直流电源过电压过流保护电路
直流稳压电源原理
直流稳压电源原理1.整流电路:直流稳压电源通常使用变压器将交流电转换为较低的交流电压。
接下来,交流电通过整流电路,将交流电转换为直流电流。
经过整流的电流是脉动的,其中包含了交流电的频率成分。
2.滤波电路:为了消除整流电路中产生的脉动电流,需要使用滤波电路。
滤波电路通常使用电容器或电感器来滤除脉动电流中的交流成分,从而得到相对平坦的直流电流。
通过合理选择电容或电感元件的数值,可以实现较好的滤波效果。
3.稳压电路:稳压电路是直流稳压电源中最重要的部分。
它的作用是根据实际需要,对输出电压进行精确的调节和稳定。
常见的稳压电路包括三端稳压器、开关稳压器和线性稳压器。
其中,线性稳压器是最简单和常用的一种,通过调整稳压管或稳压芯片的工作状态,来控制输出电压的稳定性。
4.过载保护电路:为了保护直流稳压电源和被供电设备,通常需要设计过载保护电路。
过载保护电路可以监测并及时处理过载情况,以防止电源过载或短路等故障。
常见的过载保护电路包括过流保护、过压保护和过热保护等。
总结起来,直流稳压电源的原理就是将交流电转换为稳定的直流电,并通过滤波、稳压和过载保护等电路来实现。
这样可以保证供电设备得到稳定的直流电源,以确保其正常工作和性能。
除了以上介绍的基本原理,直流稳压电源还可以根据实际需求添加其他功能电路,例如短路保护、起动和停机控制、过电压保护和低压保护等。
不同类型的直流稳压电源在工作原理和电路设计上可能会有所不同,但主要目标都是提供稳定、可靠的直流电源,以满足不同设备的工作需求。
过流过压保护可调直流电源
过流过压保护可调直流电压源电源是是对电子设备,电子电路等等提供电能的,这些电器设备,电路相对于电源来说,称之为负载,当电源本身出现故障或者是负载出现故障,若不及时排除,很有可能损坏电路。
当电路出现故障时,大部分情况下会出现电源电压异常或者是电流异常,而对电源及电路而言,电流过大,电压过高更具有破坏性,因此,具有过流过压保护功能的电源是在实际使用中应用非常广泛的电源。
过流过压保护的方法主要有以下这些措施:熔断器保护,即通常用的保险丝,保险管,它是一种过流保护器件,将它串接在电源电路中,一旦当负载出现故障而使电源供电电流突然增大时,保险丝熔断,截断电源与负载的通路,达到保护电源和负载本身的目的。
注意:并不是电流一超过保险丝的额定电流就立即熔断,通常要超过额定电流1.5倍至2倍,保险丝才熔断。
所以,这种保护方法是结构简单,成本低,电路设计方便;但缺点是:保护电流值不明确,在需要高精度保护条件下达不到要求,二是熔断后,需要更换,在一些烧保险比较频繁的情况下(如学生实验设备)就是很麻烦的一件事情。
自恢复保险保护,实际就是一种热敏电阻保护,它也是串接在电源电路中,是一种过流保护方法。
当电流没有超过额定值时,作为过流保护用的热敏电阻温度正常,所呈现的电阻很小,不会影响电源电路的正常工作,一旦当电流超过它的额定电流时,作为过流保护用的热敏电阻温度徒然升高,所呈现的电阻很大,截断电源与负载的通路,达到保护电源和负载本身的目的,此后由于流过作为过流保护用的热敏电阻的电流很小,温度降低,降低到一定程度时,1 作为过流保护用的热敏电阻电阻值减小到正常值,电源恢复工作,若故障没有排除,将会进入下一轮保护。
这种方法的优点是电路结构简单,成本低,但缺点是反应太慢,所以多数情况下也不宜使用。
晶闸管保护,在开关电源中用得较多,在开关电源中,有一个振荡器,我们可以设计让振荡器是否工作与晶闸管的状态有关,而晶闸管的状态由其电压决定,在电路正常工作条件下,让晶闸管处于截止状态,而一旦电路出现不正常状态,晶闸管导通,电路进入保护状态。
buck型dc-dc变换器中保护电路的设计
buck型DC-DC变换器是一种常见的电源转换器,用于将高压直流电源转换为稳定的低压直流电源,广泛应用于电子设备和通信系统中。
在设计buck型DC-DC变换器时,保护电路的设计至关重要,可以有效保护电路和相关元器件,提高整个系统的可靠性和稳定性。
本文将从保护电路的设计入手,对buck型DC-DC变换器进行深入研究和分析。
1. 保护电路的作用保护电路是buck型DC-DC变换器中的重要组成部分,其主要作用是防止过流、过压、过温等异常情况对电路和元器件造成损坏。
通过及时检测异常信号并采取相应的保护措施,可以有效避免电路的故障和损坏,延长系统的使用寿命。
2. 过流保护电路设计过流是buck型DC-DC变换器中常见的故障情况之一,如果电流超过设定的安全范围,将会对电路和元器件造成严重的损害。
在设计过流保护电路时,需要合理选择电流传感器和保护元件,并设置合适的保护触发门槛。
常用的过流保护电路包括电流限制器、熔断器和过流保护芯片等,通过这些器件的合理组合可以实现对电路的有效保护。
3. 过压保护电路设计过压是另一种常见的故障情况,当输入电压超过设定的安全范围时,将对电路和元器件产生严重的影响。
在设计过压保护电路时,需要考虑输入电压的波动范围和保护触发门槛,并选择合适的过压保护器件进行搭配。
常用的过压保护电路包括过压保护芯片、击穿二极管和电容滤波器等,通过这些器件的合理配置可以有效防止过压对电路的损坏。
4. 过温保护电路设计过温是buck型DC-DC变换器中的另一个重要故障情况,当工作温度超过元器件的最大承受温度时,将会导致电路的失效和损坏。
在设计过温保护电路时,需要合理选择温度传感器和保护器件,并设置适当的保护触发温度。
常用的过温保护电路包括温度开关、热敏电阻和温度保护芯片等,通过这些器件的合理配置可以实现对电路的及时保护。
5. 其他保护电路设计除了上述提到的过流、过压和过温保护电路外,buck型DC-DC变换器的保护系统还需要考虑短路保护、输入欠压保护和输出失稳保护等其他故障情况。
直流电源过电压过流保护电路
直流电源过电压、欠电压及过流保护电路该保护电路在直流电源输入电压大于30V或小于18V或负载电流超过35A时,晶闸管都将被触发导通,致使断路器QF跳闸。
图中,YR为断路器QF的脱扣线圈;KI为过电流继电器。
带过流保护的电动自行车无级调速电路图中,RC为补偿网络,以改善电动机的力矩特性。
具体数值由实验决定。
电路如图16-91所示。
它适用于电动自行车或电动三轮车。
调节电位器RP,可改变由555时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。
Rs是过电流取样电阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分流了部分负载,从而保护了功率管VTi。
过流保护用电子保险的制作电路图本电路适用于直流供电过流保护,如各种电池供电的场合。
如果负载电流超过预设值,该电子保险将断开直流负载。
