梁的刚度计算

合集下载

梁的强度和刚度计算

梁的强度和刚度计算

梁的强度和刚度计算强度是指梁抵抗外力的能力。

梁的强度计算一般包括了两个方面:弯曲强度和剪切强度。

其中,弯曲强度是指梁在受到弯曲作用时的承载能力,剪切强度是指梁在受到剪切力作用时的承载能力。

弯曲强度的计算通常基于弹性理论,其中最常用的方法是根据梁的截面形状和材料的弹性模量来计算梁的截面抵抗力矩。

弹性模量是材料的一种力学性质,它衡量了材料在受力后产生的应变程度。

根据梁的截面形状和边界条件,可以计算出梁在弯曲作用下的最大应力和最大应变。

将最大应力与材料的弯曲强度进行比较,就可以判断梁是否满足设计要求。

剪切强度的计算也是基于弹性理论。

梁在受到剪切力作用时,梁内部会发生剪切变形。

剪切强度的计算包括两个方面:剪切应力和剪切变形。

剪切应力是指剪切力对梁截面的作用,剪切变形是指梁截面产生的剪切位移。

剪切强度的计算要求同时满足两个条件:剪切应力小于材料的剪切强度,剪切变形小于允许的变形限制。

刚度是指梁在受到力作用后的变形程度。

梁的刚度决定了梁的承载能力和结构的稳定性。

刚度的计算通常考虑梁的弹性变形和塑性变形两个方面。

弹性变形是指梁在小荷载下的弯曲变形,主要涉及梁的截面形状、材料的弹性模量和梁的长度等因素。

塑性变形是指梁在大荷载下的弯曲变形,主要涉及梁的屈服强度、截面形状和材料的塑性性质等因素。

根据梁的受力情况,可以计算出梁的弯曲刚度和剪切刚度。

弯曲刚度表示梁在受到弯曲作用时的抵抗变形能力,剪切刚度表示梁在受到剪切力作用时的抵抗变形能力。

在梁的强度和刚度计算中,需要根据具体的工程要求和设计规范进行。

梁的截面形状、材料的性质和受力情况都会对强度和刚度的计算结果产生影响。

因此,工程师需要根据具体情况选择适当的计算方法和模型进行计算。

同时,还需要进行合理的验算和对比,确保梁的设计满足强度和刚度的要求。

梁的强度和刚度计算.

梁的强度和刚度计算.

梁的强度和刚度计算1.梁的强度计算梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。

(1)梁的抗弯强度作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下:梁的抗弯强度按下列公式计算:单向弯曲时f W M nx x x ≤=γσ (5-3)双向弯曲时f W M W M ny y y nx x x ≤+=γγσ (5-4)式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴);W nx 、W ny ——梁对x 轴和y 轴的净截面模量;y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;对其他截面,可查表得到;f ——钢材的抗弯强度设计值。

为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。

需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。

(2)梁的抗剪强度一般情况下,梁同时承受弯矩和剪力的共同作用。

工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。

截面上的最大剪应力发生在腹板中和轴处。

在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。

因此,设计的抗剪强度应按下式计算v w f It ≤=τ (5-5)式中:V ——计算截面沿腹板平面作用的剪力设计值;S ——中和轴以上毛截面对中和轴的面积矩;I ——毛截面惯性矩;t w ——腹板厚度;f v ——钢材的抗剪强度设计值。

图5-3 腹板剪应力当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁的抗剪强度。

型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。

梁的变形与刚度计算

梁的变形与刚度计算
qa 4 f 2C 8EI z qa3 2C 6EI z
f2B qa 4 qa3 ( L a) 8EI z 6 EI z
c L (1) L a
f2c
B
B
2c
B B
A
q
c
(2)
由叠加原理

