2017年秋季学期新版新人教版八年级数学上学期11.3、多边形及其内角和学案1

合集下载

八年级数学上册11.3多边形及其内角和学案(新人教版)

八年级数学上册11.3多边形及其内角和学案(新人教版)

八年级数学上册11.3多边形及其内角和学案(新人教版)11、3 多边形及其内角和一、学习目标1、掌握多边形的定义;多边形的内角和(n-2)180,外角和为360。

2、在学习过程中培养学生的推理能力和发散思维。

及化归思想的应用。

3、激发学生的学习情趣。

二、学习重难点多边形的内角和与外角和及其推理过程三、学习过程第一课时多边形的定义(一)构建新知1、阅读教材19~20页(1)由一些______首尾顺次相连的______图形叫做多边形。

(2)连接多边形_________的两个顶点的线段,叫做多边形的对角线。

(3)边数最少的多边形是______形。

(4)沿任意边切割分布于同侧的是______多边形;异侧的是______多边形。

(5)每个角都相等,每条边都相等的多边形叫_____多边形。

(二)合作学习1、观察多边形图形。

(1)用代数式表示n边形的对角线条数。

(2)用代数式n表示分成的三角形个数。

(三)课堂检查1、图中_____________________是凹多边形。

2、正三角形、正方形、正六边形都是大家熟悉的特殊多边形,它们有很多共同特征,请写出其中的两点:(1)__________;(2)____________。

3、如图所示,将多边形分割成三角形、图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出________个三角形。

4、一块四边形纸片,∠A与∠C都是直角,且AB=BC=6,如果AD+CD=10cm,这块纸片的面积是 ______。

5、若从多边形的某一顶点出发只能画五条对角线,则它是()A、五边形B、六边形C、七边形D、八边形6、过多边形的一个顶点的所有对角线的条数与这些对角线分多边形所得三角形的个数之和为xx,对否?请说出理由。

若对,是几边形?(四)学习评价(五)课后练习1、学习指要8~9页2、教材24~25页1题,8题第二课时多边形的内角和(一)构建新知1、阅读教材21~22页(1)三角形的内角和是_______;四边形的内角和是________。

人教版初中数学八年级上册11.3多边形与其内角和(教案)

人教版初中数学八年级上册11.3多边形与其内角和(教案)
举例:通过画图、分解多边形等方法,引导学生理解推导过程。
(2)运用多边形内角和解决实际问题:将理论知识应用于实际问题,需要学生具备一定的分析能力和运算技巧。
举例:针对多边形分割、组合等情形,指导学生运用内角和定理进行求解。
(3)多边形内角和与外角和的关系:理解多边形内角和与外角和的关系,有助于提高学生对几何图形的深入理解。
人教版初中数学八年级上册11.3多边形与其内角和(教案)
一、教学内容
人教版初中数学八年级上册11.3节,本节课将围绕多边形及其内角和展开教学。主要内容包括:
1.多边形的定义与性质,例如三角形的内角和定理。
2.多边形内角和的计算公式,即(n-2)×180°,其中n为多边形的边数。
3.通过实际操作,让学生理解并掌握多边形内角和的概念和计算方法。
4.解决与多边形内角和相关的实际问题,例如多边形分割、组合等情形。
5.培养学生运用多边形内角和定理进行几何推理和计算的能力。
本节课将结合教材内容,注重理论与实践相结合,提高学生对多边形内角和知识点的掌握和应用。
二、核心素养目标
本节课的核心素养目标主要包括以下方:1.培养学生的逻辑推理能力:通过多边形内角和定理的推导与应用,让学生理解几何图形之间的内在联系,提高逻辑推理和论证能力。
本节课将紧扣新教材要求,注重培养学生的学科核心素养,提高学生的综合素质。
三、教学难点与重点
1.教学重点
(1)多边形的定义及性质:理解多边形的组成要素,掌握多边形的基本性质,如三角形的内角和定理。
举例:强调三角形内角和为180°,四边形内角和为360°,引导学生发现多边形内角和与边数的关系。
(2)多边形内角和的计算公式:(n-2)×180°,其中n为多边形的边数。

