二次函数与abc的关系
二次函数图像与abc符号关系课件
目 录
• 二次函数的基本概念 • 二次函数的图像分析 • 二次函数的abc符号变化对图像的影响 • 实际应用举例 • 总结与思考
01
二次函数的基本概念
二次函数的一般形式
总结词
二次函数的一般形式是$f(x) = ax^2 + bx + c$,其中$a, b, c$是常数,且$a neq 0$。
于负半轴。
对二次函数图像与abc符号关系的深入思考
a符号与开口大小的关系
虽然a决定了开口方向,但a的绝对值大小也会影响开口的大小。当|a|越大,开口越宽; 当|a|越小,开口越窄。
b符号与对称性的关系
b的符号和大小决定了抛物线的对称性。当b=0时,抛物线关于y轴对称;当b≠0时,抛物 线关于x=−b/2a对称。
详细描述
在二次函数的一般形式$f(x) = ax^2 + bx + c$中,$a, b, c$分别被称为二次项系数、一次项系数和常数项。它 们的符号决定了函数的开口方向、顶点位置等性质。例如,当$a > 0$时,函数图像开口向上;当$a < 0$时,函 数图像开口向下。
二次函数的开口方向与abc符号的关系
04
实际应用举例
利用二次函数解决实际问题
总结词
通过理解二次函数的图像和abc符 号关系,可以解决一些实际问题 。
详细描述
二次函数图像的开口方向、顶点 位置和对称轴等特性,可以帮助 我们解决一些实际问题,例如最 值问题、面积问题等。
二次函数在数学建模中的应用
总结词
二次函数是数学建模中常用的函数之 一,可以用来描述一些实际问题中的 数量关系。
05
总结与思考
二次函数与abc的关系总结
二次函数与abc的关系总结二次函数是高中数学中的重要内容之一,它的一般形式可表示为f(x) = ax² + bx + c,其中a、b、c均为常数,且a不为零。
在本文中,我将总结二次函数与abc的关系,进一步深化对二次函数的理解。
1. 关系一:a的取值范围a是二次函数中的一项系数,它决定了抛物线的开口方向。
具体来说:- 当a大于零时,抛物线开口向上;- 当a小于零时,抛物线开口向下;- 当a等于零时,二次函数不再是二次函数,而变为一次函数。
2. 关系二:a的绝对值与抛物线的形状a的绝对值大小决定了抛物线的狭长程度。
具体来说:- 当|a|大于1时,抛物线较为狭长,即纵向压缩;- 当|a|小于1时,抛物线较为扁平,即纵向拉伸。
3. 关系三:b的取值范围b是二次函数中的另一项系数,它对称轴的位置产生影响。
具体来说:- 当b大于零时,抛物线向左平移;- 当b小于零时,抛物线向右平移;- 当b等于零时,抛物线与y轴平行。
4. 关系四:c的取值范围c是二次函数中的常数项,它影响抛物线与y轴的交点。
具体来说:- 当c大于零时,抛物线与y轴的交点在y轴上方;- 当c小于零时,抛物线与y轴的交点在y轴下方;- 当c等于零时,抛物线与y轴相交于原点。
通过对二次函数与abc的关系总结,我们可以更好地理解和应用二次函数。
了解这些关系将有助于我们准确地绘制二次函数的图像,进一步分析和解决与二次函数相关的问题。
除了以上总结的关系,二次函数还有很多其他方面的性质和应用,比如顶点坐标、对称轴等。
这些内容在二次函数的学习中也十分重要,但本文将重点总结了与abc的关系。
在实际应用中,我们需要综合考虑二次函数的各个方面来解决问题,利用图像、方程等方法进行分析和计算。
总结而言,二次函数与abc之间有着密切的关系。
a决定了抛物线的开口方向和形状狭长程度,b影响抛物线的水平平移,c影响抛物线与y轴的交点。
掌握这些关系,可以更准确地理解和应用二次函数,进一步拓展数学知识的应用领域。
二次函数与abc的关系总结
二次函数与abc的关系总结在数学中,二次函数是一个具有以下形式的函数:$f(x) = ax^2 + bx + c$。
其中,$a$、$b$和$c$是常数。
二次函数在数学分析、物理学、经济学等领域中都有广泛的应用。
本文将总结二次函数与$a$、$b$和$c$之间的关系。
关系一:二次函数的图像开口方向与$a$的正负有关。
当$a>0$时,二次函数的图像开口向上;当$a<0$时,二次函数的图像开口向下。
这是因为当$a>0$时,$f(x) = ax^2 + bx + c$关于$y$轴对称,所以图像开口向上;当$a<0$时,$f(x) = ax^2 + bx + c$关于$y$轴对称,所以图像开口向下。
关系二:二次函数的图像是否与$x$轴相交与$c$的正负有关。
当$c>0$时,二次函数的图像与$x$轴有两个交点;当$c=0$时,二次函数的图像与$x$轴有一个交点(相切);当$c<0$时,二次函数的图像与$x$轴没有交点。
关系三:二次函数的顶点坐标与$a$和$b$有关。
对于二次函数$f(x) = ax^2 + bx + c$,它的顶点的$x$坐标为$x =\frac{-b}{2a}$,$y$坐标为$y = f(\frac{-b}{2a})$。
根据$a$和$b$的不同取值,顶点可以位于$y$轴的上方或下方,并且根据$a$的正负可以确定顶点的凹凸性质。
当$a>0$时,顶点位于图像的下方(凹);当$a<0$时,顶点位于图像的上方(凸)。
综上所述,二次函数与$a$、$b$和$c$之间存在着紧密的关系。
通过对$a$、$b$和$c$的取值进行分析,可以推断出二次函数的图像特征、对称性以及与$x$轴的交点情况等。
这种关系在数学中具有重要的意义,对于解题和应用中的问题分析都起到了重要的作用。
了解和掌握这些关系,有助于提高对二次函数性质的理解和应用能力。
在实际应用中,二次函数与$a$、$b$和$c$的关系也有着重要的应用。
二次函数与abc的关系总结
二次函数与abc的关系总结二次函数是高中数学中重要的一个概念,它在数学和实际问题中都有广泛应用。
二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数。
本文将总结二次函数与a、b、c之间的关系。
1. a的影响:a决定了二次函数的开口方向和大小。
当a>0时,二次函数的抛物线开口向上,函数的值随着自变量的增大而增大;当a<0时,二次函数的抛物线开口向下,函数的值随着自变量的增大而减小。
a的绝对值越大,抛物线的开口越大。
2. b的影响:b决定了二次函数抛物线的平移方向和程度。
当b>0时,抛物线向右平移;当b<0时,抛物线向左平移。
b的绝对值越大,抛物线平移的水平距离越大。
3. c的影响:c决定了二次函数抛物线的纵向平移。
当c>0时,抛物线向上平移;当c<0时,抛物线向下平移。
c的绝对值越大,抛物线平移的垂直距离越大。
4. a、b、c之间的综合关系:a、b、c之间的关系可以通过顶点坐标来描述。
对于二次函数f(x) = ax^2 + bx + c,其中顶点坐标为(-b/2a, f(-b/2a))。
通过顶点坐标可以判断抛物线的开口方向和顶点的位置。
综上所述,二次函数与a、b、c之间存在着密切的关系。
通过a、b、c的取值可以确定二次函数的形状、平移和开口方向。
理解和掌握这些关系对于解决二次函数相关问题具有重要意义。
二次函数在数学中的应用非常广泛,包括几何、物理和经济等领域。
在几何中,二次函数可以描述抛物线的形状和轨迹;在物理中,二次函数可以描述自由落体运动的轨迹;在经济中,二次函数可以描述成本和收益的关系。
因此,理解二次函数与a、b、c之间的关系,不仅对于学习数学理论,也对于实际问题的分析和解决都有着重要的帮助。
总结一下,二次函数与a、b、c之间的关系可以通过a的正负确定开口方向和大小,通过b的正负确定水平平移方向和程度,通过c的正负确定垂直平移方向和程度。
二次函数与abc的关系总结
二次函数与abc的关系总结在数学的世界里,二次函数是一个非常重要的概念。
它的形式通常为 y = ax²+ bx + c(其中 a、b、c 是常数,且a ≠ 0)。
而这三个常数a、b、c 对于二次函数的性质和图像有着至关重要的影响。
接下来,咱们就详细聊聊二次函数与 a、b、c 之间的关系。
首先,咱们来看看系数 a 。
a 的正负决定了二次函数抛物线的开口方向。
如果 a 大于 0 ,抛物线开口向上;要是 a 小于 0 ,抛物线开口向下。
这就好比一个人决定往上走还是往下走,a 就是那个决定方向的关键因素。
而且,a 的绝对值大小还影响着抛物线开口的宽窄程度。
绝对值越大,开口越窄;绝对值越小,开口越宽。
想象一下,就像一个大口瓶子和一个小口瓶子,口子的大小就由 a 的绝对值来决定。
接下来聊聊系数 b 。
b 与 a 一起影响着抛物线的对称轴位置。
对称轴的公式是 x = b /(2a) 。
这意味着 b 的值会影响对称轴在 x 轴上的位置。
当 a 和 b 同号时,对称轴在 y 轴左侧;当 a 和 b 异号时,对称轴在y 轴右侧。
比如说,a 是正数,b 也是正数,那么对称轴就在y 轴左边;要是 a 是正数,b 是负数,对称轴就跑到 y 轴右边去了。
再来说说系数 c 。
c 表示抛物线与 y 轴的交点纵坐标。
当 x = 0 时,y = c 。
所以,抛物线与 y 轴的交点就是(0, c) 。
如果 c 大于 0 ,交点在 y 轴正半轴;c 小于 0 ,交点在 y 轴负半轴;c 等于 0 ,抛物线就过原点。
举个例子来说,如果有一个二次函数 y = 2x²+ 3x 1 ,这里 a = 2 大于 0 ,所以抛物线开口向上;b = 3 ,a = 2 都大于 0 ,所以对称轴在 y 轴左侧;c =-1 小于 0 ,抛物线与 y 轴交点在负半轴。
咱们再深入一点,当 b² 4ac 这个式子的值大于 0 时,二次函数有两个不同的实数根;等于0 时,有一个实数根;小于0 时,没有实数根。
二次函数与a b c的关系
几种特殊情况:x=1时,y=a + b + c;x= -1时,y=a - b + c.当x = 1时,①若y > 0,则a + b + c >0;②若y < 时0,则a + b + c < 0当x = -1时,①若y > 0,则a - b + c >0;②若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。
