2019年重庆中考数学考前测试卷2(2018重庆b卷)
2019年重庆市中考数学试卷(B卷)含答案
重庆市党员“学习强国”APP 注册人数约1180 000 ,参学覆盖率达 71 % ,稳居全
答
国前列.将数据1180 000 用科学记数法表示为
.
15.(4 分)一枚质地均匀的骰子,骰子的六个面上分别刻有 1 到 6 的点数.连续掷两次
骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的 2 倍的概率
x1, y1 和(x2,y2)在该函数图象上,且 x2>x1>3 ,比较 y1 , y2 的大小.
24.(10 分)某菜市场有 2.5 平方米和 4 平方米两种摊位,2.5 平方米的摊位数是 4 平方 米摊位数的 2 倍.管理单位每月底按每平方米 20 元收取当月管理费,该菜市场全部 摊位都有商户经营且各摊位均按时全额缴纳管理费.
C.如果两个三角形相似,相似比为 4 : 9 ,那么这两个三角形的面积比为 2 : 3
D.如果两个三角形相似,相似比为 4 : 9 ,那么这两个三角形的面积比为 4 : 9 4.(4 分)如图,AB 是 O 的直径,AC 是 O 的切线,A 为切点,若 C=40 ,则 B
无
的度数为
()
效
数学试卷 第 1页(共 22页)
卷
A.8
B. 4 2
C. 2 2 4
D. 3 2 2
二、填空题:(本大题 6 个小题,每小题 4 分,共 24 分)请将每小题的答案直接填在答
上
题卡中对应的横线上。
13.(4 分)计算: (
3
1)0
1 2
1
.
14.(4 分)2019 年 1 月 1 日,“学习强国”平台全国上线,截至 2019 年 3 月 17 日止,
2019年重庆市中考数学试卷(B卷)(解析版)
2019年重庆市中考数学试卷(B卷)一、选择题(本大题共12小题,共48.0分)1.5的绝对值是()A. 5B. −5C. 15D. −152.如图是一个由5个相同正方体组成的立体图形,它的主视图是()A. B. C. D.3.下列命题是真命题的是()A. 如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B. 如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C. 如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D. 如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:94.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为()A. 60∘B. 50∘C. 40∘D. 30∘5.抛物线y=-3x2+6x+2的对称轴是()A. 直线x=2B. 直线x=−2C. 直线x=1D. 直线x=−16.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A. 13B. 14C. 15D. 167.估计√5+√2×√10的值应在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间8.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x的值是-8,则输出y的值是()A. 5B. 10C. 19D. 219.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA=45.若反比例函数y=kx(k>0,x>0)经过点C,则k的值等于()A. 10B. 24C. 48D. 5010.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A. 65.8米B. 71.8米C. 73.8米D. 119.8米11.若数a使关于x的不等式组{x3−2≤14(x−7),6x−2a>5(1−x)有且仅有三个整数解,且使关于y的分式方程1−2yy−1-a1−y=-3的解为正数,则所有满足条件的整数a的值之和是()A. −3B. −2C. −1D. 112.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为()A.8B.4√2C.2√2+4D. 3√2+2二、填空题(本大题共6小题,共24.0分)13.计算:(√3-1)0+(12)-1=______.14.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为______.15.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是______.16.如图,四边形ABCD是矩形,AB=4,AD=2√2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是______.17.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小明家到学校的路程为______米.18.某磨具厂共有六个生产车间,第一、二、三、四车间毎天生产相同数量的产品,第五、六车间每天生产的产品数量分別是第一车间每天生产的产品数量的34和83.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是______. 三、计算题(本大题共1小题,共10.0分) 19. 计算:(1)(a +b )2+a (a -2b );(2)m -1+2m−6m 2−9+2m+2m+3.四、解答题(本大题共7小题,共68.0分)20. 如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .(1)若∠C =42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F .求证:AE =FE .21. 为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下: 活动前被测查学生视力数据:4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.95.0 5.0 5.1 活动后被测查学生视力数据:4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.95.0 5.0 5.1 5.1 活动后被测查学生视力频数分布表分组 频数 4.0≤x <4.2 1 4.2≤x <4.4 2 4.4≤x <4.6 b 4.6≤x <4.8 7 4.8≤x <5.0 12 5.0≤x <5.24根据以上信息回答下列问题:(1)填空:a =______,b =______,活动前被测查学生视力样本数据的中位数是______,活动后被测查学生视力样本数据的众数是______;(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少? (3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.22. 在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数-“纯数”.定义:对于自然数n ,在通过列竖式进行n +(n +1)+(n +2)的运算时各位都不产生进位现象,则称这个自然数n 为“纯数”.例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位. (1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”的个数,并说明理由.23. 函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y =-2|x |的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y =-2|x |+2和y =-2|x +2|的图象如图所示.x … -3 -2 -1 0 1 2 3 … y…-6-4-2-2-4-6…(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数y =-2|x +2|的对称轴.(2)探索思考:平移函数y =-2|x |的图象可以得到函数y =-2|x |+2和y =-2|x +2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y =-2|x -3|+1的图象.若点(x 1,y 1)和(x 2,y 2)在该函数图象上,且x 2>x 1>3,比较y 1,y 2的大小.24. 某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a %,毎个摊位的管理费将会减少310a %;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a %,每个摊位的管理费将会减少14a %.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少518a %,求a 的值.25. 在▱ABCD 中,BE 平分∠ABC 交AD 于点E .(1)如图1,若∠D =30°,AB =√6,求△ABE 的面积;(2)如图2,过点A 作AF ⊥DC ,交DC 的延长线于点F ,分别交BE ,BC 于点G ,H ,且AB =AF .求证:ED -AG =FC .26. 在平面直角坐标系中,抛物线y =-√34x 2+√32x +2√3与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q .(1)如图1,连接AC ,BC .若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF ⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G .点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK .当△PEF 的周长最大时,求PH +HK +√32KG 的最小值及点H 的坐标.(2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线顶点记为D ′,N 为直线DQ 上一点,连接点D ′,C ,N ,△D ′CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.答案和解析1.【答案】A【解析】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A.根据绝对值的意义:数轴上一个数所对应的点与原点(O点)的距离叫做该数的绝对值,绝对值只能为非负数;即可得解.本题考查了绝对值,解决本题的关键是一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.【答案】D【解析】解:从正面看易得第一层有4个正方形,第二层有一个正方形,如图所示:.故选:D.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【答案】B【解析】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选:B.根据相似三角形的性质分别对每一项进行分析即可.此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.4.【答案】B【解析】解:∵AC是⊙O的切线,∴AB⊥AC,且∠C=40°,∴∠ABC=50°,故选:B.由题意可得AB⊥AC,根据直角三角形两锐角互余可求∠ABC=50°.本题考查了切线的性质,直角三角形两锐角互余,熟练运用切线的性质是本题的关键.5.【答案】C【解析】解:∵y=-3x2+6x+2=-3(x-1)2+5,∴抛物线顶点坐标为(1,5),对称轴为x=1.故选:C.将抛物线的一般式配方成为顶点式,可确定顶点坐标及对称轴.本题考查了二次函数的性质.抛物线y=a(x-h)2+k的顶点坐标为(h,k),对称轴为x=h.6.【答案】C【解析】解:设要答对x道.10x+(-5)×(20-x)>120,10x-100+5x>120,15x>220,解得:x >,根据x必须为整数,故x取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选:C.根据竞赛得分=10×答对的题数+(-5)×未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.此题主要考查了一元一次不等式的应用,得到得分的关系式是解决本题的关键.7.【答案】B【解析】解:=+2=3,∵3=,6<<7,故选:B.化简原式等于3,因为3=,所以<<,即可求解;本题考查无理数的大小;能够将给定的无理数锁定在相邻的两个整数之间是解题的关键.8.【答案】C【解析】解:当x=7时,可得,可得:b=3,当x=-8时,可得:y=-2×(-8)+3=19,故选:C.把x=7与x=-8代入程序中计算,根据y值相等即可求出b的值.此题考查了函数值,弄清程序中的关系式和理解自变量取值范围是解本题的关键.9.【答案】C【解析】解:如图,过点C作CE⊥OA于点E,∵菱形OABC的边OA在x轴上,点A(10,0),∴OC=OA=10,∵sin∠COA==.∴CE=8,∴OE==6∴点C坐标(6,8)∵若反比例函数y=(k>0,x>0)经过点C,∴k=6×8=48故选:C.由菱形的性质和锐角三角函数可求点C(6,8),将点C坐标代入解析式可求k的值.本题考查了反比例函数性质,反比例函数图象上点的坐标特征,菱形的性质,锐角三角函数,关键是求出点C坐标.10.【答案】B【解析】解:过点E作EM⊥AB与点M,延长ED交BC于G,∵斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=52米,∴设DG=x,则CG=2.4x.在Rt△CDG中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20米,CG=48米,∴EG=20+0.8=20.8米,BG=52+48=100米.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM是矩形,∴EM=BG=100米,BM=EG=20.8米.在Rt△AEM中,∵∠AEM=27°,∴AM=EM•tan27°≈100×0.51=51米,∴AB=AM+BM=51+20.8=71.8米.故选:B.过点E作EM⊥AB与点M,根据斜坡CD的坡度(或坡比)i=1:2.4可设CD=x,则CG=2.4x,利用勾股定理求出x的值,进而可得出CG与DG的长,故可得出EG的长.由矩形的判定定理得出四边形EGBM是矩形,故可得出EM=BG,BM=EG,再由锐角三角函数的定义求出AM的长,进而可得出结论.本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11.【答案】A【解析】解:由关于x的不等式组得∵有且仅有三个整数解,∴<x≤3,x=1,2,或3.∴,∴-<a<3;由关于y 的分式方程-=-3得1-2y+a=-3(y-1),∴y=2-a,∵解为正数,且y=1为增根,∴a<2,且a≠1,∴-<a<2,且a≠1,∴所有满足条件的整数a的值为:-2,-1,0,其和为-3.故选:A.先解不等式组根据其有三个整数解,得a的一个范围;再解关于y的分式方程-=-3,根据其解为正数,并考虑增根的情况,再得a的一个范围,两个范围综合考虑,则所有满足条件的整数a的值可求,从而得其和.本题属于含参一元一次不等式组和含参分式方程的综合计算题,比较容易错,属于易错题.12.【答案】D【解析】解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°-∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB-∠ADG=∠EDG-∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°-∠AED-∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB中,BE===2,∴GE=BE-BG=2-1,在Rt△DGE中,DG=GE=2-,∴EF=DE=2-,在Rt△DEF中,DF=DE=2-1,∴四边形DFEG的周长为:GD+EF+GE+DF=2(2-)+2(2-1)=3+2,故选:D.先证△BDG≌△ADE,得出AE=BG=1,再证△DGE与△EDF是等腰直角三角形,在直角△AEB中利用勾股定理求出BE的长,进一步求出GE的长,可通过解直角三角形分别求出GD,DE,EF,DF的长,即可求出四边形DFEG的周长.本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够灵活运用等腰直角三角形的判定与性质.13.【答案】3【解析】解:(-1)0+()-1=1+2=3;故答案为3;(-1)0=1,()-1=2,即可求解;本题考查实数的运算;熟练掌握负指数幂的运算,零指数幂的运算是解题的关键.14.【答案】1.18×106【解析】解:1180000用科学记数法表示为:1.18×106,故答案为:1.18×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.15.【答案】112【解析】解:列表得:1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12由表知共有36种等可能结果,其中第二次出现的点数是第一次出现的点数的2倍的有3种结果,所以第二次出现的点数是第一次出现的点数的2倍的概率为=,故答案为.列举出所有情况,看第二次出现的点数是第一次出现的点数的2倍的情况占总情况的多少即可.本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.16.【答案】8√2-8【解析】解:连接AE,∵∠ADE=90°,AE=AB=4,AD=2,∴sin∠AED=,∴∠AED=45°,∴∠EAD=45°,∠EAB=45°,∴AD=DE=2,∴阴影部分的面积是:(4×-)+()=8-8,故答案为:8-8.根据题意可以求得∠BAE和∠DAE的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与△ADE的面积之差的和,本题得以解决.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】2080【解析】解:设小明原速度为x(米/分钟),则拿到书后的速度为1.25x(米/分钟),则家校距离为11x+(23-11)×1.25x=26x.设爸爸行进速度为y(米/分钟),由题意及图形得:.解得:x=80,y=176.∴小明家到学校的路程为:80×26=2080(米).故答案为:2080设小明原速度为x米/分钟,则拿到书后的速度为1.25x米/分钟,家校距离为11x+(23-11)×1.25x=26x.设爸爸行进速度为y米/分钟,由题意及图形得:,解得:x=80,y=176.据此即可解答.本题考查一次函数的应用、速度、路程、时间之间的关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】18:19【解析】解:设第一、二、三、四车间毎天生产相同数量的产品为x个,每个车间原有成品m个,甲组检验员a人,乙组检验员b人,每个检验员的检验速度为c个/天,则第五、六车间每天生产的产品数量分別是x和x,由题意得,,②×2-③得,m=3x,把m=3x 分别代入①得,9x=2ac , 把m=3x 分别代入②得,x=2bc ,则a :b=18:19,甲、乙两组检验员的人数之比是18:19, 故答案为:18:19.设第一、二、三、四车间毎天生产相同数量的产品为x 个,每个车间原有成品m 个,甲组检验员a 人,乙组检验员b 人,每个检验员的检验速度为c 个/天,根据题意列出三元一次方程组,解方程组得到答案.本题考查的是三元一次方程组的应用,根据题意正确列出三元一次方程组、正确解出方程组是解题的关键.19.【答案】解:(1)(a +b )2+a (a -2b );=a 2+2ab +b 2+a 2-2ab ,=2a 2+b 2;(2)m -1+2m−6m 2−9+2m+2m+3. =(m−1)(m+3)m+3+2m+3+2m+2m+3,=m 2+2m−3+2+2m+2m+3,=m 2+4m+1m+3.【解析】(1)根据完全平方公式和单项式乘以多项式将原式展开,然后再合并同类项即可解答本题; (2)先通分,再将分子相加可解答本题.本题考查分式的混合运算、整式的混合运算,解题的关键是明确它们各自的计算方法. 20.【答案】解:(1)∵AB =AC ,AD ⊥BC 于点D ,∴∠BAD =∠CAD ,∠ADC =90°, 又∠C =42°,∴∠BAD =∠CAD =90°-42°=48°;(2)∵AB =AC ,AD ⊥BC 于点D , ∴∠BAD =∠CAD , ∵EF ∥AC , ∴∠F =∠CAD ,∴∠BAD =∠F , ∴AE =FE . 【解析】(1)根据等腰三角形的性质得到∠BAD=∠CAD ,根据三角形的内角和即可得到∠BAD=∠CAD=90°-42°=48°; (2)根据等腰三角形的性质得到∠BAD=∠CAD 根据平行线的性质得到∠F=∠CAD ,等量代换得到∠BAD=∠F ,于是得到结论.本题考查了等腰三角形的性质,平行线的性质,正确的识别图形是解题的关键.21.【答案】5 4 4.45 4.8 【解析】解:(1)由已知数据知a=5,b=4,活动前被测查学生视力样本数据的中位数是=4.45,活动后被测查学生视力样本数据的众数是4.8, 故答案为:5,4,4.45,4.8;(2)估计七年级600名学生活动后视力达标的人数有600×=320(人);(3)活动开展前视力在4.8及以上的有11人,活动开展后视力在4.8及以上的有16人, 视力达标人数有一定的提升(答案不唯一,合理即可).(1)根据已知数据可得a 、b 的值,再根据中位数和众数的概念求解可得; (2)用总人数乘以对应部分人数所占比例;(3)可从4.8及以上人数的变化求解可得(答案不唯一).本题考查频数直方图、用样本估计总体的思想、统计量的选择等知识,解题的关键是搞清楚频数、中位数和众数等概念,属于基础题,中考常考题型.22.【答案】解:(1)显然1949至1999都不是“纯数”,因为在通过列竖式进行n +(n +1)+(n +2)的运算时要产生进位.在2000至2019之间的数,只有个位不超过2时,才符合“纯数”的定义. 所以所求“纯数”为2000,2001,2002,2010,2011,2012;(2)不大于100的“纯数”的个数有13个,理由如下:因为个位不超过2,十位不超过3时,才符合“纯数”的定义,所以不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,31,32,100.共13个. 【解析】(1)根据“纯数”的概念,从2000至2019之间找出“纯数”;(2)根据“纯数”的概念得到不大于100的数个位不超过2,十位不超过3时,才符合“纯数”的定义解答.本题考查的是整式的加减、有理数的加法、数字的变化,正确理解“纯数”的概念是解题的关键.23.【答案】解:(1)A (0,2),B (-2,0),函数y =-2|x +2|的对称轴为x =-2;(2)将函数y =-2|x |的图象向上平移2个单位得到函数y =-2|x |+2的图象; 将函数y =-2|x |的图象向左平移2个单位得到函数y =-2|x +2|的图象;(3)将函数y =-2|x |的图象向上平移1个单位,再向右平移3个单位得到函数y =-2|x -3|+1的图象. 所画图象如图所示,当x 2>x 1>3时,y 1>y 2.【解析】(1)根据图形即可得到结论;(2)根据函数图形平移的规律即可得到结论;(3)根据函数关系式可知将函数y=-2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=-2|x-3|+1的图象.根据函数的性质即可得到结论.本题考查了一次函数与几何变换,一次函数的图象,一次函数的性质,平移的性质,正确的作出图形是解题的关键.24.【答案】解:(1)设该菜市场共有x 个4平方米的摊位,则有2x 个2.5平方米的摊位,依题意,得:20×4x +20×2.5×2x =4500, 解得:x =25.答:该菜市场共有25个4平方米的摊位.(2)由(1)可知:5月份参加活动一的2.5平方米摊位的个数为25×2×40%=20(个),5月份参加活动一的4平方米摊位的个数为25×20%=5(个). 依题意,得:20(1+2a %)×20× 2.5×310a %+5(1+6a %)×20×4×14a %=[20(1+2a %)×20×2.5+5(1+6a %)×20×4]×518a %, 整理,得:a 2-50a =0,解得:a 1=0(舍去),a 2=50. 答:a 的值为50. 【解析】(1)设该菜市场共有x 个4平方米的摊位,则有2x 个2.5平方米的摊位,根据菜市场毎月可收取管理费4500元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)由(1)可得出:5月份参加活动一的2.5平方米摊位及4平方米摊位的个数,再由参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少a%,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程. 25.【答案】(1)解:作BO ⊥AD 于O ,如图1所示:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB =CD ,∠ABC =∠D =30°, ∴∠AEB =∠CBE ,∠BAO =∠D =30°,∴BQ =12AB =√62,∵BE 平分∠ABC ,∴∠ABE =∠CBE , ∴∠ABE =∠AEB , ∴AE =AB =√6,∴△ABE 的面积=12AE ×BO =12×√6×√62=32;(2)证明:作AQ ⊥BE 交DF 的延长线于P ,垂足为Q ,连接PB 、PE ,如图2所示: ∵AB =AE ,AQ ⊥BE ,∴∠ABE =∠AEB ,BQ =EQ , ∴PB =PE ,∴∠PBE =∠PEB , ∴∠ABP =∠AEP , ∵AB ∥CD ,AF ⊥CD , ∴AF ⊥AB , ∴∠BAF =90°, ∵AQ ⊥BE ,∴∠ABG =∠FAP ,在△ABG 和△FAP 中,{∠ABG =∠FAPAB =AF∠BAG =∠AFP =90°,∴△ABG ≌△AFP (ASA ), ∴AG =FP ,∵AB ∥CD ,AD ∥BC ,∴∠ABP +∠BPC =180°,∠BCP =∠D , ∵∠AEP +∠PED =180°, ∴∠BPC =∠PED ,在△BPC 和△PED 中,{∠BCP =∠D∠BPC =∠PEDPB =PE ,∴△BPC ≌△PED (AAS ), ∴PC =ED ,∴ED -AG =PC -AG =PC -FP =FC . 【解析】(1)作BO ⊥AD 于O ,由平行四边形的性质得出∠BAO=∠D=30°,由直角三角形的性质得出BQ=AB=,证出∠ABE=∠AEB ,得出AE=AB=,由三角形面积公式即可得出结果;(2)作AQ ⊥BE 交DF 的延长线于P ,垂足为Q ,连接PB 、PE ,证明△ABG ≌△AFP 得出AG=FP ,再证明△BPC ≌△PED 得出PC=ED ,即可得出结论.本题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角三角形的性质、线段垂直平分线的性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.26.【答案】解:(1)如图1中,对于抛物线y =-√34x 2+√32x +2√3,令x =0,得到y =2√3,令y =0,得到-√34x 2+√32x +2√3=0,解得x =-2或4,∴C (0,2√3),A (-2,0),B (4,0),抛物线顶点D 坐标(1,9√34),∵PF ⊥BC ,∴∠PFE =∠BOC =90°, ∵PE ∥OC ,∴∠PEF =∠BCO , ∴△PEF ∽△BCO ,∴当PE 最大时,△PEF 的周长最大, ∵B (4,0),C (0,2√3),∴直线BC 的解析式为y =-√32x +2√3,设P (m ,-√34m 2+√32m +2√3),则E (m ,-√32m +2√3),∴PE =-√34m 2+√32m +2√3-(-√32m +2√3)=-√34m 2+√3m ,∴当m =2时,PE 有最大值,∴P (2,2√3),如图,将直线GO 绕点G 逆时针旋转60°,得到直线l ,作PM ⊥直线l 于M ,KM ′⊥直线l 于M ′,则PH +HK +√32KG =PH +HK +KM ′≥PM ,∵P (2,2√3), ∴∠POB =60°, ∵∠MOG =30°,∴∠MOG +∠BOC +∠POB =180°, ∴P ,O ,M 共线,可得PM =10,∴PH +HK +√32KG 的最小值为10,此时H (1,√3).(2)∵A (-2,0),C (0,2√3), ∴直线AC 的解析式为y =√3x +2√3,∵DD ′∥AC ,D (1,9√34),∴直线DD ′的解析式为y =√3x +5√34, 设D ′(m ,√3m +5√34),则平移后抛物线的解析式为y 1=-√34(x -m )2+√3m +5√34, 将(0,0)代入可得m =5或-1(舍弃),∴D ′(5,25√34),设N (1,n ),∵C (0,2√3),D ′(5,25√34), ∴NC 2=1+(n -2√3)2,D ′C 2=52+(25√34-2√3)2,D ′N 2=(5-1)2+(25√34-n )2,①当NC =CD ′时,1+(n -2√3)2=52+(25√34-2√3)2,解得:n =8√3±3√1394②当NC =D ′N 时,1+(n -2√3)2=(5-1)2+(25√34-n )2,解得:n=641√3136③当D′C=D′N时,52+(25√34-2√3)2=(5-1)2+(25√34-n )2,解得:n=25√3±√10114,综上所述,满足条件的点N的坐标为(1,8√3+3√1394)或(1,8√3−3√1394)或(1,641√3136)或(1,25√3+√10114)或(1,25√3−√10114).【解析】(1)首先证明△PEF∽△BCO,推出当PE最大时,△PEF的周长最大,构建二次函数,求出PE最大时,点P的坐标,将直线GO绕点G逆时针旋转60°,得到直线l,作PM⊥直线l于M,KM′⊥直线l于M′,则PH+HK+KG=PH+HK+KM′≥PM,求出PM即可解决问题.(2)首先利用待定系数法求出点D′坐标,设N(1,n),∵C(0,2),D′(5,),则NC2=1+(n-2)2,D′C2=52+(-2)2,D′N2=(5-1)2+(-n)2,分三种情形分别构建方程求出n的值即可解决问题.本题属于二次函数综合题,考查了一次函数的性质,二次函数的性质,垂线段最短,相似三角形的判定和性质,一元二次方程等知识,解题的关键是,学会用转化的思想思考问题,把最短问题转化为垂线段最短,学会利用参数构建方程解决问题,属于中考压轴题.第11页,共11页。