教育最新2017学年八年级数学上册11.3多边形及其内角和第1课时教案新版新人教版

教育最新2017学年八年级数学上册11.3多边形及其内角和第1课时教案新版新人教版

11.3 多边形及其内角和(第1课时)教学目标1.了解多边形的有关概念,感悟类比方法的价值.2.使学生了解多边形的内角、外角等概念.3.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.教学重点与难点多边形内角和(外角和)公式的探索与证明过程.教学过程一、新课导入教师引导学生观察教材图11.3-1,从中找出几个由一些线段围成的图形.二、探究新知1.多边形的定义在同学讨论的基础上,老师给以总结,这些线段围成的图形有何特性?(1)它们在同一平面内.(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?明晰:在平面内,由一些线段首位顺次相接组成的图形叫做多边形.如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)2.多边形的边、顶点、内角和外角.多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.3.多边形的对角线连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.让学生画出五边形的所有对角线.提示:n边形(n≥3)从一个顶点可引出(n-3)条对角线,把n边形分割成(n-2)个三角形,共有对角线n(n-3)/2条.例如:十边形有________条对角线.在这里n=10,就可套用对角线条数公式n(n-3)/2=10(10-3)/2=35(条).4.凸多边形与凹多边形在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形.今后我们在习题、练习中提到的多边形都是凸多边形.5.正多边形由正方形的特征出发,得出正多边形的概念.各个角都相等,各条边都相等的多边形叫做正多边形.三、课堂小结1.了解多边形中的有关概念2.会求多边形的对角线条数3.知道凸多边形与正多边形的定义四、布置作业习题11.3 第1、2题.教学反思:。

八年级数学上册 第十一章 三角形11.3 多边形及其内角和11.3.1 多边形导学案(新版)新人教版

八年级数学上册 第十一章 三角形11.3 多边形及其内角和11.3.1 多边形导学案(新版)新人教版

一、新课导入1.导入课题:请同学们仔细观察下面的三个图形,它们给我们以由一些线段围成的图形的形象,这些图形叫做什么形呢?这节课我们就来学习多边形.2.学习目标:(1)能叙述多边形、多边形的内角、外角和对角线的意义.(2)知道什么是凸多边形和正多边形.3.学习重、难点:重点:多边形及其有关的概念.难点:多边形的边的特征.二、分层学习1.自学指导:(1)自学内容:教材第19页的内容.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,可以结合下面的自学参考提纲学习,通过观察、比较,初步建立边的概念,初步认识四边形、五边形、六边形等平面图形,理解多边形、多边形的内角及其外角的定义.(4)自学参考提纲:①认识多边形a.回忆三角形的概念,说说多边形的概念.在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.b.下面这些图形分别是几边形?五边形六边形八边形如果一个多边形由n条线段组成,那么这个多边形就叫做n边形.②认识多边形的内角、外角多边形的内角是多边形相邻两边组成的角,多边形的外角是多边形的边与它的邻边的延长线组成的角,指出图2中多边形ABCDEF的外角∠1,∠2,∠3,∠4,∠5,∠6.③列举出我们生活中见到的多边形.2.自学:同学们可参照自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:在日常生活中,学生接触的多边形比较多,本层次的内容学生能够很快掌握.②差异指导:引导学生列举出生活中的多边形.(2)生助生:学生之间相互交流学习的成果和困惑.4.强化:(1)多边形及其有关的角的概念.(2)练习:下列图形包含了哪些多边形?六边形四边形五边形和六边形1.自学指导:(1)自学内容:教材第20页内容.(2)自学时间:5分钟.(3)自学方法:认真阅读课本,抓住各个概念中的关键词.(4)自学参考提纲:①什么叫多边形的对角线?连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.②什么叫凸多边形?指出下列多边形哪些是凸多边形.画出多边形任何一条边所在直线,整个多边形都在这条直线的同一侧,这样的多边形叫做凸多边形.a,c,e是凸多边形.③什么叫正多边形?正多边形有什么特征?各个角都相等,各条边都相等的多边形叫做正多边形.正多边形各个角相等,各条边相等.④试从四边形、五边形、六边形中探究n边形的对角线条数m与边数n之间的关系.m=n(3)2n(n≥4)2.自学:同学们可参照自学指导进行自学.3.助学:(1)师助生:①明了学情:多边形的对角线比较多,一般学生会有疏漏,应注意了解.②差异指导:引导学生领会对角线的重要应用是它可以把多边形分为几个三角形,从而把多边形的问题转化为三角形的问题来解决.(2)生助生:学生之间相互交流帮助.4.强化:(1)多边形的对角线的定义,正多边形的定义.(2)练习:画出右图多边形的全部对角线.(3)完成教材第21页练习第2题.答:四边形的一条对角线将四边形分成2个三角形,从五边形的一个顶点出发,可以画出2条对角线,它们将五边形分成了三个三角形.三、评价1.学生自我评价(围绕三维目标):学生当众交谈自己的学习收获和困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成效和存在的不足进行点评.(2)纸笔评价:课堂评价检测3.教师自我评价(教学反思):学习本课时,可让学生先自主探索再合作交流,小组内、小组之间充分交流后概括所得结论,既巩固了三角形的知识,又用类比的方法引出多边形的有关概念,加深对本课时的学习.一、基础巩固(每小题10分,共50分)1.六边形的对角线共有(D)2.下列属于正多边形的是(B)3.从一个顶点出发的对角线,可以把十边形分成互不重叠的三角形的个数(B)4.四边形有2条对角线,五边形有5条对角线,十边形有35条对角线.5.十二边形共有54条对角线,过一个顶点可作9条对角线,可把十二边形分成10个三角形.二、综合应用(20分)6.某学校七年级六个班举行篮球比赛,比赛采用单循环积分制(即每个班都进行一次比赛).一共需要多少场比赛?解:一共需要15场比赛.如图:三、拓展延伸(30分)7.四边形中,过一个顶点可画一条对角线,共可画两条对角线;五边形中,过一个顶点可画两条对角线,共可画五条对角线;六边形中,过一个顶点可画三条对角线,共可画九条对角线,请从以上三种情况寻找一下规律,看一看多边形的边数和对角线之间有关系吗?如果有,请找出来.如果是n边形,可画多少条对角线呢?解:有关系,多边形对角线的条数等于边数与(边数-3)的乘积的12即n边形对角线的条数=n(3)2n.。

