水下定位与导航技术声学多普勒测速技术概述78页PPT
对水下目标的多普勒直接定位
比值 代 入式 ( ) 则又 可 以分别 得 到 1 , 1 A 一 )=r ( ( / 1—1 u /)
A/ / ( 一 )=r ( 2 u一1 )
的径 向距 离
简化 为仅基 于 多普 勒频 移或 实 测频 率值 的计 算 。
内 , 普 勒变化 率 可 由相邻 测 量 节 点之 间 的多 普 勒 多
裂1 . . o . l 0
. .
}囹 .! =
0 詈 2 [ 】 …s
即可解 出
D :' i0 /s 2 2n
标 速度和 航路捷 径 的精 确 计 算 公式 , 其 仍 需 要 在 但
测量 得到航 路捷 径 点处 的频 率 和 时 间之后 , 能 获 才 得 目标 的速度和距 离 , 这就 意 味 着 其 实质 上 和 老方 法一样 , 并不 是一 种实 时 的探 测方 法 。
收稿 日期 :0 01 -2 2 1 .1 0 修 订 日期 :0 01 — 2 1.12 9
1 定 位 公 式
1 1 测 量 模 型 .
如图 1 示 , 所 当水 下 目标 以速度 从 左 向右匀 速移 动 时 , 浮标 定周 期 的至 少 连续 三 次 检 测 目标 的 多普勒 频移 :
=
频 率值 , 用 径 向速度 近似 代 替 真实 速 度 来 计算 目 并
标 的航路 捷径 距 离 , 仅是 一 种 近 似 的方 法 。文 献 故 [] 2 通过 引人 任 意两个 测 量 点 的时 问信 息 导 出 了 目
一
2
,
2
2
式中, A=c o 信 号 的波 长 ; /r为 角 速 度 ; l 为 i 0 =v 9
为径 向距 离 ; =viO 分以得 到 勒频 移 方程 和多 普勒 变化 率 比值 代 = (s = s V 2 。) 0 n 0 t ) 可 别将 多普
水下定位系统(USBL)
THANKS
感谢观看
和应用。
数据传输
通过有线或无线方式将定位数据 实时传输到上位机或控制中心,
实现远程监控和管理。
数据接口
提供标准的数据接口,方便与其 他系统进行集成和数据共享。
04
USBL系统性能指标评价方法
定位精度指标分析
均方根误差(RMSE)
衡量定位精度的常用指标,计算预测位置与实际位置之间的欧氏距离的平均值。
USBL定位算法
到达时间差(TDOA)定位算法
通过测量声波到达不同接收阵元的时间差,结合阵列的几何关系和声速信息,解算出目标 的位置。
到达角度(AOA)定位算法
利用阵列信号处理技术估计出声波到达阵列的方位角和俯仰角,进而确定目标的位置。
联合TDOA和AOA定位算法
同时利用TDOA和AOA信息,构建联合定位方程组,提高定位精度和稳定性。
深度学习算法应用
通过深度学习算法对传感器数据进行处理和分析 ,提高水下定位系统的智能化水平。
新型水声通信技术
采用高速、高效的水声通信技术,实现水下定位 系统与水面支持设备之间的实时数据传输。
智能化、自主化发展趋势
自主导航技术
结合惯性导航、地形匹配等自主导航技术,提高水下定位系统的 自主性和适应性。
最大正负差(Max/Min Error)
表示定位结果中最大正偏差和最大负偏差,用于评估系统的极端误差情况。
圆概率误差(CEP)
以50%的概率落在以真实位置为圆心、半径为CEP的圆内的定位误差。
稳定性指标评估
01
重复定位精度
在相同条件下,多次定位结果的 一致性程度,反映系统的稳定性 。
漂移误差
02
03
水下定位系统(USBL)
《导航定位技术》PPT课件
发展简史
由前苏联从80年代初开始建设的与美国GPS系统相类似的卫星定位系统,现在由俄罗斯 空间局管理。 从苏联1982年10月12日发射第一颗GLONASS卫星 1996年1月18日,24颗卫星正常工作运行。
卫星组成
