斜拉桥合理成桥状态的确定.ppt

合集下载

综合法初定斜拉桥合理成桥状态

综合法初定斜拉桥合理成桥状态
梁、 、 ( 塔 索 及辅 助 墩 ) 控 制 目标 的选择 必 须 考 虑 , 以下几个方 面 ] :
能 主。作压构要塔弯不 太:塔塔为弯件求内矩
( )主 梁 。主梁 弯矩 在 恒 、 2 活载 作用 下 弯 曲
应力 小且分 布均匀 。
( )斜 拉索 。斜拉 索的 索力 从 自身 出发 要满 3 足两 方面要 求 : 斜拉 索垂 度要求 的最小 索力 ; 材料
总 第 2 9 z期 2l 年第 o o 3 期




S ra O 3 e ilN .2 9
No. 2 A pr 2 0 . 01
Tr n p ra in S in e& Te h o o y a s o t t ce c o c n lg
综 合 法 初定 斜 拉桥 合 理成 桥 状 态
下不 出现负反力 。 12 综合法初 定成桥 状态 . 综 合法 即最小 弯曲 能 量法 结 合应 力 平衡 法 ,
备 , 支座反力作 为 约束条件 。综上所述 , 将 索力优
化 的优化模 型 I : 为 ・
mwx一 i i( m n )

j= l
M + + M )1

}一

眶 n
图 1 某 独 塔 斜拉 桥 立 面 图
— =一 tk 2n — : k d q =设汁7付 75 l — 诵自 , l m f|





l 合确合成状 综法定理桥态
1 1 合理成 桥状态 的确定 原则 . 在确定理 想 成桥 状 态过 程 中 , 必须 综 合 考虑

3 l( )
o 2 ≤ 万i o 4 .R T ≤ R

斜拉桥原理

斜拉桥原理

斜拉桥原理
斜拉桥原理是指利用斜拉索将桥面荷载传递到桥塔上,通过桥塔的支撑来分担荷载的一种技术原理。

斜拉索是由高强度钢索组成的,它们被拉伸成斜向的线条,连接桥面和桥塔。

通过合理的设计和安排,可以使斜拉索承担整个桥面的荷载。

这样,桥梁的主要受力构件就变成了桥塔和斜拉索,比传统桥梁更加轻型化和优美。

斜拉桥原理的应用可以实现大跨径、大荷载的桥梁建设。

相比于悬索桥,斜拉桥在斜拉索数量相同的情况下,可以实现更长的跨度。

同时,斜拉桥也具有更好的抗风性能和抗震性能,更加适合建设在复杂地形和海洋环境中。

近年来,斜拉桥已经成为世界上许多城市建设的标志性建筑。

著名的斜拉桥有中国的杭州湾跨海大桥、法国的米兰多梅特大桥、美国的金门大桥等。

斜拉桥的建设不仅具有实用价值,更是一种城市形象和文化的展示。

- 1 -。

斜拉桥合理成桥状态的确定

斜拉桥合理成桥状态的确定

Md2
, M d1
可行域,
与N
有关
y
M d1 M d2 M d N y
M d 最小可行域宽,分区确定N y
回总目录
合理成桥状态“目标”:
a. 索力分布合理 匀称—变化均匀
b. 主梁弯矩——“可行域”—居中或偏向 c. 主塔弯矩——预偏(活载因素) d. 边墩、辅助墩反力
回总目录
0 -20000 -40000 -60000
0
可行域上限
可行域下限
计入预应力后的恒载弯矩
75
150
225
300
375
450
主梁位置(m)
图2-13 调整前的主梁成桥恒载弯矩分析图
回总目录
调整后的主梁成桥恒载弯矩图
弯矩数值(kN.m)
60000 40000 20000
0 -20000 -40000 -60000
450
回总目录
预加力数值(kN) 0 75 150 225 300 375 450
主梁预加力图
120000 90000 60000 30000 0
-30000
合理预加力
实际布置的有效预加力
图2-12
主梁位置(m)
主梁预加力图
回总目录
调整前的主梁成桥恒载弯矩分析图
弯矩数值(kN.m)
60000 40000 20000
0
可行域上限
可行域下限
调后成桥恒载弯矩
75
图2-14
150
225
300
主梁位置(m)
调整后的主梁成桥恒载弯矩图
375
450
回总目录
索力数值(kN) 0 S5 S10 S15 S20 B14 B9 B4 A1 A6 A11 A16