2019年重庆市中考数学试卷(B卷)(后附答案)
2019年重庆市中考数学试卷(B卷)题号一二三四总分得分一、选择题(本大题共12小题,共48.0分)1. 5 的绝对值是()A. 5B.C.D.2. 如图是一个由 5 个相同正方体组成的立体图形,它的主视图是()A. B.C. D.3. 下列命题是真命题的是()A. 如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B. 如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C. 如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D. 如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:94. 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C=40 °,则∠B 的度数为()A. B. C. D.5. 抛物线y=-3 x2+6 x+2 的对称轴是()A. 直线B. 直线C. 直线D. 直线6. 某次知识竞赛共有20 题,答对一题得10 分,答错或不答扣 5 分,小华得分要超过120 分,他至少要答对的题的个数为()A. 13B. 14C. 15D. 167. 估计的值应在()A. 5 和6 之间B. 6 和7 之间C. 7 和8 之间D. 8 和9 之间8. 根据如图所示的程序计算函数y 的值,若输入x的值是7,则输出y 的值是-2,若输入x 的值是-8,则输出y 的值是()A. 5B. 10C. 19D. 219. 如图,在平面直角坐标系中,菱形OABC 的边O A 在x轴上,点A(10,0),sin∠COA= .若反比例函数y= (k>0,x>0)经过点C,则k 的值等于()A. 10B. 24C. 48D. 5010. 如图,AB 是垂直于水平面的建筑物.为测量A B 的高度,小红从建筑物底端B点出发,沿水平方向行走了52 米到达点C,然后沿斜坡CD 前进,到达坡顶D点处,DC =BC.在点 D 处放置测角仪,测角仪支架DE高度为0.8 米,在 E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A,B,C,D,E 在同一平面内).斜坡CD 的坡度(或坡比)i=1:2.4,那么建筑物AB 的高度约为()(参考数据sin27 °≈0.,45cos27°≈0.8,9tan27°≈0.)51A. 米B. 米C. 米D. 米11. 若数a 使关于x 的不等式组,有且仅有三个整数解,且使关于y >的分式方程- =-3 的解为正数,则所有满足条件的整数 a 的值之和是()A. B. C. D. 112. 如图,在△ABC 中,∠ABC=45 °,AB=3,AD⊥BC 于点D,BE⊥AC 于点E,AE=1.连接D E,将△AED 沿直线AE翻折至△ABC 所在的平面内,得△AEF,连接D F .过点D 作DG ⊥DE 交BE 于点G.则四边形DFEG 的周长为()A. 8B.C.D.二、填空题(本大题共6小题,共24.0分)13. 计算:(-1)0+()-1=______.14. 2019 年1 月1 日,“学习强国”平台全国上线,截至2019 年3 月17 日止,重庆市党员“学习强国”A PP 注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000 用科学记数法表示为______.15. 一枚质地均匀的骰子,骰子的六个面上分别刻有 1 到6 的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的 2 倍的概率是______.16. 如图,四边形ABCD 是矩形,AB=4,AD =2 ,以点 A 为圆心,AB 长为半径画弧,交CD 于点E,交AD 的延长线于点F,则图中阴影部分的面积是______.17.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小明家到学校的路程为______米.18.某磨具厂共有六个生产车间,第一、二、三、四车间毎天生产相同数量的产品,第五、六车间每天生产的产品数量分別是第一车间每天生产的产品数量的和.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是______.三、计算题(本大题共1小题,共10.0分)19.计算:(1)(a+b)2+a(a-2b);(2)m-1++.四、解答题(本大题共7小题,共68.0分)20.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.21. 为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查两次相关数据记录如下:了30名学生的视力,活动后再次测查这部分学生的视力.活动前被测查学生视力数据:4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.64.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.95.0 5.0 5.1活动后被测查学生视力数据:4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.84.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.95.0 5.0 5.1 5.1活动后被测查学生视力频数分布表分组频数4.0 ≤x<4.2 14.2 ≤x<4.4 24.4 ≤x<4.6 b4.6 ≤x<4.8 74.8 ≤x<5.0 125.0 ≤x<5.2 4根据以上信息回答下列问题:______,是(1)填空:a=______,b=______,活动前被测查学生视力样本数据的中位数______;活动后被测查学生视力样本数据的众数是4.8 及以上为达标,估计七年级600 名学生活动后视力达标的人数有(2)若视力在多少?.(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果22.在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数-“纯数”.定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产“纯数”.生进位现象,则称这个自然数n为32+33+34在列竖式计算时各位都不产生进位现象;23不例如:32是“纯数”,因为23+24+25在列竖式计算时个位产生了进位.是“纯数”,因为(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”的个数,并说明理由.23.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=-2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y=-2|x|+2和y=-2|x+2|的图象如图所示.x⋯-3-2-10123⋯y⋯-6-4-20-2-4-6⋯(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=-2|x+2|的对称轴.(2)探索思考:平移函数y=-2|x|的图象可以得到函数y=-2|x|+2和y=-2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=-2|x-3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.24.某菜市场有 2.5平方米和4平方米两种摊位, 2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的 2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,毎个摊位的管理费将会减少a%;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少a%.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少a%,求a的值.25.在?ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED-AG=FC.226.在平面直角坐标系中,抛物线y=-x+x+2与x轴交于A,B两点(点A在点B 左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,BC.若点P为直线BC上方抛物线上一动点,过点P作PE∥y轴交BC于点E,作PF⊥BC于点F,过点B作BG∥AC交y轴于点G.点H,第6页,共24页(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D′,N为直线DQ上一点,连接点D′,C,N,△D′CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由.答案和解析1.【答案】 A【解析】解:在数轴上,数5所表示的点到原点0 的距离是5;故选:A.根据绝对值的意义:数轴上一个数所对应的点与原点(O 点)的距离叫做该数的绝对值,绝对值只能为非负数;即可得解.本题考查了绝对值,解决本题的关键是一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0 的绝对值是0.2.【答案】 D【解析】解:从正面看易得第一层有4个正方形,第二层有一个正方形,如图所示:.故选:D.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【答案】 B【解析】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选:B.根据相似三角形的性质分别对每一项进行分析即可.此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.4.【答案】B【解析】解:∵AC 是⊙O 的切线,∴AB⊥AC,且∠C=40°,∴∠ABC=50°,故选:B.由题意可得AB⊥AC,根据直角三角形两锐角互余可求∠ABC=5°0.本题考查了切线的性质,直角三角形两锐角互余,熟练运用切线的性质是本题的关键.5.【答案】 C【解析】解:∵y=-3x2+6x+2=-3(x-1)2+5,∴抛物线顶点坐标为(1,5),对称轴为x=1.故选:C.将抛物线的一般式配方成为顶点式,可确定顶点坐标及对称轴.本题考查了二次函数的性质.抛物线y=a(x-h)2+k 的顶点坐标为(h,k),对称轴为x=h.6.【答案】 C【解析】解:设要答对x 道.10x+(-5)×(20-x)>120,10x-100+5x>120,15x>220,解得:x>,根据x 必须为整数,故x 取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选:C.根据竞赛得分=10×答对的题数+(-5)×未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.此题主要考查了一元一次不等式的应用,得到得分的关系式是解决本题的关键.7.【答案】 B【解析】解:= +2 =3 ,∵3 = ,6<<7,故选:B.化简原式等于 3 ,因为3 = ,所以<<,即可求解;本题考查无理数的大小;能够将给定的无理数锁定在相邻的两个整数之间是解题的关键.8.【答案】C【解析】解:当x=7 时,可得,可得:b=3,当x=-8 时,可得:y=-2×(-8)+3=19,故选:C.把x=7 与x=-8 代入程序中计算,根据y 值相等即可求出b的值.此题考查了函数值,弄清程序中的关系式和理解自变量取值范围是解本题的关键.9.【答案】C【解析】解:如图,过点C 作CE⊥OA 于点E,∵菱形OABC 的边OA 在x 轴上,点A(10,0),∴OC=OA=10,∵sin∠COA= = .∴CE=8,∴OE= =6∴点C 坐标(6,8)∵若反比例函数y= (k>0,x>0)经过点C,∴k=6 ×8=48故选:C.由菱形的性质和锐角三角函数可求点C(6,8),将点C 坐标代入解析式可求k 的值.本题考查了反比例函数性质,反比例函数图象上点的坐标特征,菱形的性质,锐角三角函数,关键是求出点 C 坐标.10.【答案】 B【解析】解:过点E作EM⊥AB 与点M ,延长ED 交BC 于G,∵斜坡CD 的坡度(或坡比)i=1:2.4,BC=CD=52 米,∴设DG=x,则CG=2.4x.在Rt△CDG 中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20 米,CG=48 米,∴EG=20+0.8=20.8米,BG=52+48=100 米.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM 是矩形,∴EM=BG=100 米,BM=EG=20.8 米.在Rt△AEM 中,∵∠AEM=27°,∴AM=EM?tan27 °≈100×0.5米1=,51∴AB=AM+BM=51+20.8=71.8 米.:B.故选C D=x,点E作EM⊥AB 与点M,根据斜坡CD 的坡度(或坡比)i=1:2.4可设过而可得出CG 与DG 的长,故可得则C G=2.4x,利用勾股定理求出x 的值,进形EGBM 是矩形,故可得出EM=BG ,出EG的长.由矩形的判定定理得出四边BM=EG ,再由锐角三角函数的定义求出AM 的长,进而可得出结论.助线意作出辅,构考查本题的是解直角三角形的应用-仰角俯角问题,根据题.造出直角三角形是解答此题的关键11.【答案】A【解析】得解:由关于x 的不等式组∵有且仅有三个整数解,∴<x≤3,x=1,2,或3.∴,∴- <a<3;由关于y 的分式方程- =-3 得1-2y+a=-3(y-1),∴y=2-a,∵解为正数,且y=1为增根,∴a<2,且a≠,1∴- <a<2,且a≠,1∴所有满足条件的整数a的值为:-2,-1,0,其和为-3.:A.故选;再根据其有三个整数解,得a的一个范围先解不等式组正数,并考虑增根的情况,解关于y 的分式方程- =-3,根据其解为可求,再得a的一个范围所有满足条件的整数a的值综合考虑,两个范围,则从而得其和.算题容易错,,比较和含参分式方程的综合计本题属于含参一元一次不等式组.属于易错题12.【答案】D【解析】解:∵∠ABC=4°5,AD⊥BC 于点D,∴∠BAD=90°-∠ABC=45°,∴△ABD 是等腰直角三角形,∴AD=BD ,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB= ∠EDG=90°,∴∠ADB- ∠ADG= ∠EDG-∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+ ∠DEG=90°+45°=135 °,∵△AED 沿直线A E 翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°-∠AED-∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB 中,BE= = =2 ,∴GE=BE-BG=2 -1,在Rt△DGE 中,DG= GE=2- ,∴EF=DE=2- ,在Rt△DEF 中,DF= DE=2 -1,∴四边形DFEG 的周长为:=2(2- )+2(2 -1)=3 +2,:D.故选△BDG≌△ADE,得出AE=BG=1 ,再证△DGE 与△EDF 是等腰直角三角形,先证解在直角△AEB 中利用勾股定理求出BE 的长,进一步求出GE 的长,可通过.求出GD,DE,EF,DF 的长,即可求出四边形DFEG 的周长直角三角形分别,勾股了等腰直角三角形的判定与性质,全等三角形的判定与性质本题考查灵活运用等腰直角三角形的判定与是能够定理,解直角三角形等,解题关键.性质13.【答案】3【解析】解:(-1)0+()-1=1+2=3;3;故答案为(-1)0=1,()-1=2,即可求解;的运算,零指数幂指数幂的运算是解题的掌握负本题考查实数的运算;熟练.关键614.【答案】1.18 ×10【解析】数法表示为:1.18×106,解:1180000用科学记故答案为:1.18×106.整数.确定n的数法的表示形式为a×10n的形式,其中1≤|a<| 10,n为科学记了多少位,n 的绝与小数点移动对值,小数点移动值时,要看把原数变成a时<1时,n是负对值数.的位数相同.当原数绝,n是正数;当原数的绝对值>1时数法的表示方法.科学记数法的表示形式为a×10n的形式,了科学记考查此题.其中1≤|a<| 10,n为整数,表示时关键要正确确定a的值以及n 的值15.【答案】解:列表得:1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12由表知共有36种等可能结果,其中第二次出现的点数是第一次出现的点数的2 倍的有3种结果,所以第二次出现的点数是第一次出现的点数的2倍的概率为= ,故答案为.列举出所有情况,看第二次出现的点数是第一次出现的点数的2倍的情况占总情况的多少即可.本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.16.【答案】8 -8【解析】解:连接AE,∵∠ADE=90°,AE=AB=4 ,AD=2 ,∴sin∠AED= ,∴∠AED=45°,∴∠EAD=45°,∠EAB=45°,∴AD=DE=2 ,∴阴影部分的面积是:(4×- )+()=8 -8,故答案为:8 -8.根据题意可以求得∠BAE 和∠DAE 的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF 与△ADE 的面积之差的和,本题得以解决.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】2080【解析】解:设小明原速度为x(米/分钟),则拿到书后的速度为1.25x(米/分钟),则家校距离为11x+(23-11)×1.25x=26x.设爸爸行进速度为y(米/分钟),由题意及图形得:.解得:x=80,y=176.∴小明家到学校的路程为:80×26=2080(米).故答案为:2080设小明原速度为x 米/分钟,则拿到书后的速度为1.25x米/分钟,家校距离为11x+(23-11)×1.25x=26x.设爸爸行进速度为y 米/分钟,由题意及图形得:,解得:x=80,y=176.据此即可解答.本题考查一次函数的应用、速度、路程、时间之间的关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】18:19【解析】解:设第一、二、三、四车间毎天生产相同数量的产品为x 个,每个车间原有成品m 个,甲组检验员a人,乙组检验员 b 人,每个检验员的检验速度为c 个/ 天,则第五、六车间每天生产的产品数量分別是x 和x,由题意得,,②×2-③得,m=3x,把m=3x 分别代入①得,9x=2ac,把m=3x 分别代入②得,x=2bc,则a:b=18:19,甲、乙两组检验员的人数之比是18:19,故答案为:18:19.设第一、二、三、四车间毎天生产相同数量的产品为x个,每个车间原有成品m个,甲组检验员a人,乙组检验员b人,每个检验员的检验速度为c个/天,根据题意列出三元一次方程组,解方程组得到答案.本题考查的是三元一次方程组的应用,根据题意正确列出三元一次方程组、正确解出方程组是解题的关键.2+a(a-2b);19.【答案】解:(1)(a+b)222=a+2ab+b+a-2ab,=2a2+b2;(2)m-1++.=++,=,=.【解析】(1)根据完全平方公式和单项式乘以多项式将原式展开,然后再合并同类项即可解答本题;(2)先通分,再将分子相加可解答本题.本题考查分式的混合运算、整式的混合运算,解题的关键是明确它们各自的计算方法.20.【答案】解:(1)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∠ADC=90°,又∠C=42°,∴∠BAD=∠CAD=90°-42°=48°;(2)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∵EF∥AC,∴∠BAD=∠F,∴AE= F E.【解析】(1)根据等腰三角形的性质得到∠BAD= ∠CAD,根据三角形的内角和即可得到∠BAD= ∠CAD=9°0-42°=48°;(2)根据等腰三角形的性质得到∠BAD= ∠CAD 根据平行线的性质得到∠F=∠CAD,等量代换得到∠BAD= ∠F,于是得到结论.本题考查了等腰三角形的性质,平行线的性质,正确的识别图形是解题的关键.21.【答案】5 4 4.45 4.8【解析】解:(1)由已知数据知a=5,b=4,活动前被测查学生视力样本数据的中位数是=4.45,活动后被测查学生视力样本数据的众数是 4.8,故答案为:5,4,4.45,4.8;(2)估计七年级600名学生活动后视力达标的人数有600×=320(人);(3)活动开展前视力在4.8 及以上的有11人,活动开展后视力在4.8及以上的有16人,视力达标人数有一定的提升(答案不唯一,合理即可).(1)根据已知数据可得a、b的值,再根据中位数和众数的概念求解可得;(2)用总人数乘以对应部分人数所占比例;(3)可从4.8及以上人数的变化求解可得(答案不唯一).本题考查频数直方图、用样本估计总体的思想、统计量的选择等知识,解题的关键是搞清楚频数、中位数和众数等概念,属于基础题,中考常考题型.22.【答案】解:(1)显然1949 至1999 都不是“纯数”,因为在通过列竖式进行n+(n+1)+(n+2)的运算时要产生进位.在2000 至2019 之间的数,只有个位不超过 2 时,才符合“纯数”的定义.所以所求“纯数”为2000,2001,2002,2010,2011,2012;(2)不大于100 的“纯数”的个数有13 个,理由如下:因为个位不超过2,十位不超过 3 时,才符合“纯数”的定义,所以不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,31,32,100.共13个.【解析】(1)根据“纯数”的概念,从2000至2019之间找出“纯数”;(2)根据“纯数”的概念得到不大于100的数个位不超过2,十位不超过3时,才符合“纯数”的定义解答.本题考查的是整式的加减、有理数的加法、数字的变化,正确理解“纯数”的概念是解题的关键.23.【答案】解:(1)A(0,2),B(-2,0),函数y=-2|x+2|的对称轴为x=-2;(2)将函数y=-2|x|的图象向上平移2个单位得到函数y=-2|x|+2的图象;将函数y=-2|x|的图象向左平移2个单位得到函数y=-2|x+2|的图象;(3)将函数y=-2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=-2|x-3|+1的图象.所画图象如图所示,当x2>x1>3时,y1>y2.【解析】(1)根据图形即可得到结论;(2)根据函数图形平移的规律即可得到结论;(3)根据函数关系式可知将函数y=-2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=-2|x-3|+1的图象.根据函数的性质即可得到结论.本题考查了一次函数与几何变换,一次函数的图象,一次函数的性质,平移的性质,正确的作出图形是解题的关键.24.【答案】解:(1)设该菜市场共有x个4平方米的摊位,则有2x个2.5平方米的摊位,依题意,得:20×4x+20×2.5×2x=4500,解得:x=25.答:该菜市场共有25个4平方米的摊位.(2)由(1)可知:5月份参加活动一的 2.5平方米摊位的个数为25×2×40%=20(个),5月份参加活动一的4平方米摊位的个数为25×20%=5(个).依题意,得:20(1+2a%)×20×2.5×a%+5(1+6a%)×20×4×a%=[20(1+2a%)×20×2.5+5(1+6a%)×20×4]×a%,2整理,得: a-50a=0,解得:a1=0(舍去),a2=50.答:a的值为50.【解析】(1)设该菜市场共有x个4平方米的摊位,则有2x个 2.5平方米的摊位,根据菜市场毎月可收取管理费4500元,即可得出关于x的一元一次方程,解之即可得出结论;(2)由(1)可得出:5月份参加活动一的2.5平方米摊位及4平方米摊位的个数,再由参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少a%,即可得出关于a的一元二次方程,解之取其正值即可得出结论.本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程.25.【答案】(1)解:作BO⊥AD于O,如图1所示:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=C D,∠ABC=∠D=30°,∴∠AEB=∠CBE,∠BAO=∠D=30°,∴BQ=AB=,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=A B=,∴△ABE的面积=AE×BO=××=;(2)证明:作AQ⊥BE交DF的延长线于P,垂足为Q,连接PB、PE,如图2所示:∵AB=A E,AQ⊥BE,∴∠ABE=∠AEB,BQ=EQ,∴PB=P E,第20页,共24页∴∠PBE=∠PEB,∴∠ABP=∠AEP,∵AB∥C D,AF⊥CD,∴AF⊥AB,∴∠BAF=90°,∵AQ⊥BE,∴∠ABG=∠FAP,在△ABG和△FAP中,,∴△ABG≌△AFP(ASA),∴AG=FP,∵AB∥C D,AD∥B C,∴∠ABP+∠BPC=180°,∠BCP=∠D,∵∠AEP+∠PED=180°,∴∠BPC=∠PED,在△BPC和△PED中,,∴△BPC≌△PED(AAS),∴PC=ED,∴ED-AG=PC-AG=PC-FP=F C.【解析】得出∠BAO=∠D=30°,由直角三角(1)作BO⊥AD于O,由平行四边形的性质得出BQ=AB=,证出∠ABE=∠AEB,得出AE=AB=,由三角形的性质公式即可得出结果;形面积接PB、PE,证明于P,垂足为Q,连(2)作AQ⊥BE交DF的延长线△ABG≌△AFP得出AG=FP,再证明△BPC≌△PED得出PC=ED,即可得出结.论形的性质、等腰三角形的判、全等三角形的判定与性质了平行四边本题考查掌握平行段垂直平分线的性质等知识;熟练、直角三角形的性质、线定与性质明三角形全等是解题的关键.形的性质,证四边第21页,共24页26.【答案】解:(1)如图1中,2+x+2,令x=0,得到y=2,对于抛物线y=-x2+x+2=0,解得x=-2或4,令y=0,得到-x∴C(0,2),A(-2,0),B(4,0),点D坐标(1,),抛物线顶∵PF⊥BC,∴∠PFE=∠BOC=90°,∵PE∥O C,∴∠PEF=∠BCO,∴△PEF∽△BCO,∴当PE最大时,△PEF的周长最大,∵B(4,0),C(0,2),∴直线BC的解析式为y=-x+2,设P(m,-m2+m+2),则E(m,-m+2),22∴PE=-m+m+2-(-m+2)=-m+m,∴当m=2时,PE有最大值,∴P(2,2),60°,得到直线l,G逆时针旋转如图,将直线GO绕点P H+H K+KG=PH+HK+KM′P≥M,作PM⊥直线l于M,KM′⊥直线l于M′,则∵P(2,2),∴∠POB=60°,∵∠MOG=30°,∴∠MOG+∠BOC+∠POB=180°,∴P,O,M共线,可得PM=10,∴PH+HK+KG的最小值为10,此时H(1,).第22页,共24页(2)∵A(-2,0),C(0,2),∴直线AC的解析式为y=x+2,∵DD′∥A C,D(1,),∴直线DD′的解析式为y=x+,2+m+,设D′(m,m+),则平移后抛物线的解析式为y1=-(x-m)将(0,0)代入可得m=5或-1(舍弃),∴D′(5,),设N(1,n),∵C(0,2),D′(5,),∴NC2=1+(n-2)222,D′C=5+(-2)22,D′N=(5-1)2+(-n)2,①当NC=C D′时,1+(n-2)2=52+(-2)2,解得:n=②当NC=D′N时,1+(n-2)2=(5-1)22+(-n),解得:n=2+(-2)2=(5-1)2+(-n)2,③当D′C=D′N时,5解得:n=,综上所述,满足条件的点N的坐标为(1,)或(1,)或(1,)或(1,)或(1,).【解析】(1)首先证明△PEF∽△BCO,推出当PE最大时,△PEF的周长最大,构建二次函数,求出PE最大时,点P的坐标,将直线GO绕点G逆时针旋转60°,得到直线l,作PM⊥直线l于M,KM′⊥直线l于M′,则PH+HK+KG=PH+HK+K′M≥PM,求出PM即可解决问题.(2)首先利用待定系数法求出点D′坐标,设N(1,n),∵C(0,2),D′(5,),则NC2=1+(n-2)2,D′C2=52+(-2)2,D′N2=(5-1)2+(第23页,共24页-n)2,分三种情形分别构建方程求出n的值即可解决问题.本题属于二次函数综合题,考查了一次函数的性质,二次函数的性质,垂线段最短,相似三角形的判定和性质,一元二次方程等知识,解题的关键是,学会用转化的思想思考问题,把最短问题转化为垂线段最短,学会利用参数构建方程解决问题,属于中考压轴题.第24页,共24页。
