基于MAX1452的压力传感器校准系统目 录
基于MAX1452的电涡流传感器设计
基于MAX1452的电涡流传感器设计电涡流传感器是一种常用于测量金属零件精确位置和运动的传感器。
利用电磁感应原理,电涡流传感器能够检测金属零件表面的微小电流变化,从而实现对金属零件位置和运动的监测和控制。
MAX1452是一款专为电涡流传感器设计的高精度、低噪声的模拟前端芯片。
MAX1452具有内置的放大器和低噪声ADC,能够将传感器输出的微小电流信号转换为数字信号,实现对电涡流传感器的数据处理和分析。
其次,在设计过程中需要考虑传感器的灵敏度和分辨率。
灵敏度表示传感器的输出变化与被测量物理量变化之间的关系,分辨率表示传感器能够分辨并测量的最小物理量变化。
调整线圈的尺寸和形状、选择合适的磁芯材料和线圈材料,以及调整放大器的增益等都可以影响传感器的灵敏度和分辨率。
此外,为了提高传感器的抗干扰能力,还可以在设计过程中考虑使用差分输入模式和滤波技术。
差分输入模式可以抵消来自于电源和环境的共模噪声,提高信号的纯净度;而滤波技术可以减少高频噪声的干扰,提高传感器的信噪比。
最后,基于MAX1452的电涡流传感器设计还需要进行信号调理和数据处理。
MAX1452提供了内置的放大器和低噪声ADC,但这些数字信号可能还需要经过滤波、放大、抖动补偿等处理,才能得到精确的测量结果。
总结起来,基于MAX1452的电涡流传感器设计需要考虑传感器元件的选择、灵敏度和分辨率的调整、抗干扰能力的提高以及信号调理和数据处理等方面。
通过合理的设计和优化,电涡流传感器可以广泛应用于工业自动化、机械制造、汽车电子等领域,实现对金属零件的高精度测量和控制。
基于MAX1452的压力传感器的温度补偿系统设计
Key words: Pressure Sensor; MAX1452; MicroController Unit; Temperature Compensation
II
华 中 科 技 大 学 硕 士 学 位 论 文
目 录
摘 要 ............................................................................................................... 1 Abstract ..............................................................................................................II 1.绪论 1.1 传感器的发展现状 ..................................................................................(1) 1.2 压力传感器介绍 ......................................................................................(2) 1.3 压力传感器的温度漂移与补偿 ..............................................................(3) 1.4 本文研究内容 ..........................................................................................(4) 2.MAX1452 概述及补偿原理介绍 2.1 MAX1452 概述 .........................................................................................(6) 2.2 模拟部分 ..................................................................................................(8) 2.3 数字部分 ..................................................................................................(9) 2.4 补偿原理 ................................................................................................ (11) 3.系统硬件设计 3.1 补偿系统的总体框图 .............................................................................(14) 3.2 电源模块设计 .........................................................................................(14) 3.3 单片机及外围电路设计 ........................................................................(15) 3.4 MAX1452 工作电路 ...............................................................................(18) 3.5 A/D 转换模块 ..........................................................................................(19) 4.系统软件设计 4.1 概述 .........................................................................................................(24) 4.2 初始化模块 ............................................................................................(24) 4.3 显示模块 ................................................................................................(26) 4.4 中断服务模块 .........................................................................................(27)
基于MAX1452的压力传感器温度补偿
基于!"#$%&’的压力传感器温度补偿赵妍刘志珍(山东大学电气工程学院!"##$%)摘要传感器精度是影响电&气比例调压阀性能的重要因素。
以硅压阻式传感器为例,介绍传感器存在的温度误差,着重阐述采用’()%*"!补偿其温度误差的原理,并系统介绍温度补偿的操作流程和校正系数的选择计算,通过实例分析验证压阻传感器经’()%*"!补偿后,其温度误差可明显降低。
关键词比例调压阀压阻式传感器’()%*"!温度补偿$引言电&气比例调压阀是用输入电信号控制输出压力信号的气动元件。
通常在设计时,为了提高调压稳定性,会借助压力传感器将输出压力值反馈回电控制器,形成一闭环控制回路。
因此,压力传感器精度是影响电&气比例调压阀性能的重要因素。
在实际应用中,大多数压力传感器为集成单臂电桥方式、差分输出信号的压阻式传感器,此类传感器具有灵敏度高、线性度和稳定性好的优点,但同时由于其扩散电阻的温度系数较大和制作工艺限制,存在温度漂移问题,限制了它在宽温区的高精度。
目前,传感器温度补偿的方法有基于运算放大器、仪表放大器及集成一体化的传感器信号调理器等集成电路[%]。
鉴于电&气比例调压阀要求工作温度范围宽(#!+$#,),敏感度高(#-!./-0以内)等特点,本文探讨了利用’()%*"!信号调理器对调压阀中压力传感器进行温度补偿的原理及操作流程。
’压阻式传感器温度误差分析一般硅压阻式传感器的灵敏度温度系数!10为负,电桥电阻的温度系数!12为正。
在传感器的制造过程中,总是尽量使!10和!12大小相等,符号相反,这样输出不随温度变化。
但由于受工艺限制,二者不可能完全抵消,加之!12系数较大,在接成单臂电桥方式时也很难将四个电阻的值和温度系数做得一致,因此,传感器输出存在满量程温度误差和零点温度误差[!]。
解决的方法通常是控制!!10!"!!12!,使满量程系数为正,如图%所示,然后再利用外接信%号调理器进一步补偿。
信号调理芯片MAX1452在棉纤维强力仪中的应用
・ 嘲
满量 程温度 漂移 系数 的确 定 。故 可通过 调节O和B L
进行 修正 。
零位补偿 由O FE A F S TD C和 0 F E TC D C完 F S 1r A 成 。 在 不 同 的 温 度 点 上 , F S TD C和 O F E T O F E A FSTC
高 棉 纤 维 电子 强 力 仪 的 测 量 精 度 ,
择 1 l4 到 l个温 度点 补偿传 感器 ,允许 选择 简单 的一
【 文获 全 国总社 项 目: 本 电子 强 力仪 中拉 力传感 器性 能研 究课题 资助, 题 编号 :X S Y 64 】 课 G Z K 000
! 墅 塾 匦 墨! 笙 墅固 堡 塑
3 … O
昏
阶线 性修 正或者 配一 段特 定的 温度 曲线来 补偿传 感 器温度 响应 , 对多 达 l4 独立 的l 位E P O 1个 6 E R M单
元 编 程 . 在 一 0C到 + 2 可 4 l C l5℃ 范 围 内 以 1 . 的 间 隔 5℃
改 变 Ub 。
2零 位 补 偿 . .