八年级数学上册第十一章三角形11.3多边形及其内角和11.3.2多边形的内角和学案新版新人教版

八年级数学上册第十一章三角形11.3多边形及其内角和11.3.2多边形的内角和学案新版新人教版

第十一章三角形11.3 多边形及其内角和11.3.2 多边形的内角和学习目标1.了解多边形的内角、外角等概念.2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.学习过程一、自主学习问题1:你知道三角形的内角和是多少度吗?问题2:你知道四边形的内角和是多少度吗?问题3:你是如何得到这个结论的?二、深化探究探究1:举一反三探索多边形的内角和问题1:如图,请你利用分割的方法探索六边形的内角和是多少度?问题3:通过填表,你知道多边形的内角和公式是什么了吗?问题4:回想正多边形的性质,你知道正多边形的每个内角是多少度吗?每个外角呢?为什么?探究2:合作探索多边形的外角和问题1:问题2:通过表格,你发现了什么规律?问题3:试证明你的结论.三、练习巩固练习1:判断.(1)当多边形边数增加时,它的内角和也随着增加.()(2)当多边形边数增加时,它的外角和也随着增加.()(3)三角形的外角和与八边形的外角和相等.()(4)从n边形一个顶点出发,可以引出(n-2)条对角线,得到(n-2)个三角形.()练习2:填空.(1)一个多边形的内角和为4 320°,则它的边数为.(2)五边形的内角和为,它的对角线有条.(3)一个多边形的每一个外角都等于30°,则这个多边形为边形.(4)一个多边形的每个内角都等于135°,则这个多边形为边形.(5)如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和增加.练习3:选择.(1)多边形的每个外角与它相邻内角的关系是()A.互为余角B.互为邻补角C.两个角相等D.外角大于内角(2)多边形的内角和为它的外角和的4倍,这个多边形是()A.八边形B.九边形C.十边形D.十一边形四、深化提高练习1:若n边形的n个内角与其一个外角的总和为1 350°,则n等于()A.6B.7C.8D.9练习2:n边形的n个内角中锐角最多有()A.1个B.2个C.3个D.4个,求这个多边形的边数.练习3:若一个多边形的每个外角都等于与其相邻的内角的12参考答案一、自主学习问题1:三角形的内角和等于180°.问题2:四边形的内角和等于360°.问题3:用量角器测量或剪下四个内角进行拼接,也可以借助辅助线把四边形分割成几个三角形,利用三角形的内角和求得四边形的内角和.如图所示:二、深化探究探究1:问题1:可以将六边形分割成三角形或四边形来解决,如图:故六边形的内角和等于720°.问题3:多边形的内角和等于(n-2)×180°.问题4:正多边形的每个内角都相等,每条边都相等.因为正多边形的每个内角都相等,所以它的每个外角也都相等.故正多边形的每个内角的度数是-2 180°,每个外角的度数是360°.探究2:合作探索多边形的外角和问题1:问题2:①多边形每增加一条边,内角和就增加180°;②多边形的外角和都是360°.问题3:①n边形的内角和等于(n-2)×180°, n+1)边形的内角和等于(n-2+1)×180°=(n-1)×180°,两图形内角和的差值为(n-1)×180°-(n-2)×180°=180°,所以n边形每增加一条边,内角和就增加180°;②n边形的一个内角与和它相邻的外角的和是180°,所以n边形所有内角和所有外角的和就是n×180°;因为n边形的内角和是(n-2)×180°,所以其外角和是n×180°-(n-2)×180°=360°.三、练习巩固练习1: 1 √(2)× 3 √(4)×练习2: 1 26; 2 540°5;(3)正十二;(4)正八; 5 180°0°.练习3:(1)B(2)C四、深化提高练习1:D.理由:①n个内角与其一个外角的总和必大于n边形的内角和,所以有(n-2 180°<1 350°,即n<9.5;②因为多边形的每一个外角都不会大于180°,所以就有(n-2 180°>1 350°-180°,即n>8.5;因为n是整数,所以n=9.练习2:C.理由:假设n边形的n个内角中有4个锐角,那么这4个锐角所对应的外角就是钝角,即大于90°.那这4个外角的和就要大于360°,这与多边形外角和等于360°矛盾,所以n边形的n个内角中最多有3个锐角.练习3:因为多边形的每个内角与其相邻的外角之和为180°,所以设外角为x度,则内角为2x度,则有x+2x=180,即x=60.所以这个多边形的每个外角都是60°.因为360°÷60°=6,所以这个多边形是六边形,有6条边.。

