Midas-移动荷载-设置流程
midas移动荷载加载方式
![midas移动荷载加载方式](https://img.taocdn.com/s3/m/389860f60242a8956bece4c0.png)
桥梁跨径: 配合定义车辆荷载定义时的计算跨 径。 比例系数:1
一 纵向施加移动荷载
3.人行荷载的加载方式—车辆荷载
注意: 建立人群荷载的两种方法:
(添加标准车辆(对应各规范))
用户定义:
一 纵向施加移动荷载
公路通用规范标准人群:
同一模型中只能定义1个标准人群荷载
集度
宽度
一 纵向施加移动荷载
新城市规范标准人群:
一 纵向施加移动荷载
定义车道荷载
注意: 1.车辆荷载的分布: 车道单元:单梁计算 横向联系梁:梁格计算 2.偏心距离: 车道中心线到选择单元连线的距离,注意方向正负号。 3.桥梁跨度:
连续梁时输入最大跨度。
4.比例系数: 跨径>150m时的纵向折减系数。 5.选择 两点:便于直线桥选择车道参考线单元,点选首末单元即可。 单元:便于曲线桥选择相关单元,直接输入单元号。例如:1to80。
1.设计车道数量(施工图中的车道数量)。 2.截面可以布置的最多车道数。
公路桥涵设计通用规范 (JTGD60-2004)
一 纵向施加移动荷载
为什么要考虑偏载:
对上述模型分别考虑中载和偏载两种情况,竖向弯矩(My)如下图所示:
6000 4000
2000
外偏(最小) 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 -2000 -4000 -6000 外偏(最大) 中载(最小)
中载(最大)
对于曲线梁桥偏载对结构弯矩(My)的影响很小(各色曲线重合)
一 纵向施加移动荷载
MIDAS-桥梁移动荷载动力时程分析
![MIDAS-桥梁移动荷载动力时程分析](https://img.taocdn.com/s3/m/f16a06de524de518964b7de9.png)
车速
: 10 km/hr
最大位移
: 5.612 mm
通过桥梁时间
: 10.80 sec
最大位移发生时间 : 5.124 sec
: 0.900 sec
最大位移发生时间 : 0.443 sec
(c) 车速为120km/hr时的位移变化 图21. 随车速变化的位移比较
静力分析与时程分析结果比较
表1是对静力分析结果和时程分析结果进行的比较。时程分析的结果说明由于车速的变 化,结构产生了动力效应。车速为120 km/hr时,时程分析的结果比考虑冲击系数后的静力 分析的结果弯矩大13.8%,位移大24.6%。
下面通过对桥梁结构的移动荷载进行时程分析,来介绍使用MIDAS/Civil进行时程分析的方 法,其具体步骤如下。
1. 建立结构模型 2. 输入质量数据 3. 输入特征值分析数据 4. 进行特征值分析 5. 分析特征值分析结果 6. 输入时程分析数据 7. 进行时程分析 8. 查看时程分析结果
建立结果模型
使用
来输入前面将车辆荷载所近似模拟的三角形荷载。
荷载 > 时程分析数据 > 时程荷载函数
图7. 时程荷载函数对话框
点击
后,考虑模型中节点的间距和车速来输入1kN大小的车辆荷载。
若想定义成实际车辆荷载的大小,在定义节点动力荷载 时,调整其中的系数 即可。
图8. 添加时程函数对话框
输入时程荷载函数 时可使用以下三种方法。
例题如图1所示,为一30m跨的单跨桥梁,所施加的车辆荷载可将其理想化为如图2所示的 三角形荷载。
MIDAS使用的常见问题
![MIDAS使用的常见问题](https://img.taocdn.com/s3/m/f4f5799026fff705cd170a1d.png)
Part I. 部分使用说明1. 定义移动荷载的步骤λ在主菜单的荷载>移动荷载分析数据>车辆中选择标准车辆或自定义车辆。
λ对于人群移动荷载,按用户定义方式中的汽车类型中的车道荷载定义成线荷载加载(如将规范中的荷载0.5tonf/m**2乘以车道宽3m,输入1.5tonf/m)。
定义人群移动荷载时,一定要输入Qm和Qq,并输入相同的值。
集中荷载输入0。
λ布置车道或车道面(梁单元模型选择定义车道,板单元模型选择定义车道面),人群荷载的步行道也应定义为一个车道或车道面。
λ定义车辆组。
该项为选项,仅用于不同车道允许加载不同车辆荷载的特殊情况中。
λ定义移动荷载工况。
例如可将车道荷载定义为工况-1,车辆荷载定义为工况-2。
在定义移动荷载工况对话框中的子荷载工况中,需要定义各车辆要加载的车道。
例如: 用户定义了8个车道,其中4个为左侧偏载、4个为右侧偏载,此时可定义两个子荷载工况,并选择“单独”,表示分别单独计算,程序自动找出最大值。
在定义子荷载工况时,如果在“可以加载的最少车道数”和“可以加载的最大车道数”中分别输入1和4,则表示分别计算1、2、3、4种横向车辆布置的情况(15种情况)。
布置车辆选择车道时,不能包含前面定义的人群的步行道。
λ定义移动荷载工况时,如果有必要将人群移动荷载与车辆的移动荷载进行组合时,需要在定义移动荷载工况对话框中的子荷载工况中,分别定义人群移动荷载子荷载工况(只能选择步道)和车辆的移动荷载子荷载工况,然后选择“组合”。
2. 关于移动荷载中车道和车道面的定义当使用板单元建立模型时λa. 程序对城市桥梁的车道荷载及人群荷载默认为做影响面分析,其他荷载(公路荷载和铁路荷载)做影响线分析。
b. 只能使用车道面定义车的行走路线。
对于城市桥梁的车道荷载及人群荷载以外的荷载,输入的车道面宽度不起作用,按线荷载或集中荷载加载在车道上。
c. 对于城市桥梁的车道荷载及人群荷载,在程序内部,自动将输入的荷载除以在”车道面”中定义的车道宽后,按面荷载加载在车道上。
midas移动荷载加载
![midas移动荷载加载](https://img.taocdn.com/s3/m/9eac5d6c4a35eefdc8d376eeaeaad1f346931196.png)
道路条件
设置道路的平整度、坡度等参 数,以考虑道路条件对车辆行 驶的影响。
车辆间距
设置车辆之间的间距,以考虑 车辆之间的相互作用对动态作
用的影响。
CHAPTER 03
MIDAS移动荷载加载实例分析
实际工程案例介绍
工程背景
某高速公路桥梁,需要进行移动荷载加载分析, 以评估桥梁的承载能力和安全性。
工程参数
建筑结构
MIDAS可以模拟地震、风等自然灾 害对建筑结构的动态影响,为建筑 结构的抗震、抗风设计提供依据。
MIDAS的优势与局限性
优势
MIDAS能够模拟和分析复杂的移动荷载作用,提供高精度的结构响应分析结果; 其用户界面友好,易于操作和学习;具有广泛的适用领域和行业认可度。
局限性
MIDAS主要适用于移动荷载的分析,对于静态或准静态问题可能不适用;对于 大规模复杂结构的分析可能存在计算效率问题;需要专业的工程背景和技能来 正确使用和解释分析结果。
在移动荷载加载过程中,注重环保和可持 续发展,采用低能耗、低排放的技术和设 备,降低对环境的影响。
制定和完善移动荷载加载技术的标准和规 范,促进技术的普及和应用。
MIDAS软件未来的改进方向
拓展应用领域
不断拓展MIDAS软件的应用领域,将其应用 于更多类型的结构和工程领域。
优化用户界面
改进MIDAS软件的界面设计,使其更加友好、 易用,降低用户的学习成本。
MIDAS移动荷载加载
CONTENTS 目录
• MIDAS简介 • MIDAS移动荷载加载原理 • MIDAS移动荷载加载实例分析 • MIDAS与其他软件的比较 • MIDAS移动荷载加载的未来发展
CHAPTER 01
MIDAS中关于荷载设置的常见问题解答
![MIDAS中关于荷载设置的常见问题解答](https://img.taocdn.com/s3/m/9d20e7f59f3143323968011ca300a6c30c22f104.png)