题 :. 致 忡 问 题 : 于 I 的 关 系 . 使 同 一 批 生 1 一 m 艺 即
片, 其引脚 图如 图 l 所示 , 能框 图如 图2 示 主要 功 所
是 用 于补 偿 和校正 传 感器 的 温度 漂移 及 非线 性 . 具 体 的可 以补 偿 压 阻式 传感 器 的 失调 (F S T 、 O F E 1满量 程 (S ) F O 、零 点 温度 漂移 fT ) O C 、满 量 程温 度 漂移 (S T ) 满量 程 的 非线 性 度(S ol er y 经 F O C和 F O nni ai ) n t MA 4 2 X15 信号调 理后 的压阻式传 感器 总的误差 可 以 达 到传 感器 满量 程 的1 。 内, 且不会 使输 出端 信 %以 并 号 引入量化 噪声
基于MAX1452的应变测试系统前端模块的设计
温 度 修 正 等 飞 机 应 变信 号 测 试 所 必 需 的 功 能 。该 采 集模 块 实 际 应 用表 明 , 高精 度 采 集 下 实现 了各 应 变 采 集 通 道 的 在
完 全 独 立 , 同 时 实现 了其 体 积 和 功 耗 相 当微 小 的 特 点 , 通 过 测试 网络 系统 可 以 安 装 在 对 空 间要 求 比较 严 格 的 飞 也 其 机各个部位 。
mo u e i e i e . d l sd sg dMAX1 5 r vd sd s n r t o v ne t f s e i n T efo t e d c n i o i g cr u to t i n 4 2 p o i e e i es wi a c n e i n , a t s . h r n - n o dt n n i i f r n g h d g i c sa
载 测 试 技 术 的 发 展 , 国 飞行 试 验 中正 在 采 用 当 前 国 际 先 进 我
的 网 络 化 分 布 式 测 试 系 统 和 测 试 设 备 进 行 飞 机 试 验日 飞 机 。
供 电 及 工 作 的完 全 独 立 , 某 一 通 道 因 传 感 器 发 生 故 障 时 不 当
通 滤 波 .然 后 由 S I 1 的 D 芯 片 进 行 转 换 , 由 F G 对 P 接 2 1 P A 1 6位 A D 数 据 进 行 编 码 输 入 到 网络 接 口 当 中 去 。 集 电路 使 , 采 用 芯 片 少 , 装 小 , 耗 低 , 通 过 电路 板 的 设 计 实 现 了通 道 封 功 并
第2 0卷 第 2期
Vo .0 1 2
No 2 .