重置电路时,只需把电源关掉,然后再接通。
该电路有两个联接点(A、B标记),可以连接在负载的任意一边。
负载电流流过三极管T4、电阻R10和R11。
A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。
当电源刚刚接通时,全部电源电压加在保险上。
三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。
因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。
该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。
保险导电,负载有电流流过。
当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。
保险上的电压(VAB)通常小于2V,具体值取决于负载电流。
当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。
由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。
第10章_直流电源图
稳压电源属深反馈电路,故需 C i、C o 消除高频自激。
返回
图10.5.2 具有放大环节的串联型稳压电路
返回
图10.5.3 串联型稳压电路的方框图
返回
图10.5.4 用复合管作调整管
返回
图10.5.5 稳压管基准电压电路
返回
图10.5.6 零温度系数基准电压 电路及其等效电路
返回
图10.5.7 能隙基准电压电路
∵ I1 ≈ Is e
---UT
UBE1
I2 ≈ Is e
---UT
UBE2
I1 ∴ I2 R3 ≈ UBE1 – UBE2 ≈ UT ln ---I2 R2 I1 ∴ I2 R2 ≈ ---- UT ln --R3 I2 小 大 小 大 ∵ UBE1 + I1 R1 = UBE3 + I2 R2 ∴ I1 R1 = I2 R2 I1 R2 ∴ --- = ---I2 R1 R2 R2 ∴ I2 R2 ≈ UT ---- ln ---R3 R1
UGO:绝对温度 T = 0K 时,破坏共价键所需的能量 ( 禁带宽度、能带间隙 ) :PN 结温度系数
Si 材料: UGO = 1.205 V, = - ( 1.8 ~ 2.4 ) mV/K 当调节 R1 R2 R3 比例使 UREF 与温度无关时,即可保证 Vo 的温度稳定性。 R20 ∴ Vo = ( 1 + ----- ) UREF = 5 V R19
返回
P524 图10.5.1 基本调整管稳压电路
返回
输出电压可调
RB
输出电压可调的实际串联式线性稳压电源
调整
+
RB
R
比较
UI
基准
完整的电路保护:过流保护,过压保护,热保护
2010-12-16
9
Teccor Overvoltage Protection Product
1、 聚合物ESD抑制器 2、 可变电阻--表面贴 A、多层叠的可变电阻(ML,MLE、MHS、AUML and MLN Series) B、压敏电阻(CH Series) 3、硅保护产品 A、TVS/Diode Arrays(SP05x,SP72x Series) B、闸流管(SiBODTM ) C、TVS Diodes/Silicon Avalance Diodes(SADs) 4、气体放电管(GDTs) 5、工业&轴向压敏电阻 A、Radial Leaded MOVs(UltraMOVTM,C-III,LA,ZA,RA and TMOVTM Varistors) B、轴向引脚的压敏电阻(MA Series MOVs) C、工业级的压敏电阻(CA,NA,PA,HA,HB34,DA and DB Series varistors)
封装类型 0402/0603 JEDEC SOT-23 0402/0603 JEDEC SOT-23 EIA 2012 (0805)
特点
低电容,容量在3-22pF. 主要用低速设备上. 四通道,每通道的电容值 为3pF. 非常低的电容值,仅为 0.05pF.
接口类型 数据线(Data Line) 400Mbps
推荐产品
可控硅(SCR) 压敏电阻(MOV) TVS / ULTraMOV
2010-12-16 13
2010-12-16
14
雷电的防护
---电力系统器件应用比较 电力系统器件应用比较
气体放电管 压敏电阻
能承受数百微秒内数千安培瞬态雷电电流 的冲击。缺点是对雷电过电压的波头无法进行有效的保护。 有较好的非线性,有很大的吸收能力,响 应速度快。缺点是应用于DVI、ISDN等图像传输设备上时, 容易失真。同时容易老化。
电力电子器件过电压保护和过电流保护各有哪些主要方法?
电力电子器件过电压保护和过电流保护各有哪些主要方法?电力电子器件过电压保护和过电流保护常见的主要方法如下:
过电压保护的主要方法包括:
1.瞬态电压抑制器(TVS):TVS是一种电压抑制器,它在电
路中起到限制和抑制瞬态过电压的作用。
TVS能够迅速响
应并吸收超过设定电压的过电压,保护电路和器件免受过
电压的损害。
2.钳位二极管(Clamping Diode):钳位二极管可以将电路的
电压限制在一个较低的阈值范围内,以防止过电压的出现。
它通常用于限制开关电源回路中的幅度。
3.隔离变压器:隔离变压器可以提供电气隔离和通过磁耦合
来限制过电压的传输。
过电流保护的主要方法包括:
1.电流保险丝:电流保险丝是一种常见的过电流保护装置,
它基于导体的热性质,在电路中断高于额定电流的电流,
以防止过电流引起的损坏。
2.过流保护电路:过流保护电路采用传感器来监测电流,并
通过电子开关或继电器等设备,在电流超过设定阈值时切
断电流,保护电路和器件。
3.电流限制器:电流限制器可以在过电流发生时限制电流的
增加,以防止过电流引起的损坏。
它通常采用电流传感器
和电流反馈控制电路实现。
4.电流检测器和反馈:这种方法通过使用电流传感器检测电
流并通过反馈回路控制电流,以实现过电流保护。
需要根据不同的应用场景和要求,选择合适的过电压保护和过电流保护方法,以确保电力电子器件和系统的安全和可靠运行。
同时,在设计过程中还要综合考虑成本、性能和可行性等因素。
ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解