第五章"荷载"中的常见问题15.1 为什么自重要定义为施工阶段荷载?15.2 "支座沉降组"与"支座强制位移"的区别?25.3 如何定义沿梁全长布置的梯形荷载?35.4 如何对弯梁定义径向的荷载?35.5 如何定义侧向水压力荷载?45.6 如何定义作用在实体表面任意位置的平面荷载?45.7 如何按照04公路规范定义温度梯度荷载?45.8 定义"钢束布置形状"时,直线、曲线、单元的区别?55.9 如何考虑预应力结构的管道注浆?55.10 为什么预应力钢束采用"2-D输入"与"3-D输入"的计算结果有差别?65.11 "几何刚度初始荷载"与"初始单元内力"的区别?65.12 定义索单元时输入的初拉力与预应力荷载里的初拉力的区别?75.13 为什么定义"反应谱荷载工况"时输入的周期折减系数对自振周期计算结果没有影响?85.14 定义"反应谱函数"时,最大值的含义?85.15 为什么定义"节点动力荷载"时找不到已定义的时程函数?95.16 如何考虑移动荷载横向分布系数?95.17 为什么按照04公路规范自定义人群荷载时,分布宽度不起作用?95.18 在定义车道时,"桥梁跨度"的含义?105.19 如何定义曲线车道?105.20 定义"移动荷载工况"时,单独与组合的区别?115.21 定义移动荷载子荷载工况时,"系数"的含义?115.22 为什么定义车道面时,提示"车道面数据错误"?115.23 "结构组激活材龄"与"时间荷载"的区别?125.24 施工阶段定义时,边界组激活选择"变形前"与"变形后"的区别?125.25 定义施工阶段联合截面时,截面位置参数"Cz"和"Cy"的含义?12第五章"荷载"中的常见问题5.1为什么自重要定义为施工阶段荷载?具体问题一次落架桥梁,没有施工阶段划分,自重还需定义为施工阶段荷载吗?施工阶段荷载和其他荷载类型有什么区别?相关命令荷载〉静力荷载工况...问题解答如果不进行施工阶段分析,那么自重的荷载类型应选择"恒荷载".如果进行施工阶段分析,且自重是在施工阶段激活参与作用的,那么其荷载类型建议选择"施工阶段荷载".相关知识如果进行施工阶段分析,且自重是在施工阶段激活参与作用,但自重荷载工况的类型没有选择为"施工阶段荷载"或"施工荷载",那么在进行荷载组合时,不能使用程序自动生成荷载组合,否则自重效应会被重复组合.施工阶段荷载与其它荷载类型的区别:"施工阶段荷载"和"施工荷载"仅在施工阶段作用,不在成桥阶段作用;而其他荷载类型既可以在施工阶段作用也可以在成桥阶段作用.以自重为例,如果自重的荷载类型定义为"恒荷载",且自重荷载工况在施工阶段被激活,那么在施工分析中,自重在施工阶段的作用累计在"恒荷载〔CS〕"中;在POSTCS阶段〔即成桥阶段〕,自重仍作为"恒荷载"作用在成桥模型上,其效应为"自重〔ST〕".但是自重的真实效应应该是考虑施工阶段的累加效应,即"恒荷载〔CS〕",而不是"自重〔ST〕".此时如果采用程序自动生成的荷载组合,那么"〔CS〕恒荷载"和"〔ST〕自重"作为两个并列的荷载工况参与荷载组合,导致自重效应被重复考虑.5.2"支座沉降组"与"支座强制位移"的区别?具体问题两者都是模拟支座沉降的,具体有什么区别呢?使用时有哪些注意事项呢?相关命令荷载〉支座强制位移...,荷载〉支座沉降分析数据问题解答相同点:(1)两者都可用于模拟支座沉降,且在沉降的方向上自动施加相应方向的节点约束.(2)沉降方向指的是支座节点的局部坐标z的正向.不同点:(1)当不确定哪个或哪几个支座发生沉降的情况下,使用支座沉降,在已知某个或某几个支座发生的变形的情况下,使用节点强制位移.(2)支座沉降分析只能用于成桥阶段分析,节点强制位移既可以用于成桥阶段分析,也可以用于施工阶段分析;但节点强制位移用于施工阶段分析时,只能激活,不能钝化.(3)支座沉降分析只针对节点的局部坐标z向,而节点强制位移可定义节点的6个自由度方向的变形.使用注意事项:无论是节点强制位移还是支座沉降组分析所针对的都是支座位置的节点进行分析,因此定义节点强制位移或支座沉降组时选择的不是支座位置节点,就会在定义了节点强制位移或支座沉降组的位置处出现反力.5.3如何定义沿梁全长布置的梯形荷载?具体问题如题对于变宽梁桥,其铺装荷载不是均布荷载,沿梁长方向呈梯形,如何定义梯形荷载?相关命令荷载〉连续梁单元荷载...问题解答定义沿一组单元变化规律相同的荷载,需使用"连续梁单元荷载"定义.对于如题所示的梯形荷载如果使用"梁单元荷载"定义,则会出现如下图所示的情形,采用"连续梁单元荷载"定义其荷载显示形式如下图4.3.2所示.图梁单元荷载定义梯形荷载图连续梁单元荷载定义梯形荷载相关知识MIDAS中有两种梁单元荷载定义方法,这两种梁单元荷载定义方法在定义均布荷载时没有区别,但在定义三角形荷载或梯形荷载时有明显区别.梁单元荷载适用于单个梁单元,连续梁单元荷载适用于一组单元.相关问题问题4.4.5.4如何对弯梁定义径向荷载?具体问题曲线梁桥,在承受径向荷载时,如何定义梁单元径向荷载?相关命令荷载〉梁单元荷载...荷载〉连续梁单元荷载...问题解答定义梁单元荷载时,荷载作用方向有整体坐标系方向和单元局部坐标系方向两种选择,例如对于曲梁定义径向荷载时须选择单元局部坐标系y向,如下图所示:图梁单元荷载图4.4.2 曲梁径向荷载显示相关知识梁单元荷载不仅可以定义线性荷载和线性弯矩,还可以定义节点荷载和节点弯矩.荷载定义方向可以选择按整体坐标系加载,也可以选择按单元局部坐标系加载.图梁单元荷载类型图4.4.4 梁单元荷载加载方向相关问题问题4.3.5.5如何定义侧向水压力荷载?具体问题如何定义作用侧墙上的水压力荷载?相关命令荷载〉流体压力荷载...问题解答可以对板单元或实体单元定义流体压力荷载,定义流体压力荷载时有两个参数要注意,一是参考高度,一是荷载作用方向.参考高度是开始考虑有流体压力的位置,对于水压力而言,可以理解为水平面位置;荷载作用方向可以选择单元的法向或任一整体坐标系方向作用,要根据实际情况取方便的一种参考方式来定义荷载作用方向.图流体压力荷载对话框图4.5.2 流体压力荷载图示相关知识如果将流体容重改为土容重,流体压力荷载就可以用来模拟侧向土压力荷载了.如果是均布的压力荷载,也可以使用"荷载〉压力荷载"来模拟.5.6如何定义作用在实体表面任意位置的平面荷载?具体问题对于检测项目来说,荷载的大小是确定的,但布置位置是任意选定的,如何定义这样的荷载呢?相关命令荷载〉定义平面荷载类型...荷载〉分配平面荷载...问题解答对于确定的荷载形式,如空间车辆荷载城-B,其荷载作用图示如图所示,如果将此定义为平面荷载,定义方式如图4.6.2所示.图城-B荷载图示图用平面荷载模拟城-B荷载图4.6.3 分配平面荷载相关知识在平面荷载类型中,不仅可以定义平面分布的集中荷载,还可以定义在平面分布的线性荷载、面荷载.5.7如何按照04公路规范定义温度梯度荷载?具体问题JTG D60中对温度梯度荷载做了修改,温度梯度的表现形式为三折线形式,这样的温度梯度荷载在MIDAS中如何模拟?相关命令荷载〉温度荷载〉梁截面温度...问题解答针对JTG04规范关于温度梯度表示方法的改变,在MIDAS内新增一项温度梯度荷载的输入方法,即"梁截面温度".如图所示.在"梁截面温度"中可以定义沿梁高方向或梁宽度方向的温度变化.将三折线温度梯度分为三段或多段线性温度荷载输入,每段线性温度需要输入的参数包括B、H1、T1、H2、T2,每输入一段温度梯度后添加一次,再继续输入下一段温度梯度,直到将所有温度梯度段输入完毕,选择该温度梯度作用的梁单元,适用即可.温度荷载中有系统温度、节点温度、单元温度、温度梯度荷载和梁截面温度荷载,分别意义如下:前三个是对模型整体温度的定义,其中系统温度是定义的模型全部单元和节点的温度,如果某些单元或节点的温度不一样,可通过节点温度和单元温度来定义;后两者,是针对同一截面顶面和底面的温度差的定义,当为线性变化时,采用温度梯度荷载定义,若为非线性时,采用梁截面温度荷载定义.5.8定义"钢束布置形状"时,直线、曲线、单元的区别?具体问题输入预应力钢束形状时,钢束形状选项:直线、曲线、单元有什么区别?对钢束控制点坐标的插入点是否有影响?相关命令荷载〉预应力荷载〉钢束布置形状...问题解答钢束形状分为三种类型,目的是为了更方便的输入不同类型的钢束形状.直线和曲线是指桥梁的形状,曲线桥布置预应力钢束时选择曲线类型比较方便.选择单元类型时表示钢束形状沿着单元布置,且此时布置在单元内外侧的钢束的长度会相同,在钢束长度和重量上产生一些误差.选择"曲线"时没有这样的问题,但仅适用于桥梁形状为圆曲线的桥梁布置预应力钢束.对于缓和曲线因为曲线半径和圆心都在变,所以提供了"单元"这种近似的输入方法.5.9如何考虑预应力结构管道注浆?具体问题在对后张法预应力结构进行施工阶段分析时,如何模拟管道注浆?相关命令荷载〉预应力荷载〉钢束预应力荷载....问题解答在定义"钢束预应力荷载"时,输入张拉荷载后,通过指定管道注浆的时间,如图所示.图管道注浆模拟相关知识在后张法预应力结构的施工阶段模拟时,在孔道灌浆前,程序是按扣除孔道面积后的净截面进行计算;灌浆后,按照考虑预应力钢筋的换算截面特性进行计算.如果在"施工阶段分析控制"选项中选择截面特性为常量时如图,则程序是按照全截面特性进行计算.图截面特性值计算方法选择5.10为什么预应力钢束采用"2-D输入"与"3-D输入"的计算结果有差别?具体问题当分别采用2-D和3-D两种方法输入钢束,发现预应力效应不一样,有些截面相差有点大,我想确定一下是程序处理二者的方式不一样,还是钢束坐标有问题?相关命令荷载〉预应力荷载〉钢束预应力荷载...