电 子 设 计 工 程
基于 MAX1452的硅压阻压力传感器数字补偿设计与拟合分析
基于 MAX1452的硅压阻压力传感器数字补偿设计与拟合分析姚敏强;曹晓婷;李拉兔【摘要】With the high-speed development in the modern science and technology, the application of high accuracy senors is becoming ma-ture. The MAX1452 is a highly integrated analog-sensor signal processor optimized for digital compensation method of silicon piezoresistive pres-sure sensors. The MAX1452 is packaged with 16-pin SSOP. The MAX1452 provides a fully analog signal path, low power consumption and a wide temperature range. The MAX1452 temperature circuit compensation can transform the signal of silicon piezoresistive pressure sensors into the analog-signal, and then the A/ D convertor changes it into digital-signal. In the whole process, the fully analog signal path introduces no quantization noise in the output signal while enabling digitally controlled trimming with the integrated 16-bit DACS. Offset and span are calibra-ted using 16-bit DACS, allowing the digital compensation of silicon piezoresistive pressure sensors.%随着现代科学与技术的高速发展,高精度传感器的应用日趋成熟。
压力传感器校准操作说明书
压力传感器校准操作说明书1. 前言压力传感器校准是确保仪器准确度和可靠性的关键步骤。
本操作说明书将详细介绍如何正确进行压力传感器的校准操作,以确保测量结果的准确性。
2. 校准准备在进行压力传感器校准之前,需要准备以下工具和设备:- 压力源:确保其稳定性和精度,可选择压力校准仪或其他可靠的压力源。
- 水银柱或计量波纹管:用于检查压力源的准确度。
- 校准导轨和支架:用于放置压力传感器和校准设备。
- 多功能仪表或校准仪表:用于读取和记录压力传感器的输出值。
- 校准负载:用于施加不同等级的压力。
3. 校准步骤3.1 传感器准备- 将压力传感器与校准导轨连接,并确保连接牢固可靠。
- 将压力源连接至压力传感器的输入端。
- 连接多功能仪表或校准仪表至压力传感器的输出端。
3.2 校准压力源- 通过水银柱或计量波纹管检查压力源的准确度。
- 调整压力源的输出值,使其与期望的校准数值相匹配。
- 将校准负载连接至压力源的输出端。
3.3 校准过程- 施加适当压力至校准负载,并记录该压力值。
- 通过多功能仪表或校准仪表读取压力传感器的输出值,并记录。
- 根据校准负载的压力和压力传感器的输出值,计算压力传感器的误差并记录下来。
- 重复以上步骤,使用不同压力值进行校准,以确定压力传感器的线性性能和误差范围。
4. 校准结果分析根据校准过程中记录的压力传感器的输出值和期望值,进行误差分析。
计算校准值与标准值之间的偏差,并评估压力传感器的准确度和可靠性。
5. 校准结果记录将校准过程中的所有数据和结果记录在操作说明书中,包括压力传感器的型号、校准日期、校准人员等。
并确保文件的可追溯性和保存性,以备后续参考。
6. 完成校准在完成校准后,断开压力源和校准负载与压力传感器的连接。
检查校准结果,并确保压力传感器的输出值符合预期的标准要求。
清洁和保养校准设备,并妥善保存。
7. 安全注意事项- 在进行校准操作时,确保安全操作,尽量避免高压环境和危险操作。
惠斯通电桥传感器
采用信号调理IC驱动应变片电桥传感器摘要:应变片传感器具有可靠、可重复性好等特性,并且非常精确,广泛用于制造、工艺控制以及研究领域。
它将应变转换为电信号,用于压力传感、重量测量、力和扭矩测量,以及材料分析等。
应变片是一个简单的电阻,其阻值随所粘合的材料应变而变化。
本文介绍用于温度补偿的MAX1452传感器信号调理器。
MAX1452灵活的电桥激励方法大大提高了用户的设计自由度。
本文主要关注带有和不带有电流放大的电压驱动电路,也可以实现很多其他电桥驱动配置。
其他设计考虑包括在控制环路上使用外部温度传感器,在环路中送入OUT信号,实现传感器线性化调理(即,相对于测量参数的非线性)。
目前可以提供的应变片具有较宽的零应变电阻选择范围,可以选择的传感器材料和相关技术也非常广泛,但在大量应用中主要采用了几类数值(例如,120Ω和350Ω)。
过去,标准值很容易实现与基本磁反射计的连接,这些反射计含有匹配输入阻抗网络,从而简化了应变测量。
应变片的类型和组成金属应变片的生产采用了一定数量的合金,选择较小的应变片和应变材料温度系数差。
钢、不锈钢和铝成为主要的传感器材料。
也可以使用铍铜、铸铁和钛,“大部分”合金推动了温度兼容应变片的大批量低成本生产。
350Ω铜镍合金应变片是最常用的。
厚膜和薄膜应变片具有可靠和易于生产的特性,适用于汽车行业,其生产一般采用陶瓷或者金属基底,在表面沉积绝缘材料。
通过汽相沉积工艺将应变片材料沉积在绝缘层的表面。
采用激光汽化或者光掩模和化学刻蚀技术在材料上刻出传感片和连接线。
有时会加入保护绝缘层,以保护应变片和连接线。
应变片材料一般包括专用合金,以产生所需的应变片阻抗、阻抗压力变化,以及(出于温度稳定性)传感器和基本金属之间的最佳温度系数匹配等。
针对该技术开发了标称3kΩ至30kΩ的应变片和电桥电阻,用于生产压力和力传感器。
电桥激励技术应变片、薄膜和厚膜应变片传感器一般采用惠斯通电桥。
惠斯通电桥将应变片应变产生的电阻转换为差分电压(图1)。
基于MAX1452的压力传感器校准系统英文文献
Sensor Networking:Concepts,Applications,and Challenges1 IntroductionAt the end of the 20th century,the Internet has been able to provide a large number of users with the ability to move diverse forms of information readily and thus has revolutionized business,industry,defense,science,and education,research,and human interactions.The technologies of information pro-cessing in the last fifty years that made the Internet possible included modern microelectronics resulting in low-cost PCs and servers and world-wide telecommunication and computer networking infrastructure.In the last ten years,sensor networking combines the technology of modern microelectronic sensors,embedded computational processing systems,and modern computer and wireless networking method-ologies.It is believed that sensor networking in the 21st century will be equally significant by providing measurement of the spatial-temporal physical phenomena around us,leading to a better understanding and utilization of this information in a wide range of applications.Sensor networking will be able to bring a finer-grained and fuller measurement (using acoustic,seismic,magnetic,infrared,imaging,etc.data) and characterization of the world around us to be processed and communicated,so the decision makers can utilize the information to take actions in near-real-time.In the last few years,there have been much world-wide interests in the basic and applied research and deployment of sensor