f B f1B f 2 B
qL4 qa 4 qa3 ( L a) 8EI z 8EI z 6EI z
材料——梁的位移与材料的弹性模量 E 成反比; 截面——梁的位移与截面的惯性矩 I 成反比; 跨长——梁的位移与跨长 L 的 n 次幂成正比。 (转角为 L 的 2 次幂,挠度为 L的 3 次幂) 1、增大梁的抗弯刚度(EI) 2、调整跨长和改变结构 方法——同提高梁的强度的措施相同
3、预加反弯度(预变形与受力时梁的变形方向相反,目的起到 一定的抵消作用)
w max L w L

max

、设计截面尺寸: (对于土建工程,强度常处于主要地位,刚度
、设计载荷:
常处于从属地位。特殊构件例外)
三、提高梁的刚度的措施 由梁在简单荷载作用下的变形表和前面的变形计算可看:
梁的挠度和转角除了与梁的支座和荷载有关外还取决于
下面三个因素:
式中 ,x 为梁变形前轴线上任一点的横坐标 ,y为该点的挠度。
B
A
C
x
挠曲线
C'

B
转角
y挠度
y
4、挠度和转角的符号约定
挠度:向下为正,向上为负。
转角:自x 转至切线方向,顺时针转为正,逆时针转为负。
A
C
B
x
挠曲线
C'

8.3.5 梁的刚度计算

8.3.5  梁的刚度计算

8.3.5 梁的刚度计算梁的刚度计算,通常是校核其变形是否超过许用挠度[ f ]和许用转角[θ],可以表述为:≤y f []max≤θθ[]max式中y max 和θmax 为梁的最大挠度和最大转角。

在机械工程中,一般对梁的挠度和转角都进行校核;而在土木工程中,常常只校核挠度,并且以许用挠度与跨长的比值lf []作为校核的标准,即: ≤l lf y []max (8.17) 土木工程中的梁,强度一般起控制作用,通常是由强度条件选择梁的截面,再校核刚度。

例8.9 简支梁受力如图8.11所示,采用22a 号工字钢,其弹性模量=E 200GPa ,=l f 400[]1,试校核梁的刚度。

解:由附录查表可得=I 3400cm z 4,=EIy ql 3845max 4。

于是 =<=⨯⨯⨯⨯==⨯⨯l f l EI ql y 600400[]1138438420010MPa 340010mm 554N/mm 6000mm 344max 333所以梁的刚度满足要求。

下面介绍提高梁弯曲刚度的一些措施。

在不改变荷载的条件下,梁的变形与抗弯刚度EI 成反比,与跨长的n 次幂(n 可取1、2、3或4)成正比。

所以,提高弯曲刚度的一些措施有:(1)增大EI 。

这方面可以考虑采用惯性矩较大的工字形、槽形、箱形等截面形状。

须指出的是,高强钢与普通钢的弹性模量相差无几,所以采用高强钢对提高刚度的作用并不明显。

(2)调整跨长或改变结构。

减小跨长对变形的影响较为明显,如龙门吊车大梁就采用了两端外伸的结构形式。

此外,增加约束形成超静定梁,也能显著减小梁的变形,同时还可以提高弯曲强度。

有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)。

梁的刚度计算

梁的刚度计算
[]——梁得容许挠度值,《规范》根据实践经验规定得容许挠度值。
梁得强度与刚度验算
1.如图1所示一根简支梁长m,梁得自重为;钢材得等级与规格(,),,,,均为已知。梁上作用恒荷载,荷载密度为,荷载分项系数为1、2,截面塑性发展系数为,。试验算此梁得正应力及支座处剪应力。
图1
解:
(1)计算作用在梁上得总弯矩
需要计算疲劳得梁,按弹性工作阶段进行计算,宜取。
(2)梁得抗剪强度
一般情况下,梁同时承受弯矩与剪力得共同作用。工字形与槽形截面梁腹板上得剪应力分布如图5-3所示。截面上得最大剪应力发生在腹板中与轴处。在主平面受弯得实腹式梁,以截面上得最大剪应力达到钢材得抗剪屈服点为承载力极限状态。因此,设计得抗剪强度应按下式计算
ﻩﻩﻩﻩ(5-7)
式中:——腹板计算高度边缘同一点上得弯曲正应力、剪应力与局部压应力。按式(5-5)计算,按式(5-6)计算,按下式计算
ﻩﻩﻩﻩﻩﻩﻩﻩ(5-8)
——净截面惯性矩;
y——计算点至中与轴得距离;
均以拉应力为正值,压应力为负值;
——折算应力得强度设计值增大系数。当异号时,取=1、2;当同号或=0取=1、1。
ﻩﻩﻩﻩﻩﻩﻩ(5-5)
式中:V——计算截面沿腹板平面作用得剪力设计值;
S——中与轴以上毛截面对中与轴得面积矩;
I——毛截面惯性矩;
tw——腹板厚度;
fv——钢材得抗剪强度设计值。
图5-3腹板剪应力
当梁得抗剪强度不满足设计要求时,最常采用加大腹板厚度得办法来增大梁得抗剪强度。型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力得计算。
梁得强度与刚度计算
1.梁得强度计算
梁得强度包括抗弯强度、抗剪强度、局部承压强度与折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定得相应得强度设计值。