GLONASS系统共有26颗卫星在轨。其中有20颗卫星处于工作状态,2颗备用,4颗正接受 技术维护。其中18颗卫星即可实现俄罗斯境内导航。
Navigation and positioning technology
本课程所涉及的主要内容
第一部分:导航定位技术理论基础
➢ 地球描述 ➢ 坐标系 ➢ 时间基准
第二部分:典型导航定位系统
➢ 典型导航定位系统的工作原理及特点 ➢ 典型导航定位系统应用 ➢ 辅助导航定位系统工作原理及应用
第三部分:组合导航定位系统
GPS全球定位系统
拥有者 美国
发展简史 全球卫星定位系统(GPS)计划自1973年起步,1978年首次发射卫星,1994年完成24颗中高度圆轨道(MEO )卫星组网,共历时16年、耗资120亿美元。
39
3.6 卫星导航(Satellite navigation)
GLONASS全球定位系统
拥有者
25
3.4 惯性导航(INS-Inertial navigation system)
N
f
t y
E
f
t x
惯性平台
vE
t
aEdt vE0
0
t
vN
aN dt vN 0
0
aBy
-
Vy0
Vy
1 R
aBx
Vx0
-
Vx
1 R
sec
导航计算机
声速测量PPT课件
05
声速测量的实际应用案例
水下声速测量在海洋探测中的应用
总结词
水下声速测量在海洋探测中具有重要意义,能够提供海洋环境参数、水下地形地貌、水下目标物等信 息。
详细描述
水下声速测量是通过声波在水中传播的速度进行测量,可以获取水深、水温、盐度、流速等海洋环境 参数,同时还可以探测水下地形地貌和目标物,如沉船、潜艇等。这些信息对于海洋科学研究、海洋 资源开发、海洋环境保护等方面具有重要意义。
分析实验结果,探究声速与介质、温度等因 素的关系。
数据处理
根据实验数据计算声速的平均值、标准差等 统计指标。
结论总结
根据实验结果得出结论,总结实验的意义和 价值。
04
声速测量中的误差分析
测量误差的来源
仪器误差
测量仪器本身存在的误差,如灵敏度、 分辨率等。
环境因素
如温度、湿度、气压等环境条件的变 化,可能影响声速的测量结果。
用于记录和处理实验数 据。
如水、玻璃板、橡皮泥 等,用于辅助实验操作。
选择一个相对安静、无 干扰的环境进行实验。
实验步骤与操作
安装设备
将声速测量仪的发射器和接收器分别固定在 两个相对的位置上,确保它们之间的距离可 调。
调试设备
调整发射器和接收器的角度和高度,确保信号 能够顺利传输。
开始测量
在电脑中打开声速测量软件,开始记录数据。
空气中声速测量在声音传播研究中的应用
要点一
总结词
要点二
详细描述
空气中声速测量在声音传播研究中具有重要价值,能够揭 示声音传播规律、声源特性以及声音控制技术。
空气中声速测量是通过测量声波在空气中的传播速度,可 以研究声音传播规律,如声波的干涉、衍射、散射等现象 。同时还可以研究声源特性,如声功率、声压级、频率特 性等。此外,空气中声速测量还可以应用于声音控制技术 ,如消音、隔音、声音定向传输等。这些研究对于声音环 境保护、声音信号处理、音频设备研发等方面具有重要意 义。
侧扫声呐ppt课件
侧扫声呐
通过向侧方发射声波来探知水体、海面 、海底(包括上部地层)声学结构和介
质性质的仪器设备。
3
空气
振 幅
水体 地层
传播时间 t
t
前视声呐发展型号:
前视相干声呐影视资料
主要用于航行安全,水下工程为辅
前视声呐一种:
声学聚焦系统影视资料
主要用于航行安全,水下工程为辅
侧扫声呐主要用于地质调查 研究,可用于海底寻物
T
具有极小的水平波束角(0.5-1.5度)
提高探测分辨率
15
声学设备波束角如何实现
形
成
“月明星稀”的效果,就好象只有一个窄波束了局
部
——实现了较小波束角的目的
强
振
幅
区
16
具有较大的垂向波束角(32度左右)
垂 直 波 束 角