networks (e.G,the cumulative number of"hits"on Goggle Scholar by the fall of 2005 on "sensor networks"is over 350,000.) In the last three years,there were numerous annual conferences and workshops held around the world on sensor networks (e.G,some of them include).Many technical monographs and books dealing with sensor networks have appeared (e.G,some of them include).Several Special Issues of journals dealing with various aspects of sensor networks have also been published (e.G,some of them include).These statistics andinformation all indicate that sensor networking has extensive interests.In this overview paper,Section 1 provides an introduction to the sensor networking problem.Section 2 considers the recent explosive interests in sensor networks..Section 3 discusses various concepts and hardware issues.Section 4 reviews four main basic application cases in the NSF funded CENS program at UCLA.Section 5 lists six challenges in sensor networks.A brief conclusion is included in Section 6.The references include numerous relevant papers,books,and conferences that have appeared in recent years.2 Explosive interests in sensor networksSensor network as a concept and in realization appeared only in the last five years or so due to the accumulations of enabling technologies of the last fifty years.The concept of a programmable digital computer was originated in the 1940s.In the 1950s,mainframe electronic digital computers were built.They were expensive and were only available in few educational,governmental,and commercial research organizations.At this time,basic concepts of digital communication also became known In the 1960s,mini-computers became popular and digital computations were made available to more users.In that period,satellite and terrestrial microwave communication made the transmission of large amount of digital data possible.The concept of the transmission of data over a network of many nodes distributed over large areas was pioneered by researchers of the Arpanet.In the 1970s,microprocessors significantly reduced the cost of digital computations,and the availability of low-cost DSP chips also made digital processing possible for many applications.Commercial and military communication and computer networks were spread around the world. In the 1980s,PCs appeared and the beginning of the Internet allowed researchers at few research and large commercial organizations to easily communicate with others.In the 1990s,optical communication networks and the availability of the WWW browser allowed the explosive growth of world wide communications among individuals through the Internet.In this period,advances in embedded processors and wireless communication technology led to the creation of ad hoc networks and explosive world-wide usage of cellular telephony.In2000s,with all the above available technologies,sensor networking was made possible.A sensor network consists of dozens/hundreds/thousands of nodes (possibly randomly distributed),each with a sensor (e.G,acoustic,seismic,magnetic,chemical,image,video,temperature,etc.),a low-power embedded processor (of varying processing capability),a radio (e.G,a low-power transceiver of varying capability and range),a battery often of limited energy and size,and a program controlling one or more nodes and possibly some parts of the network to perform some given task..The slogan of a few years ago,"The network is the computer,"is now,"The network is the sensor."2.1 Sensor networks connect the physical world to the virtual worldIn the last fifteen years,the Internet using computer networks had connected the digital computers of the world into a virtual world. Sensor networks provide the capability of connecting the physical world(using the sensors in the sensor networks) to the digital world through the Internet to the virtual world.Sensor networks enhance the explosive impact of the Internet many folds by bringing the phenomena of the physical world under greater understanding and control.At present,the European SENSOR consortium with over thirty-five participating institutions in fifteen countries is using sensor networks to study the understanding of the multifunction use of land.The U.S.National Science Foundation (NSF) is supporting several large