秋八年级数学上册 第十一章《三角形》11.3 多边形及其内角和 11.3.1 多边形教案 (新版)新

秋八年级数学上册 第十一章《三角形》11.3 多边形及其内角和 11.3.1 多边形教案 (新版)新

11.3多边形及其内角和11.3.1多边形◇教学目标◇【知识与技能】了解多边形的有关概念,理解正多边形和有关概念.【过程与方法】经历动手、作图等过程,进一步发展空间能力.【情感、态度与价值观】经历探索、归纳等过程,学会研究问题的方法.◇教学重难点◇【教学重点】了解多边形、内角、外角、对角线等数学概念以及凸多边形和正多边形的概念.【教学难点】多边形定义的准确理解.◇教学过程◇一、情境导入请同学们回忆一下三角形的概念,并尝试说明多边形的概念.二、合作探究探究点1多边形的概念典例1如图所示的图形中,属于多边形的有()A.3个B.4个C.5个D.6个[解析]根据多边形的定义:平面内不在同一条直线上的几条线段首尾顺次相接组成的图形叫做多边形.显然只有第一个、第二个、第五个是多边形.[答案]A变式训练如图,下列图形不是凸多边形的是()[答案]C探究点2正多边形的概念典例2我们知道各边都相等,各角都相等的多边形是正多边形,小明却说各边都相等的多边形就是正多边形,各角都相等的多边形也是正多边形,他的说法对吗?如果不对,你能举反例(画出相应图形)说明吗?[解析]他的说法错误.菱形各边相等,但不是正多边形.如图,菱形ABCD的四个角不相等,不是正多边形;矩形各个角相等,但四边不一定相等,不是正方形.探究点3多边形的剪切典例3若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为() A.14或15或16 B.15或16C.14或16D.15或16或17[解析]因为一个多边形截去一个角后,根据剪的角度、方式不同,多边形的边数可能增加了一条,也可能不变或减少了一条,依此即可解决问题.一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.[答案]A【技巧点拨】一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条.变式训练把一个四边形锯掉一个角,剩下的多边形是()A.三角形B.四边形C.五边形D.三角形或四边形或五边形[答案]D三、板书设计多边形多边形◇教学反思◇通过类比的数学思想,引导学生理解多边形的相关概念,引导学生自主探索多边形的边数与对角线的数量关系.教师应注重课堂小结,激发学生参与的主动性.。

人教版八年级数学上册11.3多边形内角和教学设计

人教版八年级数学上册11.3多边形内角和教学设计
人教版八年级数学上册11.3多边形内角和教学设计
一、教学目标
(一)知识与技能
1.了解多边形的定义,理解多边形内角和的概念。
2.学会推导多边形内角和的计算公式,并能灵活运用。
3.能够运用多边形内角和的知识,解决生活中的实际问题,如平面几何图形的拼接、镶嵌等。
(二)过程与方法
1.在自主探究中,引导学生通过观察、思考、总结,发现多边形内角和的计算规律。
2.对于计算题,要求列出完整的计算过程,注明关键步骤。
3.对于证明题,要求逻辑清晰,推理严谨,表述简洁。
4.对于探究题目,鼓励同学们积极思考,勇于尝试,培养解决问题的能力。
5.请家长协助监督,关注学生的学习进度,鼓励他们独立完成作业。
2.证明:任意凸四边形的内角和为360度。
3.结合生活实际,举例说明多边形内角和在生活中的应用,并简要阐述其原理。
4.自主学习:了解多边形的外角和定理,并尝试推导外角和的计算公式。
5.探究题目:一个凸多边形的每个外角都不小于60度,求证该多边形的边数不超过6。
作业要求:
1.请同学们认真完成作业,书写规范,保持卷面整洁。
3.强调多边形内角和计算公式:内角和= (n-2) × 180°,并解释公式中每个部分的含义。
4.通过示例,展示如何运用多边形内角和计算公式解决实际问题。
(三)学生小组讨论,500字
1.将学生分成若干小组,每组选择一个多边形,尝试运用刚学的内角ቤተ መጻሕፍቲ ባይዱ计算公式求解该多边形的内角和。
2.各小组讨论:如何将多边形分解成若干个三角形,以及如何利用三角形内角和的知识解决多边形内角和的问题。
3.教师巡回指导,参与学生的讨论,给予提示和鼓励,引导学生发现多边形内角和的计算规律。