反之,给我们相应的二次函数图象,我们可以得到其系数a,b,c以及它们组合成的一些关系结构(例如对称轴−b2a ; 判别式b 2−4ac ; y =a +b +c……等等)的符号 4.(2017四川省广安市)如图所示,抛物线c bx ax y ++=2的顶点为B (﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,以下结论:①042=-ac b ;②a +b +c >0;③2a ﹣b =0;④c ﹣a =3其中正确的有( )A .1B .2C .3D .45.(2017四川省眉山市)若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数2y ax ax =-( )A .有最大值4aB .有最大值﹣4aC .有最小值4aD .有最小值﹣4a1. (2017贵州遵义第11题)如图,抛物线y =ax 2+bx +c 经过点(﹣1,0),对称轴l 如图所示,则下列结论:①abc >0;②a ﹣b +c =0;③2a +c <0;④a +b <0,其中所有正确的结论是( )A .①③B .②③C .②④D .②③④9. (2017黑龙江齐齐哈尔第10题)如图,抛物线2y ax bx c =++(0a ≠)的对称轴为直线2x =-,与x 轴的一个交点在(3,0)-和(4,0)-之间,其部分图象如图所示,则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19(,)2y -,25(,)2y -,31(,)2y -是该抛物线上的点,则123y y y <<,正确的个数有( )A .4个B .3个C .2个D .1个6.(2017四川省绵阳市)将二次函数2x y =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是( )A .b >8B .b >﹣8C .b ≥8D .b ≥﹣82.(2017四川省南充市)二次函数2y ax bx c =++(a 、b 、c 是常数,且a ≠0)的图象如图所示,下列结论错误的是( )A .4ac <b 2B .abc <0C .b +c >3aD .a <b23. (2017浙江金华第6题)对于二次函数()212y x =--+是图象与性质,下列说法正确的是( )A .对称轴是直线1x =,最小值是2B .对称轴是直线1x =,最大值是2C . 对称轴是直线1x =-,最小值是2D .对称轴是直线1x =-,最大值是226. (2017新疆乌鲁木齐第15题)如图,抛物线2y ax bx c =++过点()1,0-,且对称轴为直线1x =,有下列结论:①0abc <;②1030a b c ++>;③抛物线经过点()14,y 与点()23,y -,则12y y >;④无论,,a b c 取何值,抛物线都经过同一个点,0c a ⎛⎫- ⎪⎝⎭;⑤20am bm a ++≥,其中所有正确的结论是 .15.(2017贵州黔东南州第9题)如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣1,给出下列结论:①b 2=4ac ;②abc >0;③a >c ;④4a ﹣2b +c >0,其中正确的个数有( )A .1个B .2个C .3个D .4个 16.(2017山东烟台第11题)二次函数)0(2≠++=a c bx ax y 的图象如图所示,对称轴是直线1=x ,下列结论:①0<ab ;②ac b 42>;③0<++c b a ;④03<+c a .其中正确的是( )A .①④ B.②④ C. ①②③ D .①②③④17.(2017四川泸州第8题)下列曲线中不能表示y 与x 的函数的是( )A .B .C .D . 16. (2017山东日照第12题)已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a +b +c =0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤12.(2017江苏盐城第6题)如图,将函数y=12(x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=12(x?2)2?2 B.y=12(x?2)2+7 C.y=12(x?2)2?5 D.y=12(x?2)2+47.(2017广西贵港第10题)将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.()211y x=-+ B.()211y x=++C.()2211y x=-+ D.()2211y x=++8.(2017贵州安顺第10题)二次函数y=ax2+bx+c(≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠1),其中结论正确的个数是()A.1 B.2 C.3 D.44.(2017浙江宁波第10题)抛物线22y x x m(m是常数)的顶点在( )22A.第一象限B.第二象限C.第三象限D.第四象限1.(2016·山东省滨州市·3分)抛物线y=2x2﹣2x+1与坐标轴的交点个数是()A.0 B.1 C.2 D.32.(2016·山东省滨州市·3分)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A.y=﹣(x﹣)2﹣B.y=﹣(x+)2﹣ C.y=﹣(x﹣)2﹣D.y=﹣(x+)2+【点评】本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.3.(2016广西南宁3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定4.(2016贵州毕节3分)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C.D.5.(2016·福建龙岩·4分)已知抛物线y=ax2+bx+c的图象如图所示,则|a﹣b+c|+|2a+b|=()A.a+b B.a﹣2b C.a﹣b D.3a 10.(2016贵州毕节3分)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C.D.【11. (2016·浙江省绍兴市·4分)抛物线y=x2+bx+c(其中b,c是常数)过点A (2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.1012. (2016·湖北随州·3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个 B.3个 C.4个 D.5个13.(2016·四川南充)抛物线y=x2+2x+3的对称轴是()A.直线x=1 B.直线x=﹣1 C.直线x=﹣2 D.直线x=2 14.(2016·四川泸州)已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或15.(2016·四川攀枝花)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形16.(2016·黑龙江齐齐哈尔·3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个17.(2016·湖北黄石·3分)以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A.b≥B.b≥1或b≤﹣1 C.b≥2D.1≤b≤218.(2016·湖北荆门·3分)若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=719.(2016·青海西宁·3分)如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm2 B.12cm2 C.9cm2 D.3cm221. (2016·四川眉山·3分)若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A.y=(x﹣2)2+3 B.y=(x﹣2)2+5 C.y=x2﹣1 D.y=x2+44.(2016·四川南充)已知抛物线y=ax2+bx+c开口向上且经过点(1,1),双曲线y=经过点(a,bc),给出下列结论:①bc>0;②b+c>0;③b,c是关于x的一元二次方程x2+(a﹣1)x+=0的两个实数根;④a﹣b﹣c≥3.其中正确结论是(填写序号)5.(2016·四川泸州)若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为7.(2016·湖北荆州·3分)若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为8. (2016·辽宁丹东·10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?12.(2016·四川内江)(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图14所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.16.(2016·黑龙江龙东·6分)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.21.(2016·内蒙古包头)一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.24. (2016·山东潍坊)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?。