覆盖宽度太小,探测效率低
具有较高的工作频率 (几十KHz——几千KHz)
如何做到? 人工标注测线号、调查时间(测线开 始前、后标注),每个定标点号等 定标点
定标器(MARK盒)法 GPS
对应一致
记录图谱
定位计算机
定标器
输
出
距离
自 定标 动 定 标
时间 人工 定标 定标
闭塞信号
声呐或记录仪
自动保存测线名、点号、时 间、坐标
数据文件中,每一点都 有位置信息(软件都自 动完成了海底追踪,因 而做到了斜率校正。但 注意:在海底地形复杂 的海底,海底追踪不准, 所以位置信息存在误 差)。
声呐拖体
运动方向
位置1
位置3
海底
井桩
•量程外强反射被接受问题
量程 T
T2
4pin
自主水下航行器导航与定位技术
自主水下航行器导航与定位技术发布时间:2023-02-03T02:36:04.888Z 来源:《科学与技术》2022年第18期作者:杜晓海[导读] 自主水下机器人(AUV)作为开发和利用海洋资源的主要载体,杜晓海海军装备部 710065摘要:自主水下机器人(AUV)作为开发和利用海洋资源的主要载体,在执行任务时需要准确的定位信息。
现有AUV主要采用基于捷联惯性导航系统(SINS),辅以声学导航和地球物理场匹配导航技术。
本文简要介绍了水下导航模式的基本原理、优缺点和适用场景;讨论了各种导航模式中的关键技术,以提高组合导航的精度和稳定性。
通过分析现阶段存在的问题,展望了水下航行的未来发展趋势。
关键词:自主水下航行器;智能导航;智能定位本文综述了目前主流的AUV水下导航关键技术,包括DVL测速技术、LBL/SBL/USBL水声定位导航技术、地形辅助导航技术、地磁辅助导航技术和重力辅助导航技术以及协同导航技术,介绍了相关导航技术的基本原理和发展,分析和总结了水下自主导航中各技术的关键问题和技术难点,最后展望了AUV水下导航技术的未来发展。
1 SINS/DVL定位技术DVL是一种利用声波多普勒效应测量载流子速度的导航仪器。
根据AUV与水底之间的相对距离,DVL有两种模式:水底跟踪和水底跟踪。
当载流子与水底的相对距离在该范围内时,声波可以到达水底,当AUV与水底之间的相对距离超过范围时,声波无法到达水底,DVL采用水跟踪模式。
根据传输波速的多少,可以分为单波束、双波束和四波束。
1.1 SINS/DVL对准技术惯性导航可以为AUV提供实时的姿态、速度、位置等导航信息。
然而,初始对准必须在使用前进行,初始对准的结果在很大程度上决定了最终的集成精度。
通常,AUV在停泊或航行于水面时接收GPS信号进行初始对准。
在特定的任务背景下,AUV需要在水下运动期间完成初始对准,因此,许多学者提出了基于DVL辅助的移动基站对准。
最新多普勒超声技术ppt课件
心体与压静泡接回处脉下骨
静并静时脉,至抽。插静下
脉保脉,导转中,导管脉静
~压持导转管动心确管,、脉
测
定
方 法
测定→注意事项(!)
1、操作时必须严格无菌。 2、测压管零点必须与右心房中部在同一平
面,体位变动后应重新校正零点。 3、导管应保持通畅,否则会影响测压结果。 4、中心静脉导管保留的时间长短与感染的
输 测 脉穿 料 菌 清
液 压 测刺 管 深 洁
导 管 压针 , 静 盘
管 、 装, 单 脉 ,
。 三 置导 腔 导 静
( )
通 开 关 等
以 及
包 括 带 刻 度 的
引 钢 丝 , 中 心 静
、 双 腔 或 三 腔 )
管 ( 硅 胶 管 或 塑
l
脉 切 开 包 个 , 无
,
→
测 定 用 品
预压管3 部固2 下静也内1
再次强调!!! “远端动脉检查不可小视”
病史:患者因车轮碾伤伴左大腿肿胀4小时
诊断:1.左侧股浅动脉分支假性动脉瘤并瘤内血栓形成
2.左侧足背动脉血流信号稀疏,动脉频谱消失(1.假性动脉瘤压 迫上段动脉所致? 2.上段动脉栓塞?)