混凝土斜拉桥合理成桥状态确定的分步算法

混凝土斜拉桥合理成桥状态确定的分步算法
(11D ep a rtm en t of B ridge and Structu re Engineering, Changsha Comm un ica tion s U n iversity, Changsha 410076, Ch ina; 21Schoo l of C ivil Engineering, H unan U n iversity, Changsha 410082, Ch ina)
1 合理成桥状态的确定原则
111 索力分布 索力要分布均匀, 但又有较大的灵活性。通常短
索的索力小, 长索的索力大, 呈递增趋势, 但局部地 方应允许索力有突变。如 0 号索 (当为全漂浮体系的 桥型时) 和 1 号索的索力通常用较大的值。在所有的
索中, 不宜有太大或太小索力的索。 112 主梁弯矩
状态结构在恒载作用下, 索梁交点处位移为零。这种 方法由于受力原理与刚性支承连续梁法类似, 因此, 结果也很一致, 而此法由于计入了索的水平分力影 响, 更为合理些。 此法同样有对于不对称结构, 塔的 弯矩难以照顾的问题,“零支反力法”也有类似之处。
(3) 内力平衡法。 该法是以控制截面内力为目 标, 通过合理选择索力, 来实现这一目标, 控制截面 可包括主梁和塔, 因此, 主梁和塔的内力都可照顾 到。内力目标综合考虑了恒载和活载, 但同样有索力 可能不均匀的问题。
(3) 主梁成桥恒载弯矩可行域。在第 2 步获得的 成桥状态基础上加入配置好的预应力, 获得一个新 的成桥状态, 相应的主梁轴力为 N d + N y。 根据 N d + N y 以及第 3 (1) 步的主梁活载应力包络图计算主 梁弯矩可行域。 214 用影响矩阵法[ 4 ] 进行合理成桥状态调整
在第 2 步获得的成桥状态基础上, 通过对成桥 索力的调整, 使主梁成桥恒载弯矩落在弯矩可行域 内, 并且尽量在域内居中, 或根据设计要求居于有利 位置上。在建立调整的数学模型中, 同时考虑塔的受 力要求, 并且必须把成桥索力也作为目标, 否则, 成 桥索力又会被调乱。 215 成桥状态检验

斜拉桥的合理成桥状态

斜拉桥的合理成桥状态

斜拉桥的合理成桥状态一、概述在通常意义下,桥梁的设计必须遵照适用、经济、安全和美观的基本原则,这在桥梁的初步设计阶段显得尤为突出。

桥梁初步设计要解决桥型方案问题,即根据行车、通航等使用要求,选定合适的桥梁类型和立面布置,确定主要的结构尺寸。

对于斜拉桥方案,需确定塔的个数、主跨大小、边跨与主跨比例、主梁的截面形式和高度、主塔的形式、斜拉索的布置、主梁与塔和墩的连接或支承方式等主要参数。

这些主要参数的确定通常是先根据经验初拟。

进行结构分析计算出设计内力,进行截面设计确定配筋和验算应力或裂纹,如果内力和截面设计结果不合理。

再修正有关参数重新作结构分析和截面设计,直至满足规范要求。

传统的设计方法在计算设计内力时,通常采用一次落架法计算恒载内力,这对于结构体系比牧简单的桥梁(如简支梁桥,采用一次落架法施工的中小型桥梁)来说是可行的,但对于斜拉桥,由于斜拉索需要进行预张拉,因此即使采用一次落架法施工,结构内力的计算也不是确定的。

斜拉桥一般采用悬臂法施工,最终的成桥恒载受力状态是通过施工过程一步步形成的,施工过程中斜拉索要逐根安装并进行张拉。

施工工序和张拉索力决定了桥梁在施工过程中的受力,也决定了成桥的恒载受力状态。

但张拉索力的确定又必须有一个已知的成桥恒载受力状态作为目标才能实现。

因此斜拉桥的设计计算首先要解决成桥受力状态的问题。

前,桥梁的设计规范采用极限状态理论,分正常使用和承载能力两种极限状态。

按正常使用极限状态验算结构刚度、截面应力或裂纹宽度:按承载能力极限状态验算截面的极限抗力。

通常按弹性理论进行结构内力计算,按此内力进行验算。

但由于斜拉桥为高次超静定结构,如果要分析结构的极限承载力,则必须考虑材料的塑性,充分计入材料和儿何非线性引起的结构内力重分布,才能真正求出结构的极限承载力,国内外在这方面有一些研究,但还有不少问题需要解决。