二次函数与a,b,c的关系
二次函数2y ax bx c =++图象的位置与abc 的关系归纳:二次函数2y ax bx c =++的对称轴为________,顶点坐标为______________(1)a 的符号由 决定:①开口方向向 ⇔ a 0;②开口方向向 ⇔ a 0.(2)b 的符号由 决定;①对称轴在y 轴的左侧 ⇔b a 、 ;②对称轴在y 轴的右侧 ⇔b a 、 ;③对称轴是y 轴 ⇔b0.④由对称轴公式x =ab2- 可确定2a+b 的符号. (3)c 的符号由 决定:①抛物线与y 轴交于正半轴 ⇔c 0;②抛物线与y 轴交于负半轴⇔c 0;③抛物线过原点 ⇔c 0.(4)ac b 42-的符号由 决定:①抛物线与x 轴有 交点⇔ b 2-4ac 0;②抛物线与x 轴有 交点⇔ b 2-4ac 0;③抛物线与x 轴有 交点⇔ b 2-4ac 0;(5)当x =1时,可确定a+b+c 的符号,当x =-1时,可确定a-b+c 的符号.【典型例题】已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列5个结论中:①abc>0;②b<a+c ;③4a+2b+c>0;④b 2-4ac>0⑤b=2a .正确的是 (填序号)练一练1.根据图象填空,:(1)a 0 ,b 0 ,c 0, abc 0.(2)b 2-4ac 0(3)c b a ++ 0;c b a +- 0;(4)当0>x 时,y 的取值范围是 ;当0>y 时,x 的取值范围是 . 2.若一条抛物线c bx ax y ++=2的顶点在第二象限,交于y 有两个交点,则下列结论正确的是( ).A.a﹥0,bc﹥0;B.a﹤0,bc﹤0;C. a﹤0, bc﹥0;D.a﹥0, bc﹤03.已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断不正确的是()A、ac<0B、a-b+c>0C、b=-4aD、关于x的方程ax2+bx+c=0的根是x1=-1,x2=54、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2-4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正确结论的个数是()A、1B、2C、3D、45.已知反比例函数xky=的图象在二、四象限,则二次函数222kxkxy+-=的图象大致为()6、二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A、a<0,b<0,c>0,b2-4ac>0B、a>0,b<0,c>0,b2-4ac<0C、a<0,b>0,c<0,b2-4ac>0D、a<0,b>0,c>0,b2-4ac>07、如图所示为二次函数y=ax2+bx+c(a≠0)的图象,在下列选项中错误的是()A、ac<0B、x>1时,y随x的增大而增大C、a+b+c>0D、方程ax2+bx+c=0的根是x1=-1,x2=3yO xyO xyO xyO x A.C.B.D.8、已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )A 、a >0B 、b <0C 、c <0D 、a+b+c >09、小明从图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0<c ;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个10、已知二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出下列结果①b 2>4ac ;②abc >0;③2a+b=0;④a+b+c >0;⑤a -b+c <0,则正确的结论是( )A 、①②③④B 、②④⑤C 、②③④D 、①④⑤11、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为( 12,1),下列结论:①ac <0;②a+b=0;③4ac -b 2=4a ;④a+b+c <0.其中正确结论的个数是( )A 、1B 、2C 、3D 、412、已知二次函数y=ax 2+bx+c 的图象如图所示,对称轴为直线x=1,则下列结论正确的是( )A 、ac >0B 、方程ax 2+bx+c=0的两根是x 1=-1,x 2=3C 、2a -b =0D 、当x >0时,y 随x 的增大而减小13、已知二次函数y=ax 2+bx+c (a ,b ,c 为常数,a ≠0)的图象如图所示,有下列结论:①abc >0,②b 2-4ac <0,③a -b+c >0,④4a -2b+c <0,其中正确结论的个数是( )A 、1B 、2C 、3D 、414、已知二次函数y=ax 2+bx+c (a≠0)的图象如图,则下列说法:①c =0;②该抛物线的对称轴是直线x =﹣1;③当x =1时,y=2a ;④am 2+bm+a >0(m ≠﹣1).其中正确的个数是( )A . 1B . 2C . 3D . 415.二次函数y=ax 2+bx+c 的图象如图所示,那么关于此二次函数的下列四个结论:①a <0;②c >0;③b 2﹣4ac >0;④ab 2-<0中,正确的结论有( ) A . 1个 B . 2个 C . 3个 D . 4个16、如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a -b <0;(4)a+b+c <0.你认为其中错误的有( )A 、2个B 、3个C 、4个D 、1个17.如图是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为x =﹣1,且过点(﹣3,0)下列说法:①abc <0;②2a ﹣b=0;③4a+2b+c <0;④若(﹣5,y 1),(2,y 2)是抛物线上的两点,则y 1>y 2.其中说法正确的是( )A . ①②B . ②③C . ②③④D . ①②④18、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,现有下列结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,则其中结论正确的个数是( )A 、2个B 、3个C 、4个D 、5个19、已知二次函数y=ax 2+bx+c 的图象如图所示,那么下列判断不正确的是( ) A 、ac <0 B 、a -b+c >0C 、b=—4aD 、关于x 的方程ax 2+bx+c=0的根是x 1=—1,x 2=520、已知二次函数y=ax²+bx+c (a ≠0)的图象如图所示,则下列结论:①ac >0;②a -b+c <0;③当x <0时,y <0;④方程ax ²+bx+c=0(a ≠0)有两个大于-1的实数根.其中错误的结论有( )A 、②③B 、②④C 、①③D 、①④。
二次函数与abc的关系总结
二次函数与abc的关系总结关键信息项:1、二次函数的一般式:$y = ax^2 + bx + c$ ($a \neq 0$)2、系数 a 的作用决定抛物线的开口方向影响抛物线的开口大小3、系数 b 的作用与对称轴的位置有关4、系数 c 的作用决定抛物线与 y 轴的交点坐标11 二次函数的一般形式二次函数的一般形式为$y = ax^2 + bx + c$ ($a \neq 0$),其中$a$、$b$、$c$是常数。
111 系数$a$的作用$a$的正负决定了抛物线的开口方向。
当$a > 0$时,抛物线开口向上;当$a < 0$时,抛物线开口向下。
$a$的大小影响抛物线的开口大小。
$|a|$越大,抛物线的开口越窄;$|a|$越小,抛物线的开口越宽。
112 系数$b$的作用系数$b$与对称轴的位置有关。
二次函数的对称轴方程为$x =\frac{b}{2a}$。
当$b = 0$时,对称轴为$y$轴;当$a$、$b$同号时,对称轴在$y$轴左侧;当$a$、$b$异号时,对称轴在$y$轴右侧。
113 系数$c$的作用系数$c$决定了抛物线与$y$轴的交点坐标。
当$x = 0$时,$y =c$,所以抛物线与$y$轴的交点坐标为$(0, c)$。
12 二次函数的图像特征二次函数的图像是一条抛物线。
其顶点坐标为$(\frac{b}{2a},\frac{4ac b^2}{4a})$。
121 当$a > 0$时抛物线开口向上,函数在对称轴$x =\frac{b}{2a}$处取得最小值$\frac{4ac b^2}{4a}$。
122 当$a < 0$时抛物线开口向下,函数在对称轴$x =\frac{b}{2a}$处取得最大值$\frac{4ac b^2}{4a}$。
13 系数之间的关系对函数零点的影响判别式$\Delta = b^2 4ac$用于判断二次函数的零点个数。
131 当$\Delta > 0$时函数有两个不同的实数零点。
二次函数abc的关系
二次函数abc的关系二次函数是高中数学中常见的一个函数形式,它的一般形式为y=ax^2+bx+c,其中a、b、c是常数,且a不等于0。
这篇文章将探讨二次函数abc的关系,通过分析a、b、c的取值对二次函数的图像、性质以及解的情况产生的影响,帮助读者更好地理解二次函数。
我们来讨论a的取值。
当a大于0时,二次函数的图像开口向上,形状类似于一个U型,称为正向开口的二次函数。
当a小于0时,二次函数的图像开口向下,形状类似于一个倒置的U型,称为负向开口的二次函数。
因此,a的取值决定了二次函数图像的开口方向。
接下来,我们来考虑b的取值。
b的正负决定了二次函数图像的对称轴的位置。