八年级数学上册 11.3 多边形及其内角和 11.3.2 多边形的内角和教案 (新版)新人教版

八年级数学上册 11.3 多边形及其内角和 11.3.2 多边形的内角和教案 (新版)新人教版

八年级数学上册 11.3 多边形及其内角和 11.3.2 多边形的内角和教案(新版)新人教版一. 教材分析《新人教版八年级数学上册》第11.3节介绍了多边形及其内角和,11.3.2节主要讲解多边形的内角和。

本节内容是学生在学习了平面几何基本概念和三角形内角和的基础上,进一步探究多边形的内角和。

通过本节内容的学习,使学生掌握多边形的内角和定理,提高学生的逻辑思维能力和空间想象能力。

二. 学情分析八年级的学生已经掌握了平面几何的基本概念,对三角形的内角和有了一定的了解。

但多边形的内角和可能对学生来说较为抽象,因此,在教学过程中,需要引导学生从已知知识出发,逐步探究多边形的内角和。

三. 教学目标1.让学生理解多边形的内角和定理。

2.培养学生用数学知识解决实际问题的能力。

3.提高学生的逻辑思维能力和空间想象能力。

四. 教学重难点1.重点:掌握多边形的内角和定理。

2.难点:如何推导出多边形的内角和定理。

五. 教学方法采用问题驱动法、引导发现法、合作交流法等,让学生在探究中学习,培养学生的动手操作能力和思维能力。

六. 教学准备1.教学PPT。

2.教学素材(如多边形的图片)。

3.练习题。

七. 教学过程1.导入(5分钟)利用PPT展示一些多边形的图片,如正方形、矩形、三角形等,引导学生观察这些多边形的特点。

提问:你们知道这些多边形有多少个内角吗?让学生回顾三角形内角和的知识,为新课的学习做好铺垫。

2.呈现(10分钟)讲解多边形的内角和定理。

通过PPT展示多边形内角和定理的证明过程,引导学生理解并掌握定理。

同时,让学生思考如何运用定理解决实际问题。

3.操练(10分钟)让学生分组讨论,每组设计一个多边形,并计算其内角和。

学生可以利用纸张和直尺在课堂上进行实际操作,增强对多边形内角和定理的理解。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

题目可以包括计算多边形内角和、运用内角和定理解决实际问题等。

教师在旁边辅导,解答学生的疑问。

人教版八年级数学上册11.3《多边形的内角和》教学设计

人教版八年级数学上册11.3《多边形的内角和》教学设计
4.学会将多边形内角和的性质运用到实际问题中,培养学生的几何建模和解决问题的能力。
(三)情感态度与价值观
1.培养学生对几何图形的兴趣,激发学生学习数学的热情,增强学生的自信心和自主学习意识。
2.通过多边形内角和的学习,引导学生发现几何图形中的规律,培养学生对数学美的感知。
3.培养学生勇于探索、善于合作的精神,让学生体会到团队合作的力量。
2.解决实际问题中,如何将多边形内角和的性质灵活运用,培养学生的几何建模和解决问题的能力。
教学设想:
1.创设情境,引入新课
通过展示多边形的实物模型,引导学生观察、思考多边形内角和的特点,激发学生的学习兴趣,为新课的学习做好铺垫。
2.自主探究,合作交流
给学生提供自主探究的时间和空间,鼓励他们通过观察、画图、计算等方法,发现多边形内角和的计算规律。在此基础上,组织学生进行小组讨论,交流各自的想法和发现,共同推导出多边形内角和的计算公式。
人教版八年级数学上册11.3《多边形的内角和》教学设计
一、教学目标
(一)知识与技能
1.理解多边形内角和的概念,掌握多边形内角和的计算公式,能够准确计算出任意多边形的内角和。
2.学会运用多边形内角和的性质解决实际问题,如平面图形的镶嵌、角度分配等。
3.能够运用多边形内角和的性质推导出多边形外角和的性质,理解内外角之间的关系。
(2)思考:如何运用多边形内角和的性质判断一个图形是否为凸多边形?
作业要求:
1.认真完成作业,注意解题过程和书写规范。
2.遇到问题要积极思考,可以与同学讨论,也可以向老师请教。
3.作业完成后,认真检查,确保答案正确。
八年级学生对几何图形有一定的认识和了解,具备基本的几何知识和技能。在此基础上,他们对多边形内角和的概念和性质已有初步的认识,但可能对内角和的计算和应用方面存在一定的困难。因此,在教学过程中,教师应充分了解学生的知识背景和认知特点,注意以下几点:

人教版数学八年级上册11.3多边形及其内角和教学设计

人教版数学八年级上册11.3多边形及其内角和教学设计
作业布置要求:
1.学生按时完成作业,确保作业质量。
2.家长督促学生完成作业,关注学生的学习进度。
3.教师认真批改作业,及时了解学生的学习情况,针对问题进行辅导。
4.学生遇到问题要主动请教同学或老师,积极解决困难。
2.情境导入:向学生展示一些生活中的多边形实物,如五角星、六边形的地砖等,引导学生观察这些多边形的特点,激发学生学习多边形的兴趣。
3.问题导入:提出问题:“我们已经知道三角形的内角和是180度,那么四边形的内角和是多少度呢?五边形、六边形呢?”引发学生思考,为新课的学习做好铺垫。
(二)讲授新知
1.多边形的定义与分类:讲解多边形的定义,即由三条以上的线段首尾相连围成的图形。根据边数,多边形可分为三角形、四边形、五边形、六边形等。
2.引导学生回顾学习过程,反思自己在小组讨论、课堂练习中的表现,总结学习方法和经验。
3.提醒学生加强对多边形性质的记忆,为后续学习打下基础。
4.鼓励学生将所学知识运用到生活中,发现数学的乐趣和价值。
五、作业布置
1.基础作业:请学生完成课本练习题11.3中的第1-10题,巩固多边形内角和、外角和及对角线性质的相关知识,提高解题能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:多边形的定义、分类、内角和、外角和及对角线性质。
2.难点:
(1)理解多边形的内角和定理,并能灵活运用到实际问题中;
(2)掌握多边形外角和的性质,解决与外角和相关的实际问题;
(3)运用对角线性质解决多边形相关问题,提高空间想象能力。
(二)教学设想
1.教学方法:
人教版数学八年级上册11.3多边形及其内角和教学设计
一、教学目标
(一)知识与技能

人教版数学八年级上册11.3.2多边形的内角和教案

人教版数学八年级上册11.3.2多边形的内角和教案
2.教材在学生已经知道三角形内角和等于180°,正方形、长方形的内角和都等于360°的基础上,以探究的方式引导学生任意四边形的内角和是否也等于360°?能否利用三角形的内角和证明四边形的内角和?问题的呈现符合学生的认知特点,从而达到让学生通过自己动手操作、观察分析、合作探究、思考交流获得知识和方法的目的,而不是直接告诉学生结论。
1.从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,进一步探索五边形,到六边形再到n边形,让学生体会多种分割形式,有利于深入领会转化的本质——四边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性。 通过交流,让学生用自己的语言清楚地表达解决问题的过程,可以提高语言表达能力。
五、教学重点及难点
教学重点:多边形内角和定理推导及运用。
教学难点:将多边形的内角和转化为三角形的内角和,找出它们之间的关系。
六、教学过程
教师活动
学生活动
设计意图
活动一:创设情境,引入新课
从生活中引入八卦图,如何求八卦图的内角和?引出主题。
提问:
1.三角形的内角和为__________.
2.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?
教师提出问题,从而引出本节重点:探索多边形的内角和。
学生思考并作答,并由教师评价
让学生感受数学来源生活,激发学生学习的兴趣。先回顾三角形、正方形和长方形的内角和,促使学生对新问题进行思考与猜想。
活动二:合作交流,探索新知
1.任意四边形的内角和也为360°?
教师提问,学生回答。
2.经过求任意四边形内角和的提示,让学生进一步探索任意五边形的内角和。
人教版八年级上第十一章 《三角形》 11.3多边形及其内角和