二、斜拉桥成桥受力状态确定方法斜拉桥成桥受力状态包括成桥恒载内力状态和主梁线形状态,并且对于混凝土斜拉桥,由于混凝土收缩徐变的影响,成桥后相当一段时间内恒载内力状态和主梁线形状态会随时间变化,通常认为5年后才能基本稳定。

第三章斜拉桥的计算

第三章斜拉桥的计算
N N M y d dxn [ a ] xa A W x
N N M y d dsn [ a ] sa A W s
2、主梁恒载弯矩可行域
y N N d sm M M l s dl W 2 d A
(上缘拉应力控制条件)
dl l
其中 等效弹性模量
g/ A
为索容重
实际上在应力 索的轴向变性由两部分组成 (1)索自身的弹 性变形 e ;(2)垂度效应 f :则结构的等效弹性模量可表示 为
E
eg

e


f

E f Ee
e f
E fE
Ee E
1
E
e
E E
第一节 结构分析计算图式 第二节 斜拉索的垂度效应计算 第三节 索力的初拟和调整—斜拉桥合理成桥 和施工状态的确定 第四节 温度和徐变次内力计算 第五节 非线性问题的计算 第六节 斜拉桥施工控制—补充内容
第一节 结构分析计算图式
1. 结构分析方法概述

分析方法

结构力学中通常应用的力法、位移法与能量法
(上缘压应力控制条件)
令:
M 1 1d dl), (, 2 Min M (M M2 , M dl ) 2 M d 1 da Ma da
故将闭区间[ M d 2 M
d1
]定义为主梁恒载弯矩可行域
如果设计者给出一个值 M d ,使得 M d M d d 1 M 2 则满足上式的最小预加力数量
斜拉桥合理成桥状态的确定
5、斜拉索用量最小 该法以斜拉索用量(索力乘索长)的累计值作为目标函数, 一般要加约束条件,如索力均匀性条件、控制截面内力约束。约 束条件选取至关重要,选取不合理,则难以获得理想结果。

