高中数学_3[1].3.2_简单的线性规划问题课件1_新人教A版必修5

合集下载

高中数学 3.3.2简单的线性规划问题课件 新人教A版必修5

高中数学 3.3.2简单的线性规划问题课件 新人教A版必修5

(1)z=x2+(y-5)2 表示可行域内任一点(x,y)到达点 M(0,5)的
距离的平方,过 M(0,5)的距离的平方,过 M 作 AC 的垂线,易知 栏

垂足 N 在 AC 上,故


MN= 1|+0-(5-+21)| 2= 32=322.
MN2=3
2
22=92,故
z
的最小值为29.
完整版ppt
完整版ppt
5
解析:作出不等式组表示的平面区域(即可行域).
(1)将 w=x+2y 变形为 y=-12x+w2,得到斜率为-12,在 y 轴上
截距为w2的一簇随 w 变化的平行直线,作过原点的直线 y=-12x,由

图 1 可知,当平移此直线过点(0,2)时,直线在 y 轴上的截距w2最大,目链

目 链

点评:由题目可获得以下主要信息:在约束条件下,
①求 z=x2+y2-10y+25=x2+(y-5)2 的最小值;②求 z=2xy++11
=2·x-y-(--121) 的取值范围.解答本题可先将目标函数变形找到它的
几何意义,再利用解析几何完知整识版求pp最t 值.
11
解析:作出可行域,如图 A(1,3),B(3,1),C(7,9).
9
把 z=2x+y 变形为 y=-2x+z,得到斜率为-2,在 y 轴上的
截距为 z,随 z 变化的一簇平行直线.
由图可以看出,当直线 z=2x+y 经过可行域上的点 A 时,截距 栏
z 最大,经过点 B 时,截距 z 最小.
目 链
解方程组x3-x+4y5+y-3=25=0,0,得 A 点坐标为(5,2).
范围是( )

新课标人教A版数学必修5全部课件:简单的线性规划(二)

新课标人教A版数学必修5全部课件:简单的线性规划(二)
2012-10-1 新疆奎屯市第一高级中学 王新敞
可行域
(5,2)
(1,1)
线性规划
例1 解下列线性规划问题: 求z=2x+y的最大值和最小值,使式中x、y满足下 列条件: 2x+y=0 y
解线性规划问题的一般步骤:
2x+y=-3 y x 1 1 第一步:在平面直角坐标系中作出可行域; C( , ) 2 2 第二步:在可行域内找到最优解所对应的点; x y 1 O y 1 第三步:解方程的最优解,从而求出目标函数 B(2,-1)
探索结论
新疆奎屯市第一高级中学 王新敞 2012-10-1
复习判断二元一次不等式表示哪一 侧平面区域的方法
由于对在直线ax+by+c=0同 一侧所有点(x,y),把它的坐标 (x,y)代入ax+by+c,所得的实 数的符号都相同,故只需在这条 直线的某一侧取一特殊点(x0,y0) 以ax0+by0+c的正负的情况便可 判断ax+by+c>0表示这一直线 哪一侧的平面区域,特殊地,当 c≠0时常把原点作为此特殊点
2012-10-1
新疆奎屯市第一高级中学 王新敞
探索结论
线性规划
作业:P64 习题 7.4
2
2012-10-1
新疆奎屯市第一高级中学 王新敞
探索结论
y
2x+y=300
2 x y 300 x 2 y 250 x 0 y 0
x+3y=0
A 125
300x+900y=112500
C x+2y=250 150 B 250
300x+900y=0