当b大于0时,二次函数图像向右平移;当b小于0时,二次函数图像向左平移。
此外,b的绝对值越大,平移的距离越远。
因此,b的取值决定了二次函数图像的位置和平移的程度。
我们来讨论c的取值。
c的正负决定了二次函数图像与y轴的交点位置。
当c大于0时,二次函数图像与y轴的交点在原点的上方;当c小于0时,二次函数图像与y轴的交点在原点的下方。
此外,c 的绝对值越大,交点与原点的距离越远。
因此,c的取值决定了二次函数图像与y轴的交点位置和距离。
通过分析a、b、c的取值对二次函数的影响,我们可以得出一些总结性的结论。
首先,当a不等于0时,二次函数必然存在一个顶点,该顶点的横坐标为-x=b/2a,纵坐标为f(-x)=c-b^2/4a。
其次,当a 的取值相同时,二次函数的图像形状相似,只是整体大小和位置有所不同。
最后,当a、b、c的取值不同时,二次函数的图像、顶点、对称轴和与y轴的交点位置都会有所不同。
二次函数abc的关系是通过分析a、b、c的取值对二次函数的图像、性质以及解的情况产生的影响。
了解二次函数abc的关系可以帮助我们更好地理解二次函数的性质和特点,进而应用到实际问题中。
希望通过本文的介绍,读者能够对二次函数有更深入的理解和应用。
二次函数与abc的关系总结
二次函数与abc的关系总结二次函数是一种由二次项、一次项和常数项构成的函数,其一般形式为 f(x) = ax^2 + bx + c,其中a、b、c分别代表函数的系数。
二次函数的系数a决定了函数的开口方向和开口的大小。
当a>0时,二次函数的抛物线开口朝上;当a<0时,抛物线开口朝下。
a的绝对值越大,抛物线的开口越大;a的符号决定了抛物线的开口方向。
系数b影响函数图像的位置和形状。
b表示二次函数在x轴方向上的整体平移。
当b>0时,函数图像向左平移;当b<0时,函数图像向右平移。
常数项c对函数图像的位置也有影响。
c决定了抛物线与y轴的相交点,即函数的纵向平移。
当c>0时,函数图像向上平移;当c<0时,函数图像向下平移。
同时,abc三个系数之间还存在一些关系。
首先,二次函数的顶点坐标可以通过系数b和c的值来确定。
对于一般形式为f(x) = ax^2 + bx + c的二次函数,它的顶点横坐标为x = -b/2a,纵坐标为y = f(-b/2a) = -D/4a,其中D = b^2 - 4ac为函数的判别式。
判别式D可以进一步帮助我们判断二次函数的图像特征。
当D>0时,函数图像与x轴有两个交点,抛物线开口朝上或朝下;当D=0时,函数图像与x轴有一个交点,抛物线开口朝上或朝下,且顶点在该交点上;当D<0时,函数图像与x轴无交点,抛物线开口朝上或朝下,且顶点在上方或下方。
另外,a和c的符号也对函数的图像产生影响。
当a和c同号时,抛物线开口朝上;当a和c异号时,抛物线开口朝下。
在具体问题中,我们可以利用abc的关系来解决二次函数相关的计算和应用问题。
例如,已知二次函数的图像通过某一点,我们可以通过该点的横纵坐标得到一个方程,然后结合另外一个已知点或者函数的顶点坐标,求解出abc的值,进而得到函数的表达式。
总结起来,二次函数与abc的关系可以归纳如下:- 系数a决定了抛物线的开口方向和开口的大小;- 系数b影响函数图像的位置和形状,决定了抛物线在x轴方向上的整体平移;- 常数项c决定了抛物线与y轴的相交点,即函数的纵向平移;- 三个系数之间存在一些具体的数学关系,如顶点的坐标和判别式等。
二次函数与a,b,c的关系
几种特殊情况:x=1时,y=a + b + c ;x= -1 时,y=a - b + c .当x = 1 时,① 若y > 0,贝V a + b + c >0 ;® 若y < 时0,贝V a + b + c < 0 当x = -1 时,①若y > 0,贝V a - b + c >0 :②若y < 0,贝V a - b + c < 0 .等)的符号4. (2017四川省广安市)如图所示,抛物线y=ax2+bx+c的顶点为B (- 1, 3),与x轴的交点A 在点(-3, 0)和(-2, 0)之间,以下结论:①b2-4ac =0 :②a+b+c>0 :③2 a- b=0;④c- a=3其中正确的有()A. 1B. 2C. 3D. 45. (2017四川省眉山市)若一次函数y=( a+1)x+a的图象过第一、三、四象限,则二次函数y二ax2 - ax ()A. 有最大值- B .有最大值-- C.有最小值- D.有最小值--4 4 4 41. (2017贵州遵义第11题)如图,抛物线y=ax2+bx+c经过点(-1, 0),对称轴丨如图所示,则下列结论:①abc> 0;②a- b+c=0:③2a+c v0 :④a+b v 0,其中所有正确的结论是()A.①③ B .②③ C.②④ D.②③④9. (2017黑龙江齐齐哈尔第10题)如图,抛物线y=ax2・bx(a = 0)的对称轴为直线x = -2 , 与x轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图所示,则下列结论:①4a-b = 0 •,②c ::: 0 ;9 5 12③-3a0 :④4a -2b at bt (t为实数);⑤点(-―,yj ,(-一小),(-一山)是该抛物线上2 2 2的点,则%::: y2 :::y,正确的个数有()A. 4个B. 3个C. 2个 D . 1个6 . (2017四川省绵阳市)将二次函数y =x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A. b>8 B . b>- 8 C. b>8 D . b>- 8223. (2017浙江金华第6题)对于二次函数y=-[x-1 • 2是图象与性质,下列说法正确的是()A.对称轴是直线x =1,最小值是2 B .对称轴是直线x = 1,最大值是2C对称轴是直线x = T,最小值是2 D .对称轴是直线x = -1,最大值是22. (2017四川省南充市)二次函数y=ax2,bx < (a、b、c是常数,且a工0)的图象如图所示,下列结论错误的是()2A . 4ac v b B. abc v 0 C. b+c >3a D . a v b26. (2017新疆乌鲁木齐第15题)如图,抛物线y=ax 2・bx ・c 过点-1,0,且对称轴为直线x = 1 , 有下列结论:①abc ::: 0 :②10a 3b c 0 :③抛物线经过点 4, y 1与点_3,y 2,则y i • y 2;④无论a,b,c 取何 值,抛物线都经过同一个点—£,0 :⑤am 2 bm 0,其中所有正确的结论是 ______________________ .I a 丿15. (2017贵州黔东南州第9题)如图,抛物线y =ax 2+bx +c (a 工0)的对称轴为直线 x =- 1,给出下 列结论:①b 2=4ac ;②abc > 0;③a >c ;④4a - 2b +c >0,其中正确的个数有( )A. 1个B . 2个C . 3个D . 4个16. (2017山东烟台第11题)二次函数y 二ax 2 • bx • c (a = 0)的图象如图所示,对称轴是直线x = 1 ,① ab :0 :② b 2 . 4ac :③ a b c :: 0 :④ 3ac :: 0 •其中正确的是( )A.①④B •②④ C. ①②③ D•①②③④个交点坐标为(4, 0),其部分图象如图所示,下列结论: ① 抛物线过原点; ② 4a+b+c=0; ③ a - b+c v 0;④ 抛物线的顶点坐标为(2, b ); ⑤ 当x v 2时,y 随x 增大而增大. 其中结论正确的是()12题)已知抛物线y=ax 2+bx+c (a ^0)的对称轴为直线x=2,与x 轴的一 y 与x 的函数的是(17. ( 2017四川泸州第8题)F 列曲线中不能表示16. (2017山东日照第A.①②③B.③④⑤C.①②④D.①④⑤112. ( 2017江苏盐城第6题)如图,将函数y =(x — 2) 2+1的图象沿y 轴向上平移得到一条新函数2的图象,其中点 A (1 , m , B ( 4, n )平移后的对应点分别为点 A 、B •若曲线段AB 扫过的面积为 9 (图中的阴影部分),则新图象的函数表达式是(A. 1B. 2C. 3D. 44. (2017浙江宁波第10题)抛物线y =x 2- 2x + m 2+2( m 是常数)的顶点在()A.第一象限B. 第二象限C. 第三象限D. 第四象限3分)抛物线y=2x 2- 2 ~x+1与坐标轴的交点个数是点选择180。
二次函数图像与abc的关系ppt课件
y=ax2+bx+c(a≠0)的图象
如上图所示,那么下列判断
y
正确的有(填序号)
.③ ⑦ ①、abc>0,
●
x
-2 -1 o 1 2
②、b2-4ac<0,
③、2a+b>0,
④、a+b+c<0,
⑤、a-b+c>0,
⑥、4a+2b+c<0,
⑦、4a-2b+c<0.
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
判断b的符号
(2)因为对称轴在y轴右侧,所以
b 2a
0பைடு நூலகம்
,而a<0,故b>0;
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
判断c的符号
(3)因为x=0时,y=c,即图象与y轴交点 的坐标是(0,c),而图中这一点在y轴正 半轴,即c>0;
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
判断b2-4ac的符号
(4)因为顶点在第一象限,其纵坐标
4ac b2 0 ,且a<0,所以4acb2 0,故
4a
b2 4ac0 。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
分析:已知的是几何关系(图形的位置、 形状),需要求出的是数量关系,所以应 发挥数形结合的作用.