斜拉桥的合理成桥状态

斜拉桥的合理成桥状态

斜拉桥的合理成桥状态
斜拉桥是一种以斜拉索支撑主梁的桥梁结构,其合理成桥状态是指在斜拉桥建成后,其结构应该达到的一种理想状态,以保证桥梁的安全、稳定和经济运行。

斜拉桥的合理成桥状态包括以下几个方面:
1. 结构稳定:斜拉桥的结构应该具有足够的稳定性,能够承受各种荷载和风载的作用,同时在地震等自然灾害下也能够保持稳定。

2. 安全可靠:斜拉桥的结构应该具有足够的安全性和可靠性,能够保证车辆和行人的安全通行,同时在发生事故时也能够保证救援和维修的便利性。

3. 经济性好:斜拉桥的结构应该具有良好的经济性,能够在设计、施工和运营过程中尽可能地减少成本和资源的浪费,同时能够实现长期的经济效益。

4. 美观性好:斜拉桥的结构应该具有良好的美观性,能够与周围环境相协调,同时能够体现出设计者的创意和技术水平。

为了达到斜拉桥的合理成桥状态,需要在设计、施工和运营过程中进行全面的考虑和规划,同时需要进行严格的质量控制和监测,确保斜拉桥的安全、稳定和经济运行。

斜拉桥(第一章) (正式) ppt课件

斜拉桥(第一章) (正式)  ppt课件
索塔横桥向布置:独柱型、双柱型、门型或H型、A型、宝石型或倒 Y型等。
ppt课件
21
斜拉桥塔形示ppt例课件
22
第一章 总体布置与结构体系
二、塔的高跨比 索塔高度从桥面以上算起。 主跨径相同情况下,索塔高度低,拉索水平倾角小,拉索垂直分力对 主梁支承作用就小;反之,索塔高度愈大,拉索水平倾角愈大,拉索对 主梁支承效果也愈大。 索塔的高度应由经济比较来确定。
边跨L1 端锚索
主跨L2
桥塔
桥塔
边跨L1 端锚索
主跨L2 桥塔
边跨L1 端锚索
边墩(或桥台)
边墩(或桥台) 边墩(或桥台)
边墩(或桥台)
(a)双塔(三跨式)
(b)独塔p(p双t跨课式件)
9
第一章 总体布置与结构体系
二、跨径布置
典型为双塔三跨式和独塔双跨式;特殊也可独塔单跨及多塔多跨。
边跨L1 端锚索
第一章 总体布置与结构体系
4.辅助墩及外边孔
边孔设置辅助墩,根据边孔高度、通 航、施工安全等具体情况而定。 当边孔设在岸上或浅滩,在边孔设置 辅助墩,可以改善结构的受力状态。 辅助墩受压时,减少了边孔主梁弯矩; 受拉时则减少了中跨主梁的弯矩和挠 度。
ppt课件
19
第一章 总体布置与结构体系
第三节 索塔布置
限制变位。 必须采用时,①可将中间塔做成刚性索塔(如委内瑞拉的马拉开波桥);
ppt课件
16
②用长拉索将中间塔顶分别 锚固在边塔的塔顶或塔底加 劲(如香港汀九桥);
③加粗尾索并在锚固尾索的梁 段上压重,增加索的刚度(如湖 南洞庭湖大桥)。
ppt课件
17
多塔斜拉桥中桥 塔示例

斜拉-悬索协作体系桥合理成桥状态的确定

斜拉-悬索协作体系桥合理成桥状态的确定
斜拉一 悬索协作体 系桥 合理成桥状态 的确定
Th e S t ud y o n t h e Re a s o n a b l e F i n i s h e d S t a t e o f t he La r g e — — s p a n Ca b l e — — s t a y e d — — s us p e n s i o n Br i d g e s
一 一 一 一 ~ ~ ~ 一 ~ ~ 一 ~ 一
内。
在成桥状态下 , 加劲梁 的恒载 弯矩要控 制在 “ 可行域” 范 围
( 4 ) 主塔 弯矩
对于 自锚式斜拉一悬索协作体系桥来说 , 应该使 主塔在恒 载作用下 的弯矩尽量小 , 并且使塔 顶水 平变位 接近于 零。
二. 斜拉・愚素协作体系桥合理成桥状态确定的算法
参 数 方程 法 、 节线法等。
2斜拉一悬 索协作体 系桥合理成桥状态 的确定原则
( 1 ) 斜 拉 部 分 索 力 分 布
很 少 。本 文 结合 A NS YS的优 化 模 块 . 对 斜 拉一 悬 索协 作 体 系
索力要分 布均 匀 , 但又有较大的灵活性。通常短 索的索力
小, 长索 的索力大 , 呈递增趋势 , 但 局 部 地 方 应 允 许 索 力 有 突 变。 ( 2) 主 缆 线 形
5 6
的确 定是 设 计 中要 解 决 的一 个 重 要 的 结 构 受 力 问 题 . 目前 针 对 斜 拉 桥 和 悬 索桥 成 桥 状 态 的 确 定 方 法 已 经 比 较 成 熟 .但 关
于斜 拉 一 悬 索协 作 体 系这 种 新 桥 型 的 成 桥 状 态 的 确 定 方 法 还
小法 、 用索量最小法和影响矩 阵法等。 悬索桥成桥状 态确定 的主要 方法有 : 抛 物线法、 悬链线法 、