高中数学 第三章 不等式 3.3.2 简单的线性规划问题常

高中数学 第三章 不等式 3.3.2 简单的线性规划问题常

线性规划的常见题型及其解法线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.归纳起来常见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用.本节主要讲解线性规划的常见基础类题型.【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b,通过求直线的截距z b的最值,间接求出z 的最值.【解析】画出不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,表示的平面区域如图中阴影部分所示,由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-23x 知在点B 处目标函数取到最小值,解方程组⎩⎪⎨⎪⎧x +y =3,2x -y =3,得⎩⎪⎨⎪⎧ x =2,y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组⎩⎪⎨⎪⎧x -y =-1,2x -y =3,得⎩⎪⎨⎪⎧x =4,y =5,所以A (4,5),z max =2×4+3×5=23.【答案】A【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.点(x ,y )在不等式组表示的平面区域内,y 2x -1=12·y -0⎝ ⎛⎭⎪⎫x -12表示点(x ,y )和⎝ ⎛⎭⎪⎫12,0连线的斜率;x 2+y 2表示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2表示点(x ,y )和点(-3,2)的距离的平方.【解析】(1)由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =1,3x +5y -25=0,解得A ⎝⎛⎭⎪⎫1,225.由⎩⎪⎨⎪⎧ x =1,x -4y +3=0,解得C (1,1).由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2).∵z =y 2x -1=y -0x -12×12∴z 的值即是可行域中的点与⎝ ⎛⎭⎪⎫12,0连线的斜率,观察图形可知z min =2-05-12×12=29. (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29.∴2≤z ≤29.(3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中,d min =1-(-3)=4,d max =-3-2+-2=8∴16≤z ≤64.1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b ,通过求直线的截距z b的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =y cx -d ,z =ay -bx,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.【提醒】 注意转化的等价性及几何意义.角度一:求线性目标函数的最值1.(2014·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2【解析】作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8.【答案】B2.(2015·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .40【解析】作出约束条件对应的平面区域如图所示 ,当目标函数经过点(0,3)时,z 取得最大值18.【答案】C3.(2013·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )A .-6B .-2C .0D .2【解析】如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点(-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6.【答案】A角度二:求非线性目标的最值4.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12【解析】已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13.【解析】C5.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 .【解】由不等式组画出可行域如图中阴影部分所示,目标函数z =2x +y -1x -1=2+y +1x -1的取值范围可转化为点(x ,y )与(1,-1)所在直线的斜率加上2的取值范围,由图形知,A 点坐标为(2,1),则点(1,-1)与(2,1)所在直线的斜率为22+2,点(0,0)与(1,-1)所在直线的斜率为-1,所以z 的取值范围为(-∞,1]∪[22+4,+∞).【答案】(-∞,1]∪[22+4,+∞)6.(2015·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]【解析】如图所示,不等式组表示的平面区域是△ABC 的内部(含边界),x 2+y 2表示的是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围是[1,4].【答案】B7.(2013·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.【解析】作出可行域,如图中阴影部分所示,则根据图形可知,点B (1,0)到直线2x -y =0的距离最小,d =|2×1-0|22+1=255,故最小距离为255. 【答案】2558.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2【解析】不等式组⎩⎪⎨⎪⎧x ≥1x -2y +3≥0y ≥x,所表示的平面区域如图所示,解方程组⎩⎪⎨⎪⎧x =1y =x ,得⎩⎪⎨⎪⎧x =1y =1.点A (1,1)到直线3x -4y -9=0的距离d =|3-4-9|5=2,则|AB |的最小值为4.【答案】B角度三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A .73 B .37 C .43D .34【解析】不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73.【解析】A10.(2014·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-12【解析】D 作出线性约束条件⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0的可行域.当k >0时,如图①所示,此时可行域为y 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.当-1<k <0时,如图②所示,此时可行域为点A (2,0),B ⎝ ⎛⎭⎪⎫-2k,0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ⎝ ⎛⎭⎪⎫-2k ,0时,有最小值,即-⎝ ⎛⎭⎪⎫-2k =-4⇒k =-12.【答案】D11.(2014·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A .12或-1 B .2或12C .2或1D .2或-1【解析】法一:由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B=z C >z A ,解得a =-1或a =2.