【中考真题】2018、2019重庆市中考试题及答案(6套,106页)
2018年重庆市中考数学试题B 卷(全卷共五个大题,满分150分,考试时间120分钟)一、选择题(本大题共12个小题,每小题4分,共48分)1.下列四个数中,是正整数的是( )A 、-1;B 、0;C 、21;D 、1.A B CDE D 2.下列图形中,是轴对称图形的是( )3.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3个黑色正方形纸片,第②个图中有5个黑色正方形纸片,第③个图中有7个黑色正方形纸片,…,按此规律排列下去,第⑥个图中黑色正方形纸片的张数为( )A 、11;B 、13;C 、15;D 、17.4.下列调查中,最适合采用全面调查(普查)的是( )A 、对我市中学生每周课外阅读时间情况的调查;B 、对我市市民知晓“礼让行人”交通新规情况的调查;C 、对我市中学生观看电影《厉害了,我的国》情况的调查;D 、我国首艘国产航母002型各零部件质量情况的调查.5.制作一块3m ×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )A 、360元;B 、720元;C 、1080元;D 、2160元.6.下列命题是真命题的是( )A 、如果一个数的相反数等于这个数本身,那么这个数一定是0;B 、如果一个数的倒数等于这个数本身,那么这个数一定是1;C 、如果一个数的平方等于这个数本身,那么这个数一定是0;D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0.7.估计2465 值应在( ) A 、5和6之间;B 、6和7之间;C 、7和8之间;D 、8和9之间.8.根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b 等于( )A 、9;B 、7;C 、-9;D 、-7.9.如图,AB 是一垂直于水平面的建筑物。
某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D.然后再沿水平方向向右行走40米到达点E(A ,B ,C ,D ,E 均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°≈0.45) A 、21.7米; B 、22.4米; C 、27.4米; D 、28.8米。
2019年重庆市中考数学试卷(B卷)(后附答案)
2019年重庆市中考数学试卷(B卷)题号一二三四总分得分一、选择题(本大题共12小题,共48.0分)1. 5 的绝对值是()A. 5B.C.D.2. 如图是一个由 5 个相同正方体组成的立体图形,它的主视图是()A. B.C. D.3. 下列命题是真命题的是()A. 如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B. 如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C. 如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D. 如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:94. 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C=40 °,则∠B 的度数为()A. B. C. D.5. 抛物线y=-3 x2+6 x+2 的对称轴是()A. 直线B. 直线C. 直线D. 直线6. 某次知识竞赛共有20 题,答对一题得10 分,答错或不答扣 5 分,小华得分要超过120 分,他至少要答对的题的个数为()A. 13B. 14C. 15D. 167. 估计的值应在()A. 5 和6 之间B. 6 和7 之间C. 7 和8 之间D. 8 和9 之间8. 根据如图所示的程序计算函数y 的值,若输入x的值是7,则输出y 的值是-2,若输入x 的值是-8,则输出y 的值是()第1 页,共24 页A. 5B. 10C. 19D. 219. 如图,在平面直角坐标系中,菱形OABC 的边O A 在x轴上,点A(10,0),sin∠COA= .若反比例函数y= (k>0,x>0)经过点C,则k 的值等于()A. 10B. 24C. 48D. 5010. 如图,AB 是垂直于水平面的建筑物.为测量A B 的高度,小红从建筑物底端B点出发,沿水平方向行走了52 米到达点C,然后沿斜坡CD 前进,到达坡顶D点处,DC =BC.在点 D 处放置测角仪,测角仪支架DE高度为0.8 米,在 E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A,B,C,D,E 在同一平面内).斜坡CD 的坡度(或坡比)i=1:2.4,那么建筑物AB 的高度约为()(参考数据sin27 °≈0.,45cos27°≈0.8,9tan27°≈0.)51A. 米B. 米C. 米D. 米11. 若数a 使关于x 的不等式组,有且仅有三个整数解,且使关于y >的分式方程- =-3 的解为正数,则所有满足条件的整数 a 的值之和是()A. B. C. D. 112. 如图,在△ABC 中,∠ABC=45 °,AB=3,AD⊥BC 于点D,BE⊥AC 于点E,AE=1.连接D E,将△AED 沿直线AE翻折至△ABC 所在的平面内,得△AEF,连接D F .过点D 作DG ⊥DE 交BE 于点G.则四边形DFEG 的周长为()A. 8B.C.D.二、填空题(本大题共6小题,共24.0分)13. 计算:(-1)0+()-1=______.14. 2019 年1 月1 日,“学习强国”平台全国上线,截至2019 年3 月17 日止,重庆市党员“学习强国”A PP 注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000 用科学记数法表示为______.15. 一枚质地均匀的骰子,骰子的六个面上分别刻有 1 到6 的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的 2 倍的概率是______.16. 如图,四边形ABCD 是矩形,AB=4,AD =2 ,以点 A 为圆心,AB 长为半径画弧,交CD 于点E,交AD 的延长线于点F,则图中阴影部分的面积是______.第2 页,共24 页17.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小明家到学校的路程为______米.18.某磨具厂共有六个生产车间,第一、二、三、四车间毎天生产相同数量的产品,第五、六车间每天生产的产品数量分別是第一车间每天生产的产品数量的和.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是______.三、计算题(本大题共1小题,共10.0分)19.计算:(1)(a+b)2+a(a-2b);(2)m-1++.四、解答题(本大题共7小题,共68.0分)20.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.第3页,共24页21. 为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查两次相关数据记录如下:了30名学生的视力,活动后再次测查这部分学生的视力.活动前被测查学生视力数据:4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.64.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.95.0 5.0 5.1活动后被测查学生视力数据:4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.84.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.95.0 5.0 5.1 5.1活动后被测查学生视力频数分布表分组频数4.0 ≤x<4.2 14.2 ≤x<4.4 24.4 ≤x<4.6 b4.6 ≤x<4.8 74.8 ≤x<5.0 125.0 ≤x<5.2 4根据以上信息回答下列问题:______,是位数(1)填空:a=______,b=______,活动前被测查学生视力样本数据的中______;活动后被测查学生视力样本数据的众数是数有4.8 及以上为达标,估计七年级600 名学生活动后视力达标的人(2)若视力在多少?.果(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效24 页第4 页,共22.在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数-“纯数”.定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产“纯数”.生进位现象,则称这个自然数n为32+33+34在列竖式计算时各位都不产生进位现象;23不例如:32是“纯数”,因为23+24+25在列竖式计算时个位产生了进位.是“纯数”,因为(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”的个数,并说明理由.23.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=-2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y=-2|x|+2和y=-2|x+2|的图象如图所示.x⋯-3-2-10123⋯y⋯-6-4-20-2-4-6⋯(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=-2|x+2|的对称轴.(2)探索思考:平移函数y=-2|x|的图象可以得到函数y=-2|x|+2和y=-2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=-2|x-3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.24页第5页,共24.某菜市场有 2.5平方米和4平方米两种摊位, 2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,4.1平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的 2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,毎个摊位的管理费将会减少a%;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少a%.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少a%,求a的值.25.在?ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED-AG=FC.226.在平面直角坐标系中,抛物线y=-x+x+2与x轴交于A,B两点(点A在点B 左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,BC.若点P为直线BC上方抛物线上一动点,过点P作PE∥y轴交BC于点E,作PF⊥BC于点F,过点B作BG∥AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当△PEF的周长最大时,求PH+HK+KG的最小值及点H的坐标.第6页,共24页(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D′,N为直线DQ上一点,连接点D′,C,N,△D′CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由.第7页,共24页答案和解析27.【答案】 A【解析】解:在数轴上,数5所表示的点到原点0 的距离是5;故选:A.根据绝对值的意义:数轴上一个数所对应的点与原点(O 点)的距离叫做该数的绝对值,绝对值只能为非负数;即可得解.本题考查了绝对值,解决本题的关键是一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0 的绝对值是0.28.【答案】 D【解析】解:从正面看易得第一层有4个正方形,第二层有一个正方形,如图所示:.故选:D.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.29.【答案】 B【解析】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;第8 页,共24 页故选:B.根据相似三角形的性质分别对每一项进行分析即可.此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.30.【答案】B【解析】解:∵AC 是⊙O 的切线,∴AB⊥AC,且∠C=40°,∴∠ABC=50°,故选:B.由题意可得AB⊥AC,根据直角三角形两锐角互余可求∠ABC=5°0.本题考查了切线的性质,直角三角形两锐角互余,熟练运用切线的性质是本题的关键.31.【答案】 C【解析】解:∵y=-3x2+6x+2=-3(x-1)2+5,∴抛物线顶点坐标为(1,5),对称轴为x=1.故选:C.将抛物线的一般式配方成为顶点式,可确定顶点坐标及对称轴.本题考查了二次函数的性质.抛物线y=a(x-h)2+k 的顶点坐标为(h,k),对称轴为x=h.32.【答案】 C【解析】解:设要答对x 道.10x+(-5)×(20-x)>120,10x-100+5x>120,15x>220,解得:x>,根据x 必须为整数,故x 取最小整数15,即小华参加本次竞赛得分要超过120第9 页,共24 页分,他至少要答对15道题.故选:C.根据竞赛得分=10×答对的题数+(-5)×未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.此题主要考查了一元一次不等式的应用,得到得分的关系式是解决本题的关键.33.【答案】 B【解析】解:= +2 =3 ,∵3 = ,6<<7,故选:B.化简原式等于 3 ,因为3 = ,所以<<,即可求解;本题考查无理数的大小;能够将给定的无理数锁定在相邻的两个整数之间是解题的关键.34.【答案】C【解析】解:当x=7 时,可得,可得:b=3,当x=-8 时,可得:y=-2×(-8)+3=19,故选:C.把x=7 与x=-8 代入程序中计算,根据y 值相等即可求出b的值.此题考查了函数值,弄清程序中的关系式和理解自变量取值范围是解本题的关键.35.【答案】C【解析】第10 页,共24 页解:如图,过点C 作CE⊥OA 于点E,∵菱形OABC 的边OA 在x 轴上,点A(10,0),∴OC=OA=10,∵sin∠COA= = .∴CE=8,∴OE= =6∴点C 坐标(6,8)∵若反比例函数y= (k>0,x>0)经过点C,∴k=6 ×8=48故选:C.由菱形的性质和锐角三角函数可求点C(6,8),将点C 坐标代入解析式可求k 的值.本题考查了反比例函数性质,反比例函数图象上点的坐标特征,菱形的性质,锐角三角函数,关键是求出点 C 坐标.36.【答案】 B【解析】解:过点E作EM⊥AB 与点M ,延长ED 交BC 于G,∵斜坡CD 的坡度(或坡比)i=1:2.4,BC=CD=52 米,∴设DG=x,则CG=2.4x.在Rt△CDG 中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20 米,CG=48 米,∴EG=20+0.8=20.8米,BG=52+48=100 米.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM 是矩形,∴EM=BG=100 米,BM=EG=20.8 米.第11 页,共24 页在 Rt △AEM 中, ∵∠AEM=27°, ∴AM=EM?tan27 °≈ 100× 0.5米1=,51 ∴AB=AM+BM=51+20.8=71.8 米. 故选:B .过点 E 作 EM ⊥AB 与点 M ,根据斜坡 CD 的坡度(或坡比)i=1:2.4可设C D=x , 则C G=2.4x ,利用勾股定理求出 x 的值,进而可得出 CG 与 DG 的长,故可得 出 EG 的长.由矩形的判定定理得出四边形 EGBM 是矩形,故可得出 EM=BG , BM=EG ,再由锐角三角函数的定义求出 AM 的长,进而可得出结论. 本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构 造出直角三角形是解答此题的关键.37.【答案】 A 【解析】解:由关于 x 的不等式组得 ∵有且仅有三个整数解, ∴ <x ≤ 3,x=1,2,或3.∴,∴- <a <3; 由关于 y 的分式方程 -=-3 得 1-2y+a=-3(y-1),∴y=2-a ,∵解为正数,且 y=1为增根, ∴a <2,且a ≠,1 ∴- <a <2,且a ≠,1∴所有满足条件的整数 a 的值为:-2,-1,0,其和为-3. 故选:A .先解不等式组根据其有三个整数解,得 a 的一个范围;再 解关于 y 的分式方程-=-3,根据其解为正数,并考虑增根的情况,24 页第12 页,共可求,再得a的一个范围所有满足条件的整数a的值综合考虑,两个范围,则从而得其和.算题容易错,,比较和含参分式方程的综合计本题属于含参一元一次不等式组.属于易错题38.【答案】D【解析】解:∵∠ABC=4°5,AD⊥BC 于点D,∴∠BAD=90°-∠ABC=45°,∴△ABD 是等腰直角三角形,∴AD=BD ,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB= ∠EDG=90°,∴∠ADB- ∠ADG= ∠EDG-∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+ ∠DEG=90°+45°=135 °,∵△AED 沿直线A E 翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°-∠AED-∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB 中,BE= = =2 ,∴GE=BE-BG=2 -1,在Rt△DGE 中,DG= GE=2- ,∴EF=DE=2- ,在Rt△DEF 中,DF= DE=2 -1,∴四边形DFEG 的周长为:GD+EF+GE+DF24 页第13 页,共=2(2- )+2(2 -1)=3 +2,:D.故选△DGE 与△EDF 是等腰直角三角形,先证△BDG≌△ADE,得出AE=BG=1 ,再证解,可通过,进一步求出GE 的长在直角△AEB 中利用勾股定理求出BE 的长.求出GD,DE,EF,DF 的长,即可求出四边形DFEG 的周长直角三角形分别,勾股,全等三角形的判定与性质了等腰直角三角形的判定与性质本题考查灵活运用等腰直角三角形的判定与是能够定理,解直角三角形等,解题关键.性质39.【答案】3【解析】解:(-1)0+()-1=1+2=3;3;故答案为(-1)0=1,()-1=2,即可求解;的运算,零指数幂指数幂的运算是解题的掌握负本题考查实数的运算;熟练.关键640.【答案】1.18 ×10【解析】:1.18×106,解:1180000用科学记数法表示为:1.18×10故答案为6.整数.确定n的科学记数法的表示形式为a×10n的形式,其中1≤|a<| 10,n为对值与小数点移动了多少位,n 的绝,小数点移动值时,要看把原数变成a时,n是负数.<1时>1时的位数相同.当原数绝,n是正数;当原数的绝对值对值数法的表示形式为a×10n的形式,数法的表示方法.科学记此题了科学记考查以及n 的值.要正确确定a的值关键整数,表示时其中1≤|a<| 10,n为41.【答案】【解析】24 页第14 页,共解:列表得:1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12由表知共有36种等可能结果,其中第二次出现的点数是第一次出现的点数的2 倍的有3种结果,所以第二次出现的点数是第一次出现的点数的2倍的概率为= ,故答案为.列举出所有情况,看第二次出现的点数是第一次出现的点数的2倍的情况占总情况的多少即可.本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.42.【答案】8 -8【解析】解:连接AE,∵∠ADE=90°,AE=AB=4 ,AD=2 ,∴sin∠AED= ,∴∠AED=45°,∴∠EAD=45°,∠EAB=45°,∴AD=DE=2 ,∴阴影部分的面积是:(4×- )+()=8 -8,故答案为:8 -8.根据题意可以求得∠BAE 和∠DAE 的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF 与△ADE 的面积之差的和,本题得以解决.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.43.【答案】2080【解析】解:设小明原速度为x(米/分钟),则拿到书后的速度为1.25x(米/分钟),则家校距离为11x+(23-11)×1.25x=26x.设爸爸行进速度为y(米/分钟),由题意及图形得:.解得:x=80,y=176.∴小明家到学校的路程为:80×26=2080(米).故答案为:2080设小明原速度为x 米/分钟,则拿到书后的速度为1.25x米/分钟,家校距离为11x+(23-11)×1.25x=26x.设爸爸行进速度为y 米/分钟,由题意及图形得:,解得:x=80,y=176.据此即可解答.本题考查一次函数的应用、速度、路程、时间之间的关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.44.【答案】18:19【解析】解:设第一、二、三、四车间毎天生产相同数量的产品为x 个,每个车间原有成品m 个,甲组检验员a人,乙组检验员 b 人,每个检验员的检验速度为c 个/ 天,则第五、六车间每天生产的产品数量分別是x 和x,由题意得,,②×2-③得,m=3x,把m=3x 分别代入①得,9x=2ac,把m=3x 分别代入②得,x=2bc,则a:b=18:19,甲、乙两组检验员的人数之比是18:19,故答案为:18:19.设第一、二、三、四车间毎天生产相同数量的产品为x个,每个车间原有成品m个,甲组检验员a人,乙组检验员b人,每个检验员的检验速度为c个/天,根据题意列出三元一次方程组,解方程组得到答案.本题考查的是三元一次方程组的应用,根据题意正确列出三元一次方程组、正确解出方程组是解题的关键.2+a(a-2b);19.【答案】解:(1)(a+b)222=a+2ab+b+a-2ab,=2a2+b2;(2)m-1++.=++,=,=.【解析】(1)根据完全平方公式和单项式乘以多项式将原式展开,然后再合并同类项即可解答本题;(2)先通分,再将分子相加可解答本题.本题考查分式的混合运算、整式的混合运算,解题的关键是明确它们各自的计算方法.45.【答案】解:(1)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∠ADC=90°,又∠C=42°,∴∠BAD=∠CAD=90°-42°=48°;(2)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∵EF∥AC,∴∠F=∠CAD,第17页,共24页∴∠BAD=∠F,∴AE= F E.【解析】(1)根据等腰三角形的性质得到∠BAD= ∠CAD,根据三角形的内角和即可得到∠BAD= ∠CAD=9°0-42°=48°;(2)根据等腰三角形的性质得到∠BAD= ∠CAD 根据平行线的性质得到∠F=∠CAD,等量代换得到∠BAD= ∠F,于是得到结论.本题考查了等腰三角形的性质,平行线的性质,正确的识别图形是解题的关键.46.【答案】5 4 4.45 4.8【解析】解:(1)由已知数据知a=5,b=4,活动前被测查学生视力样本数据的中位数是=4.45,活动后被测查学生视力样本数据的众数是 4.8,故答案为:5,4,4.45,4.8;(2)估计七年级600名学生活动后视力达标的人数有600×=320(人);(3)活动开展前视力在4.8 及以上的有11人,活动开展后视力在4.8及以上的有16人,视力达标人数有一定的提升(答案不唯一,合理即可).(1)根据已知数据可得a、b的值,再根据中位数和众数的概念求解可得;(2)用总人数乘以对应部分人数所占比例;(3)可从4.8及以上人数的变化求解可得(答案不唯一).本题考查频数直方图、用样本估计总体的思想、统计量的选择等知识,解题的关键是搞清楚频数、中位数和众数等概念,属于基础题,中考常考题型.47.【答案】解:(1)显然1949 至1999 都不是“纯数”,因为在通过列竖式进行n+(n+1)+(n+2)的运算时要产生进位.在2000 至2019 之间的数,只有个位不超过 2 时,才符合“纯数”的定义.所以所求“纯数”为2000,2001,2002,2010,2011,2012;(2)不大于100 的“纯数”的个数有13 个,理由如下:因为个位不超过2,十位不超过 3 时,才符合“纯数”的定义,所以不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,31,32,100.共13个.【解析】(1)根据“纯数”的概念,从2000至2019之间找出“纯数”;(2)根据“纯数”的概念得到不大于100的数个位不超过2,十位不超过3时,才符合“纯数”的定义解答.本题考查的是整式的加减、有理数的加法、数字的变化,正确理解“纯数”的概念是解题的关键.48.【答案】解:(1)A(0,2),B(-2,0),函数y=-2|x+2|的对称轴为x=-2;(2)将函数y=-2|x|的图象向上平移2个单位得到函数y=-2|x|+2的图象;将函数y=-2|x|的图象向左平移2个单位得到函数y=-2|x+2|的图象;(3)将函数y=-2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=-2|x-3|+1的图象.所画图象如图所示,当x2>x1>3时,y1>y2.【解析】(1)根据图形即可得到结论;(2)根据函数图形平移的规律即可得到结论;(3)根据函数关系式可知将函数y=-2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=-2|x-3|+1的图象.根据函数的性质即可得到结论.本题考查了一次函数与几何变换,一次函数的图象,一次函数的性质,平移的性质,正确的作出图形是解题的关键.49.【答案】解:(1)设该菜市场共有x个4平方米的摊位,则有2x个2.5平方米的摊位,依题意,得:20×4x+20×2.5×2x=4500,解得:x=25.答:该菜市场共有25个4平方米的摊位.(2)由(1)可知:5月份参加活动一的 2.5平方米摊位的个数为25×2×40%=20(个),5月份参加活动一的4平方米摊位的个数为25×20%=5(个).