梁的刚度计算

梁的刚度计算

l=400mm,a=100mm,E=210GPa,
l/2 l/2 a
F1=2kN,F2=1kN, [yC]=0.0002l,
[B]=0.001rad。 试校核主轴的刚度。
解 Iz=1.88106mm4
A
应用叠加法计算C截面的挠度和
B截面的转角为 。yC=5.9110-3mm
F2 BF1
D
B
BF2
F1 yCF1
Fl 2 16 EI z
ql3 24 EI z
B=BF+Bq=
Fl2 16 EI z
ql 3 24 EI z
q
机械工业出版社

A
C
B
Aq
yCq Bq
AF yCF
BF
A
C
B
F
Bq
ql 3 24 EI z
上一页 返回首页 下一页
在一经简化处理的机床空心主轴 A
上一页 返回目录 下一页
1.挠度和转角
y
度量梁的变形的两个基
本物理量是挠度和转角。它 A 们主要因弯矩而产生, 剪
力的影响可以忽略不计。
机械工业出版社

m Fm1 C BF x
挠曲线 n1
C1 B1 n
以悬臂梁为例,变形前梁的轴线为直线AB,mn 是梁的某一横截面,变形后AB变为光滑的连续曲线 AB1。mn转到了m1n1的位置。
退出
上一页 返回首页 下一页
设全轴(包括外伸端)可近似视为等
机械工业出版社

DB
C
例7-17 截面梁,且刀具与齿轮受力恰在同一
平面内。已知轴的外径D=80mm,内 径d=40mm,AB跨长l=400mm ,外伸 A 长a=100mm,材料的弹性模量

梁的刚度计算

梁的刚度计算

梁的刚度计算The Standardization Office was revised on the afternoon of December 13, 2020梁的强度和刚度计算1.梁的强度计算梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。

(1)梁的抗弯强度作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下:梁的抗弯强度按下列公式计算: 单向弯曲时f W M nxx x≤=γσ(5-3)双向弯曲时f W M W M nyy y nx x x≤+=γγσ(5-4)式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴);W nx 、W ny ——梁对x 轴和y 轴的净截面模量;y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;对其他截面,可查表得到;f ——钢材的抗弯强度设计值。

为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。

需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。

(2)梁的抗剪强度一般情况下,梁同时承受弯矩和剪力的共同作用。

工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。

截面上的最大剪应力发生在腹板中和轴处。

在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。

因此,设计的抗剪强度应按下式计算v wf It VS≤=τ(5-5)式中:V ——计算截面沿腹板平面作用的剪力设计值;S ——中和轴以上毛截面对中和轴的面积矩; I ——毛截面惯性矩; t w ——腹板厚度;f v ——钢材的抗剪强度设计值。