用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路ATX电源的控制电路见图1。控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。本例为此种工作方式,故将{13}脚与{14}脚相连接。比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。494内的比较放大器有四个,为叙述方便,在图1中用小写字母a、b、c、d来表示。其中a是死区时间比较器。因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。为防止这样的事情发生,494设置了死区时间比较器a。从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路。死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了。494内部还有3个二输入端与门(用1、2、3表示)、两个二输入端与非门、反相器、T触发器等电路。与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电平,则输出端输出低电平。反相器的作用是把输入信号隔离放大后反相输出。与非门则相当于一个与门和一个反相器的组合。T触发器的作用是:每输入一个脉冲,输出端的电平就变化一次。如输出端Q为低电平,输入一个脉冲后,Q变为高电平,再输入一个脉冲,Q又回到低电平。比较器、与门、反相器、T触发器以及锯齿波振荡器及{8}脚、{11}脚输出的波形见图2。339是四比较过流保护过压保护一、产生PW-OK信号PC主机要求各路电源稳定之后才工作,以保护各元器件不致因电压不稳而损坏,故设置了PW-OK信号(约的C比较器的输出端{14}脚为零电平。另外,339的{1}脚低电平信号因D34的钳位作用,也使{14}脚为低电平,经R50和R63使{11}脚亦为低电平。因此D比较器的输出端{13}脚为低电平,也就是PW-OK信号为低电平,主机不会工作。开启主机时,通过人工或遥控操作闭合了与PS-ON相关的开关,PS-ON呈低电平,经R37使339的反相端{6}脚为低电平,B比较器{1}脚输出高电平,D35、D36反偏截止,A比较器的输出电平则由{5}脚与{4}脚的电平决定。正常工作时,{5}脚电平低于{4}脚电平,{2}脚输出低电平,经R41送到494的{4}脚,使{4}脚的电平变为低电平,锯齿波振荡信号可以从死区时间比较器a输出脉冲信号,另一方面,振荡信号送到了PWM比较器b 的同相输入端,PWM比较器输出的脉冲信号的宽度,则是由494的{1}脚的电平(也就是负载的大小)与{16}脚的电平来决定。PWM比较器输出的脉冲信号,最后经缓冲放大器放大后,从{8}、{11}脚输出脉冲信号,ATX电源向主机输出±5V、±12V、+3.3V电源。此过程因C35的充电有数百毫秒的延时,但对主机开机并无影响。494的{1}脚从+5V、+12V经取样电阻R15、R16得到电压,其电平略高于{2}脚电平,{3}脚输出高电平,经R48使339的{9}脚得到高电平,其电平高于{8}脚电平,因而{14}脚输出高电平,此电平经R50与基准+5V电源经R64共同对C39充电,经数百毫秒后,{11}脚电平升到高于{10}脚电平时,D比较器{13}脚输出高电平,此电平经R49反馈至{11}脚,维持{11}脚处于高电平状态,故{13}脚输出稳定的高电平PW-OK信号,主机检测到此信号后即开始正常工作。关机时,主机内开关使PS-ON呈高电平,此时339的{6}脚电平高于{7}脚,{1}脚输出低电平,因二极管D34的钳位作用,{14}脚呈低电平,C39对C比较器及B比较器放电,很快{11}脚呈低电平,{13}脚输出低电平,即PW-OK信号呈低电平。在339的{1}脚为低电平时,经D36使{4}臆脚为低电平,{2}脚输出高电平,经R41传送到494的{4}脚,但因C35电位不能突变,经数百毫秒的放电后方使494的{4}脚转为高电平,从而封锁正负脉冲的输出,主机进入待机状态。上述的过程中,关机时C39和C35都要放电,但因放电时间常数不同,C39放电较快,故PW-OK信号先于各电源变成低电平,满足了主机关机的需要。此外,关机时因各路输出电源的电解电容放电需要时间,也使PW-OK信号先于各电源回到低电平。二、稳压494的{2}脚经R47与基准电压+5V相连,维持较好的稳定电压,而{1}脚则与取样电阻R15、R16与+5V、+12V相连接,正常的情况下,{1}脚电平与{2}脚电平相等或略高。当输出电压升高时(无论+5V或+12V),{1}脚电平高于{2}脚电平,c比较器输出误差电压与锯齿波振荡脉冲在PWM比较器b进行比较使输出脉冲宽度变窄,输出电压回落到标准值,反之则促使振荡脉冲宽度增加,输出电压回升。由于494内的放大器增益很高,故稳压精度很好。从稳压的原理,我们可以得到ATX电源输出电压偏高或偏低的维修方法。如果输出电压偏低,可在494的{1}脚对地并联电阻,或是把R47的电阻增大。要是电源的输出偏高,则可在{2}脚对地并联电阻,也可以用增大R33或取下R69、R35来降低输出电压。三、过流保护过流保护的原理是基于负载愈大,Q3、Q4集电极的脉冲电压也愈高,也即是R13(1.5kΩ)上的电压也愈高,从这里采样经D14整流和C36滤波,再经R54、R55并联电阻与R51、R56、R58等组成的分压电路送到494的{16}脚。随着负载的加重,{16}脚的电平也随之上升,当超过{15}脚的电平时,误差放大器输出的误差电压促使调制脉冲的宽度变窄从而使负载电流减小。另外,从R56、R58并联电阻获得的分压再经R52送到339的{5}脚,当{5}脚的电平超过{4}脚时,{2}脚即输出高电平送到494的{4}脚,494停止输出脉冲信号,终止±5V、±12V、+3.3V 电源的输出,达到过流及短路保护的目的。需要说明的是:494的{16}脚电平的高低只能改变输出脉冲的宽度,但不影响494的{4}脚电平状态,而339的{5}脚电平一旦超过{4}脚的电平,339的{2}脚就送出高电平去封锁449的脉冲输出,终止±5V、±12V、+3.3V电源的输出,同时{2}脚的高电平经R59和二极管D39反馈到{5}脚,维持{5}脚处于高电平状态,此时若过载或短路状态消失,494的{4}脚仍维持高电平,±5V与±12V、+3.3V电源仍不能输出,只有切断交流市电的输入,再重新接通交流电,方可再次开机。四、过压保护过电压保护由R17和稳压管Z02并联电路从+5V采样,经D37送到339的{5}脚。若+5V电源由于某种原因升高,339的{5}脚电平也会随之升高,当超过{4}脚电平时,{2}脚即送出高电平去494的{4}脚,封锁±5V、±12V、+3.3V电源的输出,达到过电压保护的目的。