依题意,得:20(1+2a%)×20×2.5×a%+5(1+6a%)×20×4×a%=[20(1+2a%)×20×2.5+5(1+6a%)×20×4]×a%,2整理,得: a-50a=0,解得:a1=0(舍去),a2=50.答:a的值为50.【解析】(1)设该菜市场共有x个4平方米的摊位,则有2x个 2.5平方米的摊位,根据菜市场毎月可收取管理费4500元,即可得出关于x的一元一次方程,解之即可得出结论;(2)由(1)可得出:5月份参加活动一的2.5平方米摊位及4平方米摊位的个数,再由参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少a%,即可得出关于a的一元二次方程,解之取其正值即可得出结论.本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程.50.【答案】(1)解:作BO⊥AD于O,如图1所示:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=C D,∠ABC=∠D=30°,∴∠AEB=∠CBE,∠BAO=∠D=30°,∴BQ=AB=,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=A B=,∴△ABE的面积=AE×BO=××=;(2)证明:作AQ⊥BE交DF的延长线于P,垂足为Q,连接PB、PE,如图2所示:∵AB=A E,AQ⊥BE,∴∠ABE=∠AEB,BQ=EQ,第20页,共24页∴∠PBE=∠PEB,∴∠ABP=∠AEP,∵AB∥CD,AF⊥CD,∴AF⊥AB,∴∠BAF=90°,∵AQ⊥BE,∴∠ABG=∠FAP,在△ABG和△FAP中,,∴△ABG≌△AFP(ASA),∴AG=FP,∵AB∥CD,AD∥BC,∴∠ABP+∠BPC=180°,∠BCP=∠D,∵∠AEP+∠PED=180°,∴∠BPC=∠PED,在△BPC和△PED中,,∴△BPC≌△PED(AAS),∴PC=ED,∴ED-AG=PC-AG=PC-FP=F C.【解析】形的性质得出∠BAO=∠D=30°,由直角三角(1)作BO⊥AD于O,由平行四边得出BQ=AB=,证出∠ABE=∠AEB,得出AE=AB=,由三角形的性质公式即可得出结果;形面积明(2)作AQ⊥BE交DF的延长线于P,垂足为Q,连接PB、PE,证△ABG≌△AFP得出AG=FP,再证明△BPC≌△PED得出PC=ED,即可得出结论.、全等三角形的判定与性质形的性质、等腰三角形的判了平行四边本题考查掌握平行等知识;熟练段垂直平分线的性质定与性质、直角三角形的性质、线.明三角形全等是解题的关键形的性质,证四边第21页,共24页51.【答案】解:(1)如图1中,2+x+2,令x=0,得到y=2,对于抛物线y=-x2+x+2=0,解得x=-2或4,令y=0,得到-x∴C(0,2),A(-2,0),B(4,0),点D坐标(1,),抛物线顶∵PF⊥BC,∴∠PFE=∠BOC=90°,∵PE∥OC,∴∠PEF=∠BCO,∴△PEF∽△BCO,∴当PE最大时,△PEF的周长最大,∵B(4,0),C(0,2),∴直线BC的解析式为y=-x+2,设P(m,-m2+m+2),则E(m,-m+2),22∴PE=-m+m+2-(-m+2)=-m+m,∴当m=2时,PE有最大值,∴P(2,2),G逆时针旋转60°,得到直线l,如图,将直线GO绕点P H+H K+KG=PH+HK+KM′P≥M,作PM⊥直线l于M,KM′⊥直线l于M′,则∵P(2,2),∴∠POB=60°,∵∠MOG=30°,∴∠MOG+∠BOC+∠POB=180°,∴P,O,M共线,可得PM=10,∴PH+HK+KG的最小值为10,此时H(1,).第22页,共24页(2)∵A(-2,0),C(0,2),∴直线AC的解析式为y=x+2,∵DD′∥AC,D(1,),∴直线DD′的解析式为y=x+,2+m+,设D′(m,m+),则平移后抛物线的解析式为y1=-(x-m)将(0,0)代入可得m=5或-1(舍弃),∴D′(5,),设N(1,n),∵C(0,2),D′(5,),∴NC2=1+(n-2)222,D′C=5+(-2)22,D′N=(5-1)2+(-n)2,①当NC=C D′时,1+(n-2)2=52+(-2)2,解得:n=②当NC=D′N时,1+(n-2)2=(5-1)22 +(-n),解得:n=2+(-2)2=(5-1)2+(-n)2,③当D′C=D′N时,5解得:n=,综上所述,满足条件的点N的坐标为(1,)或(1,)或(1,)或(1,)或(1,).【解析】(1)首先证明△PEF∽△BCO,推出当PE最大时,△PEF的周长最大,构建二次函数,求出PE最大时,点P的坐标,将直线GO绕点G逆时针旋转60°,得到直线l,作PM⊥直线l于M,KM′⊥直线l于M′,则PH+HK+KG=PH+HK+K′M≥PM,求出PM即可解决问题.(2)首先利用待定系数法求出点D′坐标,设N(1,n),∵C(0,2),D′(5,),则NC2=1+(n-2)2,D′C2=52+(-2)2,D′N2=(5-1)2+(第23页,共24页-n)2,分三种情形分别构建方程求出n的值即可解决问题.本题属于二次函数综合题,考查了一次函数的性质,二次函数的性质,垂线段最短,相似三角形的判定和性质,一元二次方程等知识,解题的关键是,学会用转化的思想思考问题,把最短问题转化为垂线段最短,学会利用参数构建方程解决问题,属于中考压轴题.第24页,共24页.。
重庆2019中考试题数学卷(B卷,解析版)
重庆市 初中毕业曁高中招生考试数学试题(B 卷)(全卷共五个大题,满分150分,考试时间120分钟)一、选择题1.4的倒数是 ( ) A.-4 B.4 C.41-D.41 【答案】D【解析】试题分析:当两数的乘积等于1时,我们称这两个数互为倒数.考点:倒数的定义2.下列交通指示标识中,不是轴对称图形的是( )【答案】C考点:轴对称图形3.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( )A.0.1636×410B.1.636×310C.16.36×210D.163.6×10 【答案】B【解析】试题分析:科学计数法是指a ×n 10,且101 a ,n 为原数的整数位数减一.考点:科学计数法4.如图,直线a ,b 被直线c 所截,且a//b ,若∠1=55°,则∠2等于( )A.35°B.45°C.55°D.125°【答案】C【解析】试题分析:根据图示可得:∠1和∠2是同位角,根据两直线平行,同位角相等可得:∠2=∠1=55°.考点:平行线的性质5.计算32)(y x 的结果是( )A.36y xB.35y xC.32y xD.y x 5【答案】A【解析】试题分析:积的乘方等于乘方的积,幂的乘方法则:底数不变,指数相乘,则原式=36332)(y x y x =考点:(1)、幂的乘方;(2)、积的乘方6.下列调查中,最适合采用全面调查(普查)方式的是 ( )A.对重庆市居民日平均用水量的调查B.对一批LED 节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查【答案】D 考点:调查的方式7.若二次根式2-a 有意义,则a 的取值范围是( )A.a ≥2 B.a ≤2 C.a>2 D.a≠2【答案】A【解析】试题分析:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,即a-2≥0,考点:二次根式的性质8.若m=-2,则代数式m 2-2m-1的值是( )A.9B.7C.-1D.-9【答案】B【解析】试题分析:将m=-2代入代数式可得:原式=2)2(--2×(-2)-1=4+4-1=7.考点:求代数式的值9.观察下列一组图形,其中图形1中共有2颗星,图形2中共有6颗星,图形3中共有11颗星,图形4中共有17颗星,。
重庆市2019年中考数学试题(B卷)(含答案解析)
重庆市2019年中考数学试题(B 卷)学校:___________姓名:___________班级:___________考号:___________一、单选题1.5的绝对值是( )A .5B .﹣5C .15D .15- 2.如图是一个由5个相同正方体组成的立体图形,它的主视图是( )A .B .C .D .3.下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:9 4.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若40C ︒∠=,则B 的度数为( )A .60︒B .50︒C .40︒D .30︒ 5.抛物线2362y x x =-++的对称轴是( )A .直线2x =B .直线2x =-C .直线1x =D .直线1x =- 6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( )A .13B .14C .15D .167的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间 8.根据如图所示的程序计算函数y 的值,若输入x 的值是7,则输出y 的值是﹣2,若输入x 的值是﹣8,则输出y 的值是( )A .5B .10C .19D .219.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,点(10,0)A ,4sin 5COA ∠=.若反比例函数(0,0)k y k x x =>>经过点C ,则k 的值等于( )A .10B .24C .48D .5010.如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC BC =.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角AEF ∠为27︒(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)1:2.4i =,那么建筑物AB 的高度约为( )(参考数据sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈)A .65.8米B .71.8米C .73.8米D .119.8米11.若数a 使关于x 的不等式组12(7)34625(1)x x x a x ⎧--⎪⎨⎪->-⎩有且仅有三个整数解,且使关于y的分式方程12311y a y y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .﹣3 B .﹣2 C .﹣1 D .112.如图,在ABC ∆中,45ABC ︒∠=,3AB =,AD BC ⊥于点D ,BE AC ⊥于点E ,1AE =.连接DE ,将AED ∆沿直线AE 翻折至ABC ∆所在的平面内,得AEF ∆,连接DF .过点D 作DG DE ⊥交BE 于点G .则四边形DFEG 的周长为( )A .8B.C.4 D.2二、填空题 13.计算:1011)2-⎛⎫+= ⎪⎝⎭________. 14.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP 注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为________.15.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是________.16.如图,四边形ABCD 是矩形,4AB =,AD =A 为圆心,AB 长为半径画弧,交CD 于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是________.17.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为________米.18.某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的34和83.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是________.三、解答题19.计算:(1)2()(2)a b a a b ++-;(2)22622193m m m m m -+-++-+. 20.如图,在ABC ∆中,AB AC =,AD BC ⊥于点D .(1)若42C ︒∠=,求BAD ∠的度数;(2)若点E 在边AB 上,EF AC 交AD 的延长线于点F .求证:AE FE =.21.为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下: 活动前被测查学生视力数据:(1)4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.6(2)4.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 5.0 5.0 5.1活动后被测查学生视力数据:(2)4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.8(3)4.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.9 5.0 5.0 5.1 5.1活动后被测查学生视力频数分布表 4.0 4.2x < 4.2 4.4x < 4.4 4.6x < 4.6 4.8x < 4.8 5.0x < 5.0 5.2x <根据以上信息回答下列问题:(1)填空:a =______,b = ______,活动前被测查学生视力样本数据的中位数是______,活动后被测查学生视力样本数据的众数是______;(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.22.在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数﹣“纯数”.定义:对于自然数n ,在通过列竖式进行(1)(2)n n n ++++的运算时各位都不产生进位现象,则称这个自然数n 为“纯数”.例如:32是“纯数”,因为323334++在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为232425++在列竖式计算时个位产生了进位.(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”的个数,并说明理由.23.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数2||y x =-的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数2||2y x =-+和2| 2|y x =-+的图象如图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数-2|2|y x =+的对称轴.(2)探索思考:平移函数2||y x =-的图象可以得到函数2||2y x =-+和2|2|y x =-+的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数2|3|1y x =--+的图象.若点()11,x y 和(22,)x y 在该函数图象上,且213x x >>,比较1y ,2y 的大小.24.某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场每月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调查与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a %,每个摊位的管理费将会减少3%10a ;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a %,每个摊位的管理费将会减少1%4a .这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少5%18a ,求a 的值. 25.在ABCD 中,BE 平分ABC ∠交AD 于点E .(1)如图1,若30D ︒∠=,AB =ABE ∆的面积;(2)如图2,过点A 作AF DC ⊥,交DC 的延长线于点F ,分别交BE ,BC 于点G ,H ,且 AB AF =.求证:ED AG FC -=.26.在平面直角坐标系中,抛物线2y x x =++与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q .(1)如图1,连接AC ,BC .若点P 为直线BC 上方抛物线上一动点,过点P 作PE y轴交BC 于点E ,作PF BC ⊥于点F ,过点B 作 BG A C ∥交y 轴于点G .点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK .当PEF ∆的周长最大时,求2PH HK KC ++的最小值及点H 的坐标. (2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线顶点记为D ′,N 为直线DQ 上一点,连接点D ',C ,N ,N D C '∆能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.参考答案1.A【分析】根据绝对值的意义:数轴上一个数所对应的点与原点(O点)的距离叫做该数的绝对值,绝对值只能为非负数;即可得解.【详解】解:在数轴上,数5所表示的点到原点0的距离是5;故选A.【点睛】本题考查了绝对值,解决本题的关键是一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.D【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看易得第一层有4个正方形,第二层有一个正方形,如图所示:.故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.B【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.4.B【分析】由题意可得,根据直角三角形两锐角互余可求∠ABC =50°.【详解】解:∵AC 是⊙O 的切线,∴AB AC ⊥,且40C ︒∠=,∴50ABC ︒∠=,故选B .【点睛】本题考查了切线的性质,直角三角形两锐角互余,熟练运用切线的性质是本题的关键. 5.C【分析】将抛物线的一般式配方成为顶点式,可确定顶点坐标及对称轴.【详解】解:∵223623(1)5y x x x =-++=--+,∴抛物线顶点坐标为(1,5),对称轴为1x =.故选C .【点睛】本题考查了二次函数的性质.抛物线2()y a x h k =-+的顶点坐标为(h ,k ),对称轴为x =h .6.C【分析】根据竞赛得分10=⨯答对的题数(5)+-⨯未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.【详解】解:设要答对x 道.10(5)(20)120x x +-⨯->, 10 100 5 120x x -+>, 15 220x >,解得:443x >, 根据x 必须为整数,故x 取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题. 故选C . 【点睛】此题主要考查了一元一次不等式的应用,得到得分的关系式是解决本题的关键. 7.B 【分析】化简原式等于,因为=<< 【详解】+==,∵=,67<<,故选B . 【点睛】本题考查估算无理数的大小;能够将给定的无理数锁定在相邻的两个整数之间是解题的关键. 8.C 【分析】把7x =与8x =-代入程序中计算,根据y 值相等即可求出b 的值. 【详解】解:当7x =时,可得722b-+=-, 可得:3b =,当8x =-时,可得:2(8)319y =-⨯-+=,故选C . 【点睛】此题考查了函数值,弄清程序中的关系式和理解自变量取值范围是解本题的关键. 9.C 【分析】由菱形的性质和锐角三角函数可求点()6,8C ,将点C 坐标代入解析式可求k 的值. 【详解】解:如图,过点C 作CE OA ⊥于点E ,∵菱形OABC 的边OA 在x 轴上,点(10,0)A , ∴10OC OA ==, ∵4sin 5CECOA OC∠==. ∴8CE =,∴6OE == ∴点C 坐标(6,8) ∵若反比例函数k(0,0)xy k x =>>经过点C , ∴6848k =⨯= 故选C . 【点睛】本题考查了反比例函数性质,反比例函数图象上点的坐标特征,菱形的性质,锐角三角函数,关键是求出点C 坐标. 10.B 【分析】过点E 作EM AB ⊥与点M ,根据斜坡CD 的坡度(或坡比)1:2.4i =可设CD x =,则2.4 CG x =,利用勾股定理求出x 的值,进而可得出CG 与DG 的长,故可得出EG 的长.由矩形的判定定理得出四边形EGBM 是矩形,故可得出EM BG =,BM EG =,再由锐角三角函数的定义求出AM 的长,进而可得出结论. 【详解】解:过点E 作EM AB ⊥与点M ,延长ED 交BC 于G , ∵斜坡CD 的坡度(或坡比)1:2.4i =,52BC CD ==米, ∴设DG x =,则 2.4 CG x =. 在Rt CDG ∆中,∵222DG CG DC +=,即222(2.4)52x x +=,解得20x ,∴20DG =米,48CG =米,∴200.820.8EG =+=米,5248100BG =+=米. ∵EM AB ⊥,AB BG ⊥,EG BG ⊥, ∴四边形EGBM 是矩形,∴100EM BG ==米,20.8BM EG ==米. 在Rt AEM ∆中, ∵27AEM ︒∠=,∴•tan 271000.5151AM EM ︒=≈⨯=米, ∴5120.871.8AB AM BM =+=+=米. 故选B .【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 11.A 【分析】先解不等式组12(7)34625(1)x x x a x ⎧--⎪⎨⎪->-⎩根据其有三个整数解,得a 的一个范围;再解关于y 的分式方程12311y a y y--=---,根据其解为正数,并考虑增根的情况,再得a 的一个范围,两个范围综合考虑,则所有满足条件的整数a 的值可求,从而得其和. 【详解】解:由关于x 的不等式组12(7)34625(1)x x x a x ⎧--⎪⎨⎪->-⎩,得32511x a x ⎧⎪⎨+>⎪⎩∵有且仅有三个整数解,∴25311a x +<,1x =,2,或3. ∴25111a +<, ∴532a -<<;由关于y 的分式方程12311y ay y--=---得1 2 31y a y -+=--(), ∴2y a =-,∵解为正数,且1y =为增根, ∴2a <,且1a ≠, ∴522a -<<,且1a ≠, ∴所有满足条件的整数a 的值为:﹣2,﹣1,0,其和为﹣3. 故选A . 【点睛】本题属于含一元一次不等式组和含分式方程的综合计算题,比较容易错,属于易错题. 12.D 【分析】先证BDG DE ∆≅∆,得出1AE BG ==,再证DGE ∆与EDF ∆是等腰直角三角形,在直角AEB ∆中利用勾股定理求出BE 的长,进一步求出GE 的长,可通过解直角三角形分别求出GD ,DE ,EF ,DF 的长,即可求出四边形DFEG 的周长. 【详解】解:∵45ABC ︒∠=,AD BC ⊥于点D , ∴9045BAD ABC ︒︒∠=-∠=, ∴ABD ∆是等腰直角三角形, ∴AD BD =, ∵BEAC ⊥,∴90GBD C ︒∠+∠=, ∵90EAD C ︒∠+∠=, ∴GBD EAD ∠=∠, ∵90ADB EDG ︒∠=∠=,∴ADB ADG EDG ADG ∠-∠=∠-∠, 即BDG ADE ∠=∠, ∴()BDG ADE ASA ∆≅∆, ∴1BG AE ==,DG DE =, ∵90EDG ︒∠=,∴EDG ∆为等腰直角三角形,∴9045135AED AEB DEG ︒︒︒∠=∠+∠=+=, ∵AED ∆沿直线AE 翻折得AEF ∆, ∴AED AEF ∆≅∆,∴135AED AEF ︒∠=∠=,ED EF =, ∴36090DEF AED AEF ︒︒∠=-∠-∠=, ∴DEF ∆为等腰直角三角形, ∴EF DE DG ==, 在Rt AEB ∆中,BE ==∴1GE BE BG =-=, 在Rt DGE ∆中,222DG ==-,∴22EF DE ==-, 在Rt DEF ∆中,1DF ==,∴四边形DFEG 的周长为:GD EF GE DF +++221)2⎛=-+ ⎝⎭2=+,故选D . 【点睛】本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够灵活运用等腰直角三角形的判定与性质. 13.3 【分析】01)1-=,1122-⎛⎫= ⎪⎝⎭,即可求解;【详解】解:1011)1232-⎛⎫-+=+= ⎪⎝⎭; 故答案为3; 【点睛】本题考查实数的运算;熟练掌握负指数幂的运算,零指数幂的运算是解题的关键. 14.61.1810⨯.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:1180000用科学记数法表示为:61.1810⨯, 故答案为61.1810⨯. 【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.112【分析】列举出所有情况,看第二次出现的点数是第一次出现的点数的2倍的情况占总情况的多少即可. 【详解】 解:列表得:由表知共有36种等可能结果,其中第二次出现的点数是第一次出现的点数的2倍的有3种所以第二次出现的点数是第一次出现的点数的2倍的概率为313612=, 故答案为112. 【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.16.8-. 【分析】根据题意可以求得BAE ∠和DAE ∠的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF 与ADE ∆的面积之差的和,本题得以解决. 【详解】 解:连接AE ,∵90ADE ︒∠=,4AE AB ==,AD =∴sin 42AD AED AE ∠===, ∴45AED ︒∠=,∴45EAD ︒∠=,45EAB ︒∠=,∴AD DE ==∴阴影部分的面积是:24544360π⎛⨯⨯⨯- ⎝⎭24543602π⎛⨯⨯+- ⎝⎭8=,故答案为8.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答. 17.2080 【分析】设小明原速度为x 米/分钟,则拿到书后的速度为1.25x 米/分钟,家校距离为11 (2311) 1.2526x x x -⨯=+.设爸爸行进速度为y 米/分钟,由题意及图形得:11(1611)(1611)(1.25)1380x yx y =-⎧⎨-⨯+=⎩,解得:80x =,176y =.据此即可解答. 【详解】解:设小明原速度为x (米/分钟),则拿到书后的速度为1.25x (米/分钟),则家校距离为11 (2311) 1.2526x x x -⨯=+.设爸爸行进速度为y (米/分钟),由题意及图形得:11(1611)(1611)(1.25)1380x y x y =-⎧⎨-⨯+=⎩.解得:80x =,176y =.∴小明家到学校的路程为:80262080⨯=(米). 故答案为2080 【点睛】本题考查一次函数的应用、速度、路程、时间之间的关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 18.18:19 【分析】设第一、二、三、四车间每天生产相同数量的产品为x 个,每个车间原有成品m 个,甲组检验员a 人,乙组检验员b 人,每个检验员的检验速度为c 个/天,根据题意列出三元一次方程组,解方程组得到答案. 【详解】解:设第一、二、三、四车间每天生产相同数量的产品为x 个,每个车间原有成品m 个,甲组检验员a 人,乙组检验员b 人,每个检验员的检验速度为c 个/天, 则第五、六车间每天生产的产品数量分別是34x 和83x , 由题意得,6()36322248(24)43x x x m ac x x m bc x m bc ⎧⎪+++=⎪⎪⎛⎫++=⎨ ⎪⎝⎭⎪⎪+⨯+=⎪⎩①②③,2⨯-②③得,3m x =,把3m x =分别代入①得,92x ac =, 把3m x =分别代入②得,1922x bc =, 则:18:19a b =,甲、乙两组检验员的人数之比是18:19, 故答案为18:19. 【点睛】本题考查的是三元一次方程组的应用,根据题意正确列出三元一次方程组、正确解出方程组是解题的关键.19.(1)222a b +;(2)2413m m m +++ 【分析】(1)根据完全平方公式和单项式乘以多项式将原式展开,然后再合并同类项即可解答本题; (2)先通分,再将分子相加可解答本题. 【详解】解:(1)2()(2)a b a a b ++-;22222a ab b a ab =+++-, 222a b =+;(2)22622193m m m m m -+-++-+.