梁的变形及刚度计算

梁的变形及刚度计算

(3) 改善荷载的作用情况
在结构允许的情况下,合理地调整荷载的位置 及分布情况,以降低弯矩,从而减小梁的变形, 提高其刚度。如图所示,将集中力分散作用, 甚至 改为分布荷载,则弯矩降低,从而梁的 变形减小,刚度提高。
l /500,弹性模量E=2×105MPa ,试选择工字钢
的型号。
解 (1)按强度条件选择工字钢型号 梁的最大弯矩为:
M max
FP l 4

40 103 N 3103 mm 4
=3107 N mm
按弯曲正应力强度条件选截面
M max
W
W
M max
3107 N mm 160MPa
B
=
FPl 2 2EI
wm a x
=
FPl 3 3EI
2.悬臂梁 弯曲力偶作用在自由端
B
=
Ml EI
wm a x
=
Ml 2 2EI
续表
3.悬臂梁 均匀分布荷载作用在梁上
B
=
ql 3 6EI
wm a x
=
ql 4 8EI
4.简支梁 集中荷载作用跨中位置上
时 a = b = l 2
A
=-
B
=
FPl 2 16 EI
梁的刚度足够
所以,选用20a工字钢
3、提高梁抗弯刚度的措施
梁的挠度和转角与梁的抗弯刚度EI 、梁的跨 度L 、荷载作用情况有关,那么,要提高梁的 抗弯刚度可以采取以下措施:
(1) 增大梁的抗弯刚度EI 增大梁的EI值主要是设法增大梁截面的惯性矩I 值,一般不采用增大E 值的方法。
在截面面积不变的情况下,采用合理的截面形 状,可提高惯性矩I 。
梁的变形及刚度计算

梁的刚度计算

梁的刚度计算

B
C
载荷变形。
= ++
0.2 m F1 =1KN
A
D
B
F2 =2KN C
1B
F1L2 16EI
2B 0
w1C
1Ba
F1L2a 16EI
w2C
F2a3 3EI
图1
PF11
aC B
3B
ML 3EI
LaF2 3EI
w3C
3Ba
F2 La 2 3EI
图2
FP22
叠加求复杂载荷下的变形
A
L
M PF22
0.423104 (弧度)
wC
F1L2a 16EI
F2a3 3EI
F2 a 2 L 3EI
5.19106 m
校核刚度
wmax L
L
wmax
/
L
wC
/
L
5.1 9 1 06 0.4
1.3 1 05
L
1 05
max 0.423104 0.001
三、提高梁的刚度的措施 由梁在简单荷载作用下的变形表和前面的变形计算可看: 梁的挠度和转角除了与梁的支座和荷载有关外还取决于 下面三个因素:
同类材料只能提高强度,不能提高刚度。 不同类的材料,“E”和“G”都相差很多(钢E=200GPa ,
铜E=100GPa),故可选用不同类的材料以达到提高刚度的目的。 但是,改换材料,其原料费用也会随之发生很大的改变!
工程力学
E=210GPa,工程规定C点的[δ/L]=0.00001,B点的[ ]=0.001弧
度,试校核此杆的刚度.
L=0.4m
a =0.1m
A
D
B

梁的强度和刚度计算.

梁的强度和刚度计算.

梁的强度和刚度计算1.梁的强度计算梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。

(1)梁的抗弯强度作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下:梁的抗弯强度按下列公式计算:单向弯曲时f W M nx x x ≤=γσ (5-3)双向弯曲时f W M W M ny y y nx x x ≤+=γγσ (5-4)式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴);W nx 、W ny ——梁对x 轴和y 轴的净截面模量;y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;对其他截面,可查表得到;f ——钢材的抗弯强度设计值。

为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。

需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。

(2)梁的抗剪强度一般情况下,梁同时承受弯矩和剪力的共同作用。

工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。

截面上的最大剪应力发生在腹板中和轴处。

在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。

因此,设计的抗剪强度应按下式计算v w f It ≤=τ (5-5)式中:V ——计算截面沿腹板平面作用的剪力设计值;S ——中和轴以上毛截面对中和轴的面积矩;I ——毛截面惯性矩;t w ——腹板厚度;f v ——钢材的抗剪强度设计值。