问题解答因为模型采用的是平面分析,相关知识2-D输入和3-D只是预应力钢束形状的两种输入方法,2-D输入法相比3-D输入法更为详细,可分别考虑平弯和竖弯不同半径的情况;而3-D的输入方法中输入的弯曲半径是钢束的空间半径.当钢束布置形状较复杂时建议使用2-D输入法.5.11"几何刚度初始荷载"与"初始单元内力"的区别?具体问题如题!相关命令荷载〉初始荷载〉大位移〉几何刚度初始荷载...荷载〉初始荷载〉小位移〉初始单元内力...问题解答"几何刚度初始荷载"用于非线性分析,"初始单元内力"用于一般静力分析;二者的共同点是对结构刚度进行修正.相关知识MIDAS中有几种初始荷载的定义方式,各自特点如下所述:几何刚度初始荷载:描述当前荷载作用之前的结构的初始状态.输入几何刚度初始荷载进行非线性分析时,不需定义相应的荷载工况,程序会自动在内部考虑相应荷载和内力,使其达到平衡,因此此时位移为0.如果用户又定义了荷载工况,则荷载相当于双重考虑,此时不仅会发生位移,而且内力也会增加1倍左右.对于几何刚度初始荷载的几点附加说明如下:(1)静力线性分析:不起作用.因此如果使用索单元建模,且没有初始单元内力数据的话,分析时会发生奇异;(2)静力非线性分析:根据几何刚度初始荷载考虑结构的初始状态.根据不同荷载工况,几何刚度会发生变化.另外,不同荷载工况作用效应的算术迭加不成立;(3)施工阶段非线性分析〔独立模型,不考虑平衡内力〕:大位移分析,即几何刚度根据不同施工阶段荷载的作用发生变化,且考虑索单元节点坐标变化引起的影响〔索单元〕;(4)施工阶段非线性分析〔独立模型,考虑平衡内力〕:几何刚度初始荷载不起作用,"初始荷载/平衡内力"发生作用;(5)施工阶段非线性分析〔独立模型,考虑平衡内力,但未输入平衡内力,输入了几何刚度初始荷载〕:几何刚度初始荷载不起作用,对施加的荷载工况进行静力非线性分析.下个阶段中也一样,但前一阶段的荷载和本阶段的荷载相当于一同作用并对之进行分析;(6)移动荷载分析:程序会自动将索单元转换为等效桁架单元进行线性分析,其几何刚度将利用"小位移/初始单元内力"来确定.大位移/平衡单元节点内力:该功能只适用于施工阶段分析中选择非线性分析的独立模型,并且勾选了"包含平衡单元节点内力"选项时的情形.与几何刚度初始荷载不同的是平衡单元节点内力的方式可以考虑加劲梁的内力.对于地锚式悬索桥,加劲梁的内力很小,所以两种方式都适用.但对于自锚式悬索桥,加劲梁的内力很重要,因此不宜使用几何刚度初始荷载的方式.小位移/初始单元内力:只适用于线性分析或动力分析,其作用与几何刚度初始荷载相同.即通过形成几何刚度来影响结构的总体刚度,但其刚度并不随作用荷载的变化而变化.小位移/初始荷载控制数据:进行线性分析时,将输入的初始单元内力添加给指定的荷载工况.如果不添加,则在分析时只考虑初始单元内力引起的几何刚度,在相应荷载工况的内力结果中,不包含初始单元内力.5.12定义索单元时输入的初拉力与预应力荷载里的初拉力的区别?具体问题在定义索单元和定义预应力荷载里都可以输入索初拉力,请问两者有什么区别?相关命令荷载〉预应力荷载〉初拉力荷载...模型〉单元〉建立〉索单元问题解答索单元定义时输入的初拉力对索单元进行非线性分析时的等效刚度有影响,而预应力荷载里定义的初拉力仅作为一种拉力荷载作用在结构上.相关知识相关问题问题4.12.5.13为什么定义"反应谱荷载工况"时输入的周期折减系数对自振周期计算结果没有影响?具体问题在反映谱分析中输入了周期折减系数,但结果周期却没有变化?相关命令荷载〉反映谱分析数据〉反映谱函数荷载〉反映谱分析数据〉反映谱荷载工况问题解答程序中得周期折减系数是为了考虑非结构构件的刚度贡献以与阻尼等的影响而设置的,仅仅是对反映谱函数得一个折减或者提高,与结构固有周期并没有关系,结构固有周期是结构自身的特性,只与自身的刚度、质量以与约束方式等因素有关.相关知识同样对定义反映谱函数时的放大系数、重要性影响系数,改变值大小时,只是反映谱函数有所改变,结构的固有周期不会有变化.5.14定义"反应谱函数"时,最大值的含义?具体问题在定义反应谱函数中,放大值中的"最大值"是什么意思?起什么作用?荷载〉反映谱分析数据〉反映谱函数问题解答是放大系数的另一种定义方法.相关知识按照最大值的方式来规定最大加速度的放大系数,其他加速度的放大系数采用和最大加速度同样的放大系数来处理.如导入的反应谱函数中最大加速度为0.045g,此时定义最大值为0.5g,那么分析时采用的各周期的加速度为a=〔0.5/0.045〕.5.15为什么定义"节点动力荷载"时找不到已定义的时程函数?具体问题定义了时程函数,在定义节点动力荷载时,选择时程函数的下拉菜单内为空,因此无法定义节点动力荷载,为什么?相关命令荷载〉时程分析数据〉时程荷载函数荷载〉时程分析数据〉节点动力荷载问题解答用于节点动力荷载的时程函数必须是力或弯矩的表现形式,不能是加速度的表现形式.将时程函数中加速度的表示方法转换为力的表示方法即可.相关知识节点动力荷载是一种荷载类型,所以必须要表现为力的形式,而时程函数是动力函数,可以通过加速度、速度、力等形式体现.5.16如何考虑移动荷载横向分布系数?具体问题进行相关命令问题解答相关知识相关问题5.17为什么按照04公路规范自定义人群荷载时,分布宽度不起作用?具体问题板单元建立的模型,人群荷载按照新规范形式采用自定义,但改变分布宽度对计算结果无影响.如图4.18.1所示.荷载〉移动荷载分析数据〉车道面...问题解答对于板单元,自定义人群荷载的分布宽度对计算无影响,程序按照车道面定义中的车道面宽度计算荷载大小.相关知识对于梁单元的车道分析,自定义人群荷载时的分布宽度是有意义的,程序按照此宽度将人群面分布荷载转化为线性分布荷载,因此在自定义人群荷载中,分布宽度对结果是有影响的.而在板单元中,程序直接采用自定义人群荷载的面荷载集度加载在车道面宽度范围内,因此荷载大小与分布宽度无关,而与车道面宽度有关.相关问题问题4.23.5.18定义车道时,"桥梁跨度"的含义?具体问题移动荷载定义车道时,所选单元需输入跨度,该跨度是指单元杆件长度还是支座间距,因为输入任意数值对结果无影响.相关命令荷载〉移动荷载分析数据〉车道...问题解答定义车道时输入的桥梁跨度队移动荷载的选取与冲击系数会可能产生影响.当选择的移动荷载大小与桥梁跨度有关时,如城市桥梁车辆荷载,程序内部计算荷载大小时所参考的桥梁跨度就是车道定义中的跨度信息;冲击系数计算当选择按照车道单元跨度计算时,也将按照车道定义中输入的桥梁跨度计算冲击作用.5.19如何定义曲线车道?具体问题人行道上设有弧形的观景平台,人行道以与观景平台板单元模拟,如何定义平台处的弧形车道面?相关命令荷载〉移动荷载分析数据〉车道...问题解答首先确定车道中心线位置,然后选择定义车道时按照选择单元的方式来定义,对每个相关单元指定偏心.因为车道定义时其相关单元是以表格的形式表现,因此可以将车道单元按规律编号,然后在excel表里指定相关单元和偏心距离,再将制作好的车道单元表格copy到civil的车道定义的表格中.5.20定义"移动荷载工况"时,单独与组合的区别?具体问题移动荷载工况定义时,"组合"与"单独"的区别?相关命令荷载〉移动荷载分析数据〉移动荷载工况...问题解答单独——适用于多个子荷载工况不能组合时选择,如同时进行汽车荷载和挂车荷载分析时.输出各子荷载工况单独作用比较后的最不利包络结果.组合——在一个移动荷载工况中,对多种类型的移动荷载组合时选择,如汽车荷载和人群荷载、汽车荷载和列车荷载等.输出各子荷载工况单独作用的组合结果.相关问题问题4.22.5.21定义移动荷载子荷载工况时,"系数"的含义?具体问题在移动荷载工况定义中,子荷载工况定义时有系数一项要输入,请问这个系数是冲击系数吗?这个系数的大小如何来确定呢?相关命令荷载〉移动荷载分析数据〉移动荷载工况...问题解答这个系数不是冲击系数,冲击系数程序需要在移动荷载分析控制选项中定义.在移动荷载工况中的系数作用包含以下两项内容:(1)可输入纵向折减系数:因为目前版本程序不能根据跨度自动进行纵向活荷载折减,所以对跨度较大的桥梁需要纵向折减时,可在此输入.一般按1.0即可;(2)可输入横向分布系数:当用户不是按空间布置车道,按目前习惯用横向分布系数方法时,可在此输入由其他计算方法得到的横向分布系数;(3)当既考虑纵向折减系数又考虑横向分布系数时,输入"纵向折减系数X横向分布系数"之积即可.相关问题问题4.17.5.22为什么定义车道面时,提示"车道面数据错误"?具体问题系杆拱桥移动荷载分析,用板单元模拟桥面,在输入车道面9〔对称2〕时,提示"[错误] 在影响面〔对称2〕数据中发生错误",这个车道面和其他的车道面定义方法是一样的,惟独这个车道面定义出错,为什么?相关命令荷载〉移动荷载分析数据〉车道面...