research efforts using sensor networking.NEON (National ecological observatory network) is estimated to be a $500 millions project over many years.An observatory may track birds and weather over a forest canopy.Another one may track invasive species causing agricultural losses,while a third one may monitor the biosphere associated with climatal changes.The Earth scope project is estimated to cost $200 millions and its purpose is to erect 3,000 stations to track faint tremors,measure crustal deformation and make three-dimensional maps of the interior of the earth.The Neptune project,also estimated to cost $200 millions,will place 2,000 miles of cables with sensors,cameras,and tether less robots in the depth of the Pacific Ocean from California to Canada. Its goal is to study from the depth to the surface for the total understanding of the ocean environment.NSF has also funded a ten year researchprogram of approximately $40 millions at CENS (Center for Embedded Networked Sensing) at UCLA starting in 2002 to study the impact of densely embedded sensing for scientific applications.Details on some of the projects of CENS will be discussed in Section 4.Many other applications of sensor networks have been proposed and implemented.It may include robotic control in manufacturing and industrial inventory management of products.It may perform personal health monitoring of senior citizens in their homes.Sensor network has been used for environ-mental pollutant monitoring on land,water,and air.It can be perform habitant monitoring in open spaces. Sensor networks can monitor plants in precision farming.It can monitor structural integrity of buildings.It can detect,localize,and track vehicles and people for commercial and military surveillance and reconnaissance applications.2.2 Commercial aspects of sensor networksAn ideal sensor network node (often called a mote) is shown in Fig.1.It may consist of one or more sensors,a microprocessor/controller,programs to perform its desired operation,a RF transceiver,and a battery supply.To keep cost low (i.e., costing less than $1),it needs to use a fully integrated single chip CMOS design of less than 1cm3in volume.To achieve ultra low-power,it needs to use less than one milliwatt of power.At present there are several dedicated hardware companies including Crossbows,Mill all Net,Eaton,IV,etc,selling various types of mote nodes,sub-systems,and services in sensor networks.Intel makes the Star gate sensor node.Recently.IBM announced the formation of a new business unit to invest $250 million over five years to support products and services in sensor networks.Microsoft also has an active R&D efforts in sensor networks.3 Concepts and hardware in sensor networksIn this section,we will introduce various concepts and hardware in sensor networks.They include sensor principle and hardware;sensor signal processing and communication;sensor network methodology;network position and synchronization;sensor network energy management;sensor network data management;sensor network node architecture;and sensor network data integrity and security.Sensors act as the "eyes and ears"of the sensor networks in accepting inputs from the physical world. Acoustical sensor (microphones) may be low cost condenser microphones or calibrated micro-phones (e.G,Linear X M31 and M53 microphones).Chemical sensors may detect CO2 or nitrates. Sensors to detect vibrations can use low-cost geophones or more accurate and expensive bi-axial or triaxial accelerometers.Sensors to detect magnetic fields can utilize magnetometer.Low-cost image and video sensors use CCD sensing devices.All of the previously listed sensors have existed for many years and are capable of sensing various physical phenomena.These conventional sensors are commercially available and have well defined costs,sizes,and sensitivities.However,state-of-the-art MEM-based sensors are often much smaller,have greater sensitivities and have lower power needs,but often are available only from laboratories in experimental batches.For practical system applications,there are trade offs between commercially available low-cost sensors versus"super performance"but expensive,unavailable,and unproven MEM-basedsensors.There are many issues in sensor