影响矩阵法确定斜拉桥的合理成桥状态

影响矩阵法确定斜拉桥的合理成桥状态

法——影 响矩阵法。影响矩 阵法不 仅 可 以应用 于获 取斜 拉桥 合 理成桥 索力 , 也能确 定和优 化施 工 阶段 的索 力 , 是更 为完 备 的一
种方法 。
但 是在斜拉桥 的计算分析 中, 如何确定斜 拉桥 的合理成 桥状 2 被调 向量 的 影响矩 阵 法
为使斜拉桥达到一个合理 的成桥状 态 , 可 以通 过调整斜 拉桥 内力 、 应力 值 。为使 所关 心截 结构的可靠度 以及桥 梁服 役期 间 的安 全性 和舒适 性起 着决 定性 的索力来调整关 心截 面 的位 移 、 就必须 改变 n个施调 的作用 。对于斜拉桥这种高次超静定 结构 , 通 过索 力的调整 可 以 面的 n个受调的独立变量被调整 为期望值 , 向量。现作如下定义 : 改变结构的受力状 态 。虽 然斜拉 桥合 理 的成桥状 态并 没有 一个
力可能使靠 近主塔 的第一对 索 的索力 非常 大 , 而第二 对却 很小 ,
甚至是 负值 。



… 0n 1 束的斜 拉 索力优 化
此 种方法 最具代 表性 的例子是 弯曲能量 最小 法 和弯矩 平
构成影 响矩阵的元素是一些 力学量 ( 可能是位移 、 内力 、 应力
最终计算 了范和港大桥的合理成桥索 力, 结果符合规范及工程计算的精度要求 , 方法简单方便 , 具有一定 的借鉴意 义。
关键 词 : 斜拉桥 , 影响矩阵法 , 合理成桥状 态 中图分类号 : U 4 4 8 . 2 7 文献标 识码 : A
0 引言
随着科 技的飞速发展 , 斜拉桥 的设 计理论 与施工方 法也 在不 断更新 与完善 , 斜拉桥 已成为 一种 既美 观又实用 的桥型。 态是一个关键的 问题 。斜拉桥在成 桥状态下 的索力是 否合理 , 对

斜拉桥 PPT

斜拉桥 PPT
成桥后解除临时固结时,主梁会发生较大纵向摆动。
半漂浮体系
❖ 特点:塔墩固结,主梁在塔墩上设置竖向支 承。接近于在跨度内具有弹性支承的三跨连 续梁。
❖ 缺点:主梁内力在塔墩支点处产生急剧变化, 出现了负弯矩尖峰,通常须加强支承区段的 主梁截面。
❖ 在墩顶设置弹簧支撑或零号索,可与漂浮体系 媲美,且在经济与减小纵向漂移方面有一定 好处。
❖ 特点:塔、梁、墩相互固结,行成跨内具有 多点弹性支承的刚构。为消除温度应力,需 要墩具有一定的柔性,常用高墩。
❖ 优点:既免除了大型支座又能满足悬臂施工 的稳定要求。结构的整体刚度比较好,主梁 挠度小。
❖ 缺点:主梁固结处负弯矩大,使固结处附近 截面需要加大。
T构体系
❖ T构体系与刚构体系的区别是主梁跨中区域无 轴拉力。具体方法: (1)在中跨中央部分插入一小跨悬挂结构 (活动支座,卸力)。 (2)以剪力铰代替悬挂结构。这种剪力铰 的功能是只传弯矩、剪力,不传轴力。
斜拉桥 PPT
与连续梁的比较
❖ 主梁在斜拉索的各点支承下,像多跨弹性支 承的连续梁。
❖ 同跨数的斜拉桥与连续梁桥相比,弯矩值大 大降低。
❖ 斜拉桥主梁尺寸大大降低,梁高一般为跨度 的1/50~1/200,甚至更小,从而自重显著减 轻,既节省了材料,又能大幅度地增大桥梁 的跨越能力。
主跨排前十的斜拉桥
和地锚体系; ❖ 按塔的高度不同,有常规斜拉桥与矮塔部分斜拉桥
体系。
漂浮体系
❖ 特点:塔墩固结、塔梁分离。主梁除两端有 支承外,其余部分全用拉索悬吊,属于一种 在纵向可稍作浮动的多跨弹性支承连续梁。
❖ 为了抵抗由风力等引起主梁的横向水平位移, 一般在塔柱与主梁之间设置侧向限位支座。
❖ 优点: (1)主跨满载时,塔柱处的主梁截面无负弯矩峰值; (2)温度、收缩和徐变次内力均较小; (3)可以吸震消能。 ❖ 缺点:当采用悬臂施工时,塔柱处主梁需临时固结,