问题解答车道面在车道面宽度方向上必须跨越至少两个板单元,当车道面在宽度范围内位于一个板单元上时,程序无法计算.相关知识当车道面在宽度方向上位于一个板单元内时尽量将此板单元在宽度方向上再细分.实际情况中板单元过宽对分析结果来说也是不精确的.5.23"结构组激活材龄"与"时间荷载"的区别?具体问题在斜拉桥分析模型中,下塔柱浇筑时间较早,浇筑完成后约80天,开始浇筑主梁,此时应该对下塔柱定义80天材龄还是定义时间荷载80天?相关命令荷载〉施工阶段分析数据〉定义施工阶段...问题解答材龄和时间荷载都是模拟混凝土收缩徐变特性的一种方法.材龄的定义方法是根据定义的材龄程序根据已经定义的收缩徐变函数来计算混凝土的收缩徐变特性;而时间荷载是将混凝土的收缩徐变特性等效为一种荷载形式直接施加在结构上.因此对于该模型中的情况如果没有定义收缩徐变函数,那么定义80的时间荷载即可.如果定义了收缩徐变函数,那么在浇筑的施工阶段定义持续时间为80天就可以了.5.24施工阶段定义时,边界组激活选择"变形前"与"变形后"的区别?具体问题变形前和变形后分别是什么概念?用于什么条件下的分析?相关命令荷载〉施工阶段分析数据〉定义施工阶段...问题解答做施工阶段分析时首先要建立成桥阶段模型.且按成桥阶段模型中节点的位置定义边界的位置.变形前指该边界位置在成桥阶段模型中节点坐标位置.变形后指该边界位置在施工阶段产生变形后的节点坐标位置.两种设置对结果还是有影响的.变形前相当于在边界位置把变形后的节点强制恢复到成桥阶段该节点的位置.5.25定义施工阶段联合截面时,截面位置参数"Cz"和"Cy"的含义?。
Midas 移动荷载 设置流程
![Midas 移动荷载 设置流程](https://img.taocdn.com/s3/m/08eadd092e3f5727a4e96227.png)
midas Civil 技术资料----移动荷载设置流程目录midas Civil 技术资料1 ----移动荷载设置流程1 一、定义车道线(车道面)2 二、定义车辆荷载5 三、定义移动荷载工况7 四、移动荷载分析控制9 五、运行并查看分析结果12 参考文献14北京迈达斯技术有限公司 桥梁部 2013/05/17本章主要结合中国规范JTG D60-2004[1]进行纵向(顺桥向)移动荷载分析介绍,移动荷载分析主要是计算移动荷载(车道、车辆或人群荷载)在指定路径上(车道线、车道面)移动时产生的各种效应(反力、内力、位移、应力)的包络结果,具体分析过程如下:(1)定义车道线/面;(2)定义车辆荷载--车道荷载、车辆荷载、人群荷载等活荷载;(3)定义移动荷载工况;(4)定义移动荷载分析控制;(5)运行分析并查看结果。
一、定义车道线(车道面)荷载>移动荷载>移动荷载规范-china,定义车道线或车道面,确定移动荷载路径,程序提供车道单元和横向联系梁两种方法,其中,车道单元法是将作用在车道中心线上的荷载换算到车道单元上(换算为集中力和扭矩),单梁模型中常用;而横向联系梁法是将移图1-1车道单元法及横向联系梁法示意图动荷载作用在横梁上,然后由横梁按比例传递到临近的纵梁单元上,梁格模型中常用,此时需要将横梁定义成为一个结构组,传力示意如图1-1所示。
随后即可进行车道线定义,首先是“斜交角”设置,对于斜桥梁格模型可以输入起点和终点的斜交角度,此设置需跟横向联系梁法配合使用,车道单元法不需要设置此项。
“车辆移动方向”,对于直桥,选择三者无差别;如果是斜桥,则车辆移动方向不同,分析结果也不同,故要选择“往返”。
图1-2车道单元法及横梁联系梁法定义图示 “偏心距离”的输入,蓝色虚线为车道中心线的位置,Start-End 为车道单元,以顺桥向为基准,当车道中心线在车道单元的左侧时,偏心距离a 为负值,右侧为正值。
Midas拱桥模型的建立及虚设梁解释
![Midas拱桥模型的建立及虚设梁解释](https://img.taocdn.com/s3/m/95229fee998fcc22bcd10d01.png)
-6.67 -6.88
1/2 -1515.78 -10.97 -6.43 -8.53
1/2 -1517.24 9.86
4.84
8.87
1/2 -1855.7
2.42
4.41
5.24
1/2 -1953.88 -3.29
4.34
-7.26
1/2 -2041.21 -1.18
9.98
-2.89
1/2 -2108.97 1.71
2.52
20.88
0
1/2 254.42
1.79
-8.82
0
1/2 263.45
0.64
4.04
0
1/2 247.44
0.43
-1.14
0
1/2 264.05
-0.7
-1.39
0
1/2 255.33
-1.87
5.54
0
1/2 257.93
-2.11 -14.55
0
1/2 216.25
-2.89 43.96
58 二期恒载 1/2 186.23
59 二期恒载 1/2
0
60 二期恒载 1/2 -159.28
61 二期恒载 1/2 -152.51
62 二期恒载 1/2 -151.99
63 二期恒载 1/2 -199.64
64 二期恒载 1/2
0.6
65 二期恒载 1/2
95.89
66 二期恒载 1/2 148.62
7
-9.12
1/2 -1794.92 2.45
8.24 -10.25
1/2 -1863.34
-4
8.37 -11.46
MIDAS使用的常见问题
![MIDAS使用的常见问题](https://img.taocdn.com/s3/m/f4f5799026fff705cd170a1d.png)
Part I. 部分使用说明1. 定义移动荷载的步骤λ在主菜单的荷载>移动荷载分析数据>车辆中选择标准车辆或自定义车辆。
λ对于人群移动荷载,按用户定义方式中的汽车类型中的车道荷载定义成线荷载加载(如将规范中的荷载0.5tonf/m**2乘以车道宽3m,输入1.5tonf/m)。
定义人群移动荷载时,一定要输入Qm和Qq,并输入相同的值。
集中荷载输入0。
λ布置车道或车道面(梁单元模型选择定义车道,板单元模型选择定义车道面),人群荷载的步行道也应定义为一个车道或车道面。
λ定义车辆组。
该项为选项,仅用于不同车道允许加载不同车辆荷载的特殊情况中。
λ定义移动荷载工况。
例如可将车道荷载定义为工况-1,车辆荷载定义为工况-2。
在定义移动荷载工况对话框中的子荷载工况中,需要定义各车辆要加载的车道。
例如: 用户定义了8个车道,其中4个为左侧偏载、4个为右侧偏载,此时可定义两个子荷载工况,并选择“单独”,表示分别单独计算,程序自动找出最大值。
在定义子荷载工况时,如果在“可以加载的最少车道数”和“可以加载的最大车道数”中分别输入1和4,则表示分别计算1、2、3、4种横向车辆布置的情况(15种情况)。
布置车辆选择车道时,不能包含前面定义的人群的步行道。
λ定义移动荷载工况时,如果有必要将人群移动荷载与车辆的移动荷载进行组合时,需要在定义移动荷载工况对话框中的子荷载工况中,分别定义人群移动荷载子荷载工况(只能选择步道)和车辆的移动荷载子荷载工况,然后选择“组合”。
2. 关于移动荷载中车道和车道面的定义当使用板单元建立模型时λa. 程序对城市桥梁的车道荷载及人群荷载默认为做影响面分析,其他荷载(公路荷载和铁路荷载)做影响线分析。
b. 只能使用车道面定义车的行走路线。
对于城市桥梁的车道荷载及人群荷载以外的荷载,输入的车道面宽度不起作用,按线荷载或集中荷载加载在车道上。
c. 对于城市桥梁的车道荷载及人群荷载,在程序内部,自动将输入的荷载除以在”车道面”中定义的车道宽后,按面荷载加载在车道上。
midas-gts-NX操作实例-移动列车荷载时程分析
![midas-gts-NX操作实例-移动列车荷载时程分析](https://img.taocdn.com/s3/m/9365a1220740be1e650e9a80.png)
三维移动列车荷载案例
三维移动列车荷载案例
第 1 部分
学习目的及概要
1.1 学习目的 列车振动是周期加载现象,这是由于火车车轮间隔性地与铁轨发生震动。 振动周期与铁轨间距及列车速度有关。 列车振动受到各种因素的影响,如车辆、轨道、支撑结构、地面、地下结 构等。这些因素是交互作用,激发和传播的,是比较复杂的振动现象。
• • • • •
根据上图,目标对象―边 S‖。 选择基准线―边 P,Q,R‖。 选择匹配方法―投影‖。 选择 预览按钮检查生成的种子,单击[适用]。 以同样的方式分配播种―T‖,―U‖。
•
*
:几何>顶点与曲线>交叉分割
交叉分割后可在线段交叉位置生成节点。
•
选择所有线,点击[确认]。
4.2 生成网格
*
• • • • ▶尺寸控制与分割数量 表