(1)(3)22m 2333m m m m m -++=+++++2232223m m m m +-+++=+, 2413m m m ++=+. 【点睛】本题考查分式的混合运算、整式的混合运算,解题的关键是明确它们各自的计算方法. 20.(1)48°;(2)证明见解析. 【分析】(1)根据等腰三角形的性质得到BAD CAD ∠=∠,根据三角形的内角和即可得到904248BAD CAD ︒︒︒∠=∠=-=;(2)根据等腰三角形的性质得到BAD CAD ∠=∠根据平行线的性质得到F CAD ∠=∠,等量代换得到BAD F ∠=∠,于是得到结论. 【详解】解:(1)∵AB AC =,AD BC ⊥于点D , ∴BAD CAD ∠=∠,90ADC ︒∠=, 又42C ︒∠=,∴904248BAD CAD ︒︒︒∠=∠=-=; (2)∵AB AC =,AD BC ⊥于点D , ∴BAD CAD ∠=∠, ∵EFAC ,∴F CAD ∠=∠, ∴BAD F ∠=∠, ∴AE FE =. 【点睛】本题考查了等腰三角形的性质,平行线的性质,正确的识别图形是解题的关键.21.(1)5,4,4.45,4.8;(2)320人;(3)见解析. 【分析】(1)根据已知数据可得a 、b 的值,再根据中位数和众数的概念求解可得; (2)用总人数乘以对应部分人数所占比例;(3)可从4.8及以上人数的变化求解可得(答案不唯一). 【详解】解:(1)由已知数据知5a =,4b =, 活动前被测查学生视力样本数据的中位数是4.4 4.54.452+=, 活动后被测查学生视力样本数据的众数是4.8, 故答案为5,4,4.45,4.8;(2)估计七年级600名学生活动后视力达标的人数有12460032030+⨯=(人); (3)活动开展前视力在4.8及以上的有11人,活动开展后视力在4.8及以上的有16人, 视力达标人数有一定的提升(答案不唯一,合理即可). 【点睛】本题考查频数直方图、用样本估计总体的思想、统计量的选择等知识,解题的关键是搞清楚频数、中位数和众数等概念,属于基础题,中考常考题型.22.(1)2000,2001,2002,2010,2011,2012;(2)0,1,2,10,11,12,20,21,22,30,31,32,100.共13个. 【分析】(1)根据“纯数”的概念,从2000至2019之间找出“纯数”;(2)根据“纯数”的概念得到不大于100的数个位不超过2,十位不超过3时,才符合“纯数”的定义解答. 【详解】解:(1)显然1949至1999都不是“纯数”,因为在通过列竖式进行(1)(2)n n n ++++的运算时要产生进位.在2000至2019之间的数,只有个位不超过2时,才符合“纯数”的定义. 所以所求“纯数”为2000,2001,2002,2010,2011,2012; (2)不大于100的“纯数”的个数有13个,理由如下: 因为个位不超过2,十位不超过3时,才符合“纯数”的定义,所以不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,31,32,100.共13个. 【点睛】本题考查的是整式的加减、有理数的加法、数字的变化,正确理解“纯数”的概念是解题的关键.23.(1)见解析;(2)见解析;(3)见解析. 【分析】(1)根据图形即可得到结论;(2)根据函数图形平移的规律即可得到结论;(3)根据函数关系式可知将函数2||y x =-的图象向上平移1个单位,再向右平移3个单位得到函数2|-3|1y x =-+的图象.根据函数的性质即可得到结论. 【详解】解:(1)(0,2)A ,(2,0)B -,函数2| 2|y x =-+的对称轴为2x =-;(2)将函数2||y x =-的图象向上平移2个单位得到函数2||2y x =-+的图象; 将函数2||y x =-的图象向左平移2个单位得到函数2|2|y x =-+的图象; (3)将函数2||y x =-的图象向上平移1个单位,再向右平移3个单位得到函数2|3|1y x =--+的图象.所画图象如图所示,当213x x >>时,12y y >.【点睛】本题考查了一次函数与几何变换,一次函数的图象,一次函数的性质,平移的性质,正确的作出图形是解题的关键.24.(1)该菜市场共有25个4平方米的摊位.(2)a 的值为50. 【分析】(1)设该菜市场共有x 个4平方米的摊位,则有2x 个2.5平方米的摊位,根据菜市场每月可收取管理费4500元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)由(1)可得出:5月份参加活动一的2.5平方米摊位及4平方米摊位的个数,再由参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少518%a ,即可得出关于a 的一元二次方程,解之取其正值即可得出结论. 【详解】解:(1)设该菜市场共有x 个4平方米的摊位,则有2x 个2.5平方米的摊位, 依题意,得:20420 2.524500x x ⨯+⨯⨯=, 解得:25x =.答:该菜市场共有25个4平方米的摊位.(2)由(1)可知:5月份参加活动一的2.5平方米摊位的个数为25240%20⨯⨯=(个),5月份参加活动一的4平方米摊位的个数为2520%5⨯=(个). 依题意,得:320(12%)20 2.5%10a a +⨯⨯⨯()1516%204%4a a ++⨯⨯⨯[20(12%)20a =+⨯⨯2.5+5(16%)a +5204]%18a ⨯⨯⨯,整理,得:2500a a -=, 解得:10a =(舍去),250a =. 答:a 的值为50. 【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程. 25.(1)32;(2)证明见解析. 【分析】(1)作BO AD ⊥于O ,由平行四边形的性质得出30BAO D ︒∠=∠=,由直角三角形的性质得出122BQ AB ==,证出ABE AEB ∠=∠,得出AE AB ==公式即可得出结果;(2)作AQ BE ⊥交DF 的延长线于P ,垂足为Q ,连接PB 、PE ,证明ABG AFP ∆≅∆得出AG FP =,再证明BPC PED ∆≅∆得出PC ED =,即可得出结论. 【详解】(1)解:作BO AD ⊥于O ,如图1所示: ∵四边形ABCD 是平行四边形,∴AD BC ∥,AB CD ∥,AB CD =,30ABC D ︒∠=∠=, ∴AEB CBE ∠=∠,30BAO D ︒∠=∠=,∴122BQ AB ==, ∵BE 平分ABC ∠, ∴ABE CBE ∠=∠, ∴ABE AEB ∠=∠,∴AE AB ==∴ABE ∆的面积1132222AE BO =⨯==; (2)证明:作AQ BE ⊥交DF 的延长线于P ,垂足为Q ,连接PB 、PE ,如图2所示: ∵AB AE =,AQ BE ⊥, ∴ABE AEB ∠=∠,BQ EQ =, ∴PB PE =, ∴PBE PEB ∠=∠, ∴ABP AEP ∠=∠, ∵AB CD ∥,AF CD ⊥, ∴AF AB ⊥, ∴90BAF ︒∠=,∵AQ BE ⊥, ∴ABG FAP ∠=∠,在ABG ∆和FAP ∆中,90ABG FAP AB AF BAG AFP ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩,∴(ASA)ABG AFP ∆≅∆, ∴AG FP =,∵AB CD ∥,AD BC ∥,∴180ABP BPC ︒∠+∠=,BCP D ∠=∠, ∵180AEP PED ︒∠+∠=, ∴BPC PED ∠=∠,在BPC ∆和PED ∆中,BCP D BPC PED PB PE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴(AAS)BPC PED ∆≅∆, ∴PC ED =,∴---ED AG PC AG PC FP FC ===.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角三角形的性质、线段垂直平分线的性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.26.(1)2PH HK KG ++的最小值为10,此时H ;(2)点N 的坐标为1,4⎛ ⎝⎭或1,4⎛ ⎝⎭或1,136⎛ ⎝⎭或1,4⎛ ⎝⎭或1,4⎛ ⎝⎭. 【分析】(1)首先证明PEF BCO ∆∆∽,推出当PE 最大时,PEF ∆的周长最大,构建二次函数,求出PE 最大时,点P 的坐标,将直线GO 绕点G 逆时针旋转60︒,得到直线l ,作PM ⊥直线l 于M ,KM '⊥直线l 于M ′,则2PH HK KG PH HK KM PM '++=++,求出PM 即可解决问题.(2)首先利用待定系数法求出点D ′坐标,设(1,)N n ,∵C ,5,4D '⎛ ⎝⎭,则221(NC n =+-,22254D C '⎛=+- ⎝,222(51)4D N n '+⎛⎫=-- ⎪ ⎪⎝⎭,分三种情形分别构建方程求出n 的值即可解决问题. 【详解】解:(1)如图1中,对于抛物线242y x x =++,令0x =,得到y =令0y =,得到2042x x ++=,解得2x =-或4,∴C ,(2,0)A -,(4,0)B ,抛物线顶点D 坐标1,4⎛ ⎝⎭, ∵PF BC ⊥,∴90PFE BOC ︒∠=∠=, ∵PE OC ∥, ∴PEF BCO ∠=∠, ∴PEF BCO ∆∆∽,∴当PE 最大时,PEF ∆的周长最大,∵(4,0)B ,C ,∴直线BC 的解析式为y x =+2,42P m m ⎛-++ ⎝,则,E m ⎛+ ⎝,∴242PE m =++2⎛-+=+ ⎝, ∴当2m =时,PE 有最大值,∴P ,如图,将直线GO 绕点G 逆时针旋转60︒,得到直线l , 作PM ⊥直线l 于M ,KM '⊥直线l 于M ′,则2PH HK KG PH HK KM PM '++=++,∵P , ∴60POB ︒∠=,∵30MOG ︒∠=,∴180MOG BOC POB ︒∠+∠+∠=, ∴P ,O ,M 共线,可得10PM =,∴PH HK ++的最小值为10,此时H .(2)∵(2,0)A -,C ,∴直线AC 的解析式为y =+,∵DD AC '∥,1,4D ⎛ ⎝⎭,∴直线DD ′的解析式为y =+设D '⎛+ ⎝⎭,则平移后抛物线的解析式为21)44y x m =-++ 将(0,0)代入可得5m =或﹣1(舍弃),∴D '⎛ ⎝⎭,设(1,)N n ,∵C ,D '⎛ ⎝⎭,∴221(NC n =+-,2225D C '=+-⎝,222(51)D N n '⎫=-+-⎪⎪⎝⎭,①当NC CD '=时,2221(54n ⎛+-=+- ⎝,解得:n =②当NC D N '=时,221((51)n n ⎫+-=-+-⎪⎪⎝⎭,解得:136n =③当D C D N ''=时,22225(51)n ⎫+-=-+-⎪⎪⎝⎝⎭,解得:4n =,综上所述,满足条件的点N 的坐标为1,4⎛ ⎝⎭或1,4⎛⎫- ⎪ ⎪⎝⎭或1,136⎛ ⎝⎭或⎛ ⎝⎭或⎛ ⎝⎭. 【点睛】本题属于二次函数综合题,考查了一次函数的性质,二次函数的性质,垂线段最短,相似三角形的判定和性质,一元二次方程等知识,解题的关键是,学会用转化的思想思考问题,把最短问题转化为垂线段最短,学会利用参数构建方程解决问题,属于中考压轴题.。
2019年重庆中考数学考前测试卷(2018巴蜀二模)
2019年重庆中考数学考前测试卷17(全卷共五个大题,满分150分,考试时间120分钟)一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卡中对应的表格内.4. 下列调查中,适合采用抽样调查的是()运动员使用兴奋剂的情况C、调查重庆市初中生每天锻炼所用的时间D调查乘坐飞机的人员是否携带违禁物品5. 函数y二x-2 •丄中X的取值范围为()X-3A、x_2且x =3 B 、x>2且x工3 C 、x>26. 下列命题中,真命题的是()A、直线是有长度的线A、调查我校初三某班学生立定跳远的成绩 B 、调查里约奥运会上参赛1. 在-丄、0、-2、5这四个数中,最大的数是(44A、B、0 C、-22. 下列图形是中心对称图形的是(a4的结果是(6A、2aB、2 a5C、4a6 D 4a5D x_ 2B、两个数的绝对值一定不相3.计算(2a)2)c DC、相等的角一定是对顶D、整数是有理数角7.如图,AB 是。
O 的弦,AO 的延长线交过点B 的。
O 的切线于点C,如果/ CAB=30 , AB =2 ..3 则 OC 的长度为(A 2、3B 、2C 、4、3D 、48•估计2、・2 、3约等于()A 4.3 B. 4.47題番C. 4.5D. 4.69. 下列各图形都是由同样大小的圆点和正三角形按一定的规律组成,其中 第①个图形由8个圆点和1个正三角形组成,第②个图形由16个圆点和4 个正三角形组成,第③个图形由24个圆点和9个正三角形组成,…….则 第( )个图形中圆点和正三角形的个数相等. A. 7B. 8C. 9D.10• * « * • aAAA •AAA ・ ・・・■••AAA • *■ • ♦ • •▲A① ② ③10. 如图,小周站在A 处,他的对面有一斜坡BC (坡度i=12:5 ),现测得小 周所站A 处到斜坡底端B 的距离,AB=15米,坡面BC 长为13米,在斜坡 顶端C 不远处D 有一棵树,测得CD=1(米.小周看树的顶部E 的仰角为30 , 此时小周眼睛到地面的高度为1.8米,则小周的高度DE 约为().(精 确到 1 米,一3=1.73 , 5=2.24 )A. 5B. 7C. 12D.1711. 使得关于x 的不等式组刖;04有解,且关于X 的方程詈的 解为整数的所有整数a 的和为( )A. 5B. 6C. 7D. 1012. 如图,在直角坐标系中,点P 为菱形OACB 勺对角线AB OC 交点,其中 点B 、P 在双曲线y=F (x 0)上,若点P 的坐标为(1,2 ),则点A 的坐标xB. (-2,7)C. ( -13,14)D.29 9(本大题6个小题,每小题4分,共24分)请将每小题的答 案直接填写在答题卡中对应的横线上.13. 雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述,尤其是 PM2.5 (空气动力学当量直径小于等于 0.0000025微米的颗粒物)被认为是造成 雾霾天气的“元凶”,把0.0000025用科学计数法表示为 .14. 计算:(二 T )0 电厂 -3.8 二.15. 如图所示,是重庆市鲁能巴蜀中学合唱团 60名成员的年龄结构折线统 计图,该团最小的为13岁,最大的为17岁,根据统计图提供的数据,该 团成员年龄的中位数为岁.lOXiffl为( ) A. (-1, 2) 3(-3,乎)5二、填空题:画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则两弧之间的 阴影面积是(结果保留n ).17.甲、乙两辆汽车沿同一路线从 A 地前往B 地,甲车以a 千米/时的速度 匀速行驶,途中出现故障后停车维修,修好后以 2a 千米/时的速度继续行 驶;乙车在甲车出发2小时候匀速前往B 地,比甲车早30分钟到达,至U 达 B 地后,乙车按原速度返回 A 地,甲车以2a 千米/时的速度返回A 地.设 甲、乙两车与A 地相距s (千米),甲车离开A 地的时间为t (小时),s 与t 之间的函数图像如图所示,求两车在途中第二次相遇 时t 的值18.甲、乙两人玩纸牌游戏,从足够数量的纸牌中抽取牌,规定每人最多两 种取法,甲每次取6张或(6-k )张,乙每次取8张或(8-k )张(k 是常 数,0<k<6).经统计,甲共取了 17次,乙共取了 19次,并且乙至少去了 一次8张牌,最终两人所取牌的总张数恰好相等,那么这次纸牌游戏中纸 牌总数量最少有张.16.如图,在边长为4的正方形ABC 冲,先以点 A 为圆心,AD 的长为半径16^图/ EA C 勺度数.20.为了了解我校2018级同学体育考试成绩,现对全年级部分同学的体考 成绩进行了统计,并绘制成立如下的条形统计图和扇形统计图,其中,体 育成绩共分为五个等级:A : 35分一一40分;B: 41分一一47分;C: 48 分;D: 49分;E : 50分.请你根据图中提供的信息完成下列各题:上面的条形统计图补充完整;(2)成绩为满分的同学中有5名同学来自于一个班,其中男同学2名,女 同学3名,现从这5名同学中选取2名到下一年级进行经验交流,请用树 状图或列表法求恰好选到一男一女的概率.四、解答题(本大题5个小题,每小题10分,共50分)解答时每小题必 须给出必要的演算过程或推理步骤 » / 八 2 /c\ x 2+6x + 9 . [ x 2 + x_621. ( 1) 2x(x —2y)—(x —2y) ;(2)2丁 ---- 一x —3_3x+x i x_3丿22.如图,在平面直角坐标系中,直线11 : y 仁k1x+b (k1工0)与直线12 , y2=k2x+9(" 0)相交于点 A,直线 11 过点 B( - 4,0),已知 tan / ABO=, AB=3匸.(1) 求直线l1和l2的解析式; (2)将(1)请计算扇形统计图中 B 等级所对应的圆心角度数为 ,将启人H 的百牛比i的条形竦计出AB直线l2向左平移,使平移后的直线经过坐标原点,且与直线l1交于点C,连接AO求厶AOC勺面积.23.为全面推进新农村建设,村村委会多方努力,共获得流转耕地1000亩,全部用于种植纽橙和蔬菜,其中种植蔬菜的面积不少于种植纽橙面积的4倍.(1)求该村种植蔬菜的面积至少为多少亩?(2)今年村里按(1)中蔬菜种植面积的最小值种植蔬菜,纽橙和蔬菜上市后,纽橙每亩获利800元,蔬菜每亩获利600元;明年在保持纽橙种植面积不变的情况下,纽橙亩产量讲上涨,预计每亩利润将增加3a%;同时利用新增流转耕地,使蔬菜种植面积扩大a%并改良蔬菜种植结构,蔬菜每亩利润将增加a%,这样,明年纽橙和蔬菜的总利润将比今年的总利润增加fa%求a的值.524. 如图1,在矩形ABCD K AC为矩形的对角线,点E为AD边上一点,连接BE(1)若/EBC =45 =,且BE=CB AB=2 求AC的长;⑵如图2所示,过B作,使得BF=CD连接CF交BE于点G,当G为CF的中点时,求证:AE=2BG25. 对于一个各数位上的数字均不为0且互不相等的三位自然数p,将它各个数位上的数字分别7倍后再取其个位数,得到三个新的数字,再将这三个新数字重新组合成不同的三位数xyz,当(xy+xz)的值最小时,称此时的xyz为自然数p的“厉害了,我的数”,并规定其经验值E(p) = (y+z—x)2,例如p=543时,其各个数位上的数字分别7倍后的三个个位数分别是:5、& 1,重新组合后的数位581、518、185、158、815、851,因为15 18 和18 15的值最小,所以158和185是542的“厉害了,我的数”,此时E( p)=144.(1)求 E (234):若p=abC(a bc)且E(p)=256时,求p 的值;(2)若s、t都是各数位上的数字均不为0且互不相等的三位自然数,s 的个位数为1,十位数字是个位数字的2倍,t的十位数字是百位数字的2 倍,s的百位数字与t的个位数字相同,且s的百位数字不超过7;若(s t)(^t) (s t)都能被7整除,求E(s)+E(t)的最大值.五、解答题(本大题1个小题,每小题12分,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.26. 如图,在平面直角坐标系中,抛物线y = —3 x2 3X-2、3与x轴交于A、6 3B两点(点A在点B右侧),与y轴交于点C,抛物线的顶点记为D.(1)求出△ 0C[的面积;(2)如图2,在线段OA上有两个动点E、F(E在F点左侧),且EF=1,作EQI y轴交线段AC于Q,作FP// y轴交抛物线于P,当2PF+EQ取最大值时,在y轴找一点H,x轴上找一点M使得PH • HM 一丄2 BM取得最小值,请求2出满足条件的P点坐标,及PH -HM 一鼻BM的最小值;2(3)如图3,将△ BOC沿射线CA平移到:B'O'C'的位置,线段B'C'的中点N 落在X轴上,此时再将.B'O'C'绕平面内某点K旋转90 ,旋转后的三角形记为:BO''C",若B'OC"恰好有两个顶点同时落在抛物线上,请求出满足条件的K的坐标.。
2019年重庆市中考数学试题(B卷)(含解析)
D C B A O B A输出y y= -2x+b y=-x+b 2x<3x ≥3输入x 重庆市2019年初中学业水平暨高中招生考试数学试题(B 卷)(全卷共四个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为(a 2b -,a 4b ac 42-),对称轴公式为x=a2b-.一、选择题(本大题12个小题,每小题4分,共48分)1.5的绝对值是( ) A 、5;B 、-5;C 、51;D 、51-. 提示:根据绝对值的概念.答案A.2.如图是一个由5个相同正方体组成的立体图形,它的主视图是( ) 提示:根据主视图的概念.答案D.3.下列命题是真命题的是( )A 、如果两个三角形相似,相似比为4︰9,那么这两个三角形的周长比为2︰3;B 、如果两个三角形相似,相似比为4︰9,那么这两个三角形的周长比为4︰9;C 、如果两个三角形相似,相似比为4︰9,那么这两个三角形的面积比为2︰3;D 、如果两个三角形相似,相似比为4︰9,那么这两个三角形的面积比为4︰9. 提示:根据相似三角形的性质.答案B. 4.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C=40°,则∠B 的度数为( )A 、60°;B 、50°;C 、40°;D 、30°.提示:利用圆的切线性质.答案B.5.抛物线y=-3x 2+6x+2的对称轴是( )A 、直线x=2;B 、直线x=-2;C 、直线x=1;D 、直线x=-1. 提示:根据试卷提供的参考公式.答案C.6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( )A 、13;B 、14;C 、15;D 、16. 提示:用验证法.答案C.7.估计1025⨯+的值应在( )A 、5和6之间;B 、6和7之间;C 、7和8之间;D 、8和9之间. 提示:化简得53.答案B.8.根据如图所示的程序计算函数y 的值,若输入x 的值是7,则输出y 的值是-2,若输入x 的值是-8,则输出y 的值是( )A 、5;B 、10;C 、19;D 、21. 提示:先求出b.答案C.C B F ED CB A G F ED CB A 9.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,点A(10,0),sin ∠COA=54.若反比例函数)0x ,0k (xky >>=经过点C ,则k 的值等于( )A 、10;B 、24提示:因为OC=OA=10,过点C 作OA 的垂线,记垂足为D ,解直角三角形OCD.答案C.10.如图,AB 是垂直于水平面的建筑物,为测量AB 的高度,小红从建筑底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC=BC ,在点D 处放置测角仪,测角仪支架DE 的高度为0.8米,在E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)i =1︰2.4,那么建筑物AB 的高度约为( )(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A 、65.8米;B 、71.8米;C 、73.8米;D 、119.8米.提示:作DG ⊥BC 于G ,延长EF 交AB 于H.因为DC=BC=52,i =1︰2.4,易得DG=20,CG=48,所以BH=DE+DG=20.8,EH=BC+CG=100,所以AH=51.答案B.11.若数a 使关于x 的不等式组⎪⎩⎪⎨⎧->--≤-)x 1(5a 2x 6)7x (4123x 有且仅有三个整数解,且使关于y 的分式方程3y 1a 1y y 21-=----的解为正数,则所有满足条件的整数a 的值之和是( )A 、-3;B 、-2;C 、-1;D 、1.提示:由不等式组的条件得:-2.5≤a<3.由分式方程的条件得:a<2且a ≠1.综上所述,整数a 为-2,-1,0.答案A.12.如图,在△ABC 中,∠ABC=45°,AB=3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE=1,连接DE ,将△AED 沿直线沿直线AE 翻折至△ABC 所在的平面内,得到△AEF ,连接DF ,过点D 作DG ⊥DE 交BE 于点G.则四边形DFEG 的周长为( )A 、8;B 、24;C 、422+;D 、223+.提示:易证△AED ≌△AEF ≌△BGD ,得ED=EF=GD ,∠DGE=45°,进而得∠BGD=∠AED=∠AEF=135°,易得△DEG 和△DEF 都是等腰直角三角形,设DG=x ,则EG=2x ,注意AB=3,BG=AE=1,∠AEB=90°,可解得x=222-.答案D. 二、填空题(本大题6个小题,每小题4分,共24分) 13.计算:10)21()13(-+-= .提示:根据零指数幂、负整数指数幂的意义.答案3.14.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP 注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为 .FED CBA y/提示:根据科学记数法的意义.答案1.18×106.15.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是 . 提示:由树状图知总共有36种,符合条件的有3种.答案:121. 16.如图,四边形ABCD 是矩形,AB=4,AD=22,以点A 为圆心,AB 长为半径画弧,交CD 于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是 .提示:连AE ,易得∠EAD=45°.答案828-.17.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速度的45快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 米.提示:设小明原速度为x 米/分钟,则拿到书后的速度为1.25x 米/分钟,家校距离为11x+(23-11)×1.25x=26x.设爸爸行进速度为y 米/分钟,由题意及图形得: 11x=(16-11)y 且(16-11)(1.25x+y)=1380.解得:x=80,y=176.答案2080.18.某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的43和38.甲、乙两组检验员进驻该厂进行产品检验.在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是 .提示:设第一、二、三、四车间每天生产相同数量的产品为x 个,则第五车间每天生产的产品为x 43个,第六五车间每天生产的产品为x 38个,每个车间原有成品均为m 个.甲组有检验员a 人,乙组有检验员b 人,每个检验员的检验速度为c 个/天.由题意得: 6(x+x+x+)+3m=6ac ,bc 2m 2)x 43x (2=++,bc 4m x 38)42(=+•+由后两式可得m=3x ,代入前两式可求得.答案18︰19.FE D C B A (注:每组数据包括左端值,不包括右端值)活动前被测查学生视力频数分布直方图频数387a 431086424127b 215.0≤x<5.24.8≤x<5.04.6≤x<4.84.4≤x<4.64.2≤x<4.44.0≤x<4.2频数分组活动后被测查学生视力频数分布表三、解答题(本大题7个小题,每小题10分,共70分) 19.计算:(1)(a+b)2+a(a-2b)解:原式=a 2+2ab+b 2+a 2-2ab =2a 2+b 2. (2)3m 2m 29m 6m 21m 2++÷--+- 解:原式=)1m (23m )3m )(3m ()3m (21m ++•-+-+- =1m 11m ++- =1m m 2+20.如图,在△ABC 中,AB=AC ,AD ⊥BC 于点D.(1)若∠C=42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F.求证:AE=FE.解与证:(1)∵AB=AC ,AD ⊥BC 于点D ∴∠BAD=∠CAD ,∠ADC=90°,又∠C=42°.∴∠BAD=∠CAD=90°-42°=48°. (2)∵AB=AC ,AD ⊥BC 于点D , ∴∠BAD=∠CAD ∵EF ∥AC , ∴∠F=∠CAD∴∠BAD=∠F ,∴AE=FE.21.为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下: 活动前被测查学生视力数据:4.0,4.1,4.1,4.2,4.2,4.3,4.3,4.4,4.4,4.4,4.5,4.5,4.6,4.6,4.6 4.7,4.7,4.7,4.7,4.8,4.8,4.8,4.8,4.8,4.9,4.9,4.9,5.0,5.0,5.1 活动后被测查学生视力数据:4.0,4.2,4.3,4.4,4.4,4.5,4.5,4.6,4.6,4.6,4.7,4.7,4.7,4.7,4.8 4.8,4.8,4.8,4.8,4.8,4.8,4.9,4.9,4.9,4.9,4.9,5.0,5.0,5.1,5.1根据以上信息回答下列问题:(1)填空:a= ,b= ,活动前被测查学生视力样本数据的中位数是 ,活动后被测查学生视力样本数据B A O y x -9-8-7-6-5-4-3-2-1-6-5-4-3-2-132187654321B A Oy x-9-8-7-6-5-4-3-2-1-6-5-4-3-2-132187654321的众数是 ;(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少? (3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果. 