正常工作时,R17上的压降不大,Z02截止送到{5}脚的电压较低,若+5V电源的电压上升,使R17上的压降超过Z02的稳压值,Z02导通,+5V电源上升后的电压值全部加到339的{5}脚上,促使其快速封锁494脉冲的输出,以保护电源五、欠压保护欠压保护从-5V的D32及-12V处的R14取样,经R34和D37送到339的{5}脚。若因某种原因使输出电压过低时,-12V及-5V电压的负值也会随之减小,也就是电压值上升,经R34及D37送往339的{5}脚使电平上升,339的{2}脚送出高电平到494的{4}脚,从而封锁449脉冲的输出,实现欠压保护。二极管D32在导通时,其电压降与通过的电流基本无关,保持在0.6V~0.7V,于是-5V电压的减少量会全部传送到D32的负端,提高了欠压保护的灵敏度。六、电源保护电路故障的维修从上面的叙述中可以了解到,各种保护电路最终都是通过控制339的{5}脚电平来控制494的{4}脚电平实现的。正常工作时,339的{5}脚电平低于339的{4}脚电平,339的{2}脚输出低电平,使494的{4}脚呈低电平状态(约为0.25V)。若339的{5}脚电平高于339的{4}脚电平,339的{2}脚输出高电平,于是494的{4}脚变为高电平,电源就进入了保护状态,终止各路电源的输出。因此ATX电源出了故障,若电源的整流、滤波、逆变以及辅助电源均完好,则要检查339的{4}、{5}脚的电平。若是{5}脚电平高于{4}脚的电平,表示电源进入了保护状态。下一步则找出是什么原因使电源进入了保护状态。可检查与339的{5}脚相连各支路另一端的电压是不是比{5}脚电压高,高出{5}脚电压的支路就是故障所在的支路。另外,也可以用断开与{5}脚相连的一个个支路,若是断开某一条支路后{5}脚的电平正常了,那么故障就出在这一条支路上。再沿着这条支路往下查,很快就可以把故障排除。下面通过两个实例来加以说明。1.一台SLPS-250ATXC电源的输出电压偏低。空载下,+5V电源的电压只有+1.8V,其他各路电压也按比例同样下降。电源是采用TL494及LM339集成电路的典型ATX电路。检查494的{4}脚电压为+2.6V。电路似乎处于保护状态。但保护状态时各路输出的电压均应为零,而现在却是正常电压的三分之一,令人费解。试着把494的第{4}脚接地,电源立即输出正常。{4}脚接地就正常工作,说明494并未损坏,问题可能出在339以及有关的电路。用万用表查339管脚的电压,当查到第{4}脚及{7}脚时,各路电源均正常了。甚至只用一条表笔去碰{7}脚或{4}脚,也可使电源恢复正常工作。这等于在{4}脚或{7}脚上加了一条“天线”,天线接收了外来信号电源就工作正常了!我试了试天线的长度,40厘米以下对电源不起作用,长度增加了,输出电压也随着增加,达到1米左右时,输出电压就正常了,494的{4}脚电压也恢复到0V。但电源要用“天线”才能工作,说明还有故障未找到。再检查339的{4}脚与{5}脚的电压,{5}脚电压为2.4V,{4}脚的电压为1.2V,输出端{2}脚的电压为2.9V。(这部分电路见图3)。但是339的{2}脚高电位,必须由{5}脚电位高于{4}脚的电位时才能产生,那{5}脚最初的高电位是怎么来的?把与{5}脚相连的各支路断开试一试。在断开c支路以后,电源就正常了。沿着D2往下找,最后在+3.3V电源处对地接一个1000μF的电容时,电源就正常了。再检查+3.3V电源原来的滤波电容,发现已经失效。更换电容后494的{4}脚电压恢复正常,用表笔去碰触339的{4}脚或{7}脚也不起作用,问题得到了解决。为什么+3.3V电源的滤波电容失效会造成输出电压偏低?+3.3V电源在没有电容滤波时,输出的直流电源中含有很强的由逆变功率管输出的脉冲成分,通过D3及D2送到LM339的{5}脚,使{5}脚的电平高于{4}脚的电平,电源进入了保护状态。从+20V 电源经R3、D1、R2和三个并联电阻到接地的支路中,三个电阻并联后的电阻值是2.43kΩ,再略去其他支路的影响,可以估算出{5}脚的电压大约是2.3V,因二极管D1的钳位作用,{2}脚输出电压只能在2.9V左右,经R1送到TL494的{4}脚,减去电阻R1的降压,494的{4}脚电压就是2.6V了。在此电压下,494会输出较窄的脉冲,于是在空载下,+5V电源有约1.8V的电压输出。解决的办法可在d支路中串联一个47kΩ的电阻,并把R2由3.9kΩ换成100kΩ就行了。经这样处理后,不论是正常工作或是保护状态,各路电源的输出电压和各管脚的电压均正常了。而R2电阻的改动,也不会影响电源的过载保护性能。至此,电源的故障才完全得到了解决(爱好者手中若有SLPS-250ATXC电源,可参考此例加一个47kΩ电阻以提高电源的保护性能)。为什么339的{4}脚加了天线会正常工作呢?这是{2}脚经D1反馈到{5}脚后,产生了轻微的高频寄生振荡。{4}脚或{7}脚接了天线以后,破坏了电路的振荡条件,使{4}脚的电压升高,当超过{5}脚的电压时,{2}脚送出0V的低电平信号到494的{4}脚,电源就工作正常了。同样,在D1支路中串联了47kΩ电阻后,增加了阻尼因数,破坏了电路的振荡条件,电源也就正常了。此时若取下+3.3V电源处新加的电解电容,通电后,电源会立即进入保护状态,各路电源都没有输出。2.一台新时代HY-ATX300电源,空载时输出电压正常,但不能带动负载。检查494各个管脚的电压,发现{12}脚的电压只有10V,这是造成不能带动负载的原因。在辅助电源逆变变压器T3的初级线圈1加上16.5V的高频电压,测得次级+5VSB挡线圈3的电压是0.9V,向494集成电路{12}脚供电线圈4的电压为1.5V,约是+5VSB挡线圈电压的 1.7倍。电源的+5VSB电源是直接从线圈3经整流和滤波后得到,+5VSB电源的稳压则是借助WD431稳压集成电路和光电耦合器反馈回逆变三极管得到的,如图4所示。由此可以算出线圈4的电压为5×1.7=8.5V,因负载较轻,经电容滤波后的电压就是10V左右了。由此说明T3脉冲变压器线圈4的匝数少了。拆开T3变压器,得到各绕组的匝数为:初级2×110匝;反馈绕组10匝;+5VSB绕组12匝;绕组4的匝数是8匝。重新绕制绕组4,把匝数由原来的8匝增加到20匝,其余绕组的匝数不变。绕好后上机实验,494集成电路{12}脚的电压上升到17V,电源的输入功率可达130W,故障排除。从故障现象看,可能是工厂生产时将变压器装错了。。
电路中的保护装置过电压保护与过流保护的实现
电路中的保护装置过电压保护与过流保护的实现过电压保护与过流保护是电路中常见的保护装置,它们在保证电路正常运行的同时,对电路中可能出现的故障进行及时的检测和保护。
本文将从原理、实现方式以及应用范围等多个方面进行探讨。
一、过电压保护的原理与实现过电压是指电路中电压超过了设定的安全范围,这可能对电路中的元器件和设备造成损坏,甚至引发火灾等严重事故。