:网格>>控制>>尺寸控制
通过尺寸控可以得到高质量且网格数量较少的网格划分结果。 参考下表,选择―边线 B1,B2,D1,D2,E1,E2,G1,G2,K1,K2,N1,N2 的路堤。 方法选择―分割数量‖。输入―1‖。 选择 预览按钮检查生成的种子。单击[适用]。 请参考下表确定网格种子。
跟随例题
三维移动列车荷载案例
3.2 定义属性
属性体现网格的物理特性,在网格划分时将分配到网格组上。定义岩土 和结构属性时,首先定义要使用的材料。定义材料之后,确定结构类型和截面 形状(截面刚度)。
▶岩土属性表。
名称 软岩 类型 3D 材料 软岩
风化土 淤泥 3D 3D
底层路 层路 加固路 路面 基 基 基 3D 3D 3D 3D
22 0.5 排水
20 0.5 排水
midas移动荷载加载方式[优质ppt]
![midas移动荷载加载方式[优质ppt]](https://img.taocdn.com/s3/m/765249ff02768e9951e738ee.png)
定义车辆荷载
1)车轮荷载:一个车轮的标准中70kN。
2)分布宽度:1m 纵向宽度:1m
3)最多车道数:该横向框架分析模型上可 能作用的最多车道数。
移动荷载工况
比例系数:冲击系数
2.盖梁计算移动荷载的施加
模型的注意事项
注意:
1.对于预制结构:一般支座间距小,可不模拟横梁。 2.对整体现浇结构:一般支座较稀疏,必须模拟横梁。
对于曲线梁桥偏载对结构弯矩(My)的影响很小(各色曲线重合)
对上述模型分别考虑中载和偏载两种情况,扭矩(Mx)如下图所示: 对于曲线梁桥考虑偏载对结构的影响较大(尤其对扭矩的影响)。
各种布载形式之间的关系:
1.各布载形式(工况)是独立的。 2.最终活载的结果是取各布载形式中的 最不利值,而非累加值。
目录
一、纵向施加移动荷载 1.单梁模型施加移动荷载 2.梁格模型施加移动荷载 3.人群荷载如何施加 二、横向施加移动荷载 1.桥面板计算移动荷载的施加
Civil添加移动荷载的整体思路
步骤1:移动荷载规范
1 2 34
四步原则 步骤2:车道 步骤3:车辆
步骤4:移动荷载工况
1.单梁模型施加移动荷载
车道数量如何确定。
谢谢!
Email: zhufeng@ 实名制QQ群: 202835762
畅想网络
Imagination Network
感谢观看!
文章内容来源于网络,如有侵权请联系我们删除。
为什么要考虑偏载。 多种布载形式之间的关系
与程序无关 的
主菜单中没有人群荷载,人群荷载如何定义 。
车道数量如何确定 :
1.设计车道数量(施工图中的车道数量)。 2.截面可以布置的最多车道数。
midas预应力荷载和移动荷载说明
![midas预应力荷载和移动荷载说明](https://img.taocdn.com/s3/m/d7526b104431b90d6c85c74f.png)
目录Q1、钢束布置形状中坐标轴与适用桥型的关系 (2)Q2、如何进行体外预应力模拟? (2)Q3、目前程序可以进行哪些移动荷载分析 (2)Q4、车道和车道面定义时的注意事项 (2)Q5、车道单元、虚拟车道、横向联系梁都适用于哪些情况? (2)Q6、车道定义时桥梁跨度和跨度始点的作用 (3)Q7、车辆荷载定义时车轮宽度的影响 (3)Q8、人群荷载定义时“宽度”的作用 (3)Q9、公路车道荷载和城市车道荷载计算时荷载取值原则 (3)Q10、移动荷载工况定义中单独与组合的应用 (3)Q11、移动荷载分析控制选项 (4)Q12、移动荷载分析时如何得到同时发生反力情况 (4)Q13、公路QC移动荷载分析时的QC加载方法 (5)Q14、移动荷载分析时不能使用的其他功能 (6)Q1、钢束布置形状中坐标轴与适用桥型的关系A1.直线法:适用于所有类型构件的钢束布置;曲线法:仅适用于圆曲线梁上的钢束布置;单元法:仅适用于直梁、斜梁上的钢束布置。
严禁用于弯桥钢束布置中。
Q2、如何进行体外预应力模拟?A2.体外预应力有两种,一种是体外预应力钢筋,一种是体外预应力拉索。
前者用钢束预应力荷载模拟,钢束特性值选择体外;后者通过建立拉索的桁架单元来模拟拉索,并对拉索施加初拉力荷载模拟体外荷载。
用体外预应力钢筋模拟时,体外放大弯矩在线帮助说的很清楚:输入计算抗弯承载力时所需的体外束的有效预应力的增加量。
所输入的预应力增加量将用于预应力混凝土结构的设计中。
这项内容仅在PSC设计的抗弯承载力计算时作为预应力提供的抗弯承载力的一部分存在。
可以不予输入。
体外类型荷载工况是专门针对成桥阶段桁架单元施加初拉力而言的,在成桥阶段,默认桁架单元的初拉力荷载的加载方式为体内力,如果要按体外力形式加载,可以通过设置体外荷载类型来实现。
该功能对其他单元、其他荷载分析不起作用。
在施工阶段,桁架单元初拉力的加载方式是体内还是体外,可以在施工阶段分析控制选项中指定。
MIDAS用户常见问题解答
![MIDAS用户常见问题解答](https://img.taocdn.com/s3/m/ddb08c86b9d528ea81c779f8.png)
MIDAS软件常见提问与解答Part I. 部分使用说明1.定义移动荷载的步骤●在主菜单的荷载>移动荷载分析数据>车辆中选择标准车辆或自定义车辆。
●对于人群移动荷载,按用户定义方式中的汽车类型中的车道荷载定义成线荷载加载(如将规范中的荷载0.5tonf/m**2乘以车道宽3m,输入1.5tonf/m)。
定义人群移动荷载时,一定要输入Qm和Qq,并输入相同的值。
集中荷载输入0。
●布置车道或车道面(梁单元模型选择定义车道,板单元模型选择定义车道面),人群荷载的步行道也应定义为一个车道或车道面。
●定义车辆组。
该项为选项,仅用于不同车道允许加载不同车辆荷载的特殊情况中。
●定义移动荷载工况。
例如可将车道荷载定义为工况-1,车辆荷载定义为工况-2。
在定义移动荷载工况对话框中的子荷载工况中,需要定义各车辆要加载的车道。
例如:用户定义了8个车道,其中4个为左侧偏载、4个为右侧偏载,此时可定义两个子荷载工况,并选择“单独”,表示分别单独计算,程序自动找出最大值。
在定义子荷载工况时,如果在“可以加载的最少车道数”和“可以加载的最大车道数”中分别输入1和4,则表示分别计算1、2、3、4种横向车辆布置的情况(15种情况)。
布置车辆选择车道时,不能包含前面定义的人群的步行道。
●定义移动荷载工况时,如果有必要将人群移动荷载与车辆的移动荷载进行组合时,需要在定义移动荷载工况对话框中的子荷载工况中,分别定义人群移动荷载子荷载工况(只能选择步道)和车辆的移动荷载子荷载工况,然后选择“组合”。
2.关于移动荷载中车道和车道面的定义●当使用板单元建立模型时a. 程序对城市桥梁的车道荷载及人群荷载默认为做影响面分析,其他荷载(公路荷载和铁路荷载)做影响线分析。
b. 只能使用车道面定义车的行走路线。
对于城市桥梁的车道荷载及人群荷载以外的荷载,输入的车道面宽度不起作用,按线荷载或集中荷载加载在车道上。
c. 对于城市桥梁的车道荷载及人群荷载,在程序内部,自动将输入的荷载除以在”车道面”中定义的车道宽后,按面荷载加载在车道上。
midas移动荷载加载方式
![midas移动荷载加载方式](https://img.taocdn.com/s3/m/798e93cdb8f67c1cfad6b88e.png)
二 横向施加移动荷载加载
移动荷载工况
比例系数:冲击系数
二 横向施加移动荷载加载
2.盖梁计算移动荷载的施加
模型的注意事项
注意: 1.对于预制结构:一般支座间距小,可不模拟横梁。 2.对整体现浇结构:一般支座较稀疏,必须模拟横梁。
二 横向施加移动荷载加载
定义车道荷载:
注意: 1.对于预制结构:移动荷载直接施加在盖梁上。 2.对整体现浇结构:移动荷载施加在横梁上。 3.车道起终点的设计应满足规范要求。(直接施加到盖 梁上时,应为最外侧支座之间的区域)
注意: 1. 总效应=(车轮荷载x车道比例系数x纵向宽度)/分布宽度。 2. 程序内部仍然按195kN(100*3/2*1.3)加载,计算各效应时考虑“车道比例系数”。 3. 特别注意:一个车道按两个车轮,间距取1.8m加载,所以表格中的反力结果是(195*4*2)。
三 移动荷载分析工具
1.输出移动荷载的影响线
总体思路
步骤1:移动荷载规范
1 2 34
四步原则 步骤2:车道 步骤3:车辆
步骤4:移动荷载工况
一 纵向施加移动荷载
1.单梁模型施加移动荷载
一 纵向施加移动荷载
车道数量如何确定。
为什么要考虑偏载。 多种布载形式之间的关系
与程序无关 的
主菜单中没有人群荷载,人群荷载如何定 义。
一 纵向施加移动荷载 车道数量如何确 定:
98号节点 发生Fz方向 最大反力 时,其余节 点(99节 点)的反力 情况
谢谢大家!