中心静脉压(CVP)
目录
·中心静脉压简介 ·中心静脉压组成部分 ·中心静脉压适应症及途径 ·中心静脉压影响因素 ·中心静脉压临床意义及应用 ·中心静脉压测定的用具、方法及注意事项
周围血管超声检查运用的频谱技术为脉冲波多普勒 频谱(PW)
脉冲多普勒技术
声波的发射和接收由同一组晶片完成,探头发射一组脉冲群后,必须 间歇一段时间用于接收反射波信号才能再次发射下一组脉冲群。
脉冲重复频率(PRF):每秒发射脉冲波的次数。
多普勒效应及应用PPT课件
-
10
3、波源与观察者同时相对介质运动 (vs,vo)
'
u u
vo vs
v o 观察者向波源运动 + ,远离 .
v s 波源向观察者运动 ,远离 + .
若波源与观察
者不沿二者连线运 动
'
u u
v'o v's
v's
vo
v'o
vs
-
11
运动和频率的关系列表
波源的运动 观察者运动 频率的关系
情况
接收频率——单位时间内观测者接收到的振动次 数或完整波数.
发射频率 s
s ?
接收频率
只有波源与观察者相对静止时才相等.
-
5
1、 波源不动,观察者相对介质以速度 v o 运动
观察 ' uvo 观察者向波源运动
者接 收的
u
' u vo 观察者远离波源
频率
u
-
6
说明1
❖ 在观察者运动的情况下,引起观察者接 收频率的改变,是由于观测到的波的传 播速度发生改变(波的波长不变)
❖ A. 变高 ❖ B. 不变高 ❖ C. 越来越低沉 ❖ D. 不知声速和火车车速,不能判断 ❖ 答案:A
-
23
课后练习
❖ 3、以速度vs=20 m/s奔驰的火车,鸣笛声频率 为275Hz,已知常温下空气中的声速u=340 m/s。
❖ (1)当火车驶来时,站在铁道旁的观察者听 到的频率是多少?
❖ (2)当火车驶去时,站在铁道旁的观察者听 到的频率是多少?
多普勒效应及应用
❖ 一、多普勒效应原理 ❖ 二、多普勒效应的应用
-
《水下定位与导航技术》声学多普勒测速技术概述
fdfd I fdI I4 C vxfTco c so sv vx zsi n
在船舶无摇摆及上下起伏时
前后两波束接收信号的频差为
fd
r
4vx C
fT cos
相对频率测量误差
fd fdfdrco svzsi n 1
fd r
fd r
vx
浅水使用时 收发期间只 需测量一次
姿态角
例如当 5和 10时,将分别带来 0.3%和 1.5%的测量误差。
计算法定位导航设备
机械式导航设备:水压式测速计、拖曳式旋转流量计等。 电子式导航设备:电磁计程仪、声多普勒计程仪和声相关
计程仪。
5.1 引言
多普勒现象 目标与声源的相对运动(相向、相离) 声源和接收一体的情况
多普勒速度解算公式 舰船的测速原理、方法 测速误差产生的原因
影响多普勒测速的主要因素及改进方法
在相向运动时,脉冲被压缩;在相离运动时,脉冲被展宽。
5.2 舰船多普勒测速原詹纳斯理(Janus)配置
舰船多普勒测速原理
xv/C
船与被照射 vvxcos
区的相对径 向速度为 :
x vx cos
C
fd
I
2vx C
fT cos
接收的回波 1x (1x)2
信号频率为:fr
1x
fT
1x2
fT
fdII2Cvx fTcos
若其往返时间为t2,在t2时间内目标又向声呐靠近 vt2 / 2 。
因此有 L12v2tvT12C2t
由此得到后沿的往返时间为
xv/c
t2
2L/C2xT 1x
5.2 舰船多普勒测速原理
多普勒效应的时域分析 换能器接收到的脉冲宽度
水下定位与导航技术声学多普勒测速技术概述
f dII
2vx C
fT cos
多普勒频(1移 2x)
fT
fT
1
2vx C
cos
fd
f dI
f dII
4vx C
fT cos
为:
f dx
fr
fT
2xfT
2vx C
fT cos
水平速度 :
C
vx 2 fT cos
f dx