signal processing and communication.The ADC (analog-digital-converter) bit requirement depends on the type of signals encountered by the sensors.The issue of communication transmission energy per bit versus processing energy cost per bit is an important matter in sensor networks.In some applications,it is possible to perform more local processing at the nodes instead of transmitting the raw information bits for processing at a central node.Often it is desirable to perform distributed processing than centralized processing in wireless sensor networks.There is active research in trade offs studies in low-bits,low-power,and distributed processing algorithm in sensor networks.A sensor network can be organized in a star,ring,tree,or ad hoc manner.An important initial organization requirement of a network is to discover connectivity among the nodes so communication links can be established.Network routing procedure shows which links are desirable from the communication energy and node reserve energy points of view.Latency and congestion are issues of importance in routing.Models for information channels (e.G,broadcast,multiple-access,cooperative relaying,etc.) and theoretical rate-flow capacity results for maximum data transfer in the sensor network are areas of active research.Spatial-temporal relationships for physical phenomena can be observed by densely distributed nodes in a sensor network.In order to determine the location and time of events of one or more sources of interest as they evolve in space and time,the nodes must know their own positions (and in time if the nodes are also moving).Sensor network constraints of distributed versus central processing,low-power processing,and limited physical placements of the nodes all make these solutions to be challenging.4 ChallengesIn this section,we list six fundamental challenges in the research,development,and commercial aspects of sensor networks.1) Application specific–Problems in sensor networks are highly application specific as can beseen from the four case studies described in Section 4.It is essentiallyimpossible to design a sensor network system that is near optimum for many applications.It is clear that sensor networks will form basic building blocks of many societal infrastructures (i.e,electric power network,water and natural gas networks, transportation network,etc.).All these systems posse both a challenge in that innovative design needs to be used to tackle each new sensor network application.but also presents the massive manufacturing of few generic sensor network systems to reduce their costs.2) Cooperative operation of the sensor network–How do all the sensor nodes operate in an organized and systematic manner to exploit the correlated information available across all parts of the network? This cooperation may involve different level of fusion of the results obtained after distributed processing across the entire network.3) Node and source localization–In many sensor networks,the location of the sensor nodesmust be determined.This problem has been addressed by many researchers,but reliable and practical solutions for many applications are still quite challenging.The detection,localization,and tracking of multiple sources have been considered for many years in aerospace applications,but are even more challenging in sensor networks with limited resources for real-time applications.4) Poor wireless communication links–Low-powered RF transmission under severe multipath propagation conditions limits the reliability of most wireless sensor networks over single links.Reliable hop links are even more challenging.Research and development efforts to solve these problems need to be considered from the theoretical system as well as practical hardware points of view.5) False positive issue using sensor network–Many deployed sensor networks often produced the"false positive"result.That is,the network declared some critical state (thus resulting in the need to take some important actions) from the measured data in the network,when the true situation does not warrant such actions. This"crying wolf scenario"lowers the confidence of the use of sensor networks for some applications.At present,this problem and not necessarily the technical nor