图5-3 腹板剪应力当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁的抗剪强度。

型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。

梁的强度和刚度计算

梁的强度和刚度计算

梁的强度和刚度计算1.梁的强度计算梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。

(1)梁的抗弯强度作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下:梁的抗弯强度按下列公式计算:单向弯曲时f W M nx x x ≤=γσ (5-3)双向弯曲时f W M W M ny y y nx x x ≤+=γγσ (5-4)式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴);W nx 、W ny ——梁对x 轴和y 轴的净截面模量;y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;对其他截面,可查表得到;f ——钢材的抗弯强度设计值。

为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。

需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。

(2)梁的抗剪强度一般情况下,梁同时承受弯矩和剪力的共同作用。

工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。

截面上的最大剪应力发生在腹板中和轴处。

在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。

因此,设计的抗剪强度应按下式计算v w f It ≤=τ (5-5)式中:V ——计算截面沿腹板平面作用的剪力设计值;S ——中和轴以上毛截面对中和轴的面积矩;I ——毛截面惯性矩;t w ——腹板厚度;f v ——钢材的抗剪强度设计值。

图5-3 腹板剪应力当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁的抗剪强度。

型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。

材料力学第9章 梁的挠度和刚度计算

材料力学第9章  梁的挠度和刚度计算

材料力学第9章梁的挠度和刚度计算梁的挠度和刚度计算材料力学第9章引言梁是一种常见的结构元素,在各个工程领域都有广泛的应用。

了解梁的挠度和刚度计算方法对于设计和分析梁的性能至关重要。

本文将介绍材料力学第9章中梁的挠度和刚度计算的相关内容。

1. 梁的挠度计算方法1.1 单点弯曲当梁受到单点弯曲时,可以使用梁的弯曲方程来计算梁的挠度。

梁的弯曲方程可以表达为:δ = (M * L^2) / (2 * E * I)其中,δ为梁的挠度,M为梁的弯矩,L为梁的长度,E为梁的弹性模量,I为梁的截面惯性矩。

1.2 均匀分布荷载当梁受到均匀分布荷载时,梁的挠度计算稍有不同。

可以使用梁的基本方程来计算梁的挠度。

梁的基本方程可以表达为:δ = (q * L^4) / (8 * E * I)其中,δ为梁的挠度,q为梁的均匀分布荷载,L为梁的长度,E为梁的弹性模量,I为梁的截面惯性矩。

2. 梁的刚度计算方法梁的刚度是指梁对外界荷载的抵抗能力。

梁的刚度可以通过计算梁的弯曲刚度和剪切刚度得到。

2.1 弯曲刚度梁的弯曲刚度可以通过梁的截面惯性矩来计算。

弯曲刚度可以表示为:EI = ∫(y^2 * dA)其中,EI为梁的弯曲刚度,y为离梁中性轴的距离,dA为微元面积。

2.2 剪切刚度梁的剪切刚度可以通过梁的截面两点间的剪力和相对位移关系来计算。

剪切刚度可以表示为:GJ = ∫(θ * dA)其中,GJ为梁的剪切刚度,θ为梁的剪切角,dA为微元面积。

3. 示例为了加深对梁的挠度和刚度计算的理解,下面以一根长度为L的梁为例进行计算。

假设梁受到均匀分布荷载q作用,并且梁的截面为矩形截面,梁的宽度为b,高度为h。

根据梁的挠度计算方法,可以得到梁的挠度公式为:δ = (q * L^4) / (8 * E * b * h^3)根据梁的刚度计算方法,可以得到梁的弯曲刚度和剪切刚度公式为: EI = (b * h^3) / 12GJ = (b * h * h^3) / 12通过计算梁的挠度和刚度,可以得到梁的性能参数,进而进行工程设计和分析。

第九章-用叠加法计算梁的变形梁的刚度计算(材料力学课件)

第九章-用叠加法计算梁的变形梁的刚度计算(材料力学课件)