过电压保护装置的作用就是在电路中检测到过电压信号时,及时采取措施使电路保持在安全范围内。
过电压保护的实现方式有多种,其中最常见的是采用过压保护器。
过压保护器是一种电子元器件,其工作原理是通过检测电路中的电压,一旦检测到超过设定范围的电压,即会迅速切断电路。
过压保护器通常由过压继电器、电流互感器和触发器等组成。
当电路中出现过电压时,电流互感器可以感测到电流的变化,并将信号传递给过压继电器。
过压继电器在接收到信号后,会启动触发器,切断电路以达到保护的目的。
二、过流保护的原理与实现过流保护是指电路中电流超过了设定的安全范围,可能造成线路短路、电器损坏等情况。
过流保护的主要作用是在电路中检测到过大电流时,及时切断电路以防止故障的进一步发展。
过流保护的实现方式也有多种,其中最常见的是采用保险丝或熔断器。
保险丝和熔断器在电流超过额定值时,会迅速熔断,切断电路以达到保护电路的目的。
保险丝和熔断器的工作原理是在电流通过时,热量会使保险丝或熔断器中的导体熔断,从而切断电路。
这样可以保护电路中的元器件和设备免受过大电流的破坏。
三、过电压保护与过流保护的应用范围过电压保护与过流保护广泛应用于各种电路中,其应用范围包括但不限于以下几个方面:1. 低压电力系统:低压电力系统中常常使用过电压保护器和熔断器等装置,以保护电力设备和电器设备的安全运行。
2. 通信设备:在通信设备中,过电压和过流保护装置可以对网络设备进行保护,避免由于电压异常或电流过大导致的设备故障。
3. 电动机保护:在电动机的运行中,过电压和过流保护可以及时切断电路以避免电机过负荷运行或发生故障。
电力系统的过电压和过流保护技术
短路保护和过载保护的区别和联系
短路保护:当电路发生短路时, 保护装置迅速切断电源,防止 电流过大导致设备损坏。
过载保护:当电路负载过大时, 保护装置切断电源,防止电流 过大导致设备损坏。
区别:短路保护针对电路短路 情况,过载保护针对电路过载 情况。
联系:两者都是电力系统中重 要的保护措施,共同保障电力 系统的安全运行。
04
电力系统过电压和过流保护技术的发展趋 势
新型过电压和过流保护装置的研究和应用
研究背景:随着电力系统规模的不断扩大,对过电压和过流保护技术的要求也越来越高
研究内容:新型过电压和过流保护装置的研究,包括原理、设计、试验等方面
应用前景:新型过电压和过流保护装置在电力系统中的应用,可以提高系统的稳定性和 安全性
作用:保护电力系统设备免受 过电压的危害,确保系统稳定 运行
应用:广泛应用于变电站、输 电线路、配电网等电力系统环
节
原理:利用避雷器、电抗器等 设备,限制过电压幅值和持续 时间
发展:随着电力系统规模的扩 大和技术的进步,过电压保护 装置的性能和可靠性不断提高
过电压保护技术的分类和应用
避雷器:用于限制雷电过电 压和操作过电压
过流保护技术的发展:从传 统的熔断器到现代的电子保
护设备
过流保护装置的原理和作用
原理:通过检测电流 的大小,当电流超过 设定值时,触发保护 装置,切断电源,防 止过流损坏设备。
作用:保护电力系统 免受过流损坏,确保 电力系统的正常运行。
过流保护装置的类型 :熔断器、断路器、 电流互感器等。
过流保护装置的选择 :根据电力系统的容 量、电压等级、负载 特性等因素选择合适 的过流保护装置。
0 1
避雷器的作用:当 雷电流经过避雷器 时,避雷器会迅速 导通,将雷电流引 入大地,从而保护 电力系统。
直流稳压电源电路方案设计
〔3〕用整流桥和滤波电容
整流桥:实测V2=33V
整流输出电压平值
Vi=(1.1-1.2)V2=36.3V
二极管平均电流
二极管最大反向压
故整流桥选用1N4001(1A,50V)
保护二极管选IN4148(1A,50V)
滤波电容:
RLC≥(3-5)T/2,如此C1=5T/2RL,式中T为交流电源周期,T=20ms,RL为C1右边的等效电阻,应取最小值,由于Imax=500mA,因此RL =U1/Imax=33,所以C1=C2=1515μf,可见C1的容量较大,应选电解电容,受规格限制,电容的耐压要≥25V,故滤波电容C取容量为2200uF,耐压为25V的电解电容。
图4⑵选择电源变压器
电源变压器有很多种:有降压的、有升压的,在这次的设计中我们用的是降压变压器,它的作用是将来自电网的220V交流电压u1变
为整流电路所需要的交流电压u2。 ,其中: 是变压器副边的功率, 是变压器原边的功率。一般小型变压器的效率如表1所示:
表1小型变压器的效率
副边功率
效率
因此,当算出了副边功率 后,就可以根据上表算出原边功率 。
电路中的过压保护和过流保护
电路中的过压保护和过流保护过压保护和过流保护在电路中扮演着至关重要的角色。
它们是为了确保电路运行的安全和稳定而采取的一系列措施。
过压保护和过流保护可有效预防电路中出现过电压和过电流的情况,保护电路设备免受损坏。
本文将详细介绍电路中的过压保护和过流保护的原理、应用和常用保护器件。
一、过压保护过压是指电路中电压超出额定范围的情况,可能导致电路中的元器件发生过载、损坏甚至引发火灾等严重后果。
过压保护的功能是在电路中检测到过压情况时,迅速采取措施,将过压电源切断或将电压降至安全范围内,以保护电路元器件的安全。
过压保护的常用方法之一是采用过压保护电路。
这种电路是通过测量电压来检测过压情况,一旦电压超出设定的安全阈值,保护电路会触发并切断电源。
过压保护电路的核心元件是过压保护器件,常见的过压保护器件包括瞬态电压抑制器(TVS)、气体放电管(GDT)和过压保护二极管(VDR)等。
另一种常见的过压保护方式是采用整流器和稳压器。
整流器和稳压器可在电路中实现对过压情况的检测和处理。
通过将过压电压转换为电流信号,进而触发稳压器对电压进行调整,将电路中的电压维持在安全范围内。
二、过流保护过流是指电路中电流超出额定范围的情况,可能引起电路元器件发热、烧坏或焦糊等危险。
过流保护的目的是在电路中检测到过流情况时迅速采取措施,切断电源或限制电流流过元器件,以确保电路的正常运行和元器件的安全。
过流保护的常见方法包括熔断器和电流保护开关。
熔断器是一种自动开关设备,当电流超过额定值时,熔断器内的熔丝会熔断,切断电源。
电流保护开关则是通过电流互感器来感知电流大小,当电流超过设定的阈值时,保护开关会切断电源,以保护电路设备免受过流的危害。
除了熔断器和电流保护开关,还有一种过流保护装置被广泛应用于电路中,那就是电子式保护装置。
电子式保护装置利用电子元器件和控制电路,能够检测出电流异常,并及时触发保护装置动作,切断电源或限制电流,以实现对电路的过流保护。
电路基础原理电路中的电源保护与过载保护
电路基础原理电路中的电源保护与过载保护电路基础原理:电路中的电源保护与过载保护电力是现代社会的重要基石,无论是家庭用电还是工业生产,电路的安全性与稳定性都是至关重要的。