cost of such sensor network systems are preventing wider deployments.Clearly,better hardware at the node level aswell as better decision algorithm need to be utilized to reduce the frequency of this problem.6) Battery limitation–Many sensor networks operate in remote locations with no AC power Supply.heir physical locations may present the usage of solar cells to charge the batteries.thus,higher energy density batteries muse be used for these situations.Active research and development in various small form factor fuel cells may lead to their availability in the near future.5 ConclusionsThe overview paper considered some basic issues in sensor networking.It is clear that sensor networking is only at its infancy.Much challenging work in research,development,and application will be performed in sensor networks in the coming years.。
max1452的编程及应用
max1452的编程及应用标签:MAX1452编程校准变送器信号调理目前对MAX1452的应用和开发有一个阶段了。
总体感觉这个芯片还不错,当然优点和缺点都很突出。
我先讲讲有点,这些都是我个人的理解,不一定全对。
优点:1.单芯片集成放大器,FLASH存储器,数字接口,另外更是集成了一个自由运算放大器。
集成度很高。
2.单线uart接口,校准操作很方便。
3.自由放大器可以做两线4~20ma的V/I。
很灵活,也可以作为后级放大器再放大信号。
4.具有内部温度传感器,也就是所谓的温度索引指针,这个是个温度传感器驱动的一个查表指针。
可以查找校准数据。
5.16位可编程的校准精细度。
6.具有轨到轨的输出能力。
7,放大,校准,温度补偿功能。
150us的快速阶跃响应。
缺点:1.pga放大级增益有些小,最适合的传感器就是扩散硅传感器。
2.内部集成的并非手册所言的eeprom,而是FLASH,这个在操作内部flash的时候能切身体会到不方便的,不明白MAXIM这么大的半导体公司竟然也在乱讲概念。
3.数据接口指令混乱,刚开始看,你非得让他把你绕死,而且每个命令都是半字节,如果要操作编程,你不得不把一个字节拆开在合并,很麻烦,这点不想TI类似的芯片PGA309/PGA308,协议看起来很简单,操作很容易。
4.内部参数一致性比较差。
温度传感器不能指定为外部温度传感器,只能使用MAX1452自身的温度,这一点不好,会出现传感器和1452不同温度场的状态。
5.芯片温漂很大,如果不温补基本不能用。
6.内部没有基准源,所有的参考都是以电源电压为参考,所以外围电路成本较高。
7.技术支持很差,我能打5~6次电话到美信的技术支持中心,接待我的工程师甚至不清楚1452的功能,简单记录后说回复,但是到现在没有恢复过。
8.EMC能力较弱。
这个是相比较而言,我们用过TI的pga308和pga309比较之后得出的结论。
典型应用电路:内部flash的地址分布:通过内部flash的分布可以看出他的flash的分布也很乱,前面的页是操作擦除的最小单位,也就是说你要修改呢一个字节,必须把这个页全部读出来在内存中修改好后在写进去。
信号线性转换芯片MAX1452(中文)
91
102
143
157
0.02
V
0.100 0.20
V
Hale Waihona Puke 4.87V0.1
Ω
1.05 1.20
V/V
2 _______________________________________________________________________________________
MAX1452
低价位精密传感器 信号调理器
___________________________________ 应用
压力传感器 变送器 应变仪 压力校准和控制器 阻性元件传感器 加速计 湿度传感器
_____________________________ 支持的输出
4 – 20mA 0至+5V (满摆幅) +0.5V 至 +4.5V 比例方式
MAX1452 为 16 引脚 SSOP 封装,提供商业级、工业级和汽 车级温度范围。
___________________________________ 定制
Maxim 对大规模量产的特定应用可定制 MAX1452。通过使 用我们的特定单元库中 2,000 多个传感器专用功能块, Maxim 可以快捷地提供一套经过修改的 MAX1452 解决 方案。若需更多信息请联系 Maxim。
MAX1452的问题解答
1. MAX1452支持工业典型标准的4-20mA应用。
2. 问:这些信号调理器的传感器激励模式是什么?答:默认模式是电流桥驱动。
但是,MAX1452也可以配置为电压桥驱动。
ISRC和BDR引脚短路在一起可以实现这一配置。
MAX1455不支持电压桥配置。
3. 问:MAX1452能够用于电压桥驱动模式吗?答:是的,把ISRC和BDR引脚短路在一起,将MAX1452配置为电压桥驱动模式。
4. 问:MAX1452能够用在4-20mA应用中吗?答:是的。
MAX1452正常工作时吸收的最大电流小于4mA,因此,能够用在4-20mA应用中。
5. 问:在没有外部放大器的情况下,能够产生4V范围(VDD = 5V)的最小传感器输出是多少?答:当最大激励电压设置为4.5V (VDD = 5V),并采用最大PGA增益(234倍)时,可以确定传感器最小输出。
使用的公式为:传感器输出(mV/V) = 电压范围(V) / [VBDR (V) * PGA增益(V/V)] * 1000传感器最小输出是4mV/V。
6. 问:在没有外部电路的情况下,能够产生4V范围(VDD = 5V)的最大传感器输出是多少?答:当最小激励电压设置为1.5V (VDD = 5V),并采用最小PGA增益(39倍)时,可以确定传感器最大输出。
使用的公式为:传感器输出(mV/V) = 电压范围(V) / [VBDR (V) * PGA增益(V/V)] * 1000传感器最大输出是68mV/V。
7. 问:我可以自由使用运算放大器来为输出电压提供更大增益吗? 答:可以。
8. 问:当工作在数字模式下,输出MUX采用―infinite‖输出宽度时,在接收数字命令之前,通信中断了大约9秒钟。
在设计生产中,这是禁止出现的。
从DMM读取输出后,怎样才能避免这种不需要的等待?答:信号调理器的电源VDD必须能够周期上电。
如果采用了提供的KEY和评估(EV kit)套件,必须执行serial.dll中的hard_init (mode = 1)函数,实现周期上电。
基于MAX1452硅压力传感器温度补偿系统的设计
S no e s r’Er o a e n 【 r r b s d o AX1 5 42
LU Pn , I e g YANG X e y u, u — o YANG L n h i L n — i i — u , IYa g b n
( tt K yL bo rc inMes r gT c n lg n srmet, ini nvri Taj 0 0 2 C ia Sae e a f ei o au i eh ooya dI t P s n n u nsTa j U iesy,ini 3 07 , hn ) n t n
Ab t a t A ln wa nr d c d fr c mp n ai g t e tmp rt r lo sa d t e n sr c : p a si t u e o o e s t h e ea u e eT r n o—l e ft e sl o rs u e s n o y o n h i ro i c n p e s r e s r b n h i u i g t e MAX1 5 rc so .T e f me o i c mp n ai g s se wa e c b d s n h 4 2 p o e s r h r a t s o e s t y tm sd s r e .T i p p r y s t e p i cp e ft e tr - f h n i h s a e e h rn il so h e n p rt r o e s t n a d e e u v rc s e r ea u e c mp n ai x c t e p o e s so p e—c l r t n a d c mp n ai n h x rme t l e u t h w t a e rl - o n i f a i a i o e s t .T e e p i n a s l s o t h ea b o n o e r s h t
基于MAX1452的发动机进气压力传感器的设计