法二:目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.【答案】D12.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]【解析】 由⎩⎪⎨⎪⎧x +y =s ,y +2x =4,得⎩⎪⎨⎪⎧x =4-s ,y =2s -4,,则交点为B (4-s,2s -4),y +2x =4与x 轴的交点为A (2,0),与y 轴的交点为C ′(0,4),x +y =s 与y 轴的交点为C (0,s ).作出当s =3和s =5时约束条件表示的平面区域,即可行域,如图(1)(2)中阴影部分所示.(1) (2)当3≤s <4时,可行域是四边形OABC 及其内部,此时,7≤z max <8; 当4≤s ≤5时,可行域是△OAC ′及其内部,此时,z max =8. 综上所述,可得目标函数z =3x +2y 的最大值的取值范围是[7,8]. 【答案】D13.(2015·通化一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.【解析】∵x +2y +3x +1=1+y +x +1,而y +1x +1表示过点(x ,y )与(-1,-1)连线的斜率,易知a >0, ∴可作出可行域,由题意知y +1x +1的最小值是14,即⎝ ⎛⎭⎪⎫y +1x +1min =0--3a --=13a +1=14⇒a =1.【答案】1角度四:线性规划的实际应用14.A ,B 两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.【解析】 设生产A 产品x 件,B 产品y 件,则x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y ≤11,x +3y ≤9,x ∈N ,y ∈N ,生产利润为z=300x +400y .画出可行域,如图中阴影部分(包含边界)内的整点,显然z =300x +400y 在点A 处取得最大值,由方程组⎩⎪⎨⎪⎧3x +y =11,x +3y =9,解得⎩⎪⎨⎪⎧x =3,y =2,则z max =300×3+400×2=1 700.故最大利润是1 700元.【答案】1 70015.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润w (元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【解析】(1)依题意每天生产的伞兵个数为100-x -y ,所以利润w =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为⎩⎪⎨⎪⎧5x +7y +-x -y ,100-x -y ≥0,x ≥0,y ≥0,x ,y ∈N .整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x ,y ∈N .目标函数为w =2x +3y +300. 作出可行域.如图所示:初始直线l 0:2x +3y =0,平移初始直线经过点A 时,w有最大值.由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.最优解为A (50,50),所以w max =550元.所以每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,最大利润为550元.一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)【解析】根据题意知(-9+2-a )·(12+12-a )<0.即(a +7)(a -24)<0,解得-7<a <24. 【答案】B2.(2015·临沂检测)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .3【解析】作出不等式组⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3表示的可行域(如图所示的△ABC 的边界及内部).平移直线z =x -y ,易知当直线z =x -y 经过点C (0,3)时,目标函数z =x -y 取得最小值,即z min =-3.【答案】A3.(2015·泉州质检)已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .2【解析】如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.【答案】D4.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎢⎡⎦⎥⎤53,5B .[0,5]C .⎣⎢⎡⎭⎪⎫53,5D .⎣⎢⎡⎭⎪⎫-53,5 【解析】画出不等式组所表示的区域,如图阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是⎣⎢⎡⎭⎪⎫-53,5.【答案】D5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .0【解析】由题意知(6-8b +1)(3-4b +5)<0,即⎝ ⎛⎭⎪⎫b -78(b -2)<0,∴78<b <2,∴b 应取的整数为1.【答案】B6.(2014·郑州模拟)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)【解析】如图,根据题意得C (1+3,2).作直线-x +y =0,并向左上或右下平移,过点B (1,3)和C (1+3,2)时,z =-x +y 取范围的边界值,即-(1+3)+2<z <-1+3,∴z =-x +y 的取值范围是(1-3,2).【答案】A7.(2014·成都二诊)在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .1【解析】作出可行域如图所示,当点P 位于⎩⎪⎨⎪⎧x +y =2,y =1,的交点(1,1)时,(k OP )max =1.【答案】D8.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .14【解析】不等式⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0,所表示的可行域如图所示,设a =x +y ,b =x -y ,则此两目标函数的范围分别为a =x +y ∈[0,1],b =x -y ∈[-1,1],又a +b =2x ∈[0,2],a -b =2y ∈[0,2],∴点坐标(x +y ,x -y ),即点(a ,b )满足约束条件⎩⎪⎨⎪⎧0≤a ≤1,-1≤b ≤1,0≤a +b ≤2,0≤a -b ≤2,作出该不等式组所表示的可行域如图所示,由图示可得该可行域为一等腰直角三角形,其面积S =12×2×1=1.【答案】B9.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab 的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)【解析】作出不等式组表示的区域如图阴影部分所示,由图可知,z =ax +by (a >0,b >0)过点A (1,1)时取最大值,∴a +b =4,ab ≤⎝⎛⎭⎪⎫a +b 22=4,∵a >0,b >0,∴ab ∈(0,4].【答案】B10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π【解析】作出不等式组所表示的可行域如图中阴影部分所示,则根据图形可知,以AB 为直径的圆的面积的最大值S =π×⎝ ⎛⎭⎪⎫422=4π.【答案】D11.(2015·东北三校联考)变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}【解析】作出不等式组所表示的平面区域,如图所示.易知直线z =ax +y 与x -y =2或3x +y =14平行时取得最大值的最优解有无穷多个,即-a =1或-a =-3,∴a =-1或a =3.