二次函数图像与abc的关系课件
c=0时的情况
总结词:水平线段
详细描述:当c的值为0时,二次函数退化为线性函数,图像成为一条水平线段。 这是因为当c=0时,二次函数变为一次函数,其图像是一条直线。
05 综合分析abc对图像的 影响
a,b同号时的情况
总结词
开口向上,对称轴为y轴
详细描述
当a和b同号时,二次函数的图像开口向上或向下,对称轴为y轴。此时,如果a和b都大 于0,则图像开口向上;如果a和b都小于0,则图像开口向下。
二次函数图像与abc的关 系课件
目 录
01 二次函数的基本概念
二次函数的一般形式
总结词
二次函数的一般形式是 $f(x) = ax^2 + bx + c$ ,其中 $a$ 、 $b$、$c$是常数,且$a neq 0$。
详细描述
二次函数的一般形式是描述函数 图像的基础,其中$a$决定了抛物 线的开口大小和方向,$b$和$c$ 决定了抛物线的位置。
二次函数的开口方向
总结词
二次函数的开口方向由系数$a$决定。 当$a > 0$时,抛物线开口向上;当 $a < 0$时,抛物线开口向下。
详细描述
系数$a$的正负决定了抛物线的开口方 向,这是理解二次函数性质的重要一环。
二次函数的顶点
总结词
二次函数的顶点坐标为$(-frac{b}{2a}, f(-frac{b}{2a}))$。
a,b异号时的情况
总结词
开口向下,对称轴为y轴
VS
详细描述
当a和b异号时,二次函数的图像开口向 上或向下,对称轴为y轴。此时,如果a和 b的绝对值大小不同,则图像开口向下; 如果a和b的绝对值大小相同,则图像开 口向上。
二次函数系数abc的关系
因此,系数b影响了二次函数 的增减性,特别是在对称轴 两侧的单调性。
04
系数c对二次函数影响
c决定与y轴交点位置
01 当c > 0时,二次函数的图像与y轴的交点在y轴的 正半轴上。
02
当c = 0时,二次函数的图像经过原点。
03 当c < 0时,二次函数的图像与y轴的交点在y轴的 负半轴上。
c与函数最值关系
不足之处与改进方
向
在解题过程中,我有时会对某些 细节处理不够严谨,导致答案出 现偏差。未来我将更加注重细节 ,提高解题的准确性。
下一步学习计划和目标
深入学习二次函数的性质和应用
我计划在下一步学习中,更加深入地探讨二次函数的性质和应用,如最值问题、不等式 问题等。
拓展相关数学知识
为了更好地理解和应用二次函数,我计划学习与之相关的数学知识,如一元二次不等式 、二次方程根与系数的关系等。
系数a、b、c意义
$a$决定抛物线的开口方向和宽度
当$a > 0$时,抛物线开口向上;当$a < 0$时,抛物线开口向下。同时,$|a|$的大小决 定了抛物线的宽度。
$b$和$a$共同决定抛物线的对称轴
对称轴的方程为$x = -frac{b}{2a}$。
$c$决定抛物线与y轴的交点
当$x = 0$时,$y = c$,即抛物线与y轴的交点为$(0, c)$。
对于开口向上的二次函数(a > 0),c决定了函数的 最小值。当x = -b/2a时,函数取得最小值f(-b/2a) = c - b^2/4a。
对于开口向下的二次函数(a < 0),c决定了函数的 最大值。当x = -b/2a时,函数取得最大值f(-b/2a) = c - b^2/4a。
二次函数与abc的关系
几种特殊情况:x=1时,y=a + b + c;x= -1时,y=a - b + c.当x = 1时,①若y > 0,则a + b + c >0;②若y < 时0,则a + b + c < 0 当x = -1时,①若y > 0,则a - b + c >0;②若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c ;反之,给我们相应的二次函数图象,我们可以得到其系数a,b,c以及它们组合成的一些关系结构例如对称轴−b2a ; 判别式b 2−4ac ; y =a +b +c ……等等的符号4.2017四川省广安市如图所示,抛物线c bx ax y ++=2的顶点为B ﹣1,3,与x 轴的交点A 在点﹣3,0和﹣2,0之间,以下结论:①042=-ac b ;②a +b +c >0;③2a ﹣b =0;④c ﹣a =3其中正确的有A .1B .2C .3D .45.2017四川省眉山市若一次函数y =a +1x +a 的图象过第一、三、四象限,则二次函数2y ax ax =-A .有最大值4aB .有最大值﹣4aC .有最小值4aD .有最小值﹣4a1. 2017贵州遵义第11题如图,抛物线y =ax 2+bx +c 经过点﹣1,0,对称轴l 如图所示,则下列结论:①abc >0;②a ﹣b +c =0;③2a +c <0;④a +b <0,其中所有正确的结论是A .①③B .②③C .②④D .②③④9. 2017黑龙江齐齐哈尔第10题如图,抛物线2y ax bx c =++0a ≠的对称轴为直线2x =-,与x 轴的一个交点在(3,0)-和(4,0)-之间,其部分图象如图所示,则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+t 为实数;⑤点19(,)2y -,25(,)2y -,31(,)2y -是该抛物线上的点,则123y y y <<,正确的个数有 A .4个 B .3个 C .2个 D .1个6.2017四川省绵阳市将二次函数2x y =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是A .b >8B .b >﹣8C .b ≥8D .b ≥﹣82.2017四川省南充市二次函数2y ax bx c =++a 、b 、c 是常数,且a ≠0的图象如图所示,下列结论错误的是A .4ac <b 2B .abc <0C .b +c >3aD .a <b23. 2017浙江金华第6题对于二次函数()212y x =--+是图象与性质,下列说法正确的是A .对称轴是直线1x =,最小值是2B .对称轴是直线1x =,最大值是2C . 对称轴是直线1x =-,最小值是2D .对称轴是直线1x =-,最大值是226. 2017新疆乌鲁木齐第15题如图,抛物线2y ax bx c =++过点()1,0-,且对称轴为直线1x =,有下列结论:①0abc <;②1030a b c ++>;③抛物线经过点()14,y 与点()23,y -,则12y y >;④无论,,a b c 取何值,抛物线都经过同一个点,0c a⎛⎫- ⎪⎝⎭;⑤20am bm a ++≥,其中所有正确的结论是 .15.2017贵州黔东南州第9题如图,抛物线y =ax 2+bx +ca ≠0的对称轴为直线x =﹣1,给出下列结论:①b 2=4ac ;②abc >0;③a >c ;④4a ﹣2b +c >0,其中正确的个数有A .1个B .2个C .3个D .4个 16.2017山东烟台第11题二次函数)0(2≠++=a c bx ax y 的图象如图所示,对称轴是直线1=x ,下列结论:①0<ab ;②ac b 42>;③0<++c b a ;④03<+c a .其中正确的是A .①④B .②④ C. ①②③ D .①②③④17.2017四川泸州第8题下列曲线中不能表示y 与x 的函数的是A. B. C. D.16. 2017山东日照第12题已知抛物线y=ax2+bx+ca≠0的对称轴为直线x=2,与x轴的一个交点坐标为4,0,其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为2,b;⑤当x<2时,y随x增大而增大.其中结论正确的是A.①②③B.③④⑤C.①②④D.①④⑤12.2017江苏盐城第6题如图,将函数y=12x-22+1的图象沿y轴向上平移得到一条新函数的图象,其中点A1,m,B4,n平移后的对应点分别为点A'、B'.若曲线段AB 扫过的面积为9图中的阴影部分,则新图象的函数表达式是A.y=12x222 B.y=12x22+7 C.y=12x225 D.y=12x22+47.2017广西贵港第10题将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是A.()211y x=-+ B.()211y x=++C.()2211y x=-+ D.()2211y x=++8.2017贵州安顺第10题二次函数y=ax2+bx+c≠0的图象如图,给出下列四个结论:①4ac ﹣b2<0;②3b+2c<0;③4a+c<2b;④mam+b+b<am≠1,其中结论正确的个数是A.1 B.2 C.3 D.44.2017浙江宁波第10题抛物线22y x x m m是常数的顶点在22A.第一象限B.第二象限C.第三象限D.第四象限1.2016·山东省滨州市·3分抛物线y=2x2﹣2x+1与坐标轴的交点个数是A.0 B.1 C.2 D.32.2016·山东省滨州市·3分在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是A.y=﹣x﹣2﹣B.y=﹣x+2﹣C.y=﹣x﹣2﹣D.y=﹣x+2+点评本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.3.2016广西南宁3分二次函数y=ax2+bx+ca≠0和正比例函数y=x的图象如图所示,则方程ax2+b﹣x+c=0a≠0的两根之和A.大于0 B.等于0 C.小于0 D.不能确定4.2016贵州毕节3分一次函数y=ax+ba≠0与二次函数y=ax2+bx+ca≠0在同一平面直角坐标系中的图象可能是A.B.C.D.5.2016·福建龙岩·4分已知抛物线y=ax2+bx+c的图象如图所示,则|a﹣b+c|+|2a+b|=A.a+b B.a﹣2b C.a﹣b D.3a10.2016贵州毕节3分一次函数y=ax+ba≠0与二次函数y=ax2+bx+ca≠0在同一平面直角坐标系中的图象可能是A.B.C.D.11. 2016·浙江省绍兴市·4分抛物线y=x2+bx+c其中b,c是常数过点A2,6,且抛物线的对称轴与线段y=01≤x≤3有交点,则c的值不可能是A.4 B.6 C.8 D.1012. 2016·湖北随州·3分二次函数y=ax2+bx+ca≠0的部分图象如图所示,图象过点﹣1,0,对称轴为直线x=2,下列结论:14a+b=0;29a+c>3b;38a+7b+2c>0;4若点A﹣3,y1、点B﹣,y2、点C,y3在该函数图象上,则y1<y3<y2;5若方程ax+1x﹣5=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有A.2个B.3个C.4个D.5个13.2016·四川南充抛物线y=x2+2x+3的对称轴是A.直线x=1 B.直线x=﹣1 C.直线x=﹣2 D.直线x=214.2016·四川泸州已知二次函数y=ax2﹣bx﹣2a≠0的图象的顶点在第四象限,且过点﹣1,0,当a﹣b为整数时,ab的值为A.或1 B.或1 C.或D.