基于MAX1452的发动机进气压力传感器的设计刘妍;彭春文;马超;董清波;蒋伯华;郭志勇;孙宇辉【摘要】According to the current modem automotive electronics technology ECU(electronic control unit, driving computer) system requirements designed an intake pressure sensor, used for electronic control engine, based on the Maxim company highly integrated sensor chip MAX1452 conditioning, realized the temperature compensation ,and other functions under the high precision acquisition implements the volume and power consumption is small, the characteristics of the sensor in the actual application shows that realizes the miniaturization, high and low temperature, strong vibration, high thermal shock and mechanical shock and chemical pollution and so on used in bad environment.%根据当前现代汽车电子技术ECU(电子控制单元——行车电脑)系统的要求设计了一种进气压力传感器,用于发动机电子控制,基于Maxim公司高度集成的传感器调理芯片MAX1452,实现了温度补偿等功能,在高精度采集下实现了其体积和功耗相当微小的特点,该传感器的实际应用表明,实现了小型化,高低温、强振动、高温冲击和机械冲击以及化学污染等恶劣环境中使用.【期刊名称】《电子世界》【年(卷),期】2015(000)016【总页数】3页(P33-35)【关键词】温度补偿;在线测试;MAX1452【作者】刘妍;彭春文;马超;董清波;蒋伯华;郭志勇;孙宇辉【作者单位】沈阳仪表科学研究院有限公司;沈阳仪表科学研究院有限公司;沈阳仪表科学研究院有限公司;沈阳仪表科学研究院有限公司;沈阳仪表科学研究院有限公司;沈阳仪表科学研究院有限公司;沈阳仪表科学研究院有限公司【正文语种】中文随着电子技术、传感器技术的飞速发展,汽车电子控制技术更加成熟完善,在汽车上已广泛应用,许多传感器测量装置已经成为汽车的标准配置,发动机电子控制技术是核心控制其中之一,本文所研究的发动机进气压力传感器对进气歧管的绝对压力的测量,并将其送至电子控制器(ECU),控制基本喷油量和点火正时角度。
基于MAX1452的压力传感器校准系统
1 绪论1.1 课题背景及研究意义随着科学技术的不断发展,非电量的测试与控制技术已经越来越广泛的应用。
尤其在航天、航海、冶金、能源、生物医学、自动检测与计量等技术领域。
而且随着社会的发展,这种技术也逐步渗透到人们的日常生活中。
可以说测试技术与自动控制技术水平的高低是衡量科学技术现代化的重要标志之一[1]。
传感器是实现测试与自动控制的首要环节。
如果没有传感器对原始信息进行准确可靠的捕获和转换,计算机发展的水平再高,依旧无法进行测试和控制。
任何一种传感器在制造、使用时都需要对其设计指标进行一系列实验,以确定传感器的基本性能。
硅压阻式传感器是一种广泛应用于工业生产、国防建设和航天测量的基本部件。
由于半导体材料组成的硅压阻式传感器普遍存在着:一致性、温漂和非线性等问题,在使用过程中都要进行补偿与非线性矫正。
传统的矫正方法是采用温度敏感器件与模拟电路实现。
近年来,随着计算机技术日新月异的发展,对于硅压阻式传感器的矫正与补偿都采用微型计算机系统实现,这样的方法具有补偿精度高、工作稳定、体积精巧和传输方便等特点。
这种方法组成的传感器信号调理电路也把传感器输出电路与变送器形成一体,即为现今的智能传感变送器。
这种智能传感变送器还可以构成网络化测量系统,甚至能很方便的接入Internet网络。
据光电行业开发协会(OIDA)做出的最新预测,从2003年到2006年期间,智能传感器的国际市场销售量将以每年20%的高速度增长[2]。
对于传统传感器采用模拟方式对信号在模拟域进行处理,校准与补偿采用激光微调薄膜电阻、电位器等“模拟记忆”元件,温度补偿一般采用热敏电阻、二极管等温度敏感元件。
所有这些方法存在以下主要缺点:1、补偿精度受限于传感器的非线性误差和温度特性;2、补偿器件同样受温度漂移困扰;3、自动化调理设备价格昂贵;4、人工调节不但精度不高,而且增加生产成本,不适合批量生产。
第1页共38页本设计应用精密的信号调理器MAX1452的调理技术,设计开发了硅压阻式传感器的补偿与标定系统。
MAX1452非线性修正应用电路
MAX1452 非线性修正应用电路摘要:MAX1452 是一款高性能的模拟传感器信号调理器,已广泛用于工业领域和汽车电子领域。
对于多数应用来说,传感器输出的非线性修正非常重要。
虽然MAX1452 内部没有集成非线性修正功能,但只需要添加三个电阻即可实现线性输出。
这篇应用笔记给出了修正电路,并提供测试数据验证其有效性。
概述对于非线性输出传感器(例如,湿度传感器),信号调理器是否能够修正传感器的非线性输出非常关键。
本应用笔记介绍如何使用MAX1452 修正传感器输出的非线性,该芯片是极受欢迎的低成本、高性能信号调理器,内置闪存、温度传感器和完整的模拟信号路径。
尽管MAX1452 没有包含非线性修正功能,但可通过非常简单的外围电路实现,即利用三个附加电阻进行非线性修正。
需要注意的是,这种方法仅适合电桥驱动模式的MAX1452,并不适合MAX1455,原因是MAX1455 不能用于电桥驱动模式。
图1. 基本的非线性校准电路非线性修正电路图1 所示为MAX1452 非线性修正电路。
这个线性化处理电路的工作原理是利用OUT 引脚放大后的输出电压对传感器桥的激励电压进行调节。
当OUT 随着传感器输出的增大而增大时,电桥激励也略有增大,产生一个非线性传输函数。
对于标称值为4.7kΩ桥电阻,选择RF = 18kΩ、RS = 1.8kΩ。
ROF 的作用是保证在整个工作条件下将电桥输出偏移到正电压。
根据反馈电路的传输函数,选取ROF 时要确保电桥的差分输出始终为正值:INP - INM > 0。
本应用笔记中实例电路和传感器参数设置如下:BDR 电压(FSO DAC 设置下的电压输出)为3.6V (标称值)。
BDR 电压经过RS 和传感器桥分压后产生大约2.6V 的桥驱动电压。
具体应用中,通过配置PGA 提供系统所需的增益,使0 至100%的差分电桥输出在OUT 引脚产生摆幅为0.5V 至4.5V 的电压。
压力传感器自动化批量校准及修正系统设计
压力传感器自动化批量校准及修正系统设计袁雪松【摘要】我国大部分压力传感器制造商,在生产过程中无法实现在线温度补偿和校准,造成压力传感器产能较低.对此,研发了自动化批量校准及修正系统.系统通过重新设计控制电路,突破了传统HART烧录的数量限制,提高了压力传感器的产量及测量的准确性,提升了压力传感器生产企业的量产和效率,减少了人为操作仪器仪表所产生的各种误差,实现了压力仪表批量化校验及修正,满足了各种压力传感器生产企业的校准和修正需求.该系统是具有传感器测试、数据写入、线性补偿修正等功能的自动化装置,是实现各类压力传感器量产的关键步骤,其推广和应用具有重要的意义.【期刊名称】《自动化仪表》【年(卷),期】2018(039)010【总页数】4页(P53-56)【关键词】工业自动化;压力传感器;线性补偿;批量校准;微机电系统【作者】袁雪松【作者单位】无锡市计量测试院,江苏无锡 214101【正文语种】中文【中图分类】TH-9;TP130 引言压力传感器的测试是制造商履行对客户质量承诺的重要工序。
由于测试成本占传感器总成本的30%,严重阻碍了传感器的大规模生产。
降低测试成本的方法之一是提高测试速度,减少每个传感器件的测试时间。
自动化批量校准及修正系统可在测试传感器的同时提高传感器性能指标,并实现批量、高效测试。
在功能实现的基础上,其可靠性、重复性、稳定性完全符合生产企业、研发检测机构的技术规范。
目前,市场对压力传感器/变送器的要求越来越高,其应用范围越来越广,所要求的温度补偿范围也越来越大。
如:汽车传感器大部分要求能适应-40~+125℃的工作温度,工业压力传感器要求的工作温度范围为-40~+80℃。
而在传感器/变送器生产过程中,线性化和温度补偿工作将直接影响传感器/变送器的准确度和稳定性。
传统的传感器测试方式为活塞装置对传感器/变送器进行量值传递,直接限制了一次校准的仪表数量。
在长时间温度补偿的过程中,传统测试方式效率较低,无法满足量产需求。
MAX1452-MAX1455传感器
MAX1452/MAX1455 传感器
摘要:MAX1452/MAX1455 是高性能传感器信号调理器,提供模拟电压输出。
信号调理器既可工作于数字模式,也可工作于模拟模式。
通常,传感器校准采用数字模式,且实际应用中调理器在模拟模式下启动、工作。
为在模拟模式下可靠启动,VDD 和VDDF 电源必须满足可靠时序和性能要求。
本应用笔记讨论启动要求,并给出了成功应用该器件设计指南。
概述MAX1452 和MAX1455 是高性能信号调理器,内置闪存和温度传感器。
两款芯片工作在数字模式和模拟模式。
信号调理器在数字模式下进行补偿和编程设置,在模拟模式下启动、工作。
实际应用中,有些用户遇到过以下问题在数字模式下启动的问题,虽然已将信号调理器设置在模拟模式。
模拟模式下启动的设置为在模拟模式下成功启动MAX1452/MAX1455,必须满足以下三项要求:
必须将MAX1452/MAX1455 设置为模拟模式下启动。
VDD 电源必须符合特定要求。
VDDF 电源必须符合特定要求。
设置MAX1452/MAX1455 在模拟模式下启动
UNLOCK 引脚应短接至GND 或通过一个外部下拉电阻连接到GND [UNLOCK 引脚悬空时,具有内部弱下拉电阻]。
必要时,可通过外部下拉电。