某斜拉桥合理成桥状态模拟分析

某斜拉桥合理成桥状态模拟分析

后, 为了进行斜拉桥分析( 或者悬索桥分析 ) , 必须将 分析建立在某一确定性的初始状态基础之上 ,然后 根据力学原理进行考虑几何非线性 的结构分析 。对
收稿 日期 : 2 0 1 2 — 0 6 — 0 1 ; 修 回日期 : 2 0 1 3 - - 0 7 — 0 4
作者简介 : 黄庆祥( 1 9 8 3 一 ) , 男, 山东 单县人 , 工程师 , 大 学本科 , 2 0 0 6年毕业 于重庆交通大学土木工程 ( 桥梁工程方 向)
摘要: 探讨 了斜拉桥成桥状态分析所涉及到的一些概念及分析 思路 , 采用大型通用有限元 程序 Mi d a s / C i v i l , 利 用零位移法对某斜拉桥进行合理成桥状 态分析 , 得到 了成桥状态的线形、 弯矩及斜 拉 索的 索力 。
关键 词 : 斜拉 桥 ; 合理 成桥 ; 状 态; Mi d a s / C i v i l
力混凝土双塔双索面半漂浮体系斜拉桥 ,索塔呈 H 形。 全桥长 5 6 7 I T I , 主跨跨径 3 1 0 m, 边跨均为 1 2 8 . 5 m , 边 中跨 比为 0 . 4 1 4 5 , 桥梁全宽 3 5 . 0 m, 其 中两侧锚 索区各 1 . 2 5 m 。主桥各塔均布置为 2 6 对索 , 在索塔 下横梁处和交接墩处对主梁设置竖向活动支座。 a ) 主桥面宽 3 5 . 0 m, 桥面横坡 2 %。
2. 7 m、 3 . 4 i 中力模拟 ; 永久配重和二
期横载采用梁单元均布荷载模拟 。
3 . 4 分 析方 法
模型采用 M i d a s / C i v i l 软件 的未知荷载系数法进 行该斜拉桥的合理成桥状态分析 ,状态描述选取主 梁与拉索相交节点的位移作为指标 ,即求得的合理 成桥 状态 这些 节点 的坐 标 与设计 给定 的值 应 在容 许 的误差范 围内。斜拉桥竖向上能够引起主梁节点位 移的作用主要包括两部分 : 一是主梁等 自重 ; 二是斜

斜拉桥PPT课件

斜拉桥PPT课件
2.永久防护:从拉索钢材下料到桥梁建成长期使用期间,应做永久防护。 目前一般采用PE套管法,即采用碳黑聚乙烯在塑料挤出机中旋转挤
包于拉索上而形成的热挤索套防护拉索方法。
四.斜拉索
PE套管法的优点: 1.在设计寿命期限内能抗循环应力 引起的疲劳。 2.在聚乙烯树脂中加碳黑能有效抵 抗紫外线的侵蚀。 3.与灌浆材料和钢材无化学反应。 4.在运输、装卸、制造、安装和灌 注时能抗损坏。 5.能防止水、空气和其他腐蚀物质 的入侵。
第1节段就位
二.索塔
钢塔柱间连接与定位
钢塔柱节段吊装
三.主梁
二、主梁的施工
主梁的施工可采用顶推法、平转法、 支架法、悬臂法等进行施工。
在考虑施工方法时,必须充分利用斜 拉桥结构本身的特点,在施工阶段就充分发挥 斜拉索的作用,尽量减轻施工荷载,使结构在 施工阶段和运营阶段的受力状态基本一致。
三.主梁
三.主梁
苏 通 大 桥 钢 箱 梁
三.主梁
施苏 工通
大 桥 钢 箱 梁
三.主梁
武汉白沙州大桥主桥钢箱梁拼装
四.斜拉索
一、拉索种类与构造
每 一 根 拉 索 都 包 括 钢 索 和 锚 具 两 大 部 分 。 钢 索 承 受 拉 力 , 设 置 在 钢 索 两 端 的 锚 具 用 来 传 递 拉 力 。 钢 索 作 为 斜 拉 索 的 主 体 主 要 有 如 下 几 种 形 式 。
三.主梁
云阳汤溪河桥位于四川省云阳县,是我国第一座试验 性斜拉桥。边跨采用支架现浇施工。
三.主梁
三.主梁
悬臂法:一般是先在塔柱区,现浇一段放置起吊设备的起始梁段。然后用起吊 设备从塔柱两侧对称安装节段,使悬臂不断伸长直至合拢。
南 京 二 桥 悬 臂 法