或15.2016·四川攀枝花如图,二次函数y=ax2+bx+ca>0图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形16.2016·黑龙江齐齐哈尔·3分如图,抛物线y=ax2+bx+ca≠0的对称轴为直线x=1,与x轴的一个交点坐标为﹣1,0,其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是A.4个B.3个C.2个D.1个17.2016·湖北黄石·3分以x为自变量的二次函数y=x2﹣2b﹣2x+b2﹣1的图象不经过第三象限,则实数b的取值范围是A.b≥B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤2 18.2016·湖北荆门·3分若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=719.2016·青海西宁·3分如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B 以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B 两点同时出发,在运动过程中,△PBQ的最大面积是A.18cm2 B.12cm2 C.9cm2 D.3cm221. 2016·四川眉山·3分若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为A.y=x﹣22+3 B.y=x﹣22+5 C.y=x2﹣1 D.y=x2+4 4.2016·四川南充已知抛物线y=ax2+bx+c开口向上且经过点1,1,双曲线y=经过点a,bc,给出下列结论:①bc>0;②b+c>0;③b,c是关于x的一元二次方程x2+a﹣1x+=0的两个实数根;④a﹣b﹣c≥3.其中正确结论是填写序号5.2016·四川泸州若二次函数y=2x2﹣4x﹣1的图象与x轴交于Ax1,0、Bx2,0两点,则+的值为7.2016·湖北荆州·3分若函数y=a﹣1x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为8. 2016·辽宁丹东·10分某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y千克,增种果树x棵,它们之间的函数关系如图所示.1求y与x之间的函数关系式;2在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克3当增种果树多少棵时,果园的总产量w千克最大最大产量是多少12.2016·四川内江12分某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米如图14所示,设这个苗圃园垂直于墙的一边长为x米.1若苗圃园的面积为72平方米,求x;2若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗如果有,求出最大值和最小值;如果没有,请说明理由;3当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.18m苗圃园图1416.2016·黑龙江龙东·6分如图,二次函数y=x+22+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A﹣1,0及点B.1求二次函数与一次函数的解析式;2根据图象,写出满足x+22+m≥kx+b的x的取值范围.21.2016·内蒙古包头一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.1求y与x之间的函数关系式;2若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.24. 2016·山东潍坊旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x元是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.1优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元注:净收入=租车收入﹣管理费2当每辆车的日租金为多少元时,每天的净收入最多。
二次函数的图像与字母abc的关系
课次教学计划一、知识要点二次函数y=ax2+bx+c系数符号得确定:ﻫ(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0。
ﻫ(2)b由对称轴与a得符号确定:由对称轴公式x=判断符号、ﻫ(3)c由抛物线与y轴得交点确定:交点在y轴正半轴,则c〉0;否则c<0、ﻫ(4)b2-4ac得符号由抛物线与x轴交点得个数确定:2个交点,b2—4ac>0;1个交点,b 2—4ac=0;没有交点,b2—4ac<0。
ﻫ(5)当x=1时,可确定a+b+c得符号,当x=-1时,可确定a-b+c得符号。
ﻫ(6)由对称轴公式x=,可确定2a+b得符号.二、基础练习1、已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中得位置如图所示,则下列结论中,正确得就是( D )A、a>0B、b〈0C、c〈0 D、a+b+c〉02、已知二次函数y=ax2+bx+c得图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc〉0;③2a+b=0; ④a+b+c〉0;⑤a—b+c<0,则正确得结论就是( D)A、①②③④B、②④⑤C、②③④D、①④⑤3、如图,二次函数y=ax2+bx+c得图象与y轴正半轴相交,其顶点坐标为( ,1),下列结论:①ac〈0;②a+b=0;③4ac—b2=4a;④a+b+c<0。
其中正确结论得个数就是( C )1\2\3A、1B、2C、3D、44、已知二次函数y=ax2+bx+c得图象如图所示,对称轴为直线x=1,则下列结论正确得就是(B)A、ac>0 B、方程ax2+bx+c=0得两根就是x1=-1,x2=3C、2a-b=0D、当x>0时,y随x得增大而减小5、已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)得图象如图所示,有下列结论:①abc>0,②-4ac<0,③a—b+c〉0,④4a-2b+c〈0,其中正确结论得个数就是(A4)A、1B、2C、3 D、46、(如图所示得二次函数y=ax2+bx+c得图象中,刘星同学观察得出了下面四条信息:(1)b2—4ac>0;(2)c>1;(3)2a—b<0;(4)a+b+c<0。
二次函数图像与abc的关系
3
等于0
抛物线会转移到y轴的位置。
二次函数图像与参数c的关系
大于0
二次函数图像上下平移c个单位。
小于0
二次函数图像下移c个单位。
等于0
不会影响抛物线的位置。
二次函数图像与顶点坐标的关系
向上移动
当抛物线向上移动时,顶点的y 坐标会增加。
向下移动
当抛物线向下移动时,顶点的y 坐标会的x坐标会随之变化。
二次函数图像与弦长的关系
纵坐标高度差
弦长
0
2|a|
2|a|
2
4|a|
2√2
6|a|
4
二次函数图像与参数a的关系
大于1
二次函数图像会变得更加扁宽, 而且始终开口向上。
在0和1之间
二次函数图像会变得更加窄高, 而且始终开口向上。
小于0
二次函数图像始终开口向下,而 且会变得更加窄高。
二次函数图像与参数b的关系
1
大于0
参数b控制了抛物线的位置,而且抛物线上下振动的程度。
2
小于0
虽然抛物线的开口方向不变,但会上下反转。
二次函数图像与abc的关 系
二次函数图像是数学中的重要概念。了解它的形状和性质对于学习和掌握二 次函数至关重要。
二次函数图像的形状和位置
形状
二次函数图像可以是开口向上的 抛物线或开口向下的抛物线。
位置
二次函数图像可以沿着x轴或y轴 移动。
宽度
二次函数图像可以被拉宽或压缩。
二次函数图像的平移和伸缩
平移
当二次函数图像沿x轴移动a个单位,则f(x)=a(xh)^2+k,其中(a≠0)。这将导致整个图像移动到左 或右方。当二次函数图像沿y轴移动k个单位, 则f(x)=a(x-h)^2+k,其中(a≠0)。这将导致整个图 像移动到上或下方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列 4个结论中:①abc>0;②b<a+c;③4a+2b+c>0;④b 2-4ac>0; ⑤b=2a.正确的是 (填序号)2、根据图象填空,:(1)a 0 ,b 0 ,c 0, abc 0. (2)b 2-4ac 0(3)c b a ++ 0;c b a +- 0;(4)当0>x 时,y 的取值范围是 ;当0>y 时,x 的取值范围是 .3.若一条抛物线c bx ax y ++=2的顶点在第二象限,交于y 则下列结论正确的是( ).A.a ﹥0,bc ﹥0;B.a ﹤0,bc ﹤0;C. a ﹤0, bc ﹥0;D.a ﹥0, bc ﹤04.已知二次函数y=ax 2+bx+c 的图象如图所示,那么下列判断不正确的是( ) A 、ac <0 B 、a-b+c >0 C 、b=-4a D 、关于x 的方程ax 2+bx+c=0的根是x 1=-1,x 2=55、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,有下列结论: ①b 2-4ac >0; ②abc >0 ③8a+c >0; ④9a+3b+c <0 其中,正确结论的个数是( )A 、1B 、2C 、3D 、4 6.已知二次函数y= ax 2+bx+c (a≠0)的图象如图, 则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1; ③当x=1时,y=2a ;④am 2+bm+a >0(m≠﹣1).其中正确的个数是( )A 、1 B 、2 C 、3 D 、47、已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c <0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③8.二次函数y=ax 2+bx+c 的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b 2﹣4ac >0;④<0中,正确的结论有( ) A 、1 B 、2 C 、3 D 、49.函数y=x 2+bx+c 与y=x 的图象如图,有以下结论:①b 2﹣4c <0;②c﹣b+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 10.(2014•宜城市模拟)如图是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y 1),(2,y 2)是抛物线上的两点,则y 1>y 2. 其中说法正确的是( )11.