解:(1)a=5,b=4,活动前被测查学生视力样本数据的中位数是4.65,活动后被测查学生视力样本数据的众数是4.8; (2)16÷30×600=320.所以七年级600名学生活动后视力达标的人数有320人.(3)活动前的中位数是4.65,活动后的中位数是4.8,因此,活动后的视力好于活动前的视力.说明学校开展视力保健活动的效果突出.22.在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数n ,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n 为“纯数”. 例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位.(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”的个数,并说明理由. 解:(1)显然1949至1999都不是“纯数”因为在通过列竖式进行n+(n+1)+(n+2)的运算时要产生进位. 在2000至2019之间的数,只有个位不超过2时,才符合“纯数”的定义. 所以所求“纯数”为2000,2001,2002,2010,2011,2012. (2)不大于100的“纯数”的个数有13个,理由如下: 因为个位不超过2,二位不超过3时,才符合“纯数”的定义.所以不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,31,32,100.共13个.23.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=-2|x|的图象,经 x … -3 -2 -1 0 1 2 3 … y … -6 -4 -2 0 -2 -4 -4 …的图象如下图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数y=-2|x+2|的对称轴. (2)探索思考:平移函数y=-2|x|的图象可以得到函数y=-2|x|+2和y=-2|x+2|的图象,分别写出平移的方向和距离. (3)拓展应用:在所给的平面直角坐标系内画出函数y=-2|x-3|+1的图象.若点(x 1,y 1)和(x 2,y 2)在该函数图象上,且x 2>x 1>3,比较y解:(1)A(0,2),B(-2,0),函数y=-2|x+2|的对称轴为x=-2.E D A E DA (2)将函数y=-2|x|的图象向上平移2个单位得到函数y=-2|x|+2的图象. 将函数y=-2|x|的图象向左平移2个单位得到函数y=-2|x+2|的图象.(3)将函数y=-2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=-2|x-3|+1的图象.所画图象如图所示,当x 2>x 1>3时,y 1>y 2.24.某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费. (1)菜市场每月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位? (2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋抵扣管理费”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一,经调查与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,每个摊位的管理费将会减少%a 103;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少%a 41,这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少%a 185,求a 的值. 解:(1)设4平方米的摊位有x 个,则2.5平方米的摊位有2x 个,由题意得: 20×2.5×2x+20×4×x=4500,解得:x=25. 答:4平方米的摊位有25个.(2)设原有2.5平方米的摊位2m 个,4平方米的摊位m 个.则5月活动一中:2.5平方米摊位有2m ×40%个,4平方米摊位有m ×20%个. 6月活动二中:2.5平方米摊位有2m ×40%(1+2a%)个,管理费为20×(1-%a 103)元/个 4平方米摊位有m ×20%(1+6a%)个,管理费为20×(1-%a 41)元/个. 所以参加活动二的这部分商户6月份总共缴纳的管理费为: 2m ×40%(1+2a%)×20×(1-%a 103)×2.5+m ×20%(1+6a%)×20×(1-%a 41)×4元 这部分商户按原方式共缴纳的管理费为:20×2.5×2m ×40%(1+2a%)+20×4×m ×20%(1+6a%)元 由题意得:2m ×40%(1+2a%)×20×(1-%a 103)×2.5+m ×20%(1+6a%)×20×(1-%a 41)×4 =[20×2.5×2m ×40%(1+2a%)+20×4×m ×20%(1+6a%)]×(1-%a 185). 令a%=t ,方程整理得2t 2-t=0,t 1=0(舍),t 2=0.5 ∴a=50.即a 的值为50.25.在平行四边形ABCD 中,BE 平分∠ABC 交AD 于点E. (1)如图1,若∠D=30°,AB=6,求△ABE 的面积;(2)如图2,过点A 作AF ⊥DC ,交DC 的延长线于点F ,分别交BE ,BC 于点G ,H ,且AB=AF.求证:ED-AG=FC.K 答图1E DCB A H N M GFE DCBA 答图2G M /l P y x M HK C DF EQ OB A G P y x HK C DF EQ OB A 图1N D /y xCD Q O B A 图2D /y xC D QO BA提示:(1)过B 作边AD 所在直线的垂线,交DA 延长于K ,如图,易求得BK=26.答案1.5. (2)要证ED-AG=FC.只要证ED=AG+FC ,为此延长CF 至FM ,使FM=AG ,连AM 交BE 于N 如图,则只要证ED=FM+CF=CM ,又AE=AB=CD ,所以只要证AD=MD ,即证∠M=∠DAM.又易证△AFM ≌△BAG ,则∠M=∠AGB ,∠MAF=∠GBA=∠AEN.四、解答题(本大题1个小题,共8分) 26.在平面直角坐标系中,抛物线y=32x 23x 432++-与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q.(1)如图1,连接AC ,BC.若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF ⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G.点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK.当△PEF 的周长最大时,求PH+HK+23KG 的最小值及点H 的坐标.(2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线顶点记为D /,N 为直线DQ 上一点,连接点D /,C ,N ,△D /CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.提示:(1)易求A(-2,0),B(4,0),C(0,32),D(1,439),△PEF ∽△BOC. ∴当PE 最大时,△PEF 的周长最大.易求直线BC 的解析式为y=32x 23+- 设P(x, 32x 23x 432++-),则E(x, 32x 23+-) ∴PE=32x 23x 432++--(32x 23+-)=x 3x 432+-∴当x=2时,PE 有最大值. ∴P(2, 32),此时如图,将直线OG 绕点G 逆时针旋转60 °得到直线l ,过点P 作PM ⊥l 于点M ,过点K 作KM /⊥l 于M /. 则PH+HK+23KG= PH+HK+KM /≥PM 易知∠POB=60°.POM 在一直线上.易得PM=10,H(1,3)(2)易得直线AC 的解析式为y=32x 3+,过D 作AC 的平行线,易求此直线的解析式为y=435x 3+,所以可设D /(m,435m 3+),平移后的抛物线y 1=435m 3)m x (432++--.将(0,0)代入解得m 1=-1(舍),m 2=5.所以D /(5,4325). 设N(1,n),又C(0,32),D /(5,4325). 所以NC 2=1+(n-32)2,D /C 2=22)324325(5-+=161267,D /N 2=22)n 4325()15-+-(. 分NC 2= D /C 2;D /C 2= D /N 2;NC 2= D /N 2.列出关于n 的方程求解.答案N 1(1,4139338+),N 2(1, 4139338-),N 3(1,41011325+),N 4(1, 41011325-),N 5(1,1363641).。
2019年重庆市中考数学试卷(b卷)及答案解析
2019年重庆市中考数学试卷(B卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)5的绝对值是( )A.5B.﹣5C.D.﹣2.(4分)如图是一个由5个相同正方体组成的立体图形,它的主视图是( )A.B.C.D.3.(4分)下列命题是真命题的是( )A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:94.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B 的度数为( )A.60°B.50°C.40°D.30°5.(4分)抛物线y=﹣3x2+6x+2的对称轴是( )A.直线x=2B.直线x=﹣2C.直线x=1D.直线x=﹣1 6.(4分)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( )A.13B.14C.15D.167.(4分)估计的值应在( )A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.(4分)根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是﹣2,若输入x的值是﹣8,则输出y的值是( )A.5B.10C.19D.219.(4分)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin ∠COA=.若反比例函数y=(k>0,x>0)经过点C,则k的值等于( )A.10B.24C.48D.5010.(4分)如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC =BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A 点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为( )(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米11.(4分)若数a使关于x的不等式组有且仅有三个整数解,且使关于y的分式方程﹣=﹣3的解为正数,则所有满足条件的整数a的值之和是( )A.﹣3B.﹣2C.﹣1D.112.(4分)如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E ,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为( )A.8B.4C.2+4D.3+2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。
2019年重庆市中考数学试卷有答案(B卷)
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前重庆市2019年初中毕业会考、高级中等学校招生考试(B 卷)数学一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)5的绝对值是( )A .5B .﹣5C .15 D .15-2.(4分)如图是一个由5个相同正方体组成的立体图形,它的主视图是( )ABCD 3.(4分)下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:9 4.(4分)如图,AB 是O 的直径,AC 是O 的切线,A 为切点,若40C ︒∠=,则B ∠的度数为( )A .60︒B .50︒C .40︒D .30︒5.(4分)抛物线2362y x x =++-的对称轴是( )A .直线2x =B .直线2x =-xC .直线1x =D .直线1x =-6.(4分)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( )A .13B .14C .15D .167.(4( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间8.(4分)根据如图所示的程序计算函数y 的值,若输入x 的值是7,则输出y 的值是2-,若输入x 的值是8-,则输出y 的值是( )A .5B .10C .19D .219.(4分)如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,点(10,0)A ,4sin 5COA ∠=.若反比例函数(0,0)ky k x x=>>经过点C ,则k 的值等于 ( )A .10B .24C .48D .5010.(4分)如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC BC =在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角AEF ∠为27︒(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)12.4i =:,那么建筑物AB 的高度约为( )(参考数据sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈)A .65.8米B .71.8米C .73.8米D .119.8米毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)11.(4分)若数a 使关于x 的不等式组12(7),34625(1)xx x a x ⎧--⎪⎨⎪->-⎩有且仅有三个整数解,且使关于y 的分式方程12311y ay y--=---的解为正数,则所有满足条件的整数a 的值之和是( )A .3-B .﹣2C .1-D .112.(4分)如图,在ABC △中,45ABC ︒∠=,3AB =,AD BC ⊥于点D ,BE AC⊥于点E ,1AE =.连接DE ,将AED △沿直线AE 翻折至ABC △所在的平面内,得AEF △,连接DF .过点D 作DG DE⊥交BE 于点G .则四边形DFEG 的周长为()A .8 B.C .4+D.2+二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。
2019年重庆市中考数学试卷(B卷)及答案
DCBAA重庆市2019年初中学业水平暨高中招生考试数学试题(B卷)(全卷共四个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(a2b-,a4bac42-),对称轴公式为x=a2b-.一、选择题(本大题12个小题,每小题4分,共48分)1.5的绝对值是()A、5;B、-5;C、51;D、51-.2.如图是一个由5个相同正方体组成的立体图形,它的主视图是())A、如果两个三角形相似,相似比为4︰9,那么这两个三角形的周长比为2︰3;B、如果两个三角形相似,相似比为4︰9,那么这两个三角形的周长比为4︰9;C、如果两个三角形相似,相似比为4︰9,那么这两个三角形的面积比为2︰3;D、如果两个三角形相似,相似比为4︰9,那么这两个三角形的面积比为4︰9.4.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为()A、60°;B、50°;C、40°;D、30°.5.抛物线y=-3x2+6x+2的对称轴是()A、直线x=2;B、直线x=-2;C、直线x=1;D、直线x=-1.6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A、13;B、14;C、15;D、16.7.估计1025⨯+的值应在()A、5和6之间;B、6和7之间;C、7和8之间;D、8和9之间.8.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x 的值是-8,则输出A、5;B、10;C、9.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA=54.若反比例函数)0x,0k(xky>>=经过点C,则k的值等于()F E D CB A G FED C B A FED CB A A 、10;B 、24;C 、48;D 、50.10.如图,AB 是垂直于水平面的建筑物,为测量AB 的高度,小红从建筑底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC=BC ,在点D 处放置测角仪,测角仪支架DE 的高度为0.8米,在E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)i =1︰2.4,那么建筑物AB 的高度约为( )(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A 、65.8米;B 、71.8米;C 、73.8米;D 、119.8米.11.若数a 使关于x 的不等式组⎪⎩⎪⎨⎧->--≤-)x 1(5a 2x 6)7x (4123x有且仅有三个整数解,且使关于y 的分式方程3y1a1y y 21-=----的解为正数,则所有满足条件的整数a 的值之和是( ) A 、-3;B 、-2;C 、-1;D 、1.12.如图,在△ABC 中,∠ABC=45°,AB=3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE=1,连接DE ,将△AED 沿直线沿直线AE 翻折至△ABC 所在的平面内,得到△AEF ,连接DF ,过点D 作DG ⊥DE 交BE 于点G.则四边形DFEG 的周长为( )A 、8;B 、24;C 、422+;D 、223+.二、填空题(本大题6个小题,每小题4分,共24分) 13.计算:10)21()13(-+-= .14.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP 注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为 . 15.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是 .16.如图,四边形ABCD 是矩形,AB=4,AD=22,以点A 为圆心,AB 长为半径画弧,交CD 于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是 .y/FE D C BA 活动前被测查学生视力频数分布直方图b214.4≤x<4.64.2≤x<4.44.0≤x<4.2频数分组活动后被测查学生视力频数分布表17.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速度的45快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 米.18.某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的43和38.甲、乙两组检验员进驻该厂进行产品检验.在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是 .三、解答题(本大题7个小题,每小题10分,共70分) 19.计算:(1)(a+b)2+a(a-2b) (2)3m 2m 29m 6m 21m 2++÷--+- 20.如图,在△ABC 中,AB=AC ,AD ⊥BC 于点D.(1)若∠C=42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F.求证:AE=FE.21.为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下: 活动前被测查学生视力数据:4.0,4.1,4.1,4.2,4.2,4.3,4.3,4.4,4.4,4.4,4.5,4.5,4.6,4.6,4.6 4.7,4.7,4.7,4.7,4.8,4.8,4.8,4.8,4.8,4.9,4.9,4.9,5.0,5.0,5.1 活动后被测查学生视力数据:4.0,4.2,4.3,4.4,4.4,4.5,4.5,4.6,4.6,4.6,4.7,4.7,4.7,4.7,4.8 4.8,4.8,4.8,4.8,4.8,4.8,4.9,4.9,4.9,4.9,4.9,5.0,5.0,5.1,5.1根据以上信息回答下列问题:(1)填空:a= ,b= ,活动前被测查学生视力样本数据的中位数是 ,活动后被测查学生视力样本数据的众数是 ;(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少? (3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.22.在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数——“纯数”. 定义:对于自然数n ,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n 为“纯数”. 例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位. (1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”的个数,并说明理由.23.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.列表、描点、连线过程得到函数图象如下图所示; 的图象如下图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数y=-2|x+2|的对称轴.(2)探索思考:平移函数y=-2|x|的图象可以得到函数y=-2|x|+2和y=-2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=-2|x-3|+1的图象.若点(x 1,y 1)和(x 2,y 2)在该函数图象上,且x 2>x 1>3,比较y 1,y 2的大小.24.某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场每月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位? (2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋抵扣管理费”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一,经调查与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,每个摊位的管理费将会减少%a 103;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少%a 41,这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少%a 185,求a 的值.图1E DC B A K答图1E D C B A HN MGFE DC B A 答图2HG F E D C BA 图225.在平行四边形ABCD 中,BE 平分∠ABC 交AD 于点E. (1)如图1,若∠D=30°,AB=6,求△ABE 的面积;(2)如图2,过点A 作AF ⊥DC ,交DC 的延长线于点F ,分别交BE ,BC 于点G ,H ,且AB=AF.求证:ED-AG=FC.四、解答题(本大题1个小题,共8分)26.在平面直角坐标系中,抛物线y=32x 23x 432++-与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q.(1)如图1,连接AC ,BC.若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF ⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G.点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK.当△PEF 的周长最大时,求PH+HK+23KG 的最小值及点H 的坐标. (2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线顶点记为D /,N 为直线DQ 上一点,连接点D /,C ,N ,△D /CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.答图1DCBAA重庆市2019年初中学业水平暨高中招生考试数学试题(B卷)(全卷共四个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(a2b-,a4bac42-),对称轴公式为x=a2b-.一、选择题(本大题12个小题,每小题4分,共48分)1.5的绝对值是()A、5;B、-5;C、51;D、51-.提示:根据绝对值的概念.答案A.2.如图是一个由5个相同正方体组成的立体图形,它的主视图是().答案D.3.下列命题是真命题的是()A、如果两个三角形相似,相似比为4︰9,那么这两个三角形的周长比为2︰3;B、如果两个三角形相似,相似比为4︰9,那么这两个三角形的周长比为4︰9;C、如果两个三角形相似,相似比为4︰9,那么这两个三角形的面积比为2︰3;D、如果两个三角形相似,相似比为4︰9,那么这两个三角形的面积比为4︰9.提示:根据相似三角形的性质.答案B.4.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为()A、60°;B、50°;C、40°;D、30°.提示:利用圆的切线性质.答案B.5.抛物线y=-3x2+6x+2的对称轴是()A、直线x=2;B、直线x=-2;C、直线x=1;D、直线x=-1.提示:根据试卷提供的参考公式.答案C.6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A、13;B、14;C、15;D、16.提示:用验证法.答案C.7.估计1025⨯+的值应在()A、5和6之间;B、6和7之间;C、7和8之间;D、8和9之间.提示:化简得53.答案B.8.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x 的值是-8,则输出A、5;B、10;C、19;D、21.提示:先求出b.答案C.F E D CB A G FED C B A 9.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,点A(10,0),sin ∠COA=54.若反比例函数)0x ,0k (x ky >>=经过点C ,则k 的值等于( )A 、10;B 、24;C 、48;D 、50.提示:因为OC=OA=10,过点C 作OA 的垂线,记垂足为D ,解直角三角形OCD.答案C.10.如图,AB 是垂直于水平面的建筑物,为测量AB 的高度,小红从建筑底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC=BC ,在点D 处放置测角仪,测角仪支架DE 的高度为0.8米,在E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)i =1︰2.4,那么建筑物AB 的高度约为( )(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A 、65.8米;B 、71.8米;C 、73.8米;D 、119.8米.