3
(↓ )
( 顺时针 )
3 3
θB
Pa 2 Pa ⋅ a = + 2(2 EI ) 2 EI
3 Pa = 4 EI
2
Pa 3 Pa vC = v B + θ B ⋅ a + = 3EI 2 EI
(↓ )
用叠加法求图示梁C端的转角和挠度。 例: 用叠加法求图示梁C端的转角和挠度。
CL9TU29
解:
§9-5 用变形比较法解静不定梁
一、静不定梁的基本概念
CL9TU50
用多余反力代替 多余约束, 多余约束,就得 到一个形式上的 静定梁, 静定梁,该梁称 为原静不定梁的 相当系统。 相当系统。
二、用变形比较法解静不定梁 例:求图示静不定梁的支反力。 求图示静不定梁的支反力。
解:将支座B看成 将支座 看成 多余约束, 多余约束,变形协调 条件为: 条件为:
§9-3 用叠加法计算梁的变形 梁的刚度计算
一、用叠加法计算梁的变形 在材料服从胡克定律、且变形很小的前提下 在材料服从胡克定律、且变形很小的前提下, 载荷与它所引起的变形成线性关系。 载荷与它所引起的变形成线性关系。 当梁上同时作用几个载荷时, 当梁上同时作用几个载荷时,各个载荷所引 起的变形是各自独立的,互不影响。 起的变形是各自独立的,互不影响。若计算几个 载荷共同作用下在某截面上引起的变形, 载荷共同作用下在某截面上引起的变形,则可分 别计算各个载荷单独作用下的变形,然后叠加。 别计算各个载荷单独作用下的变形,然后叠加。
CL9TU30
ql 解:弹簧缩短量 ∆ = 8k
ql 5ql vC = + 16k 768 EI
4
(↓ )
3
θB
q 3 q ⋅ l ⋅l q 2 2 2 = − + 8k 24 EI 24 EI

梁的刚度计算公式

梁的刚度计算公式

梁的刚度计算公式
梁的刚度计算公式是指用数学公式来计算梁的刚度,也就是梁的抵抗弯曲的能力。

一般来说,梁的刚度计算需要考虑材料的特性、截面形状以及梁的长度等因素。

对于梁的刚度计算,最常用的公式是欧拉-伯努利梁的弯曲刚度公式,它表示为:
EI = kM/δ
其中,EI代表梁的弯曲刚度,E为梁的弹性模量,I为梁的截面转动惯量,k为比例系数,M为梁的弯矩,δ为梁的挠曲度。

这个公式可以用来计算梁的最大挠度、应力和变形等物理量。

在工程设计中,梁的刚度计算公式是非常重要的,它可以帮助工程师有效预测结构的受力情况,并提前考虑结构的强度和稳定性。

sect;5.3梁的刚度计算——第二极限状态

sect;5.3梁的刚度计算——第二极限状态

§5.3 梁的刚度计算——第二极限状态v v =[]v ——梁的最大挠度,按荷载标准值计算,因为相对于强度而言,刚度的重要程度差些。

[v ]——受弯构件挠度限值,按规范取。

如:手动吊车梁:500/l轻级、中级工作制(Q<50吨):006/l 重级、中级工作制(Q>50吨):007/l规范在楼(屋)盖梁或桁架和平台梁中分别规定了][T v 和][Q v 两种挠度容许值。

其中][T v 为全部荷载标准值产生的挠度(如有起拱应减去拱度),][Q v 为由可变荷载标准值产生的挠度容许值。

这是因为][T v 主要反映观感而][Q v 主要反映使用条件。

在一般情况下,当][T v 大于250/l 后将影响观瞻。

对于v 的算法可用材料力学算法解出,也可用简便算法。

如等截面简支梁:xx x x 10485EI l M EI lM l v ≈⋅=≤l v ][ 2481,3845ql M EI ql v =⋅=翼缘截面改变的简支梁:)2531(10xx x x I I I EI l M l v '-⋅+=≤l v ][x I ——跨中毛截面抵抗矩1I ——支座附近毛截面的抵抗矩§5.4 梁的截面选择一.型钢梁截面选择fM W x xnx γ=——查表选截面 为了节省钢材,应避免在弯矩较大的部位开栓钉孔。