如图,二次函数y=x 2+(2﹣m )x+m ﹣3的图象交y 轴于负半轴,对称轴在y 轴的右侧,则m 的取值范围是( )12.如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为x=﹣1.给出四个结论:①b 2>4ac ;②2a+b=0;③3a+c=0;④a+b+c=0. 其中正确结论的个数是( )13.如图,抛物线y=ax 2+bx+c 与x 轴交于点A (﹣1,0),顶点坐标为(1,n ),与第7题图 第8题图 第9题图 第10题图y 轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x >3时,y <0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是( )14.已知二次函数y=ax 2+bx+c (a >0)的图象与x 轴交于点(﹣1,0),(x 1,0),且1<x 1<2,下列15.(2014年 四川南充)二次函数y=ax2+bx+c (a≠0)图象如图,下列结论:①abc >0;②2a+b=0;③当m≠1时,a+b >bm am +2;④a ﹣b+c >0;⑤若121bx ax +=222bx ax +,且21x x ≠则21x x +=2.其中正确的有( ) A .①②③ B . ②④ C . ②⑤ D . ②③⑤16.二次函数2y x bx =+的图象如图,对称轴为直线x =2.若关于x 的一元二次方程20x bx t +-=(t 为实数)在-1<x <1的范围内有解,则t 的取值范围是( ) A. t ≥-1 B. -4≤t <5 C. -1≤t <1 D. -3<t <517.二次函数y =ax 2+bx +c (a 、b 、c 为常数,且a ≠0)中的x 与y 的部分对应值如下表:下列结论:(1)ac <0; (2)当x >1时,y 的值随x 值的增大而减小.(3)3是方程()210ax b x c +-+=的一个根; (4)当﹣1<x <3时,()210ax b x c +-+>. 其中正确的个数为( ) A .4个B .3个C .2个D .1个18如图,是二次函数y =ax 2+bx +c 的图象,其对称轴为直线x =1,下列结论:①abc>0;②2a+b =0;③4a+2b +c <0;④若(-32,y 1),(103,y 2)是抛物线上两点,则y 1<y 2.其中结论正确的是( )A .①②B .②③C .②④D .①③④19.抛物线y =ax2+bx +c 的顶点为D(-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图4-ZT -4所示,有以下结论:①b 2-4ac <0;②a+b +c <0;③c-a =0;④一元二次方程ax 2+bx +c -2=0有两个相等的实数根.其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个20.已知抛物线y =ax 2+bx +c 经过点(1,1)和(-1,0).下列结论:①a-b +c =0;②b 2>4ac ;③当a <0时,抛物线与x 轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为直线x =-14a .其中正确的结论有( ) A .4个 B .3个 C .2个 D .1个21.函数y =x 2+bx +c 与y =x 的图象所示,有以下结论:①b 2-4c>0;②b +c +1=0;③3b+c +6=0;④当1<x<3时,x 2+(b -1)x +c<0.其中正确的结论有( )A .1个B .2个C .3个D .4个22.若二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M(x 0,y 0)在x 轴下方,则下列判断正确的是( )A .a>0B .b 2-4ac≥0C .x 1<x 0<x 2D .a(x 0-x 1)(x 0-x 2)<023.二次函数y =ax 2+bx +c 的图象所示,下列五个代数式ab ,ac ,a -b +c ,b 2-4ac ,2a +b 中,值大于0的有( ) A .5个 B .4个 C .3个 D .2个24.如图,已知二次函数y =ax 2+bx +c 的图象与x 轴交于点A(-1,0),对称轴为直线x =1,与y 轴的交点B 在点(0,2)和(0,3)之间(包括这两点).有下列结论:①当x >3时,y <0;②3a+b <0;③-1≤a≤-23;④4ac-b 2>8a.其中正确的结论是( )A .①③④B .①②③C .①②④D .①②③④25.某国家足球队在某次训练中,一名队员在距离球门12米处挑射,正好射中了2.4米高的球门横梁,若足球运动的路线是抛物线y =ax 2+bx +c(如图4-ZT -8),有下列结论:①a<-160;②-160<a<0;③a-b +c>0;④a<b<-12a.其中正确的是( )A .①③B .①④C .②③D .②④26.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC.则下列结论:①abc<0;②b 2-4ac 4a >0;③ac -b +1=0;④OA·OB=-ca.其中正确的结论有( )A .4个B .3个C .2个D .1个27.如图是二次函数y 1=ax 2+bx +c 图象的一部分,抛物线的顶点为A(1,3),与x 轴的一个交点为B(4,0),直线y 2=mx +n(m≠0)与抛物线交于A ,B 两点.有下列结论:①2a+b =0;②abc>0;③方程ax 2+bx +c =3(a≠0)有两个相等的实数根;④抛物线与x 轴的另一个交点的坐标是(-1,0);⑤当1<x <4时,有y 2<y 1.其中正确的是( )A .①②③B .①③④C .①③⑤D .②④⑤28.二次函数y =ax 2+bx +c 的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴交于负半轴.有以下四个结论:①abc<0;②2a +b>0;③a+c =1,④a>1.其中正确结论的序号是__________.29.如图4-ZT-12,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是________.(写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.30、二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b-2c|,Q=|2a-b|-|3b+2c|,则P,Q的大小关系是__________.31.二次函数y=ax2+bx+c的图象如图所示,若关于x的方程|ax2+bx+c|=k(k≠0)有两个不相等的实数根,求k的取值范围.1.(2014•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()2.(2014•仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()3.(2014•南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()4.(2014•襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()5.(2014•宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()6.(2014•莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()7.(2014•玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()8.(2014•乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()9.(2014•齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()根据二次函数的图象确定字母系数以及代数式的符号或数值的是( ) 1.二次函数y=ax2+bx+c的图象如图4-ZT-1所示,则下列关系式错误..A.a>0 B.c>0C.b2-4ac>0 D.a+b+c>0图4-ZT-12.[2016·枣庄] 已知二次函数y=ax2+bx+c的图象如图4-ZT-2所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac-b2<0.其中正确的结论有( )图4-ZT-2A.1个B.2个C.3个D.4个3.[2016·日照] 如图4-ZT-3是二次函数y=ax2+bx+c的图象,其对称轴为直线x=1,下列结论:①abc>0;②2a+b =0;③4a+2b +c <0;④若(-32,y 1),(103,y 2)是抛物线上两点,则y 1<y 2.其中结论正确的是( )A .①②B .②③C .②④D .①③④图4-ZT -34.抛物线y =ax 2+bx +c 的顶点为D(-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图4-ZT -4所示,有以下结论:①b 2-4ac <0;②a+b +c <0;③c-a =0;④一元二次方程ax 2+bx +c -2=0有两个相等的实数根.其中正确的结论有( )图4-ZT -4A .1个B .2个C .3个D .4个5.已知抛物线y =ax 2+bx +c 经过点(1,1)和(-1,0).下列结论:①a-b +c =0;②b 2>4ac ;③当a <0时,抛物线与x 轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为直线x =-14a .其中正确的结论有( )A .4个B .3个C .2个D .1个6.函数y =x 2+bx +c 与y =x 的图象如图4-ZT -5所示,有以下结论:①b 2-4c>0;②b +c +1=0;③3b+c +6=0;④当1<x<3时,x 2+(b -1)x +c<0.其中正确的结论有( )图4-ZT -5A .1个B .2个C .3个D .4个7.若二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M(x 0,y 0)在x 轴下方,则下列判断正确的是( )A .a>0B .b 2-4ac≥0C .x 1<x 0<x 2D .a(x 0-x 1)(x 0-x 2)<08.二次函数y =ax 2+bx +c 的图象如图4-ZT -6所示,下列五个代数式ab ,ac ,a -b +c ,b 2-4ac ,2a +b 中,值大于0的有( )A .5个B .4个C .3个D .2个图4-ZT -69.