感谢您的观看!
桥梁跨径: 配合定义车辆荷载定义时的计算跨 径。 比例系数:1
一 纵向施加移动荷载
3.人行荷载的加载方式—车辆荷载
注意: 建立人群荷载的两种方法: (添加标准车辆(对应各规范)) 用户定义:
MIDAS-整体解决方案-三维移动列车荷载案例
![MIDAS-整体解决方案-三维移动列车荷载案例](https://img.taocdn.com/s3/m/961a6766524de518974b7d41.png)
跟随例题三维移动列车荷载案例1.1学习目的列车振动是周期加载现象,这是由于火车车轮间隔性地与铁轨发生震动。
振动周期与铁轨间距及列车速度有关。
列车振动受到各种因素的影响,如车辆、轨道、支撑结构、地面、地下结构等。
这些因素是交互作用,激发和传播的,是比较复杂的振动现象。
通过本例题可以学习如下的主要功能及分析方法: •从二维网格拓展生成三维网格 •特征值分析 •生成移动列车荷载•分析结果——周围环境的振动效应和竖向地面沉降 •分析结果——建立随时间变化曲线 1.2模型和分析总概述本例题主要分析了列车移动荷载通过路堤时,振动荷载对周围结构和地表的影响。
首先建立由三个不同材料构成的地层以及由上面的上部路基、下部路基、加固层生成路基,然后最终在最上层生成道床。
第1部分学习目的及概要▶列车移动荷载Chapter 10. 3D Moving Train Load Time History Basic Tutorials跟随例题[打开附件中的开始模型(10_train_start)] *:分析>分析工况>设置•设置模型类型、重力方向、初始参数及分析用的单位制。
单位制可以在建模过程及确认分析结果时修改,根据设置的单位制将自动换算参数。
•本例题是把Z 轴作为三维模型的重力方向,单位制使用SI 单位制(kN,m) 。
第2部分分析设置▶分析设置Chapter 10. 3D Moving Train Load Time History Basic Tutorials3.1定义岩土和结构材料定义材料的本构模型时,岩土选择“莫尔-库伦”。
路基不需要考虑非线性,因此选择“弹性”。
岩土和结构材料定义如下[Unit : kN, m] 名称软岩风化土淤泥底层路基上层路基加固路基路面材料各向同性各向同性各向同性各向同性各向同性各向同性各向同性模型类型莫尔-库伦莫尔-库伦莫尔-库伦莫尔-库伦莫尔-库伦莫尔-库伦弹性一般弹性模量(E) 1.2E+06 2.0E+04 2.0E+04 1.0E+05 3.0E+04 1.3E+05 2.3E+07 泊松比(v) 0.28 0.28 0.35 0.30 0.35 0.25 0.18 容重(r) 22 20 18 20 19 19 25 Ko 0.5 0.5 0.5 0.5 0.5 0.5 0.5 渗透性容重(饱和)22 20 18 20 19 19 25初始孔隙比0.5 0.5 0.5 0.5 0.5 0.5 0.5 排水参数排水排水排水排水排水排水排水非线性粘聚力100 20 100 15 0 -摩擦角37 30 28 40 31 35 - 第3部分定义材料及特性▶表.岩土材料.▶定义岩土材料- 一般▶▶定义岩土材料–渗透性▶▶▶定义岩土材料–非线性跟随例题3.2定义属性属性体现网格的物理特性,在网格划分时将分配到网格组上。
midas gts nx 三维移动列车荷载案例概述
![midas gts nx 三维移动列车荷载案例概述](https://img.taocdn.com/s3/m/c8565ccc856a561252d36f92.png)
Basic TutorialsChapter 10. 3D Moving Train Load Time HistoryChapter 10. 3D Moving Train Load Time History | 1三维移动列车荷载案例1.1学习目的列车振动是周期加载现象,这是由于火车车轮间隔性地与铁轨发生震动。
振动周期与铁轨间隔及列车速度有关。
列车振动的特点受到各种因素的影响,如车辆、轨道、支撑结构、地面、地下结构等。
这些因素是交互作用,激发和传播的,是比较复杂的振动现象。
在本教程中,会涉及以下概念: •从二维网格拓展生成三维网格。
•特征值分析。
•生成移动列车荷载。
•分析结果——周围的振动效应和垂直地面沉降。
•分析结果——建立随时间变化曲线Section 1学习目的及概要▶列车动力荷载Chapter 10. 3D Moving Train Load Time HistoryBasic Tutorials2 | Chapter 10. 3D Moving Train Load Time History1.2模型和分析总概述本教程进行动力分析,分析了列车移动荷载通过路堤的时候的振动荷载周围结构的影响和地表响应,火车上行为移动载荷应用于堤防。
分别建立底层、顶层、分层的加固层的路基,最后在最上层加上路面。
Basic TutorialsChapter 10. 3D Moving Train Load Time HistoryChapter 10. 3D Moving Train Load Time History | 3[打开附加开始文件(10 _train_start)]*:分析> 分析工况>设置•设置模型类型,重力方向,初始参数和单元系统。
单位系统可以在建模过程中随时改变甚至在执行分析之后。
输入的参数会自动转换为当下单位系统对应的值。
•本教程是一个三维模型,重力方向是Z 向,使用SI 单位制(kN,m,sec)。
midas移动荷载定义
![midas移动荷载定义](https://img.taocdn.com/s3/m/ff26a104e87101f69e319563.png)
《midas移动荷载定义》移动荷载定义分四个步骤:1. 定义车道(适用于梁单元)或车道面(适用于板单元);2. 定义车辆类型;3. 定义移动荷载工况;4. 定义移动荷载分析控制——选择移动荷载分析输出选项、冲击系数计算方法和计算参数。
(一)、车道及车道面定义移动荷载的施加方法,对于不同的结构形式有不同的定义方法。
对于梁单元,移动荷载定义采用的是车道加载;对于板单元,移动荷载定义采用的是车道面加载。
对梁单元这里又分为单梁结构和有横向联系梁的梁结构,对于单梁结构移动荷载定义采用的是车道单元加载的方式,对于有横向联系梁的结构移动荷载定义采用的是横向联系梁加载的方式。
对于单梁结构的移动荷载定义在PSC设计里边已经讲过了,这里介绍的是有横向联系梁结构的移动荷载定义以及板单元移动荷载定义。
横向联系梁加载车道定义:在定义车道之前首先要定义横向联系梁组,选择横向联系梁,将其定义为一个结构组。
车道定义中移动荷载布载方式选择横向联系梁布载(图1),然后选择车道分配单元、偏心距离、桥梁跨度后添加即可完成车道的定义。
车道面定义(图2):对于板单元建立的模型进行移动荷载分析时,首先需要建立车道面。
输入车道宽度、车道偏心、桥梁跨度、车道面分配节点后添加即可完成车道面定义。
(二)、车辆类型选择无论是梁单元还是板单元在进行移动荷载分析时,定义了车道或车道面后,需要选择车辆类型,车辆类型包括标准车辆和用户自定义车辆两种定义方式(图3)。
(三)、移动荷载工况定义定义了车道和车辆荷载后,将车道与车辆荷载联系起来就是移动荷载定义。
在移动荷载子工况中选择车辆类型和相应的车道,对于多个移动荷载子工况在移动荷载工况定义中选择作用方式(组合或单独),对于横向车道折减系数程序会自动考虑(图4)。
(四)移动荷载分析控制在移动荷载分析控制选项中选择移动荷载加载位置、计算内容、桥梁等级、冲击系数计算方法及计算参数(图5)。
注意事项总结:1、车道面只能针对板单元定义,否则会提示“影响面数据错误”。
midas移动荷载加载方式
![midas移动荷载加载方式](https://img.taocdn.com/s3/m/389860f60242a8956bece4c0.png)
一 纵向施加移动荷载
定义车道荷载
注意: 1.车辆荷载的分布: 车道单元:单梁计算 横向联系梁:梁格计算 2.偏心距离: 车道中心线到选择单元连线的距离,注意方向正负号。 3.桥梁跨度:
连续梁时输入最大跨度。
4.比例系数: 跨径>150m时的纵向折减系数。 5.选择 两点:便于直线桥选择车道参考线单元,点选首末单元即可。 单元:便于曲线桥选择相关单元,直接输入单元号。例如:1to80。
集度 宽度
同一模型中只能定义1个标准人群荷载
一 纵向施加移动荷载
自定义人群定义(优点:同一模型中可定义多种人群荷载)
集度 宽度
一 纵向施加移动荷载
3.人行荷载的加载方式—移动荷载工况
注意: 组合: 考虑将两侧人群荷载叠加。 即总效应最大。
对应关系:
车辆和车道对应起来。
二 横向施加移动荷载加载
1.桥面板计算移动荷载的施加
中载(最大)
对于曲线梁桥偏载对结构弯矩(My)的影响很小(各色曲线重合)
一 纵向施加移动荷载
对上述模型分别考虑中载和偏载两种情况,扭矩(Mx)如下图所示:
1500
1000 500 中载(最大) 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 -500 -1000 -1500 中载(最小) 外偏(最大) 外偏(最小)
桥梁跨径: 配合定义车辆荷载定义时的计算跨 径。 比例系数:1
一 纵向施加移动荷载
3.人行荷载的加载方式—车辆荷载
注意: 建立人群荷载的两种方法:
midasCivil基本操作
![midasCivil基本操作](https://img.taocdn.com/s3/m/84830f36fd4ffe4733687e21af45b307e971f943.png)
midasCivil基本操作midasCivil基本操作——by石头歌一、材料定义三种定义材料的方法:1、导入数据库中的材料性能参数2、用户自定义【材料和截面】对话框——【添加】——【设计类型】选择【用户定义】,输入【名称】和【用户定义】中的材料性能参数,【确认】。
3、导入其它模型中的材料性能参数【材料和截面】对话框——【导入】,打开其它模型,从【选择列表】中选择不导入的材料,输回到【材料列表】,【编号类型】选择【新号码】以避免覆盖已存在的材料,点击【确认】。
二、时间依存材料定义时间依存材料是英文说法的直译,在国内就是指混凝土的收缩徐变特性,在其他国家还包含混凝土抗压强度随时间变化的特性。
1、徐变和收缩在这里,先介绍混凝土收缩徐变特性的定义方法。
三个步骤:(1)定义收缩徐变函数【特性】——【时间依存性材料】——【徐变/收缩】——【时间依存性材料(徐变和收缩)】对话框——【添加】,输入【名称】,选择【设计规范】,例如选择【China(JTG D62-2004)】,输入各参数,【确认】。
注意:【构件理论厚度】可暂时输入一个正数值,以后在利用软件的自动计算功能进行修改;【水泥种类系数】规范中只给出一个值,一般的硅酸盐水泥或快硬水泥取5。
国外相关论文对该系数的解释:与水泥种类有关的系数,对于慢硬水泥(SL)取4;对于普通水泥(N)和快硬水泥(R)取5;对于快硬高强水泥(RS)取8。
用户也可以自定义混凝土的收缩徐变函数:【特性】——【时间依存性材料】——【用户定义】。
用户自定义混凝土收缩徐变函数很少使用,所以不再介绍。
(2)将定义好的收缩徐变函数与材料相连接【特性】——【时间依存性材料】——【材料连接】,选择【徐变和收缩】名称,【选择指定的材料】,点击【添加/编辑】。
(3)修改单元依存材料特性【特性】——【时间依存性材料】——【修改特性】,选中要修改的单元,选择要修改的参数,例如,选择【构件的理论厚度】,采用【自动计算】,选择【中国标准】,输入参数【a】,【适用】。
MIDAS中关于移动荷载车道的定义MIDAS中关于移动荷载车道的定义很多人
![MIDAS中关于移动荷载车道的定义MIDAS中关于移动荷载车道的定义很多人](https://img.taocdn.com/s3/m/7d3eb2ed185f312b3169a45177232f60ddcce70c.png)
MIDAS中关于移动荷载车道的定义MIDAS中关于移动荷载车道的定义很多人MIDASMIDAS中关于移动荷载车道的定义MIDAS中关于移动荷载车道的定义很多人都不是很清楚原理,MIDAS自己也讲的不是很清楚,事实上很多累死软件对横向荷载的分布处理也不是很完善,下面我就我个人理解,参考其他前辈的理解,说说我的看法,希望大家积极跟帖,多多讨论,把这个问题搞清楚。
定义一般车道时,应该就是选择距离设计车道中心线最近的一根纵梁作为车道单元,然后定义偏心来按规范规定的等效车道荷载加载。
偏心距离是车道中心距离就近梁单元中心的距离。
结构尺寸确定后,车道中心和每个纵梁的中心(如果是单梁那就是结构的中心)都是已知的,这时就很容易确定车道的偏心距离了。
横向联系梁车道定义时和一般车道定义方法是一样的,要选择就近的一根纵梁作为车道单元,定义偏心、定义跨度、定义车道分配单元,唯一不同的就是横向联系梁要选择横向联系梁结构组而已。
MIDAS官方的说法是:车道单元是定义车道位置的参考单元,civil中目前横向车道位置需由用户定义。
车道偏心量为车辆中心线距参考单元距离。
我理解的具体加载情况是:一根单梁,车道中心布置,如果定义车道时不考虑车辆宽度,则荷载加载在梁单元中心线上;而如果定义车道时考虑车辆宽度(貌似2006版才有了这个功能)1.8m,则荷载为偏心梁单元荷载,分别加载在梁单元中心两侧0.9m的位置上,因此换算成梁单元荷载就是集中载和换算扭矩。
对于单梁分析,是否考虑车辆宽度对结构没有影响,但如果是梁格模型,是否考虑车辆宽度对结果的影响还是很大的。
规范规定的等效车道荷载是没有考虑车辆宽度的(但是,我在邵旭东的《桥梁工程》中看到了一句大实话:车道荷载的单向布载宽度为3.0m,这个才更接近实际情况)。
具体的,根据规范进行双车道中载和偏载加载时,一个是把车道荷载分别加载在两个车道设计中心线上,一个就是以最小间距3m来在一侧布置2个车道加载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
midas Civil 技术资料----移动荷载设置流程目录midas Civil 技术资料1 ----移动荷载设置流程1 一、定义车道线(车道面)2 二、定义车辆荷载5 三、定义移动荷载工况7 四、移动荷载分析控制9 五、运行并查看分析结果12 参考文献14北京迈达斯技术有限公司 桥梁部 2013/05/17本章主要结合中国规范JTG D60-2004[1]进行纵向(顺桥向)移动荷载分析介绍,移动荷载分析主要是计算移动荷载(车道、车辆或人群荷载)在指定路径上(车道线、车道面)移动时产生的各种效应(反力、内力、位移、应力)的包络结果,具体分析过程如下:(1)定义车道线/面;(2)定义车辆荷载--车道荷载、车辆荷载、人群荷载等活荷载;(3)定义移动荷载工况;(4)定义移动荷载分析控制;(5)运行分析并查看结果。
一、定义车道线(车道面)荷载>移动荷载>移动荷载规范-china,定义车道线或车道面,确定移动荷载路径,程序提供车道单元和横向联系梁两种方法,其中,车道单元法是将作用在车道中心线上的荷载换算到车道单元上(换算为集中力和扭矩),单梁模型中常用;而横向联系梁法是将移图1-1车道单元法及横向联系梁法示意图动荷载作用在横梁上,然后由横梁按比例传递到临近的纵梁单元上,梁格模型中常用,此时需要将横梁定义成为一个结构组,传力示意如图1-1所示。
随后即可进行车道线定义,首先是“斜交角”设置,对于斜桥梁格模型可以输入起点和终点的斜交角度,此设置需跟横向联系梁法配合使用,车道单元法不需要设置此项。
“车辆移动方向”,对于直桥,选择三者无差别;如果是斜桥,则车辆移动方向不同,分析结果也不同,故要选择“往返”。
图1-2车道单元法及横梁联系梁法定义图示 “偏心距离”的输入,蓝色虚线为车道中心线的位置,Start-End 为车道单元,以顺桥向为基准,当车道中心线在车道单元的左侧时,偏心距离a 为负值,右侧为正值。
同时,偏心距离可在不同车道单元输入不同数值,以此模拟变宽或匝道交汇等情况的车道位置,可先输入一个偏心距离,随后在图1-2中生成的表格里进行偏心距离修改。