提示:作DG ⊥BC 于G ,延长EF 交AB 于H.因为DC=BC=52,i =1︰2.4,易得DG=20,CG=48,所以BH=DE+DG=20.8,EH=BC+CG=100,所以AH=51.答案B.11.若数a 使关于x 的不等式组⎪⎩⎪⎨⎧->--≤-)x 1(5a 2x 6)7x (4123x有且仅有三个整数解,且使关于y 的分式方程3y1a1y y 21-=----的解为正数,则所有满足条件的整数a 的值之和是( ) A 、-3;B 、-2;C 、-1;D 、1.提示:由不等式组的条件得:-2.5≤a<3.由分式方程的条件得:a<2且a ≠1.综上所述,整数a 为-2,-1,0.答案A.12.如图,在△ABC 中,∠ABC=45°,AB=3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE=1,连接DE ,将△AED 沿直线沿直线AE 翻折至△ABC 所在的平面内,得到△AEF ,连接DF ,过点D 作DG ⊥DE 交BE 于点G.则四边形DFEG 的周长为( )A 、8;B 、24;C 、422+;D 、223+.提示:易证△AED ≌△AEF ≌△BGD ,得ED=EF=GD ,∠DGE=45°,进而得∠BGD=∠AED=∠AEF=135°,易得△DEG 和△DEF 都是等腰直角三角形,设DG=x ,则EG=2x ,注意AB=3,FED CBA y/BG=AE=1,∠AEB=90°,可解得x=222-.答案D. 二、填空题(本大题6个小题,每小题4分,共24分)13.计算:10)21()13(-+-= .提示:根据零指数幂、负整数指数幂的意义.答案3. 14.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP 注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为 .提示:根据科学记数法的意义.答案1.18×106. 15.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是 . 提示:由树状图知总共有36种,符合条件的有3种.答案:121. 16.如图,四边形ABCD 是矩形,AB=4,AD=22,以点A 为圆心,AB 长为半径画弧,交CD 于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是 .提示:连AE ,易得∠EAD=45°.答案828-.17.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速度的45快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 米.提示:设小明原速度为x 米/分钟,则拿到书后的速度为1.25x 米/分钟,家校距离为11x+(23-11)×1.25x=26x.设爸爸行进速度为y 米/分钟,由题意及图形得: 11x=(16-11)y 且(16-11)(1.25x+y)=1380.解得:x=80,y=176.答案2080.18.某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的43和38.甲、乙两组检验员进驻该厂进行产品检验.在同时开始检验产品时,每个车间原有成品一样多,检验期间各F E D C B A 车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是 .提示:设第一、二、三、四车间每天生产相同数量的产品为x 个,则第五车间每天生产的产品为x 43个,第六五车间每天生产的产品为x 38个,每个车间原有成品均为m 个.甲组有检验员a 人,乙组有检验员b 人,每个检验员的检验速度为c 个/天.由题意得:6(x+x+x+)+3m=6ac ,bc 2m 2)x 43x (2=++,bc 4m x 38)42(=+•+由后两式可得m=3x ,代入前两式可求得.答案18︰19.三、解答题(本大题7个小题,每小题10分,共70分)19.计算:(1)(a+b)2+a(a-2b)解:原式=a 2+2ab+b 2+a 2-2ab=2a 2+b 2.(2)3m 2m 29m 6m 21m 2++÷--+- 解:原式=)1m (23m )3m )(3m ()3m (21m ++•-+-+- =1m 11m ++- =1m m 2+ 20.如图,在△ABC 中,AB=AC ,AD ⊥BC 于点D.(1)若∠C=42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F.求证:AE=FE.解与证:(1)∵AB=AC ,AD ⊥BC 于点D ∴∠BAD=∠CAD ,∠ADC=90°,又∠C=42°. ∴∠BAD=∠CAD=90°-42°=48°.(2)∵AB=AC ,AD ⊥BC 于点D ,∴∠BAD=∠CAD∵EF ∥AC ,∴∠F=∠CAD∴∠BAD=∠F ,∴AE=FE.21.为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:4.0,4.1,4.1,4.2,4.2,4.3,4.3,4.4,4.4,4.4,4.5,4.5,4.6,4.6,4.64.7,4.7,4.7,4.7,4.8,4.8,4.8,4.8,4.8,4.9,4.9,4.9,5.0,5.0,5.1 活动后被测查学生视力数据:4.0,4.2,4.3,4.4,4.4,4.5,4.5,4.6,4.6,4.6,4.7,4.7,4.7,4.7,4.84.8,4.8,4.8,4.8,4.8,4.8,4.9,4.9,4.9,4.9,4.9,5.0,5.0,5.1,5.1(注:每组数据包括左端值,不包括右端值)活动前被测查学生视力频数分布直方图4127b 215.0≤x<5.24.8≤x<5.04.6≤x<4.84.4≤x<4.64.2≤x<4.44.0≤x<4.2频数分组活动后被测查学生视力频数分布表根据以上信息回答下列问题:(1)填空:a= ,b= ,活动前被测查学生视力样本数据的中位数是 ,活动后被测查学生视力样本数据的众数是 ;(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.解:(1)a=5,b=4,活动前被测查学生视力样本数据的中位数是 4.65,活动后被测查学生视力样本数据的众数是4.8;(2)16÷30×600=320.所以七年级600名学生活动后视力达标的人数有320人.(3)活动前的中位数是4.65,活动后的中位数是4.8,因此,活动后的视力好于活动前的视力.说明学校开展视力保健活动的效果突出.22.在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数——“纯数”. 定义:对于自然数n ,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n 为“纯数”.例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位.(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”的个数,并说明理由.解:(1)显然1949至1999都不是“纯数”因为在通过列竖式进行n+(n+1)+(n+2)的运算时要产生进位.在2000至2019之间的数,只有个位不超过2时,才符合“纯数”的定义.所以所求“纯数”为2000,2001,2002,2010,2011,2012.(2)不大于100的“纯数”的个数有13个,理由如下:因为个位不超过2,二位不超过3时,才符合“纯数”的定义.所以不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,31,32,100.共13个.23.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=-2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如下图所示;经历同样的过程画函数y=-2|x|+2和y=-2|x+2|的图象如下图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数y=-2|x+2|的对称轴.(2)探索思考:平移函数y=-2|x|的图象可以得到函数y=-2|x|+2和y=-2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=-2|x-3|+1的图象.若点(x 1,y 1)和(x 2,y 2)在该函数图象上,且x 2>x 1>3,比较y 1,y 2的大小.解:(1)A(0,2),B(-2,0),函数y=-2|x+2|的对称轴为x=-2.(2)将函数y=-2|x|的图象向上平移2个单位得到函数y=-2|x|+2的图象.将函数y=-2|x|的图象向左平移2个单位得到函数y=-2|x+2|的图象.(3)将函数y=-2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=-2|x-3|+1的图象.所画图象如图所示,当x 2>x 1>3时,y 1>y 2.24.某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费. (1)菜市场每月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋抵扣管理费”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一,经调查与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,每个摊位的管理费将会减少%a 103;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少%a 41,这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少%a 185,求a 的值. 解:(1)设4平方米的摊位有x 个,则2.5平方米的摊位有2x 个,由题意得:20×2.5×2x+20×4×x=4500,解得:x=25.答:4平方米的摊位有25个.(2)设原有2.5平方米的摊位2m 个,4平方米的摊位m 个.则5月活动一中:2.5平方米摊位有2m ×40%个,4平方米摊位有m ×20%个.6月活动二中:2.5平方米摊位有2m ×40%(1+2a%)个,管理费为20×(1-%a 103)元/个图1E DC B A K 答图1ED C B A H N M G FE D C B A 答图2H G F E D C B A 图24平方米摊位有m ×20%(1+6a%)个,管理费为20×(1-%a 41)元/个.所以参加活动二的这部分商户6月份总共缴纳的管理费为:2m ×40%(1+2a%)×20×(1-%a 103)×2.5+m ×20%(1+6a%)×20×(1-%a 41)×4元 这部分商户按原方式共缴纳的管理费为:20×2.5×2m ×40%(1+2a%)+20×4×m ×20%(1+6a%)元由题意得:2m ×40%(1+2a%)×20×(1-%a 103)×2.5+m ×20%(1+6a%)×20×(1-%a 41)×4 =[20×2.5×2m ×40%(1+2a%)+20×4×m ×20%(1+6a%)]×(1-%a 185). 令a%=t ,方程整理得2t 2-t=0,t 1=0(舍),t 2=0.5∴a=50.即a 的值为50.25.在平行四边形ABCD 中,BE 平分∠ABC 交AD 于点E.(1)如图1,若∠D=30°,AB=6,求△ABE 的面积; (2)如图2,过点A 作AF ⊥DC ,交DC 的延长线于点F ,分别交BE ,BC 于点G ,H ,且AB=AF.求证:ED-AG=FC.提示:(1)过B 作边AD 所在直线的垂线,交DA 延长于K ,如图,易求得BK=26.答案1.5. (2)要证ED-AG=FC.只要证ED=AG+FC ,为此延长CF 至FM ,使FM=AG ,连AM 交BE 于N 如图,则只要证ED=FM+CF=CM ,又AE=AB=CD ,所以只要证AD=MD ,即证∠M=∠DAM.又易证△AFM ≌△BAG ,则∠M=∠AGB ,∠MAF=∠GBA=∠AEN.四、解答题(本大题1个小题,共8分)26.在平面直角坐标系中,抛物线y=32x 23x 432++-与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q. (1)如图1,连接AC ,BC.若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF ⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G.点H ,K 分别在对称轴和y 轴上答图1图1运动,连接PH ,HK.当△PEF 的周长最大时,求PH+HK+23KG 的最小值及点H 的坐标. (2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线顶点记为D /,N 为直线DQ 上一点,连接点D /,C ,N ,△D /CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.,D(1,439),△PEF ∽△BOC. ∴当PE 最大时,△PEF 的周长最大.易求直线BC 的解析式为y=32x 23+- 设P(x, 32x 23x 432++-),则E(x, 32x 23+-) ∴PE=32x 23x 432++--(32x 23+-)=x 3x 432+- ∴当x=2时,PE 有最大值. ∴P(2, 32),此时如图,将直线OG 绕点G 逆时针旋转60 °得到直线l ,过点P 作PM ⊥l 于点M ,过点K 作KM /⊥l 于M /.则PH+HK+23KG= PH+HK+KM /≥PM 易知∠POB=60°.POM 在一直线上.易得PM=10,H(1,3)(2)易得直线AC 的解析式为y=32x 3+,过D 作AC 的平行线,易求此直线的解析式为y=435x 3+,所以可设D /(m, 435m 3+),平移后的抛物线y 1=435m 3)m x (432++--.将(0,0)代入解得m 1=-1(舍),m 2=5.所以D /(5,4325).设N(1,n),又C(0,32),D /(5,4325).所以NC 2=1+(n-32)2,D /C 2=22)324325(5-+=161267,D /N 2=22)n 4325()15-+-(.分NC 2= D /C 2;D /C 2= D /N 2;NC 2= D /N 2.列出关于n 的方程求解. 答案N 1(1,4139338+),N 2(1, 4139338-),N 3(1,41011325+),N 4(1, 41011325-),N 5(1,1363641).。
2019年重庆市中考数学试卷(B卷)及答案
2019年重庆市中考数学试卷(B卷)一、选择题(本大题共12小题,共48.0分)1.5的绝对值是()A. 5B. −5C. 15D. −152.如图是一个由5个相同正方体组成的立体图形,它的主视图是()A. B.C. D.3.下列命题是真命题的是()A. 如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B. 如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C. 如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D. 如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:94.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为()A. 60∘B. 50∘C. 40∘D. 30∘5.抛物线y=-3x2+6x+2的对称轴是()A. 直线x=2B. 直线x=−2C. 直线x=1D. 直线x=−16.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A. 13B. 14C. 15D. 167.估计√5+√2×√10的值应在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间8.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x的值是-8,则输出y的值是()A. 5B. 10C. 19D. 219. 如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,点A (10,0),sin ∠COA =45.若反比例函数y =k x (k>0,x >0)经过点C ,则k 的值等于( )A. 10B. 24C. 48D. 50 10. 如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC =BC .在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)i =1:2.4,那么建筑物AB 的高度约为( ) (参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A. 65.8米B. 71.8米C. 73.8米D. 119.8米 11. 若数a 使关于x 的不等式组{x 3−2≤14(x −7),6x −2a >5(1−x)有且仅有三个整数解,且使关于y 的分式方程1−2y y−1-a1−y =-3的解为正数,则所有满足条件的整数a 的值之和是( )A. −3B. −2C. −1D. 1 12. 如图,在△ABC 中,∠ABC =45°,AB =3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE =1.连接DE ,将△AED 沿直线AE 翻折至△ABC 所在的平面内,得△AEF ,连接DF .过点D作DG ⊥DE 交BE 于点G .则四边形DFEG 的周长为( )A. 8B. 4√2C. 2√2+4D. 3√2+2二、填空题(本大题共6小题,共24.0分)13.计算:(√3-1)0+(1)-1=______.214.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为______.15.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是______.16.如图,四边形ABCD是矩形,AB=4,AD=2√2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是______.17.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速快步赶往学校,并在从家出发后23分原路跑回家.小明拿到书后以原速的54钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小明家到学校的路程为______米.18. 某磨具厂共有六个生产车间,第一、二、三、四车间毎天生产相同数量的产品,第五、六车间每天生产的产品数量分別是第一车间每天生产的产品数量的34和83.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是______.三、计算题(本大题共1小题,共10.0分)19. 计算:(1)(a +b )2+a (a -2b );(2)m -1+2m−6m 2−9+2m+2m+3.四、解答题(本大题共7小题,共68.0分)20.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.21.为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.64.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.95.0 5.0 5.1活动后被测查学生视力数据:4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.84.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.95.0 5.0 5.1 5.1活动后被测查学生视力频数分布表分组频数4.0≤x<4.2 14.2≤x<4.4 24.4≤x<4.6 b4.6≤x<4.8 74.8≤x<5.0 125.0≤x<5.2 4根据以上信息回答下列问题:(1)填空:a=______,b=______,活动前被测查学生视力样本数据的中位数是______,活动后被测查学生视力样本数据的众数是______;(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.22.在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数-“纯数”.定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”.例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位.(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”的个数,并说明理由.23.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=-2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y=-2|x|+2和y=-2|x+2|的图象如图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=-2|x+2|的对称轴.(2)探索思考:平移函数y=-2|x|的图象可以得到函数y=-2|x|+2和y=-2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=-2|x-3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.24.某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础a%;6月份参加活动二的4平方上增加2a%,毎个摊位的管理费将会减少310米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每a%.这样,参加活动二的这部分商户6月份总共缴个摊位的管理费将会减少14a%,求a的值.纳的管理费比他们按原方式共缴纳的管理费将减少51825.在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=√6,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED-AG=FC.26. 在平面直角坐标系中,抛物线y =-√34x 2+√32x +2√3与x 轴交于A ,B 两点(点A在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q . (1)如图1,连接AC ,BC .若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF ⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G .点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK .当△PEF 的周长最大时,求PH +HK +√32KG 的最小值及点H 的坐标.(2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线顶点记为D ′,N 为直线DQ 上一点,连接点D ′,C ,N ,△D ′CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.参考答案1. A ;2. D ;3.B ;4.B ;5.C ;6.C ;7.B ;8.C ;9.C ;10.B ;11.A ;12.D ; 13. 3 14. 1.18×106 15. 11216. 8√2-8 17. 2080 18. 18:1919.解:(1)(a +b )2+a (a -2b ); =a 2+2ab +b 2+a 2-2ab , =2a 2+b 2;(2)m -1+2m−6m 2−9+2m+2m+3. =(m−1)(m+3)m+3+2m+3+2m+2m+3,=m 2+2m−3+2+2m+2m+3,=m 2+4m+1m+3.20.解:(1)∵AB =AC ,AD ⊥BC 于点D , ∴∠BAD =∠CAD ,∠ADC =90°, 又∠C =42°,∴∠BAD =∠CAD =90°-42°=48°;(2)∵AB =AC ,AD ⊥BC 于点D , ∴∠BAD =∠CAD ,∵EF∥AC,∴∠F=∠CAD,∴∠BAD=∠F,∴AE=FE.21. 5 4 4.45 4.822.【答案】解:(1)显然1949至1999都不是“纯数”,因为在通过列竖式进行n+(n+1)+(n+2)的运算时要产生进位.在2000至2019之间的数,只有个位不超过2时,才符合“纯数”的定义.所以所求“纯数”为2000,2001,2002,2010,2011,2012;(2)不大于100的“纯数”的个数有13个,理由如下:因为个位不超过2,十位不超过3时,才符合“纯数”的定义,所以不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,31,32,100.共13个.23.【答案】解:(1)A(0,2),B(-2,0),函数y=-2|x+2|的对称轴为x=-2;(2)将函数y=-2|x|的图象向上平移2个单位得到函数y=-2|x|+2的图象;将函数y=-2|x|的图象向左平移2个单位得到函数y=-2|x+2|的图象;(3)将函数y=-2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=-2|x-3|+1的图象.所画图象如图所示,当x2>x1>3时,y1>y2.24.【答案】解:(1)设该菜市场共有x 个4平方米的摊位,则有2x 个2.5平方米的摊位,依题意,得:20×4x +20×2.5×2x =4500, 解得:x =25.答:该菜市场共有25个4平方米的摊位.(2)由(1)可知:5月份参加活动一的2.5平方米摊位的个数为25×2×40%=20(个),5月份参加活动一的4平方米摊位的个数为25×20%=5(个). 依题意,得:20(1+2a %)×20×2.5×310a %+5(1+6a %)×20×4×14a %=[20(1+2a %)×20×2.5+5(1+6a %)×20×4]×518a %,整理,得:a 2-50a =0, 解得:a 1=0(舍去),a 2=50. 答:a 的值为50.25.【答案】(1)解:作BO ⊥AD 于O ,如图1所示:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB =CD ,∠ABC =∠D =30°, ∴∠AEB =∠CBE ,∠BAO =∠D =30°,∴BQ =12AB =√62,∵BE 平分∠ABC , ∴∠ABE =∠CBE , ∴∠ABE =∠AEB , ∴AE =AB =√6,∴△ABE 的面积=12AE ×BO =12×√6×√62=32; (2)证明:作AQ ⊥BE 交DF 的延长线于P ,垂足为Q ,连接PB 、PE ,如图2所示: ∵AB =AE ,AQ ⊥BE , ∴∠ABE =∠AEB ,BQ =EQ , ∴PB =PE , ∴∠PBE =∠PEB , ∴∠ABP =∠AEP , ∵AB ∥CD ,AF ⊥CD , ∴AF ⊥AB , ∴∠BAF =90°, ∵AQ ⊥BE , ∴∠ABG =∠FAP ,在△ABG 和△FAP 中,{∠ABG =∠FAPAB =AF∠BAG =∠AFP =90°,∴△ABG ≌△AFP (ASA ), ∴AG =FP ,∵AB ∥CD ,AD ∥BC ,∴∠ABP +∠BPC =180°,∠BCP =∠D , ∵∠AEP +∠PED =180°, ∴∠BPC =∠PED ,在△BPC 和△PED 中,{∠BCP =∠D ∠BPC =∠PEDPB =PE,∴△BPC ≌△PED (AAS ), ∴PC =ED ,∴ED -AG =PC -AG =PC -FP =FC .26.【答案】解:(1)如图1中,对于抛物线y =-√34x 2+√32x +2√3,令x =0,得到y =2√3,令y =0,得到-√34x 2+√32x +2√3=0,解得x =-2或4,∴C (0,2√3),A (-2,0),B (4,0), 抛物线顶点D 坐标(1,9√34),∵PF ⊥BC ,∴∠PFE =∠BOC =90°, ∵PE ∥OC , ∴∠PEF =∠BCO , ∴△PEF ∽△BCO ,∴当PE 最大时,△PEF 的周长最大, ∵B (4,0),C (0,2√3),∴直线BC 的解析式为y =-√32x +2√3,设P (m ,-√34m 2+√32m +2√3),则E (m ,-√32m +2√3),∴PE =-√34m 2+√32m +2√3-(-√32m +2√3)=-√34m 2+√3m ,∴当m =2时,PE 有最大值, ∴P (2,2√3),如图,将直线GO 绕点G 逆时针旋转60°,得到直线l ,作PM ⊥直线l 于M ,KM ′⊥直线l 于M ′,则PH +HK +√32KG =PH +HK +KM ′≥PM ,∵P (2,2√3), ∴∠POB =60°, ∵∠MOG =30°,∴∠MOG +∠BOC +∠POB =180°, ∴P ,O ,M 共线,可得PM =10,∴PH +HK +√32KG 的最小值为10,此时H (1,√3).(2)∵A (-2,0),C (0,2√3), ∴直线AC 的解析式为y =√3x +2√3,∵DD ′∥AC ,D (1,9√34),∴直线DD ′的解析式为y =√3x +5√34,设D ′(m ,√3m +5√34),则平移后抛物线的解析式为y 1=-√34(x -m )2+√3m +5√34, 将(0,0)代入可得m =5或-1(舍弃),∴D ′(5,25√34),设N (1,n ),∵C (0,2√3),D ′(5,25√34),∴NC 2=1+(n -2√3)2,D ′C 2=52+(25√34-2√3)2,D ′N 2=(5-1)2+(25√34-n )2,①当NC =CD ′时,1+(n -2√3)2=52+(25√34-2√3)2, 解得:n =8√3±3√1394②当NC =D ′N 时,1+(n -2√3)2=(5-1)2+(25√34-n )2,解得:n =641√3136③当D ′C =D ′N 时,52+(25√34-2√3)2=(5-1)2+(25√34-n )2,解得:n =25√3±√10114,综上所述,满足条件的点N 的坐标为(1,8√3+3√1394)或(1,8√3−3√1394)或(1,641√3136)或(1,25√3+√10114)或(1,25√3−√10114).。