人教版数学八年级上册11.3.2多边形的内角和教学设计

人教版数学八年级上册11.3.2多边形的内角和教学设计
2.提出问题:引导学生思考多边形内角和与边数之间的关系,激发学生探索欲望。
3.过渡语:回顾已学的三角形、四边形的内角和性质,为新课的学习做好知识铺垫。
(二)讲授新知
1.演示与发现:利用多媒体课件或实物模型,展示多边形的内角和与边数之间的关系,引导学生发现规律。
2.推导公式:通过具体例子(如五边形、六边形等),引导学生总结多边形内角和的计算公式。
4.课后作业:布置适量的课后作业,巩固所学知识,提高学生运用能力。
五、作业布置
1.基础巩固题:完成课本第115页的练习题1、2、3,巩固多边形内角和的计算方法。
-练习题1:求解给定多边形的内角和;
-练习题2:根据多边形的内角和,判断多边形类型;
-练习题3:运用内角和性质解决实际问题。
2.提高拓展题:完成课本第116页的探究题,提高学生运用多边形内角和解决问题的能力。
-探究题:一个多边形的内角和是540度,求该多边形的边数。
3.实践应用题:结合生活中的实例,设计一道运用多边形内角和知识的问题,并解决问题。
-例如:一个正多边形的每个内角是120度,求该多边形的边数。
4.小组合作题:分组讨论,共同完成以下问题。
-讨论题1:多边形内角和与边数之间的关系;
-讨论题2:内角和公式在生活中的应用实例。
-利用多媒体课件或实物模型,帮助学生直观地理解多边形内角和与边数之间的关系。
-设置一些具有挑战性的问题,让学生在解决问题的过程中,逐步掌握内角和公式的运用。
-开展小组讨论,让学生在交流中相互启发,提高解决问题的能力。
四、教学内容与过程
(一)导入新课
1.创设情境:通过展示生活中的多边形实物,如五角星、六边形的地板砖等,引发学生对多边形内角和的好奇心。

人教版数学八年级上册教学设计《11-3多边形及其内角和》(第1课时)

人教版数学八年级上册教学设计《11-3多边形及其内角和》(第1课时)

人教版数学八年级上册教学设计《11-3多边形及其内角和》(第1课时)一. 教材分析《11-3多边形及其内角和》是人教版数学八年级上册的教学内容。

本节课主要让学生掌握多边形的内角和公式,并能够运用该公式解决实际问题。

教材通过引入多边形的概念,引导学生探究多边形的内角和,从而得出结论。

教材内容安排合理,由浅入深,有利于学生掌握知识。

二. 学情分析八年级的学生已经学习了平面几何的基本知识,对图形的认识有一定的基础。

但是,多边形的内角和公式的推导过程较为复杂,需要学生具有较强的逻辑思维能力和动手操作能力。

在导入环节,可以利用学生已有的知识,激发他们的学习兴趣。

三. 教学目标1.知识与技能:使学生掌握多边形的内角和公式,能够运用该公式解决实际问题。

2.过程与方法:通过观察、操作、推理等过程,培养学生的逻辑思维能力和动手操作能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探究、合作交流的良好学习习惯。

四. 教学重难点1.重点:多边形的内角和公式。

2.难点:多边形内角和公式的推导过程。

五. 教学方法1.引导法:教师引导学生观察、思考、操作,激发学生的学习兴趣,培养学生独立解决问题的能力。

2.合作交流法:学生在小组内进行讨论、交流,分享学习心得,培养团队协作精神。

3.实践操作法:学生动手操作,直观地感受多边形的内角和,提高动手能力。

六. 教学准备1.教学课件:制作多媒体课件,包括图片、动画等,帮助学生形象地理解知识。

2.学习素材:准备一些多边形的图片,供学生观察和操作。

3.教学用具:准备一些硬纸板,让学生动手剪拼多边形。

七. 教学过程1.导入(5分钟)利用学生已知的四边形和三角形的内角和知识,引导学生思考:多边形的内角和与边数有什么关系?通过提问,激发学生的学习兴趣。

2.呈现(10分钟)展示多边形的图片,让学生观察并思考:这些多边形的内角和分别是多少?引导学生发现多边形内角和的规律。

3.操练(10分钟)学生分组进行讨论,每组选择一个多边形,用硬纸板剪拼出该多边形,并计算其内角和。

八年级数学上册 11.3 多边形及其内角和教案 新人教版

八年级数学上册 11.3 多边形及其内角和教案 新人教版


探究题:小明有一个设想:2008年奥运会在北京召开,他设计一个内角和是2008°的多边形图案多有意义,小明的想法能实现吗?
教学
后记
教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和。
二、探究五边形的内角和
三、归纳探究n边形的内角和
根据以上分割三角形的方法,引导学生归纳n边形内角和公式及不同公式间的联系,指明为了书写整齐,便于记忆,我们选择(n-2)·180°这个公式。
四、多边形的外角和公式:
A
B C
课题:多边形的内角和与外角和
教师提问,学生思考作答。
教师总结:三角形的内角和等于180°。
情境
导入
问题:你知道任意一个四边形的内角和是多少吗
学生猜想,引入课题