[2015·包头] 如图4-ZT -7,已知二次函数y =ax 2+bx +c 的图象与x 轴交于点A(-1,0),对称轴为直线x =1,与y 轴的交点B 在点(0,2)和(0,3)之间(包括这两点).有下列结论:①当x >3时,y <0;②3a+b <0;③-1≤a≤-23;④4ac-b 2>8a.其中正确的结论是( )图4-ZT -7A .①③④B .①②③C .①②④D .①②③④10.某国家足球队在某次训练中,一名队员在距离球门12米处挑射,正好射中了2.4米高的球门横梁,若足球运动的路线是抛物线y =ax 2+bx +c(如图4-ZT -8),有下列结论:①a<-160;②-160<a<0;③a-b +c>0;④a<b<-12a.其中正确的是( )A .①③B .①④C .②③D .②④图4-ZT -811.如图4-ZT -9,二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC.则下列结论:①abc<0;②b 2-4ac 4a >0;③ac -b +1=0;④OA·OB=-ca .其中正确的结论有( )图4-ZT -9A .4个B .3个C .2个D .1个12.[2015·日照] 如图4-ZT -10是二次函数y 1=ax 2+bx +c 图象的一部分,抛物线的顶点为A(1,3),与x 轴的一个交点为B(4,0),直线y 2=mx +n(m≠0)与抛物线交于A ,B 两点.有下列结论:①2a+b =0;②abc>0;③方程ax 2+bx +c =3(a≠0)有两个相等的实数根;④抛物线与x 轴的另一个交点的坐标是(-1,0);⑤当1<x <4时,有y 2<y 1.其中正确的是( )A .①②③B .①③④C .①③⑤D .②④⑤图4-ZT -1013.如图4-ZT -11,二次函数y =ax 2+bx +c 的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴交于负半轴.有以下四个结论:①abc<0;②2a +b>0;③a+c =1,④a>1.其中正确结论的序号是__________.图4-ZT -1114.[2015·岳阳] 如图4-ZT -12,已知抛物线y =ax 2+bx +c 与x 轴交于A ,B 两点,顶点C 的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y =a 1x 2+b 1x +c 1,则下列结论正确的是________.(写出所有正确结论的序号)①b >0;②a-b +c <0;③阴影部分的面积为4;④若c =-1,则b 2=4a.图4-ZT -1215.[2016·内江] 二次函数y =ax 2+bx +c 的图象如图4-ZT -13所示,且P =|2a +b|+|3b -2c|,Q =|2a -b|-|3b +2c|,则P ,Q 的大小关系是__________.图4-ZT -1316.二次函数y =ax 2+bx +c 的图象如图4-ZT -14所示,若关于x 的方程|ax 2+bx +c|=k(k ≠0)有两个不相等的实数根,求k 的取值范围.图4-ZT -14详解详析1.[答案] D2.[解析] C ∵二次函数y =ax 2+bx +c 的图象经过原点,∴c =0,∴abc =0,∴①正确.∵当x =1时,y <0,∴a +b +c <0,∴②不正确.∵抛物线开口向下,∴a <0.∵抛物线的对称轴是直线x =-32,∴-b 2a =-32,b <0,∴b =3a .又∵a <0,b <0,∴a >b ,∴③正确.∵二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,∴Δ>0,即b 2-4ac >0,∴4ac -b 2<0,∴④正确.综上,可得正确结论有3个:①③④.故选C.3.[解析] C ∵抛物线开口向下,∴a <0.∵抛物线的对称轴为直线x =-b2a =1,∴b =-2a >0.∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以①错误.∵b =-2a ,∴2a +b =0,所以②正确.∵抛物线与x 轴的一个交点的坐标为(-1,0),抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点的坐标为(3,0),∴当x =2时,y >0,∴4a +2b +c >0,所以③错误.∵点(-32,y 1)到对称轴的距离比点(103,y 2)到对称轴的距离远,∴y 1<y 2,所以④正确.故选C.4.[答案] B5.[解析] B ∵抛物线y =ax 2+bx +c 经过点(-1,0),∴a -b +c =0,故①正确; ∵抛物线y =ax 2+bx +c 经过点(1,1), ∴a +b +c =1. 又∵a -b +c =0,两式相加,得2(a +c )=1,a +c =12,两式相减,得2b =1,b =12.∵b 2-4ac =14-4a (12-a )=14-2a +4a 2=(2a -12)2,当2a -12=0,即a =14时,b 2-4ac =0,故②错误;当a <0时,∵b 2-4ac =(2a -12)2>0,∴抛物线y =ax 2+bx +c 与x 轴有两个交点,设另一个交点的横坐标为x , 则-1·x =c a =12-a a =12a -1,∴x =1-12a .∵a <0,∴-12a >0,∴x =1-12a>1,即抛物线与x 轴必有一个交点在点(1,0)的右侧,故③正确;抛物线的对称轴为直线x =-b 2a =-122a =-14a,故④正确.6.[答案] B7.[答案] D8.[解析] C 观察图象可知a >0,c <0,-b2a<0,∴b >0,∴2a +b >0,ab >0,ac <0. 当x =-1时,y <0, 即a -b +c <0.∵抛物线与x 轴有两个交点, ∴b 2-4ac >0.因此在所给代数式中,值大于0的有3个.9.[解析] B ①由抛物线的对称性可求得抛物线与x 轴另一个交点的坐标为(3,0),当x >3时,y <0,故①正确;②∵抛物线开口向下,∴a <0.∵x =-b2a=1,∴b =-2a ,∴3a +b =3a -2a =a <0,故②正确;③设抛物线的解析式为y =a (x +1)(x -3),则y =ax 2-2ax -3a , 令x =0,得y =-3a .∵抛物线与y 轴的交点B 在点(0,2)和(0,3)之间(包括这两点),∴2≤-3a ≤3. 解得-1≤a ≤-23,故③正确;④∵抛物线与y 轴的交点B 在点(0,2)和(0,3)之间(包括这两点),∴2≤c ≤3. 由4ac -b 2>8a ,得4ac -8a >b 2.∵a <0,∴c -2<b 24a,∴c -2<0,∴c <2,与2≤c ≤3矛盾,故④错误. 故选B.10.[解析] B 用排除法判定.易知c =2.4.把(12,0)代入y =ax 2+bx +c 中,可得144a +12b +2.4=0,即12a +15+b =0.由图象可知a <0,对称轴为直线x =-b 2a ,且0<-b2a<6,∴b >0,∴12a +15<0,∴a <-160,即①成立,②不成立,故不可能选C 与D.∵-b2a<6,∴b <-12a . ∵b >0,∴a <b <-12a ,④正确,而a -b +c 的取值不确定, ∴③不正确.故选B.11.[解析] B ∵抛物线开口向下,∴a <0. ∵抛物线的对称轴在y 轴的右侧,∴b >0. ∵抛物线与y 轴的交点在x 轴上方,∴c >0, ∴abc <0,故①正确;∵抛物线与x 轴有两个交点,∴Δ=b 2-4ac >0,而a <0,∴b 2-4ac4a<0,故②错误;∵C (0,c ),OA =OC ,∴A (-c ,0).把(-c ,0)代入y =ax 2+bx +c ,得ac 2-bc +c =0, ∴ac -b +1=0,故③正确; 设A (x 1,0),B (x 2,0),∵二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点, ∴x 1和x 2是方程ax 2+bx +c =0的两根, ∴x 1·x 2=c a,∴OA ·OB =-ca,故④正确.故选B.12.[解析] C ∵抛物线的顶点A的坐标为(1,3),∴抛物线的对称轴为直线x=-b2a=1,∴2a+b=0,故①正确;∵抛物线的开口向下,∴a<0,∴b=-2a>0.∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,故②错误;∵抛物线的顶点A的坐标为(1,3),∴当x=1时,二次函数有最大值3,∴方程ax2+bx+c=3(a≠0)有两个相等的实数根,故③正确;∵抛物线与x轴的一个交点为B(4,0),而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点的坐标为(-2,0),故④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B(4,0)两点,∴当1<x<4时,y2<y1,故⑤正确.故选C.13.[答案] ②③④[解析] 由抛物线的开口向上,得a>0.因为抛物线的对称轴在y轴的右侧,故a,b异号,从而知b<0.又由抛物线与y轴的负半轴相交,知c<0,故abc>0,①不正确;因为抛物线的对称轴在直线x=1的左侧,所以0<-b2a<1,因为a>0,所以-b<2a,所以2a+b>0,故②正确;因为抛物线经过点(1,0),(-1,2),所以有a+b+c=0,a-b+c=2,两式相加得a+c=1,故③正确;因为c=1-a<0,所以a>1,故④正确.所以正确的结论是②③④.14.[答案] ③④[解析] ∵抛物线开口向上,∴a>0.又∵对称轴为直线x=-b2a>0,∴b<0,∴结论①不正确;∵当x=-1时,y>0,∴a-b+c>0,∴结论②不正确;根据抛物线的对称性,可将阴影部分的面积进行转化,从而求得阴影部分的面积=2×2=4,∴结论③正确;∵4ac-b24a=-2,c=-1,∴b2=4a,∴结论④正确.综上,正确的结论是③④. 15.[答案] P>Q[解析]∵抛物线的开口向下,∴a<0.∵-b2a>0,∴b>0,∴2a-b<0.∵-b2a=1,∴b +2a =0.当x =-1时,y =a -b +c <0, ∴-12b -b +c <0,∴3b -2c >0.∵抛物线与y 轴的正半轴相交, ∴c >0,∴3b +2c >0, ∴P =3b -2c ,Q =b -2a -3b -2c =-2a -2b -2c ,∴Q -P =-2a -2b -2c -3b +2c =-2a -5b =-4b <0, ∴P >Q .故答案为P >Q .16.[解析] 先根据题意画出y =|ax 2+bx +c |的图象,即可得出|ax 2+bx +c |=k (k ≠0)有两个不相等的实数根时k 的取值范围.解:根据题意,得y =|ax 2+bx +c |的图象如图所示.由图象易知,若|ax 2+bx +c |=k (k ≠0)有两个不相等的实数根,则k >3.。