电源保护与过载保护是电路中保障电源供应稳定并防止电路因过载而受损的重要措施。
本文将对这两种保护措施进行详细论述。
一、电源保护电源保护的目的是保障电路的供电稳定与安全。
要实现电源保护,首先需要了解电源的特性与工作原理。
电源通常由直流电源与交流电源组成。
直流电源的保护主要包括过压保护、欠压保护和短路保护。
过压保护通过使用电压限制器,当电压超过一定范围时自动切断电源供应,以避免电路受到高电压的损害。
欠压保护则是通过电压稳定器来保持供电电压在一定范围内,当电压低于该范围时,电源会自动切断供应。
短路保护是为了防止电路发生短路导致电源传递过大电流,通常采用过流保护开关,当电流超过额定值时会自动切断电路。
交流电源的保护主要包括过载保护、漏电保护和潜火保护。
过载保护是为了防止电路负载过大而导致电源过热甚至引发火灾,一般采用过载保护开关,当电流超出额定值时会切断电源。
漏电保护是为了防止人身触电而设计的,当电流不平衡超过安全范围时,漏电保护装置会切断电源。
潜火保护是一种高级的保护方式,通过温度传感器监测电源工作温度,当温度超出安全范围时,系统会自动切断电路来防止火灾的发生。
二、过载保护过载保护是为了防止电路过载而设计的一种保护机制。
在电路中,过载往往是由负载电流超出额定值引起的。
过载保护的主要目的是保护电源和电路,防止因过载而发生过热、短路和损坏等情况。
过载保护可以通过电路保险丝、熔断器和热保护开关等装置实现。
当电路中的负载电流超过额定值时,保险丝或熔断器会自动熔断,切断电源供应。
热保护开关通过内部的温度传感器监测电路温度,当温度超过安全范围时,会切断电路供电。
过载保护的设计要考虑负载的额定电流、工作环境的温度和电路的稳定性等因素。
在工业生产中,过载保护还需要根据不同的负载特性和工艺流程进行合理的设计和配置,以确保电路的稳定运行与安全。
机载电子设备直流电源输入端保护电路设计
机载电子设备直流电源输入端保护电路设计曾凡东【摘要】为了减小瞬态电压、浪涌电压、输入电源极性反接、负载短路对机载电子设备造成的危害,针对当前航空直流+28 V电源系统的特点,提出了一种解决直流电源输入过压浪涌、输入欠压浪涌、输入电源极性反接、负载短路或过流导致设备损坏的方案。
该方案以LTC4364和APL502 L为核心芯片。
首先介绍了该电路的主要特点,接着分析了电路的工作原理和参数设计,最后对该电路进行了仿真分析和实验电路测试。
实验结果表明,该电路各项性能指标良好,完全达到设计要求。
该电路已成功应用于某电台中,且工作良好。
%In order to reduce the harm to the airborne electronic equipment caused by the transient voltage, surge voltage,reverse input of the power supply and the short of the load,according to the characteristics of the current +28 V DC airborne power system,a solution is proposed which can overcome the harm caused by the input overvoltage,input under-voltage,reverse input and the short or over-current of the load. In the solution LTC4364 and APL502L are chosen as the core chips. The main features of the design are intro-duced,the operating principle is analyzed and the design of scheme is described,and finally the circuit op-timization and actual verification for the whole system are conducted. The results indicate that it has a good performance and the design requirements are fully satisfied. The design has been successfully applied in a radio set and the circuit performs well.【期刊名称】《电讯技术》【年(卷),期】2016(056)007【总页数】6页(P820-825)【关键词】机载电子设备;直流电源;浪涌电压;保护电路设计【作者】曾凡东【作者单位】中国西南电子技术研究所,成都610036【正文语种】中文【中图分类】TN86飞机上搭载的大量机载电子设备均需机载电源系统提供稳定可靠的电源,机载电源系统的稳定性直接影响到机载设备的工作状态和飞行安全。
电力系统中的过电压与过流保护
电力系统中的过电压与过流保护1.引言电力系统是现代社会不可或缺的基础设施,它为人们提供了稳定、可靠的电力供应。
然而,在电力系统运行过程中,由于各种原因,如天气变化、设备故障等,都有可能引发过电压和过流现象,给电力设备和系统带来严重的损害甚至造成事故。
为了保护电力设备和系统的安全稳定运行,过电压与过流保护显得尤为重要。
2.过电压保护过电压是指电力系统中电压超过额定值的临时瞬变现象。
过电压的产生原因有很多,例如雷击、开关操作、电力负荷变化等。
当系统遭受过电压冲击时,电力设备可能受到电弧击穿、绝缘破坏等严重损害。
为了保护电力设备免受过电压的影响,电力系统采用了过电压保护装置。
过电压保护装置通常采用的方法包括避雷器、过电压自动开关和过电压继电器等。
避雷器是一种用来吸收或降低过电压的设备,通过将过电压引到大地,保护电力设备不受损害。
过电压自动开关则是一种根据电压变化自动切断电路的设备,以保护电力设备不受过电压的侵害。
过电压继电器作为一种智能保护装置,能够检测到系统中的过电压情况,并通过控制开关等方式将过电压隔离或直接短路,保护电力设备。
3.过流保护过流是指电力系统中电流超过额定值的现象,其原因主要包括电力设备故障、短路故障和负荷过大等。
过流会导致电力设备过热、绝缘损坏等,甚至引起火灾和爆炸。
为了保护电力设备免受过流的影响,电力系统采用了过流保护装置。
过流保护装置通常采用的方法包括熔断器、过流继电器和差动保护等。
熔断器是一种能够根据电流变化自动切断电路的设备,它利用高阻抗元件引起电流过大时的瞬间熔断,从而保护电力设备。