一、探究四边形的内角和
A D
B C
教师汇总学生所探索出的不同方法,除测量与拼凑法外,并提出疑问:你们添加辅助线的目的是什么?说一说你的想法。
小明家有一张六边形的地毯,小明绕各顶点走了一圈,回到起点A,他的身体旋转了多少度?
例:六边形外角和等于多少度?
E 4 D
5
F 3 C
6
2
A 1 B
问题2:n边形外角和等于多少度?
n边形外角和等于360°
1、学生分小组交流与探究,进一步来论证自己的猜想。
2、由各小组成员汇报探索的思路与方法,讲明理由。
情感态度与价值观:通过学生间交流、探索,进一步激发学生的学习热情,求知欲望,养成良好的数学思维品质。
重点
难点
重点:探索多边形的内角和及外角和公式
难点:如何把多边形转化成三角形,用分割多边形法推导多边形的内角和与外角和。

人教初中数学八年级上册 11.3 多边形及其内角和教案

人教初中数学八年级上册  11.3 多边形及其内角和教案

11.3多边形及其内角和教学目标知识与技能观察生活中大量的图片,认识一些简单的几何体(四边形、五边形),了解多边形及其内角、对角线等数学概念过程与方法能由实物中辨别寻找出几何图形,由几何图形联想或设计一些实物形状,丰富学生对几何图形的感性认识情感态度价值观了解类比这种重要的数学学习方法,体验生活中处处有数学的道理.教学重点了解多边形、内角、外角、对角线等数学概念以及凸多边形的形状的辨别。

教学难点正多边形的正确理解以及凸多边形的辨别。

教学准备教师:多媒体课件(某几个重点教学片段使用)、三角尺。

教学过程(师生活动)设计理念引入新课复习:1.什么是三角形?怎样表示?2.什么是三角形的边,角以及外角?图片观赏:你能从图中找出几个由一些线段围成的图形吗?学生回答,相互补充,教师点明本节课题.利用现实生活情境吸引学生尽快投入到数学课堂中来。

让学生们观察、回答、补充,既能体现主体性,又能较自然地过渡到新课教学中来。

新知探究这些线段围成的图形有何特性?【(1)它们在同一平面内.(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.】这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?你能仿照三角形的定义给多边形定义吗?归纳:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫运用类比方法学习新知识,便于发现新旧知识的异同点,同时完做几边形.)明确概念:1.多边形相邻两边组成的角叫做多边形的内角2.多边形的边与它的邻边的延长线组成的角叫做多边形的外角.3.多边形的对角线连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.让学生画出五边形的所有对角线.4.凸多边形与凹多边形在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.5.正多边形由正方形的特征出发,得出正多边形的概念.各个角都相等,各条边都相等的多边形叫做正多边形.善学生的认知结构。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.3多边形及其内角和
学习目标
1、认识一些简单的几何体(四边形、五边形);
2、了解多边形及其内角、对角线等数学概念.
学习重点:了解多边形、内角、外角、对角线等数学概念以及凸多边形的形状的辨别学习难点:凸多边形的辨别.
学习过程:
一、学习准备
1.什么是三角形?怎样表示?
2.什么是三角形的边,角以及外角
二、合作探究
1. 你能从图中找出几个由一些线段围成的图形吗?
这些线段围成的图形有何特性?
2. 仿照三角形的定义给多边形下定义
在平面内,由一些线段组成的图形叫做多边形.
思考:为什么要说“在平面内”?
3.相关概念:
多边形的边与组成的角叫做多边形的外角.
连接多边形的两个顶点的线段,叫做多边形的对角线.
4.正多边形的定义
. 相等,都相等的多边形叫做正多边形.请写出下面正多边形的名称
三、巩固练习
1.课本P21练习1.
2. 课本P21练习2.
四、课堂小结
1.通过本节课的学习,你有什么收获?
2.你还有什么疑问?
五、当堂清
一、判断题.
1.由四条线段首尾顺次相接组成的图形叫四边形.()
2.由不在同一直线上的四条线段首尾顺次相接组成的图形叫四边形.()
3.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()
二、填空题.
4.从n边形的一个顶点可以引条对角线,它们把n边形分成个三角形
5.多边形的任何所在的直线,整个多边形都在这条直线的,这样的多边形叫凸多边形.
6.各个角,各条边的多边形,叫正多边形.
三、解答题.
7.画出图(1)中的六边形ABCDEF的所有对角线.
8.如图(2),O为四边形ABCD内一点,连接OA、OB、OC、OD可以得几个三角形?它与边数有何关系? 9.如图(3),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系? 4.如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?
参考答案:1.× 2.× 3.√ 4. n-3, n-2
5.一条边,同一侧
6.相等相等
7.略
8. 可以得4个三角形,它与边数相等 9. 可以得4个三角形,它比边数少1
10. 可以得4个三角形,它比边数少2
七、学习反思。

相关文档
最新文档