2019年中考 2019重庆市中考数学试题(B卷)(Word解析版)
DC B A重庆市2019年初中学业水平暨高中招生考试数学试题(B 卷)(含解答提示)(全卷共四个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为(,),对称轴公式为x=.a 2b -a 4b ac 42-a2b -一、选择题(本大题12个小题,每小题4分,共48分)1.5的绝对值是( )A 、5;B 、-5;C 、;D 、.5151-提示:根据绝对值的概念.答案A.2.如图是一个由5个相同正方体组成的立体图形,它的主视图是().答案D.3.下列命题是真命题的是( )A 、如果两个三角形相似,相似比为4︰9,那么这两个三角形的周长比为2︰3;B 、如果两个三角形相似,相似比为4︰9,那么这两个三角形的周长比为4︰9;C 、如果两个三角形相似,相似比为4︰9,那么这两个三角形的面积比为2︰3;D 、如果两个三角形相似,相似比为4︰9,那么这两个三角形的面积比为4︰9.提示:根据相似三角形的性质.答案B.4.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C=40°,则∠B 的度数为( )A 、60°;B 、50°;C 、40°;D 、30°.提示:利用圆的切线性质.答案B.5.抛物线y=-3x 2+6x+2的对称轴是( )A 、直线x=2;B 、直线x=-2;C 、直线x=1;D 、直线x=-1.提示:根据试卷提供的参考公式.答案C.6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( )A 、13;B 、14;C 、15;D 、16.提示:用验证法.答案C.7.估计的值应在()1025⨯+A 、5和6之间;B 、6和7之间;C 、7和8之间;D 、8和9之间.提示:化简得.答案B.538.根据如图所示的程序计算函数y 的值,若输入x 的值是7,则输出y 的值是-2,若输入x 的值是-8,则输出y 的值是( )A 、5;B 、10;C 、提示:先求出b.答案C.9.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,点A(10,0),sin ∠COA=.若反比例函数54FEDCB AG FEDCBA经过点C ,则k 的值等于( ))0x ,0k (xky >>=A 、10;B 、24;C 、48;D 、50.提示:因为OC=OA=10,过点C 作OA 的垂线,记垂足为D ,解直角三角形OCD.答案C.10.如图,AB 是垂直于水平面的建筑物,为测量AB 的高度,小红从建筑底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC=BC ,在点D 处放置测角仪,测角仪支架DE 的高度为0.8米,在E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)i =1︰2.4,那么建筑物AB 的高度约为( )(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A 、65.8米;B 、71.8米;C 、73.8米;D 、119.8米.提示:作DG ⊥BC 于G ,延长EF 交AB 于H.因为DC=BC=52,i =1︰2.4,易得DG=20,CG=48,所以BH=DE+DG=20.8,EH=BC+CG=100,所以AH=51.答案B.11.若数a 使关于x 的不等式组有且仅有三个整数解,且使关于y 的分式方程的解⎪⎩⎪⎨⎧->--≤-)x 1(5a 2x 6)7x (4123x 3y 1a 1y y 21-=----为正数,则所有满足条件的整数a 的值之和是( )A 、-3;B 、-2;C 、-1;D 、1.提示:由不等式组的条件得:-2.5≤a<3.由分式方程的条件得:a<2且a ≠1.综上所述,整数a 为-2,-1,0.答案A.12.如图,在△ABC 中,∠ABC=45°,AB=3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE=1,连接DE ,将△AED 沿直线沿直线AE 翻折至△ABC 所在的平面内,得到△AEF ,连接DF ,过点D 作DG ⊥DE 交BE 于点G.则四边形DFEG 的周长为( )A 、8;B 、;C 、;D 、.24422+223+提示:易证△AED ≌△AEF ≌△BGD ,得ED=EF=GD ,∠DGE=45°,进而得∠BGD=∠AED=∠AEF=135°,易得△DEG 和△DEF 都是等腰直角三角形,设DG=x ,则EG=x ,注意AB=3,BG=AE=1,∠AEB=90°,可解得x=.答案D.2222-二、填空题(本大题6个小题,每小题4分,共24分)13.计算:=.10)21()13(-+-提示:根据零指数幂、负整数指数幂的意义.答案3.14.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP 注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为 .FED CBAy/不不提示:根据科学记数法的意义.答案1.18×106.15.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是 .提示:由树状图知总共有36种,符合条件的有3种.答案:.12116.如图,四边形ABCD 是矩形,AB=4,AD=,以点A 为圆心,AB 长为半径画弧,交CD 于点E ,交AD 的延长线22于点F ,则图中阴影部分的面积是.提示:连AE ,易得∠EAD=45°.答案.828-17.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速度的快步赶往学校,并在从家出发后23分钟45到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 米.提示:设小明原速度为x 米/分钟,则拿到书后的速度为1.25x 米/分钟,家校距离为11x+(23-11)×1.25x=26x.设爸爸行进速度为y 米/分钟,由题意及图形得:11x=(16-11)y 且(16-11)(1.25x+y)=1380.解得:x=80,y=176.答案2080.18.某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的和.甲、乙两组检验员进驻该厂进行产品检验.在同时开始检验产品时,每4338个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是 .提示:设第一、二、三、四车间每天生产相同数量的产品为x 个,则第五车间每天生产的产品为个,第六五车间x 43每天生产的产品为个,每个车间原有成品均为m 个.甲组有检验员a 人,乙组有检验员b 人,每个检验员的检验速x 38度为c 个/天.由题意得:6(x+x+x+)+3m=6ac ,,由后两式可得m=3x ,代入前两式可求得.答案18︰19.bc 2m 2)x 43x (2=++bc 4m x 38)42(=+∙+FE D CBA(不:不不不不不不不不不不不不不不不不)不不不不不不不不不不不不不不不不不4127b 215.0≤x<5.24.8≤x<5.04.6≤x<4.84.4≤x<4.64.2≤x<4.44.0≤x<4.2不不不不不不不不不不不不不不不不不不不三、解答题(本大题7个小题,每小题10分,共70分)19.计算:(1)(a+b)2+a(a-2b)解:原式=a 2+2ab+b 2+a 2-2ab =2a 2+b 2.(2)3m 2m 29m 6m 21m 2++÷--+-解:原式=)1m (23m )3m )(3m ()3m (21m ++∙-+-+- =1m 11m ++-=1m m 2+20.如图,在△ABC 中,AB=AC ,AD ⊥BC 于点D.(1)若∠C=42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F.求证:AE=FE.解与证:(1)∵AB=AC ,AD ⊥BC 于点D∴∠BAD=∠CAD ,∠ADC=90°,又∠C=42°.∴∠BAD=∠CAD=90°-42°=48°.(2)∵AB=AC ,AD ⊥BC 于点D ,∴∠BAD=∠CAD ∵EF ∥AC ,∴∠F=∠CAD∴∠BAD=∠F ,∴AE=FE.21.为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:4.0,4.1,4.1,4.2,4.2,4.3,4.3,4.4,4.4,4.4,4.5,4.5,4.6,4.6,4.64.7,4.7,4.7,4.7,4.8,4.8,4.8,4.8,4.8,4.9,4.9,4.9,5.0,5.0,5.1活动后被测查学生视力数据:4.0,4.2,4.3,4.4,4.4,4.5,4.5,4.6,4.6,4.6,4.7,4.7,4.7,4.7,4.84.8,4.8,4.8,4.8,4.8,4.8,4.9,4.9,4.9,4.9,4.9,5.0,5.0,5.1,5.1根据以上信息回答下列问题:(1)填空:a= ,b=,活动前被测查学生视力样本数据的中位数是 ,活动后被测查学生视力样本数据的众数是;(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.解:(1)a=5,b=4,活动前被测查学生视力样本数据的中位数是4.65,活动后被测查学生视力样本数据的众数是4.8;(2)16÷30×600=320.所以七年级600名学生活动后视力达标的人数有320人.(3)活动前的中位数是4.65,活动后的中位数是4.8,因此,活动后的视力好于活动前的视力.说明学校开展视力保健活动的效果突出.22.在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”.例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位.(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”的个数,并说明理由.解:(1)显然1949至1999都不是“纯数”因为在通过列竖式进行n+(n+1)+(n+2)的运算时要产生进位.在2000至2019之间的数,只有个位不超过2时,才符合“纯数”的定义.所以所求“纯数”为2000,2001,2002,2010,2011,2012.(2)不大于100的“纯数”的个数有13个,理由如下:因为个位不超过2,二位不超过3时,才符合“纯数”的定义.所以不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,31,32,100.共13个.23.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=-2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如下图所示;x…-3-2-10123…y…-6-4-20-2-4-4…经历同样的过程画函数y=-2|x|+2和y=-2|x+2|的图象如下图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=-2|x+2|的对称轴.(2)探索思考:平移函数y=-2|x|的图象可以得到函数y=-2|x|+2和y=-2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=-2|x-3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且,y的大小.解:(1)A(0,2),B(-2,0),函数y=-2|x+2|的对称轴为x=-2.(2)将函数y=-2|x|的图象向上平移2个单位得到函数y=-2|x|+2的图象.将函数y=-2|x|的图象向左平移2个单位得到函数y=-2|x+2|的图象.(3)将函数y=-2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=-2|x-3|+1的图象.所画图象如图所示,当x 2>x 1>3时,y 1>y 2.24.某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场每月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋抵扣管理费”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一,经调查与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,每个摊位的管理费将会减少;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的%a 103同面积个数的基础上增加6a%,每个摊位的管理费将会减少,这样,参加活动二的这部分商户6月份总共缴纳%a 41的管理费比他们按原方式共缴纳的管理费将减少,求a 的值.%a 185解:(1)设4平方米的摊位有x 个,则2.5平方米的摊位有2x 个,由题意得:20×2.5×2x+20×4×x=4500,解得:x=25.答:4平方米的摊位有25个.(2)设原有2.5平方米的摊位2m 个,4平方米的摊位m 个.则5月活动一中:2.5平方米摊位有2m ×40%个,4平方米摊位有m ×20%个.6月活动二中:2.5平方米摊位有2m ×40%(1+2a%)个,管理费为20×(1-)元/个%a 1034平方米摊位有m ×20%(1+6a%)个,管理费为20×(1-)元/个.%a 41所以参加活动二的这部分商户6月份总共缴纳的管理费为:2m ×40%(1+2a%)×20×(1-)×2.5+m ×20%(1+6a%)×20×(1-)×4元%a 103%a 41这部分商户按原方式共缴纳的管理费为:20×2.5×2m ×40%(1+2a%)+20×4×m ×20%(1+6a%)元由题意得:2m ×40%(1+2a%)×20×(1-)×2.5+m ×20%(1+6a%)×20×(1-)×4%a 103%a 41=[20×2.5×2m ×40%(1+2a%)+20×4×m ×20%(1+6a%)]×(1-).%a 185令a%=t ,方程整理得2t 2-t=0,t 1=0(舍),t 2=0.5∴a=50.即a 的值为50.25.在平行四边形ABCD 中,BE 平分∠ABC 交AD 于点E.(1)如图1,若∠D=30°,AB=,求△ABE 的面积;6(2)如图2,过点A 作AF ⊥DC ,交DC 的延长线于点F ,分别交BE ,BC 于点G ,H ,且AB=AF.求证:ED-AG=FC.不1E DCB A K不不1E DCBAH N M GFEDCBA不不2不1提示:(1)过B 作边AD 所在直线的垂线,交DA 延长于K ,如图,易求得BK=.答案1.5.26(2)要证ED-AG=FC.只要证ED=AG+FC ,为此延长CF 至FM ,使FM=AG ,连AM 交BE 于N 如图,则只要证ED=FM+CF=CM ,又AE=AB=CD ,所以只要证AD=MD ,即证∠M=∠DAM.又易证△AFM ≌△BAG ,则∠M=∠AGB ,∠MAF=∠GBA=∠AEN.四、解答题(本大题1个小题,共8分)26.在平面直角坐标系中,抛物线y=与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点32x 23x 432++-C ,顶点为D ,对称轴与x 轴交于点Q.(1)如图1,连接AC ,BC.若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF ⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G.点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK.当△PEF 的周长最大时,求PH+HK+KG 的最小值及点H 的坐标.23(2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线顶点记为D /,N 为直线DQ 上一点,连接点D /,C ,N ,△D /CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.提示:(1)易求A(-2,0),B(4,0),C(0,),D(1,),△PEF ∽△BOC.32439∴当PE 最大时,△PEF 的周长最大.易求直线BC 的解析式为y=32x 23+-设P(x, ),则E(x, )32x 23x 432++-32x 23+-∴PE=-()=32x 23x 432++-32x 23+-x 3x 432+-∴当x=2时,PE 有最大值. ∴P(2, ),此时32如图,将直线OG 绕点G 逆时针旋转60°得到直线l ,过点P 作PM ⊥l 于点M ,过点K 作KM /⊥l 于M /.则PH+HK+KG= PH+HK+KM /≥PM 23易知∠POB=60°.POM 在一直线上.易得PM=10,H(1,)3(2)易得直线AC 的解析式为y=,过D 作AC 的平行线,易求此直线的解析式为y=,所以可设32x 3+435x 3+D /(m, ),平移后的抛物线y 1=.将(0,0)代入解得m 1=-1(舍),m 2=5.所以D /(5,435m 3+435m 3)m x (432++--).4325设N(1,n),又C(0,),D /(5,).324325所以NC 2=1+(n-)2,D /C 2==,D /N 2=.3222)324325(5-+16126722)n 4325()15-+-(分NC 2= D /C 2;D /C 2= D /N 2;NC 2= D /N 2.列出关于n 的方程求解.答案N 1(1,),N 2(1, ),N 3(1,),N 4(1, ),4139338+4139338-41011325+41011325-N 5(1,).1363641。
2019年重庆市中考数学试卷(b卷)【精品】.docx
2019年重庆市中考数学试卷(B 卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)5的绝对值是( )A .5B .﹣5C .15D .−15 2.(4分)如图是一个由5个相同正方体组成的立体图形,它的主视图是( )A .B .C .D .3.(4分)下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:94.(4分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为( )A .60°B .50°C .40°D .30°5.(4分)抛物线y =﹣3x 2+6x +2的对称轴是( )A .直线x =2B .直线x =﹣2C .直线x =1D .直线x =﹣16.(4分)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A.13B.14C.15D.167.(4分)估计√5+√2×√10的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.(4分)根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是﹣2,若输入x的值是﹣8,则输出y的值是()A.5B.10C.19D.219.(4分)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA=45.若反比例函数y=kx(k>0,x>0)经过点C,则k的值等于()A.10B.24C.48D.5010.(4分)如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC =BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米11.(4分)若数a使关于x的不等式组{x3−2≤14(x−7),6x−2a>5(1−x)有且仅有三个整数解,且使关于y 的分式方程1−2y y−1−a 1−y =−3的解为正数,则所有满足条件的整数a 的值之和是( ) A .﹣3 B .﹣2C .﹣1D .1 12.(4分)如图,在△ABC 中,∠ABC =45°,AB =3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE =1.连接DE ,将△AED 沿直线AE 翻折至△ABC 所在的平面内,得△AEF ,连接DF .过点D 作DG ⊥DE 交BE 于点G .则四边形DFEG 的周长为( )A .8B .4√2C .2√2+4D .3√2+2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年重庆中考数学考前测试卷2
一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.下列四个数中,是正整数的是()
A.﹣1 B.0 C.D.1
2.下列图形中,是轴对称图形的是()
A.B.C.D.
3.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()
A.11 B.13 C.15 D.17
4.下列调查中,最适合采用全面调查(普查)的是()
A.对我市中学生每周课外阅读时间情况的调查
B.对我市市民知晓“礼让行人”交通新规情况的调查
C.对我市中学生观看电影《厉害了,我的国》情况的调查
D.对我国首艘国产航母002型各零部件质量情况的调查
5.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元
6.下列命题是真命题的是()
A.如果一个数的相反数等于这个数本身,那么这个数一定是0
B.如果一个数的倒数等于这个数本身,那么这个数一定是1
C.如果一个数的平方等于这个数本身,那么这个数一定是0
D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0
7.估计5﹣的值应在()
A.5和6之间B.6和7之间C.7和8之间D.8和9之间
8.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()
A.9 B.7 C.﹣9 D.﹣7
第8题图第9题图
9.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()
A.21.7米B.22.4米C.27.4米D.28.8米
10.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()
A.2 B.C.D.
(第10题图)(第11题图)11.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()
A.B.3 C.D.5
12.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()
A.﹣10 B.﹣12 C.﹣16 D.﹣18
二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上
13.计算:|﹣1|+20=.
14.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π).
(第14题图)(第15题图)15.某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数是个.
16.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.
(第16题图)(第17题图)17.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为米.
18.为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是.
(商品的销售利润率=×100%)
三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上
19.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.
20.某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:
(1)八年级(3)班学生总人数是,并将条形统计图补充完整;
(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.
四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上
21.计算:(1)(x+2y)2﹣(x+y)(x﹣y);
(2)(a﹣1﹣)÷.
22.如图,在平面直角坐标系中,直线l1:y=x与直线l2交点A的横坐标为2,将直线l1
沿y轴向下平移4个单位长度,得到直线l3,直线l3与y轴交于点B,与直线l2交于点C,点C的纵坐标为﹣2.直线l2与y轴交于点D.
(1)求直线l2的解析式;
(2)求△BDC的面积.
23.在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.
(1)按计划,2018年前5个月至少要修建多少个沼气池?
(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a%,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a%,5a%,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a%,8a%,求a的值.
24.如图,在平行四边形ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC 于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.(1)若BC=12,AB=13,求AF的长;
(2)求证:EB=EH.
25.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.
(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.
五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上
26.抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.
(1)如图1,连接CD,求线段CD的长;
(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC的值最大时,求四
边形PO1B1C周长的最小值,并求出对应的点O1的坐标;
(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.。