过流继电器是一种能够检测到系统电流异常的装置,它能够通过控制开关等方式切断电路,以防止过流对电力设备造成损害。
差动保护是一种利用电流差动原理来判断系统中是否存在故障的保护方式,通过测量系统中的电流差值来检测是否存在过流情况,从而及时进行保护动作。
4.过电压与过流保护的配合过电压保护和过流保护在电力系统中起着互补的作用。
如何解决电源电路中的短路保护问题
如何解决电源电路中的短路保护问题电源电路中的短路保护是一项重要而且常见的技术挑战。
当电路中出现短路情况时,电流会迅速增大,可能导致电源供应器故障、设备损坏,甚至可能引发安全事故。
因此,解决电源电路中的短路保护问题对于确保电路的稳定运行和使用安全至关重要。
本文将介绍几种常用的方法来解决电源电路中的短路保护问题。
一、过流保护方法过流保护是电源电路中应对短路的一种常用方法。
通过监测电路中的电流变化,当电流超过设定阈值时立即采取相应的保护措施。
下面将介绍两种常见的过流保护方法。
1. 电流限制器电流限制器是一种常用的过流保护方法,通过在电路中加入限流元件(如限流电阻或限流电感器)来限制电流的增大。
当电流超过设定阈值时,限流元件会发挥作用,限制电流的增加,达到保护电路的目的。
电流限制器设计简单、成本低廉,但是对电路的负载容量有一定的限制。
2. 电流保险丝电流保险丝是另一种常用的过流保护方法。
电流保险丝是一种熔断保护元件,当电流超过设定阈值时,电流保险丝会熔断,切断电路的连接,起到保护电路的作用。
选择适当的电流保险丝对于保护电路的稳定运行起到至关重要的作用。
二、过压保护方法除了过流保护外,过压保护也是电源电路中解决短路保护问题的重要手段。
当电路中出现过电压情况时,可能会导致电源供应器故障,设备受损。
下面将介绍两种常见的过压保护方法。
1. 过压保护电路过压保护电路是一种常见的过压保护方法。
通过引入过压检测电路,监测电路中的电压变化。
当电压超过设定阈值时,过压保护电路会自动切断电源供应,起到保护电路的作用。
这种方法灵活、可靠,能够及时发现过压情况并采取措施。
2. 过压保护器过压保护器是另一种常见的过压保护方法。
过压保护器一般安装在电路的输入端,当电压超过设定阈值时,过压保护器会自动切断电源供应,保护电路的稳定运行。
选择适当的过压保护器对于电路的保护起到至关重要的作用。
三、短路保护电路设计注意事项在设计电源电路中的短路保护电路时,有一些注意事项需要考虑。
直流电源模块电压计算公式
直流电源模块电压计算公式直流电源模块是一种常见的电源设备,它通常用于给各种电子设备提供稳定的直流电压。
在设计和使用直流电源模块时,计算电压是非常重要的。
本文将介绍直流电源模块电压计算的公式和相关知识。
1. 直流电源模块的基本原理。
直流电源模块是将交流电转换为直流电的设备,它通常由变压器、整流器、滤波器和稳压器等部分组成。
变压器用于将输入的交流电转换为所需的电压,整流器将交流电转换为脉动的直流电,滤波器用于去除脉动,稳压器用于保持输出电压的稳定。
在计算直流电源模块的输出电压时,需要考虑输入电压、变压器的变比、整流器的效率和稳压器的工作原理等因素。
2. 直流电源模块的电压计算公式。
直流电源模块的输出电压可以通过以下公式进行计算:Vout = Vin N η。
其中,Vout为输出电压,Vin为输入电压,N为变压器的变比,η为整流器和稳压器的效率。
在实际应用中,需要根据具体的电源模块参数和工作条件来选择合适的变压器、整流器和稳压器,以确保输出电压的稳定和可靠性。
同时,还需要考虑负载的变化对输出电压的影响,以保证电源模块在不同负载条件下都能正常工作。
3. 直流电源模块的电压调节。
在实际应用中,有时需要调节直流电源模块的输出电压,以满足不同设备的电压要求。
一般来说,可以通过调节变压器的变比、整流器和稳压器的工作状态来实现电压的调节。
此外,还可以通过串联或并联不同的稳压器来实现更精确的电压调节。
4. 直流电源模块的电压保护。
在使用直流电源模块时,需要注意保护电源模块和负载设备,避免过压、过流等情况发生。
一般来说,可以通过加入过压保护电路、过流保护电路和短路保护电路来实现对电源模块的保护。
此外,还可以通过合理设计电源模块的参数和选择合适的元器件来提高电源模块的稳定性和可靠性。
5. 结语。
直流电源模块的电压计算是电源设计和应用中的重要内容。
通过合理选择变压器、整流器、滤波器和稳压器,以及合适的电压计算公式,可以设计出稳定可靠的直流电源模块。
本安电源过压、过流保护次序选择研究
本安电源过压、过流保护次序选择研究佚名【摘要】过压-过流保护和过流-过压保护是本安电源过压、过流保护次序的2种形式,为研究不同的保护次序形式对本安电源安全性能的影响,建立了本安电源火花放电等效模型,确定了影响保护次序选择的本质安全性能因素.在发生过压、过流或同时发生过压与过流3种情况下,分别比较研究了2种保护次序的保护电路的性能,研究结果表明,在本安电源的设计中,过压、过流保护次序的选择并不是随机任意的,而是有原则可循的:过压保护电路的类型决定了本安电源过压、过流保护次序的选择,在设计中,首先要判断过压保护电路的类型,如果过压保护电路的类型是短路型,本安电源保护电路应设计成过流-过压的保护次序,否则应设计成过压-过流保护次序,过压-过流保护次序的保护电路截止关断时间更短,其保护效果更好,本安电源的安全性能更高.【期刊名称】《工矿自动化》【年(卷),期】2019(045)001【总页数】8页(P57-64)【关键词】本安电源;过压保护;过流保护;保护次序选择;保护电路类型;截止关断时间【正文语种】中文【中图分类】TD6080 引言目前,煤炭在我国的能源消费中的占比为70%左右。
煤炭开采受到多种灾害事故的威胁,其中电气设备引起的瓦斯爆炸事故占较大多数[1]。
煤矿井下用于检测、控制、监控、通信的各种电气设备无处不在,其能够正常工作必须依靠安全可靠的电源。
本安电源由于安全程度高、成本低、体积小、重量轻等优点日益成为研究的热点[2]。
近些年来对本安电源的研究主要集中在2个方面:电源内部本安设计和保护电路设计。
文献[3-5]系统地研究了3种常见的非隔离变换器Buck、Boost、Buck-Boost的本质安全特性,通过优化电容、电感参数,使该部分达到本质安全。
而非隔离变换器的电源不能直接应用于煤矿井下,有关电源内部本安设计的研究目前多局限于理论研究。
为此,文献[6]将本安型电源设计成由一个隔离开关变换器(AC-DC)、若干非隔离开关变换器(DC-DC)和保护电路组成,把前面的隔离开关变换器部分称作一次电源,把后面非隔离开关变换器部分称作二次电源,把一次电源设计成非本安型,把二次电源设计成本安型,但其整体的安全功能主要是依靠保护电路实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流电源过电压、欠电压及过流保护电路