斜拉桥施工状态的确定方法

斜拉桥施工状态的确定方法

斜拉桥施工状态的确定方法一、概述通常,斜拉桥要实现最终的成桥状态豁要经过一系列的施工步骤。

根据主梁的施工方法不同有支架现浇法、支架拼装法、顶推法、悬臂现浇法、悬臂拼装法。

从斜拉索的张拉次数不同可分为一次张拉法和多次张拉法。

从悬僻现浇挂篮的支承方式不同可分为后支点挂篮和前支点挂篮。

支架现浇法或支架拼装法的主梁是在支架上进行现浇或拼装的,一般为落地支架。

通常用于规模较小的斜拉桥。

顶推法是指主梁采用顶推法施工的情况,一般也只适用于较小规模的斜拉桥。

悬臂现浇法是利用挂篮进行主梁的施工,通常相应梁段的斜拉索必须同步施工,对于采用后支点挂篮施工的情况,一个标准梁段的施工工序通常为:①挂篮前移并立模定位;②安装钢筋等、浇注混凝土;③混凝土待强后,张拉梁内预应力;④挂对应梁段的斜拉索并进行张拉。

对于采用前支点挂篮施工的情况,一个标准梁段的施工工序通常为:①挂篮前移并立模定位;②挂当前梁段斜拉索与挂篮前端相连并进行第一次张拉;③安装钢筋等、浇注部分混凝土;④当前梁段斜拉索进行第二次张拉;⑤浇完梁段混凝土;⑥混凝土待强后张拉梁内预应力;⑦降挂篮,当前梁段斜拉索进行第三次张拉。

悬臂拼装法是利用浮吊或桥面吊机将预制好的梁段逐段拼装的,通常斜拉索也必须同步安装并张拉。

悬臂施工法(现浇或拼装)施工达到最大悬臂后,要进行合龙段施工,如标准的三跨双塔斜拉桥,一般分别以两个主塔为中心进行双悬臂施工,达到最大悬臂后先合龙边跨,然后再进行中跨合龙施工,各跨的合龙施工是斜拉桥施工中极其关键的环节,通常的合龙程序为:①安装合龙段混凝土施工的吊架;②配平衡重施加在合龙口两侧;③利用定位装置嵌定合龙口;④安装钢筋等、浇注合龙段混凝土并逐级去掉合龙口两侧的平衡重;⑤张拉合龙预应力束。

如果平衡重与合龙梁段的重盆相等,则合龙口嵌定装置基本上不承受由合龙段混凝土浇注引起的内力。

合龙程序还有一个核心问题就是平衡重施加的时间。

这里是在合龙口嵌定之前,施加在主梁最大悬臂状态下,如果在合龙门嵌定之后施加,则由于嵌定装置使主梁成为了连续结构,其受力情况完全不一样,并且,合龙口嵌定装置需承受由平衡重引起的很大的内力,对成桥状态的主梁弯矩影响很大,后者与前者相比,跨中区域产生较大的恒载正弯矩,与该区域的控制弯矩同号,是不利的。

