞大的外汇储备,民间资本实力雄厚,居民储蓄充足。
中国还是发展中国家,许多方面的建设还处于落后水平,建设投资的潜力巨大。
为保持我国经济快速发展,特别是解决就业问题带来希望,实行政府投资理所当然。
在2009年两代会上,我国正式通过了4万亿的投资计划,目的就是保GDP增长,保就业,促和谐。
但是有几个问题一直困扰着我们,请你运用数学建模知识加以解决。
问题如下:1、GDP增长8%,到底能够安排多少人就业?如果要实现充分就业,2009年的GDP到底要增长多少?2、要实现GDP增长8%,4万亿的投资够不够?如果不够,还需要投资多少?3、不同的产业(或行业)吸纳的劳动力就业能力不同,因此投资的流向会有所不同。
请你决策,要实现劳动力就业最大化,4万亿的投资应该如何分配到不同的产业(或行业)里?4、请你给出相关的政策与建议。
第2题深洞的估算:假如你站在洞口且身上仅带着一只具有跑秒功能的计算器,你出于好奇心想用扔下一块石头听回声的方法来估计洞的深度,假定你捡到一块质量是1KG的石头,并准确的测定出听到回声的时间T=5S,就下面给定情况,分析这一问题,给出相应的数学模型,并估计洞深。
1、不计空气阻力;2、受空气阻力,并假定空气阻力与石块下落速度成正比,比例系数k1=0.05;3、受空气阻力,并假定空气阻力与石块下落速度的平方成正比,比例系数k2=0.0025;4、在上述三种情况下,如果再考虑回声传回来所需要的时间。
第3题优秀论文评选:在某数学建模比赛的评审过程中,组委会需要在一道题目的150 篇参赛论文中选择4 篇论文作为特等奖论文。
评审小组由10 名评委组成,包括一名小组组长(出题人),4 名专业评委(专门从事与题目相关问题研究的评委),5 名普通评委(从事数学建模的教学和组织工作,参与过数学建模论文的评审)。
组委会原先制定的评审步骤如下:step1:首先由普通评委阅读所有150 篇论文,筛选出20 篇作为候选论文。
Step2:然后由小组内的所有评委阅读这些候选论文,每人选择4 篇作为推荐的论文。
Step3:接着进入讨论阶段,在讨论阶段中每个评委对自己选择的 4 篇论文给出理由,大家进行讨论,每个评委对论文的认识都会受到其他评委观点的影响。
Step4:在充分讨论后,大家对这些推荐的论文进行投票,每个评委可以投出4票,获得至少6 票的论文可以直接入选,如果入选的论文不足,对剩余的论文(从20篇候选论文中除去已经入选的论文)重复step2至step4 步的评审工作。
如果三轮讨论后入选的论文仍然不够,则由评选小组组长确定剩下名额的归属。
如果有超过4 篇的论文获得了至少6票,则由评选小组组长确定最终的名额归属。
问题:1、请建立数学模型定量地讨论上面的评审规则的公平性。
2、假设小组组长、专业评委、普通评委受超过半数人的观点影响的概率分别为0.3,0.4,0.6。
组委会希望给每个评委的投票设置一定的权重,应该如何设置才最合理,用数学模型支持你的观点。
第4题送货问题:某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。
路线是唯一的双向道路(如图1)。
货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。
每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。
运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。
一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。
卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。
问题:1、货运公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得运费最小。
2、每辆车在运输途中可随时掉头,若要使得成本最小,货运公司怎么安排车辆数?应如何调度?3、(1)如果有载重量为4吨、6吨、8吨三种运输车,载重运费都是1.8元/吨公里,空载费用分别为0.2,0.4,0.7元/公里,其他费用一样,又如何安排车辆数和调度方案?(2)当各个公司间都有或者部分有道路直接相通时,分析运输调度的难度所在,给出你的解决问题的想法(可结合实际情况深入分析)。
图1唯一的运输路线图和里程数公司①②③④⑤⑥⑦⑧材料A 4 1 2 3 1 0 2 5B 1 5 0 1 2 4 2 3C 5 2 4 2 4 3 5 1表1各公司所需要的货物量第5题生产与存贮问题:一个生产项目,在一定时期内,增大生产量可以降低成本费,但如果超过市场的需求量,就会因积压增加存贮费而造成损失。
相反,如果减少生产量,虽然可以降低存贮费,但又会增加生产的成本费,同样会造成损失。
因此,如何正确地制定生产计划,使得在一定时期内,生产的成本费与库存费之和最小,这是厂家最关心的优化指标,这就是生产与存贮问题。
假设某车间每月底都要供应总装车间一定数量的部件。
但由于生产条件的变化,该车间每月生产单位部件所耗费的工时不同,每月的生产量除供本月需要外,剩余部分可存入仓库备用。
今已知半年内,各月份的需求量及生产该部件每单位数所需工时数如下所示: 月份( k): 1 2 3 4 5 6月需求量(bk): 8 5 3 2 7 4单位工时(ak): 11 18 13 17 20 10设库存容量H = 9,开始时库存量为2,期终库存量为0。
要求制定一个半年逐月生产计划,使得既满足需求和库存容量的限制,又使得总耗费工时数最少。
第6题碎石运输方案设计:在一平原地区要进行一项道路改造项目,在A,B之间建一条长200km,宽15m,平均铺设厚度为0.5m的直线形公路。
为了铺设这条道路,需要从S1,S2两个采石点运碎石。
1立方米碎石的成本都为60元。
(S1,S2运出的碎石已满足工程需要,不必再进一步进行粉碎。
)S1,S2与公路之间原来没有道路可以利用,需铺设临时道路。
临时道路宽为4m,平均铺设厚度为0.1m。
而在A,B之间有原来的道路可以利用。
假设运输1立方米碎石1km运费为20元。
此地区有一条河,故也可以利用水路运输:顺流时,平均运输1立方米碎石1km运费为6元;逆流时,平均运输1立方米碎石1km运费为10元。
如果要利用水路,还需要在装卸处建临时码头。
建一个临时码头需要用10万元。
建立一直角坐标系,以确定各地点之间的相对位置:A(0,100),B(200,100),s1(20,120),s2(180,157)。
河与AB的交点为m4(50,100) (m4处原来有桥可以利用)。
河流的流向为m1→m7,m4的上游近似为一抛物线,其上另外几点为m1(0,120),m2(18,116),m3(42,108);m4的下游也近似为一抛物线,其上另外几点为m5(74,80),m6(104,70),m7(200,50)。
桥的造价很高,故不宜为运输石料而造临时桥。
此地区没有其它可以借用的道路。
为了使总费用最少,如何铺设临时道路(要具体路线图);是否需要建临时码头,都在何处建;从s1,s2所取的碎石量各是多少;指出你的方案的总费用。
第7题人民币的汇率问题:人民币汇率对经济的影响近年来成为人们议论的热点,有不少经济学家在探讨人民币汇率对我国及世界经济发展的影响。