二.组合截面梁截面选择 1.截面高度的确定(1)最大高度max h :由于工艺及设备等对空间的要求; (2)最小高度min h :222min 555[]484824()21.35[]31.2x x Ml Ml l v v h EI EhEW f h f ll E vσσ==⋅=≤⋅=⇒= 从中所确定的min h 为最小高度; (3)经济高度:fM W x ⋅=γxn 能达到这一目的截面可能有多种形式,可以高而窄,也可以矮而宽。

经济高度可采用如下经验公式计算:e w h t =---经验公式先假定后调整k ──系数,不变截面焊接梁为1.2,不变截面的焊接吊车梁为1.35。

梁线刚度计算公式对应的规范

梁线刚度计算公式对应的规范

梁线刚度计算公式对应的规范
i=EI/L E:弹性模量,I:截面惯性矩,L:柱子计算长度;
线刚度是指材料或结构在受力时抵抗弹性变形的能力。

是材料或结构弹性变形难易程度的表征。

材料的刚度通常用弹性模量E来衡量。

在宏观弹性范围内,刚度是零件荷载与位移成正比的比例系数,即引起单位位移所需的力。

它的倒数称为柔度,即单位力引起的位移。

刚度可分为静刚度和动刚度。

在自然界,动物和植物都需要有足够的刚度以维持其外形。

在工程上,有些机械、桥梁、建筑物、飞行器和舰船就因为结构刚度不够而出现失稳,或在流场中发生颤振等灾难性事故。

因此在设计中,必须按规范要求确保结构有足够的刚度。

但对刚度的要求不是绝对的,例如,弹簧秤中弹簧的刚度就取决于被称物体的重量范围,而缆绳则要求在保证足够强度的基础上适当减小刚度。

研究刚度的重要意义还在于,通过分析物体各部分的刚度,可以确定物体内部的应力和应变分布,这也是固体力学的基本研究方法之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
但是,改换材料,其原料费用也会随之发生很大的改变!
§10-6
RA
A
l 2
简 单 超 静 定 梁
RB
B
ql 2 mA 0, RBl 2 0. ql m 0 , R , RB 0.5ql. B A 2
q
C
l 2
静 定 问 题
由平衡方程可以解出全部未知数
RA
A
l 2
RC
C
ycq ycRC 0
A
C
B
多余反力 计算梁的内力、应力、强度、变形、刚度。
yB 0 RB
RA
A
l 2
RC
C
q
RB
B
l 2
例 已知梁的EI,梁的长度,求 各处的约束反力。
解:1) 受力分析,列平衡方程 判定超静定次数
q
A
RC
Y 0, RA RB RC ql 0 M A 0, RBl 0.5RCl 0.5ql2 0
I
=
A D
图1
B F1
图2