斜拉桥

斜拉桥

斜拉桥的变形
(a)三塔四跨式斜拉桥的变形
(b) 双塔三跨式斜拉桥的变形
44
第一章 总体布置
第二节
孔跨布局
四、辅助墩和边引跨
图4-1-6
边引跨和辅助墩
a) 设引跨 b) 设辅助墩 活载往往在边跨梁端附近区域产生很大的正弯矩,并导致 梁体转动,伸缩缝易受损,在此情况下,可以通过加长边梁以 形成引跨或设置辅助墩的方法予以解决,同时,设辅助墩可以 减小拉索应力变幅,提高主跨刚度,又能缓和端支点负反力, 是大跨度斜拉桥中常用的方法。 另外,设置辅助墩也便于斜拉桥的悬臂施工,即双悬臂施 工到辅助墩处的时候就相当于单悬臂施工,其摆动小,较安全。
27
第一章 总体布置
第一节
概述
重庆石门桥:位于重庆市沙坪坝,跨越嘉陵江,全长716m。 主桥为200+230(m)单索面独塔预应力混凝土斜拉桥
28
第一章 总体布置
第一节
概述
鹿特丹的超现代伊拉斯缪斯大桥
29
第一章 总体布置
第一节
概述
长沙洪山庙大桥
30
第一章 总体布置
第一节
概述
海参崴俄罗斯岛跨海大桥,中跨跨度长度— —1104米,为世界纪录,牵索长——580米。 距水平面高度 ——70米。桥墩高度——324 米。主跨1104米的俄罗斯岛大桥(Russky Island Bridge)于2012年7月2日在海参崴通 车投入使用,成为全世界第三座跨度超过千 米的斜拉桥,也超越国内主跨1088米的苏通 大桥(Sutong Bridge)和香港主跨1018米的 昂船洲大桥(Stonecutters Bridge)成为全球 主跨最长的斜拉桥。
6
第一章 总体布置
第一节

斜拉桥结构成桥调索专题

斜拉桥结构成桥调索专题

3、零位移法演示
如何利用civil导出影响矩阵?
双塔三跨结构零位移调索
边中跨比较小结构
4、最小弯曲能法演示
(1)调整拉索轴向刚度—放大104-105次; (2)减小主梁主塔抗弯—缩小104-105次; tips:
1)第二种方法效果更好些,得到索力更均匀; 2)刚度减小不能无穷小,容易出现计算不稳定;
操作演示
斜拉桥实例-操作演示
Civil索专题—斜拉桥成桥调索专题
主讲人: 钱 江
1、什么是合理成桥状态?
关键点:塔直梁平
如何描述?
(1)塔要直—主塔尽量承受轴向压力;
(2)梁要平—主梁尽量弯矩比较均匀;
(3)索力均匀—短索索力小,长索索力大;
(4)支座反力—支座不能出现负反力;
2、常用调索方法?
ห้องสมุดไป่ตู้
1)弹性支撑连续梁法; 2)零位移法; 3)最小弯曲能法(最小弯矩法); 4)影响矩阵法;

斜拉桥索力优化

斜拉桥索力优化
斜拉桥索力优化
学习笔记 2009.11
合理的成桥状态
• 斜拉桥的合理成桥状态要满足: “ 索力分布,均匀、主塔弯矩不能太大、主梁应 力要控制在其“可行域”范围内、边墩的支座反 力在恒载下要有足够的压力储备, 其中, 主梁的应 力最为关键。”
• 索力优化目标: “塔直梁平,拉索索力均匀,施 工过程应力安全性,主梁线形,成桥后主梁设计 验算的宽容度”
• 南宁桥:三维钢拱肋斜拉扣挂施工
调索软件
• 索单元与非线性问题 • 等效桁架单元(弹性模量折减) • 悬链线索单元 • Midas软件的非线性功能:索的分析(杆单
元,悬链线索单元),Pdelta效应,大位移
调索软件
• 桥梁博士 • V30以上版本调索工具
• 宜宾桥: • 双塔PC箱梁桥,索力普调
• 影响矩阵
成桥索力计算的几个典型方法
• 指定受力状态的索力优化法, 以刚性支承梁法和零 位移法为代表。刚性支承连续梁法将斜拉桥主梁 在恒载作用下弯曲内力呈刚性支承连续梁状态作 为优化目标。零位移法以结构在恒载作用下梁的 节点位移为零作为优化目标。
• 典型的斜拉索索力的无约束优化法是弯曲能量最 小法和弯矩最小法, 弯曲能量最小法是用结构的弯 曲应变能作为目标函数;弯矩最小法是以弯矩平方 和作为目标函数。
• 主梁设计是PC斜拉桥索力优化难点和关键。
悬链线索单元
• 主要优点 ・精确计入垂度影响,能模拟各种极端情况; ・分析模型的自由度个数少; ・通过仅仅给定无应力长度和端点坐标即可确定 整根索的几何状态和内力状态; ・简化索结构的找型分析; ・无应力长度确定后,任意取一个初始构形即可 方便地找出结构的恒载状态、施工状态和使用状 态下的构形,而固定不变的无应力长度又保持了 结构的连续性和计算精度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档