“车轮间距”可以按照JTG D60-2004规范中输入车辆荷载间距1.8m ,轴重将平均分配在两个轮上,两车轮荷载加在各自对应影响线上;也可根据实际车辆车轮间距进行输入;输入0,则表示轴重直接传递到车道中心线上,且只有一个车道影响线。
“桥梁跨度”可输入连续梁最大跨的跨径,主要用来确定公路及城市桥梁设计规范中车道荷载集中力Pk 的大小及车道纵向折减系数。
“比例系数”输入车道的纵向折减系数,按照规范D60-04的4.3.1-8规定,当桥梁最大计算跨径大于150m 时,需按照规范规定考虑汽车荷载效应的纵向折减。
“选择”主要是选择作为车道单元的主梁单元,车道单元最好是编号由小到大,首尾相连且单元坐标轴(x 、y 、z )与整体坐标轴(X 、Y 、Z )最好一致,便于查看分析结果。
对于采用车道单元法的单梁直接选择纵梁单元即可,采用横向联系梁法的梁格模型需要选择距离车道中心线较近的纵梁单元作为车道单元,选择完成后即可完成车道线的定义,如图1-3和图1-4所示,其中绿色箭头代表车道中心线的位置,两侧绿色的点代表车轮,红色线为车道单元即主梁单元。
图1-3车道单元法车道线图示图1-4横向联系梁法车道线图示除了车道线定义之外,对于移动荷载纵向、横向分布宽度较大且结构中存在板单元时需要定义车道面,用于影响面分析。
对于车道面的定义,主要是定义一个车道宽度(b),此处输入实际车道宽度即可;然后选择距离车道面中心线距离较近的节点作为参考位置,其他参数说明同车道线定义。
定义好的车道面如下图1-6示,红色虚线表示车道面中心线,红色点为车轮,蓝色虚线之间宽度为车道宽度b值。
注意,在车道面定义时要求宽度方向上至少要跨越两个板单元,如果车道面只位于一个板单元内时,信息窗口会提示“车道面数据中发生错误”,提示错误主要是要保证板单元划分的细致些,过于粗糙会导致结果精度下降。
图1-5 车道面定义图示图1-6 车道面图示二、定义车辆荷载定义车辆荷载,可以添加标准车辆(A),主要包括各个规范中的荷载;另外也可采用用户定义(U)的方法进行定义,主要包括汽车荷载、列车/特殊荷载、人群荷载。
两种定义荷载的方式,根据需要选用,一般进行结构整体计算分析时按照规范选择标准车辆中的车道荷载(CD);如果进行车辆荷载的分析,可以选择车辆荷载(CL)或是通过用户定义的方法定义;对于特殊车辆荷载可以通过用户定义方式中列车/特殊车辆进行定义。
c图2-1 车辆荷载定义图示对于人群荷载的定义方法,同样是先定义车道线,主要是确定人群荷载的加载位置,偏心距离取人行道中心距离主梁单元的距离,车轮间距输入0,桥梁跨度和比例系数及选图2-2规范人群荷载及用户自定义人群荷载择车道单元均同上节内容;定义好车道线后,定义人群荷载,可以选择添加标准车辆(A)中公路或城市桥梁规范中的人群荷载(RQ)进行定义,其中公路工程技术标准中输入人行道宽度值,城市桥梁设计规范输入单边人行道宽度wp,在专用非机动车桥上wp取1/2桥宽,大于4m时仍按4m计[2],或是采用用户定义中的人群荷载进行自定义,计算时单位长度人群荷载为dw×宽度(wp),如图2-2所示。
另外人群荷载定义中,人行道宽度不超过3.5米时,都是按照人行道宽度×dW得到单位长度人群荷载,当人行道宽度超过3.5米时仍按3.5米计,所以如果要模拟超过3.5米的人行道荷载,以5米宽为例,可以通过定义人行道荷载时宽度输入1米,最后在定义移动荷载荷载工况时在子荷载工况中系数输入5来考虑。
对于板单元定义人群荷载车道面时,此时车道宽度b输入人行道宽度值,w车轮间距可输入0,其他参数同上;定义人群荷载时,此时公路、城市桥梁规范及用户自定义中的宽度及wp值可直接输入1,计算时程序不调用此宽度值,而是调用车道面定义时输入的车道宽度b,计算时单位长度人群荷载为dw×车道宽度b,在车道面边线上添加根据离参考节点距离而分配的荷载,如下图根据车道面人群荷载追踪得到的191号板单元内力,此例中人行道宽度为 1.5m,定义车道面时车道面中心线距离参考节点的距离为-0.5m,故车道面左侧边线距离参考节点 1.25(1.5/2+0.5=1.25)m,右侧边线距离参考节点0.25(1.5/2-0.5=0.25)m,人行道面荷载为3KN/m²,乘以宽度1.5m,得到加载在车道面上的荷载共为4.5KN/m,两边线上按1.25:0.25的比例分配,分别添加3.75 KN/m 、0.75 KN/m,如下图2-3所示,图示中参考节点上的4.5KN/m只是图示作用,不参与计算。
图2-3车道面人群荷载板单元内力追踪结果三、定义移动荷载工况定义移动荷载工况,主要是将车辆荷载加载到车道上,然后进行计算分析,首先是考虑横向折减系数,此处按照D60-04中4.3.1.-7给出了不同车道的折减系数,当车道数大于2时需要考虑横向折减,因为每个车道上进行移动荷载加载分析时都是将移动荷载按最不利位置(同号影响线区域或影响线峰值处)布置,但是当车道数量较多时,使结构某一截面产生最大效应时,各车道的移动荷载同时位于最不利位置的可能性会减小。
在此处程序会根据后面子荷载工况中的车道数自动调用表格中的横向折减系数,如果想增大或减小折减系数或者是输入其他规范的横向折减系数,可以在横向折减系数表格中手动进行修改,如图3-1所示。
然后定义子荷载工况,当存在多个子荷载工况时,需要进行工况的组合,组合选项包括“组合”和“单独”两种类型。
其中“单独”表示程序以多个子荷载工况的包络结果作为移动荷载的计算结果,即将各子荷载工况的计算结果作对比,取最不利结果输出;“组合”表示以多个子荷载工况的相加结果作为移动荷载工况的计算结果,但是此时各子荷载工况必须针对不同的移动荷载类型,例如人群荷载和车道荷载组合,如果是同种移动荷载类型,那么“组合”不起作用,程序默认“单独”起作用,取包络值。
图3-1移动荷载工况定义点击添加,即可弹出“子荷载工况”对话框,如图示3-1,首先选择“车辆组”下拉选项中的车辆荷载;“系数”选项可以按默认值1,也可以输入其他值,表示对移动荷载分析结果进行放大或折减;加载的最少车道数可以输入1,加载的最多车道数输入要加载该移动荷载的车道数量,以图示中3个车道为例,加载最少车道数输入1,加载最多车道数为3,那么程序会自动考虑每1个车道加载、每2个车道加载、3个车道同时加载的情况,然后输出最不利结果;“分配车道”将要加载的车道选中到右侧列表;点击确认即可完成子荷载工况的定义。
图3-2影响面板单元、并发反力组、车辆组另外,在程序定义移动荷载工况的右侧可以看到有三个选项,从上至下依次是“影响面板单元”、“并发反力组”、“车辆组”,如图3-2所示。
对于影响面板单元,主要是进行影响面分析时,当需要了解车道面范围以外的其他板单元的影响面分析结果时,可选择相应板单元;因为影响面分析的数据庞大,在midas/Civil中默认提供的分析结果为车道面内的板单元。
对于并发反力组,因为移动荷载和支座沉降分析都是输出最大最小的包络结果,如果想知道一个支座产生最大/最小支反力的同时,其他支座的反力情况,即可将支座节点定义在并发反力组中,计算完成后在结果>分析结果表格>并发反力(Max/Min)中查看。
对于车辆组,表示输入移动荷载分析所需的车辆荷载组;同一个车辆荷载组内的车辆将分别加载在桥梁上,程序做出分析比较后,为用户提供最大最小值;同一车辆荷载组内的车辆也可以同时加载,但必须符合相应规范的要求;国外某些设计规范要求上述进行分析,国内各种桥梁的设计规范中均没有上述分析要求,因而采用中国规范定义移动荷载时,不需要定义车辆荷载组。
四、移动荷载分析控制图4-1移动荷载分析控制对话框最后需要定义分析>移动荷载分析控制数据,选择移动荷载分析的方法和分析结果的输出位置。
首先“荷载控制选项”选择加载位置,其中“影响线加载”适合于公路城市桥梁,移动荷载只加载在同号影响线或影响面区域,将移动荷载中的集中荷载依次添加在同号影响线(面)区域中的峰值节点上;“生成影响点”有两种方法,主要是选择影响线的分析和加载位置,可以指定每个线单元上影响线点数量,也可以输入影响点之间距离来确定影响点。
“所有点”适合于铁路、轨道交通等桥梁,此类桥梁移动荷载较大且跨越长度也较大,需要将移动荷载的各个集中荷载按顺序沿着车道移动方向依次加载在各节点上(而并非只加在同号影响线、影响面区域峰值节点上),如果其他车轴的集中荷载没有处于节点时使用内插方法计算影响线或影响面值,所以计算时间也较长。