该保护电路在直流电源输入电压大于30V或小于18V或负载电
流超过35A时,晶闸管都将被触发导
通,致使断路器QF跳闸。
图中,YR
为断路器QF的脱扣线圈;KI为过电
流继电器。
带过流保护的电动自行车无级调速电路
图中,RC为补偿网络,以改善电动机的力矩特性。
具体数值由实验决定。
电路如图16-91所示。
它适用于电动自行车或电动三轮车。
调节电位器RP,可改变由555
时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。
Rs是过电流取样电
阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分
流了部分负载,从而保护了功率管VTi。
过流保护用电子保险的制作电路图
本电路适用于直流供电过流保护,如各种电池供电的场合。
如果负载电流超过预设值,该电子保险将断开直流负载。
重置电路时,只需把电源关掉,然后再接通。
该电路有两个联接点(A、B标记),可以连接在负载的任意一边。
负载电流流过三极管T4、电阻R10和R11。
A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。
当电源刚刚接通时,全部电源电压加在保险上。
三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。
因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。
该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。
保险导电,负载有电流流过。
当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。
保险上的电压(VAB)通常小于2V,具体值取决于负载电流。
当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。
由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。
C1的作用是给出一段短时延迟,以便保险可以控制短时过载,如象白炽灯的开关电流,或直流电机的启动电流。
因此,改变C1的值可以改变延迟时间的长短。
该电路的电压范围是10~36V的直流电,延迟时间大约0.1秒。
对于电路中给出的元件值,负载电流限制为1A。
通过改变元件值,负载电流可以达到10mA~40A。
选择合适额定值的元件,电路的工作电压可以达到6~500V。
通过利用一个整流电桥(如下面的电源电路),该保险也可以用于交流电路。
电容器C2提供保险端的瞬时电压保护。
二极管D2避免当保险上的电压很低时,C1经过负载放电。
过压过流保护器电路图
当电源供给电压或负载吸取的电流太大时,下图电路可断开负载给出故障指示。
正常工作时,Tr1和Tr2均截止,555复位,555中的放电晶体管导通,它从Tr3基极吸取电流,使Tr3处开饱和,电源5~12V便直接送主负载。
当负载吸取电流超过规定值时,Rsc上压降增加,使Tr1导通,555被触发,于是内部放电晶体管截止,跟着Tr3也截止,将电源与负载隔离,这时555处于单稳状态,单稳时间一到,只要负载过流现象不排除,555又重新触发,Tr3继续将负载隔离。
若负载出现过压,则经R4、R5、D1后Tr2导通,也使555触发,Tr3这时也将负载隔离。
对于过流或过压,555③脚均将输出高电位,使LED发光,表示负载处于隔离状态。
由于Tr3或者处于饱和,或者处于截止,因此只用一只功率晶体管便可工作。
μA709构成的电压跟随器电路图
图(a)所示电路为电压跟随器,它是同相放大电路的特殊情况,输入信号是从集成运放的同相端引入,反馈电阻为零,负反馈极强,运放工作非常稳定,输入阻抗很大。
输出电阻却很小,因而这种电路具有阻抗变换作用。
所谓阻抗变换作用是指经电压跟随器放大后,其输出电压近似等于信号源的电动势而其输出电阻却很小。
该电路常用作输入级、中间缓冲级和输出级。
该电路的基本关系如下:
Vi+Vis=Vo
Vo=-AVis
式中:A——运放开环电压放大倍数;
Vis——运放的纯输入电压;
对该电路,当输入信号的电压振幅增大到接近运放的正电源电压时,将可能发生死锁现象,即信号将不能正常输出,这是由于运放内部的正反馈产生了寄生振荡。
为了防止该现象产生,可采用图(b)
采用NE555构成的过压过流保护电路图
带过流保护的1.8至35.3V连续可调电源电路图
这个电路的过流保护原理是什么
R3和Q1组成了取样电路,一旦电流增大,则R3的电压升高,使得Q1导通,Q2因为Q1的导通变成了截止,从而使得电路的电流减小,电路保护停止。
R1、R2是取样分压电阻,D1是稳压管,确保Q1和Q2的工作电压,C1是滤波电容,去除电源杂波,D2是极性保护二极管,防止电源接反。
LM324组成的简易过流自锁保护电路
本电路与直流稳压电源配合使用,可防止电源过流损坏。
电路见下图所示,正常情况下IC1-1⑨脚电位高于⑩脚电位,⑧脚输出低电位,IC-2{14}脚也输出低电位,继电器J不动作,LED发绿光。
当负载电流超过设定值时,IC-1⑩脚电位高于⑨脚电位,⑧脚输出高电平,IC-2{14}脚也输出高电平,使VD导通,J吸合,负载电源切断,LED发红光;与此同时,{14}脚高电平通过R4反馈到输入端{12}脚,使这一状态自锁。
只有过流原因解除、并按一下按钮S后,电路才恢复正常。
电路见图,正常情况下IC1-1⑨脚电位高于⑩脚电位,⑧脚输出低电位,IC-2{14}脚也输出低电位,继电器J不动作,LED发绿光。
当负载电流超过设定值时,IC-1⑩脚电位高于⑨脚电位,⑧脚输出高电平,IC-2{14}脚也输出高电平,使VD导通,J吸合,负载电源切断,LED发红光;与此同时,{14}脚高电平通过R4反馈到输入端{12}脚,使这一状态自锁。
只有过流原因解除、并按一下按钮S后,电路才恢复正常。
R2是负载电流取样电阻,调节W可改变最大允许电流。
用LM324构成单按键自锁(翻转开关)电路
用LM324构成单按键自锁(翻转开关)电路
2005-10-4 21:05:00
点击:2910
从事电子行业的人都知道,现时的通用IC价格较便宜,如运放集成电路LM324,价钱在0.4元左右,近年被广泛应用,利用LM324的特牲,将其当作比较用,用于控制电路,同时兼作VFD驱动,其性价比很高。
以下为大家推荐用一路运放构成单按键自锁(翻转开关)电路。
单电源供电与双电源供电略有不同。