5
vx
4
Cf d
fT cos
第6页/共78页
5.2 舰船多普勒测速原理
• 舰船多普勒测速原理 • 十字形配置和X形配置
詹纳斯(Janus)配置
船首尾线方向
船首尾线方向
6
前第后左7页右形/共配7置8页
X形波束配置
5.3 影响多普勒测速的主要因素及改 进方法
• 由解算公式近似引起的误差 • 船舶摇摆引起的测速误差及摇摆补偿 • 传播声速引起的测速误差 • 有限波束宽度的影响 • 噪声对频率测量的影响 • 安装角度偏离误差及其校正
由此得到后沿的往返时间为
x v/c
t2
2L / C 2xT 1 x
3
第4页/共78页
5.2 舰船多普勒测速原理
• 多普勒效应的时域分析 • 换能器接收到的脉冲宽度
2L / C 2L / C t1 1 v / C 1 x
前
后
沿
所需往返
t1 t2
时间不同
2xT
,其差值是
t2
2L / C 2xT 1 x
• 由解算公式近似引起的误差 • 船舶摇摆引起的测速误差及摇摆补偿 • 传播声速引起的测速误差 • 有限波束宽度的影响 • 噪声对频率测量的影响 • 安装角度偏离误差及其校正
水下定位技术概述
其中
i xi 2 yi 2 zi 2 Ri 2 2ziz, i 1, 2,3
Copyright—Sound and Vibration Lab of ZJUT
16
定位误差来源
系统误差:声速测量误差、声波波长误差、声线 弯曲导致的相位测量误差、基阵安装误差等。 随机误差:海洋噪声、船姿态、水听器基阵姿态 变化等。
R12 ( x a) 2 ( y b) 2 z 2
2 R2 ( x a) 2 ( y b) 2 z 2
2 R3 ( x a) 2 ( y b) 2 z 2
H3 (-a,-b)
(a,-b) x
H1
(-a,b) y
R4
H4
R3
HP 2 (a,b) R2 R1
(-a,b) y
R4
H4
R3
HP 2 (a,b) R2 R1
深度的均值
z1 z 2 z 3 z 3
T (x,y ,z) 10 10
应答器
超短基线定位系统
组成结构:
– 发射换能器和几个水听器可以组成一个直径只有几 厘米~几十厘米的水听器基阵,称为声头。 – 声头可以安装在船体的底部,也可以悬挂于小型水 面船的一侧。
Copyright—Sound and Vibration Lab of ZJUT
17
定位误差:声线弯曲
常声速声线跟踪法
常梯度声线跟踪法
sin i pCi
1 Ri pgi
18
Copyright—Sound and Vibration Lab of ZJUT
定位误差:姿态变化
X
X X Y Y ZZ
水下地形测量培训课件
国防安全
水下地形测量对于国家 海洋权益维护和海上军 事活动具有重要意义。
应用领域及发展前景
应用领域
海洋工程、港口建设、航道疏浚、水下考古、海洋地质调查等。
发展前景
随着海洋经济的快速发展和国家对海洋资源开发的重视,水下地形测量的需求将不断增加。同时,随着测量技术 的不断进步和创新,水下地形测量的精度和效率将不断提高,应用领域也将更加广泛。未来,水下地形测量将在 海洋资源开发、海洋工程建设、海洋环境保护等领域发挥更加重要的作用。
对输出的成果和报告进行审核和验收,确保 符合相关标准和要求。
归档与保存
将测量成果和报告进行归档和保存,以便后 续使用和参考。
05
CATALOGUE
水下地形测量误差来源及质量控制措施
误差来源分析
设备误差
包括声纳、 GPS等测量设 备的系统误差和随机误差。
环境误差
水体温度、盐度、深度等 环境因素对声速的影响, 导致测量误差。
典型案例介绍及经验分享
案例一
某港口航道水下地形测量
测量背景
港口航道作为水上交通的重要通道,其水下地形对于航行安全至 关重要。
测量方法
采用多波束测深系统,结合GPS定位技术,获取高精度水下地形 数据。