64
( D 4 d 4 ) 188 10 8 m 4
M
A L B
图3
+ +
F1 L2 F2 La 4 0 . 423 10 (弧度) B a 16EI 3EI C B F1L2 a F2 a 3 F2 a 2 L 6 y 5 . 19 10 m F 2 F2 C 2 16EI 3EI 3EI
3ql R A RB 16
RC l 3 5ql 4 0 384EI 48EI
RA
A
l 2
RC
C
5ql 16
q
RB
B
l 2
5 3ql RC qL , R A RB 8 16
画出剪力图、弯矩图。
3ql 16
最大弯矩
ql 2 M max 16
q
B
l 2
3ql 16
与静定梁作比较:
B
C
B
C F2
M F2
C A L B
B
+
F2
+
C
a
L=400mm
a =0.1m C F2 =2KN C
利用叠加求复杂载荷下的变形
A
B D 200 mm F1 =1KN
F1 L2 F2 La B 16EI 3EI
F1L2 a F2 a 3 F2 a 2 L yC 16EI 3EI 3EI
§10—5 梁的刚度计算
一、梁的刚度条件
ymax ymax ymax L L
max
其中[]称为许用转角;[δ /L]称为许用挠跨比。 二、刚度计算
、校核刚度: 、设计截面尺寸;
、确定外载荷。
(对于土建工程,强度常处于主要地位,刚度常处于从属 地位。特殊构件例外)
+
B
求解平衡方程:
5ql ql 2 RA , mA 8 8
RA
A
q
RB
解2:、受力分析,
mA
l
EI
q
B
M
B
Y 0,
A
RA , mA , RB , ql
RA RB ql 0
0, mA 0.5ql2 RBl 0
3、预加反弯度(预变形与受力时梁的变形方向相反,目的起到 一定的抵消作用)
注意: 同类的材料,“ E ”值相差不多,“ j x ”相差较大,故换 用同类材料只能提高强度,不能提高刚度。 不同类的材料,“E”和“G”都相差很多(钢 E = 200 GPa ,
铜 E = 100 GPa),故可选用不同类的材料以达到提高刚度的目的。
例:下图为一空心圆杆,内外径分别为:d=40mm、D=80mm, 6 8 10 m 杆的E=210GPa,工程规定C点的[δ]= ,B点的 [ ]=0.001 弧度,试校核此杆的刚度.
L=400mm A D 200 mm F1 =1KN
B
a=0.1m
C F2 =2KN
A
D
B
C F2
=
=
a
A
D F1 A D
l 2
RB
B
平衡方程数 = 未知数。 q
A
C
B
RC 超 多余约束 去掉多余约束而成为形式 静 定 上的静定结构 — 基本静定基。 二个平衡方程,三个未知力。 问 yc yCq yCRC 0 题 平衡方程数 < 未知力数。
q
A
l 2
q
C
l 2
B
ቤተ መጻሕፍቲ ባይዱ
AA
L/2
C
Rc
B
L/2
解超静定的步骤 —— (静力、几何、物理条件) 1、用多余约束反力代替多余约束(取静定基 原则:便于计算 ) 2、在多余约束处根据变形协调条件列出变形的几何方程 3、把物理条件代入几何方程列出力的补充方程求出多余反力 q 分析—— yc
F2 a C
校核刚度
yC 5.19106 m
B 0.423104 弧度
0.001 弧度
刚度足够
三、提高梁的刚度的措施 由梁在简单载荷作用下的变形表和前面的变形计算可知:
梁的挠度和转角除了与梁的支座和载荷有关外,还取决于 下面三个因素: 材料——梁的位移与材料的弹性模量 E 成反比; 截面——梁的位移与截面的惯性矩 I 成反比; 跨长——梁的位移与跨长 L 的 n 次幂成正比。 (转角为 L 的 2 次幂,挠度为 L的 3 次幂) 1、增大梁的抗弯刚度(EI) 2、调整跨长和改变结构 方法——同提高梁的强度的措施相同
RB , ql
A
静定基
B
2 M 0 , m 0 . 5 ql RBl 0 A A
Y 0,
RA RB ql 0
RB
B
、几何方程 、物理方程 4
yB yBq yRB 0
=
A
q0
A
RB
ql RB l 3 y Bq ; y BRB 8EI 3EI 3qL qL4 RB L3 , 0 RB 得: 8 8EI 3EI
ql 2 16
9ql 2 256
5ql 16
A
C
l 2
9ql 2 256
ql 2 M max 8
M max 0.5 M max
超静定梁因增加了多余约束,强度(刚度) 得到有效提高,多余约束并不真正多余
RA
A
q
RB
例 已知梁的EI,梁的长度,求各约
mA
l
EI
q
B
束反力。
解1: 、受力分析, RA , mA ,
B
5 RC qL , 8
利用平衡方程可求出全部未知力:
2) 解除多余约束——静定基
(解除C支座约束,代之以多余约束反力,得 基本静定基——简支梁)
3) 变形协调方程
yC yCq yCR 0
5ql 4 , 384EI yCRC RC l 3 48EI
4) 物理条件代入上式
yCq
相关文档
最新文档