典型案例介绍及经验分享
经验分享
针对港口航道特点,合理选择测量设备和技术参数,确保测量精 度和效率。
三维可视化与分析
利用专业软件对水下地形三维模型 进行可视化展示和分析,为海洋工 程、海洋科学研究等提供重要依据。
03
CATALOGUE
水下地形测量设备与系统
回声测深仪类型及特点
单波束回声测深仪
利用单一波束进行水深测量,适 用于简单水域地形测量。
水下定位技术概述
Copyright—Sound and Vibration Lab of ZJUT
17
定位误差:声线弯曲
常声速声线跟踪法
常梯度声线跟踪法
sin i pCi
1 Ri pgi
18
Copyright—Sound and Vibration Lab of ZJUT
定位误差:姿态变化
X
X X Y Y ZZ
Y
Z
姿态变化
为什么要进行姿态 修正: 船受风、浪影响, 会有晃动。而测量 是以基阵坐标系进 行的。 解决方法:姿态修 正(坐标变换)
Copyright—Sound and Vibration Lab of ZJUT
19
定位误差:海洋噪声
海洋噪声来源:海面波浪空化噪声,舰 船噪声等。 应对措施:对噪声源抑制降低噪声提高 信噪比。 选择流线型的测量船和换能器,选 择低噪音发动机,增大吃水深度等。
Copyright—Sound and Vibration Lab of ZJUT
4
基本概念:三种声学定位系统
定位类型 基线长度(m) 简称 特点 大面积区域调查; 系统复杂,操作 繁琐。 操作简单,价格 低廉;深水测量 基线长度要大于 40米。 安装、操作简单; 精度校准要求极 高。
长基线
100~6000
其中
H3 (-a,-b)
(a,-b) x
H1
(-a,b)
2 1/ 2
H4
R3
HP 2 (a,b) R2 R1
z1 R12 ( x a) 2 ( y b)
z2
2 2
R
( x a)
2
( y b)
水下定位与导航简述
3 声呐方程基础
什么是声呐? Sonar:Sound(声) +Navigation(导航) +Ranging(定位) 利用水下声波判断海洋中物体的存在, 位置及类型的方法和设备。 是利用水中声波对水下目标进行探测、 定位和通信的电子设备,是水声学中应用 最广泛、最重要的一种装置.
仿生学来源:海豚追踪猎物
美国钻探船“格洛玛·挑战者”号用的重返和动态
1~50 <1
简称 LBL SBL USBL或SSBL
海底应答器的位置分别为: 注意:与GPS定位不同,仅需3个海底应答器即可!
三种系统的优缺点:
(1)超短基线定位系统 优点:整个系统构成简单、操作方便不需要组建水下基线阵、 测距精度高。 缺点:需要做大量的校准工作,其定位精度随着水深和工作 距离的增加而降低。定位精度比其他两种系统差。
具体做法:
➢ 在海底放一个水声应答器作为基 准点,同时在船上布放三个水听 器进行应答测距。在下钻作业时 船上向基准点应答器发出脉冲, 应答器收到信号之后发出回答脉 冲,这回答脉冲被船上的三个测 距水听器收到,这时可以测出三 个水听器与基准应答器的距离。 当外界条件使船位移时,水声应 答器测距系统随即测出这三个距 离的变化。将这些数据送入计算 机,计算出船位的水平移动量, 再开动几个可变螺距的推进器, 使船复位,也就是使三个距离和 原来的一样。这样,船在不断运 动中保持位置不变。
1、声纳方程
主动声纳方程: (SL 2TL TS) (NL DI) DT
被动声纳方程:
SL TL (NL DI) DT
SL反映发射器辐射声功率大小 TL:传播损失,定量描述声波传播一定距离后强度的衰减变化 TS:目标强度,定量描述目标反射本领的大小 NL:海洋环境噪声(背景干扰) DI:指向性指数。越大表示声能在声轴方向集中的程度越高; DT:检测阈值。设备刚好正常工作的所需的处理器输入端的信噪比 值