【答案】B12.(2014·新课标全国Ⅰ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a=( )A .-5B .3C .-5或3D .5或-3【解析】法一:联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,解得⎩⎪⎨⎪⎧x =a -12,y =a +12,代入x +ay =7中,解得a =3或-5,当a =-5时,z =x +ay 的最大值是7;当a =3时,z =x +ay 的最小值是7.法二:先画出可行域,然后根据图形结合选项求解.当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).图(1) 图(2)由⎩⎪⎨⎪⎧ x -y =-1,x +y =-5得交点A (-3,-2),则目标函数z =x -5y 过A 点时取得最大值.z max =-3-5×(-2)=7,不满足题意,排除A ,C 选项.当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分).由⎩⎪⎨⎪⎧x -y =-1,x +y =3得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值.z min =1+3×2=7,满足题意.【答案】B13.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12 B .π4C .1D .π2【解析】因为ax +by ≤1恒成立,则当x =0时,by ≤1恒成立,可得y ≤1b(b ≠0)恒成立,所以0≤b ≤1;同理0≤a ≤1.所以由点P (a ,b )所确定的平面区域是一个边长为1的正方形,面积为1.【答案】C14.(2013·高考北京卷)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎪⎫-∞,43B .⎝ ⎛⎭⎪⎫-∞,13C .⎝⎛⎭⎪⎫-∞,-23D .⎝⎛⎭⎪⎫-∞,-53【解析】当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m<-12m -1,解得m <-23.【答案】C15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)【解析】平面区域D 如图所示.要使指数函数y =a x的图象上存在区域D 上的点,所以1<a ≤3. 【解析】A16.(2014·高考福建卷)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49【解析】由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.【解析】C17.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k x --1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)【解析】已知直线y =k (x -1)-1过定点(1,-1),画出不等式组表示的可行域示意图,如图所示. 当直线y =k (x -1)-1位于y =-x 和x =1两条虚线之间时,表示的是一个三角形区域.所以直线y =k (x -1)-1的斜率的范围为(-∞,-1),即实数k 的取值范围是(-∞,-1).当直线y =k (x -1)-1与y =x 平行时不能形成三角形,不平行时,由题意可得k >1时,也可形成三角形,综上可知k <-1或k >1.【答案】D18.(2016·武邑中学期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .10【解析】区域如图所示,目标函数z =2x +y 在点A (3,2)处取得最大值,最大值为8.【答案】C19.(2016·衡水中学期末)当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-1【解析】画出可行域如图所示,目标函数z =x -3y 变形为y =x 3-z3,当直线过点C 时,z 取到最大值,又C (m ,m ),所以8=m -3m ,解得m =-4. 【答案】A20.(2016·湖州质检)已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan∠AOB 的最大值等于( )A .94 B .47 C .34D .12【解析】如图阴影部分为不等式组表示的平面区域,观察图形可知当A 为(1,2),B 为(2,1)时,tan ∠AOB 取得最大值,此时由于tan α=k BO =12,tan β=k AO =2,故tan ∠AOB =tan (β-α)=tan β-tan α1+tan βtan α=2-121+2×12=34. 【解析】C 二、填空题21.(2014·高考安徽卷)不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.【解析】作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.【答案】422.(2014·高考浙江卷)若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.【解析】作出可行域,如图,作直线x +y =0,向右上平移,过点B 时,x +y 取得最小值,过点A 时取得最大值.由B (1,0),A (2,1)得(x +y )min =1,(x +y )max =3.所以1≤x +y ≤3. 【答案】[1,3]23.(2015·重庆一诊)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.【解析】根据约束条件作出可行域,如图中阴影部分所示,∵z =3x -y ,∴y =3x -z ,当该直线经过点A (2,2)时,z 取得最大值,即z max =3×2-2=4.【答案】424.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.【解析】目标函数w =x 2+y 2-4x -4y +8=(x -2)2+(y -2)2,其几何意义是点(2,2)与可行域内的点的距离的平方.由实数x ,y 所满足的不等式组作出可行域如图中阴影部分所示,由图可知,点(2,2)到直线x +y -1=0的距离为其到可行域内点的距离的最小值,又|2+2-1|2=322,所以w min =92.【答案】9225.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.【解析】如图所示阴影部分为可行域,数形结合可知,原点O 到直线x +y -2=0的垂线段长是|OM |的最小值,∴|OM |min =|-2|12+12=2.【答案】 226.(2016·汉中二模)某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.【解析】设生产甲产品x 吨,生产乙产品y 吨,由题意知⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,利润z =5x +3y ,作出可行域如图中阴影部分所示,求出可行域边界上各端点的坐标,经验证知当x=3,y=4,即生产甲产品3吨,乙产品4吨时可获得最大利润27万元.【答案】2727.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩.【解析】设黄瓜和韭菜的种植面积分别为x亩,y亩,总利润为z万元,则目标函数为z=(0.55×4x-1.2x)+(0.3×6y-0.9y)=x+0.9y.线性约束条件为⎩⎪⎨⎪⎧x+y≤50,1.2x+0.9y≤54,x≥0,y≥0,即⎩⎪⎨⎪⎧x+y≤50,4x+3y≤180,x≥0,y≥0.画出可行域,如图所示.作出直线l0:x+0.9y=0,向上平移至过点A时,z取得最大值,由⎩⎪⎨⎪⎧x+y=50,4x+3y=180,解得A(30,20).【答案】3028.(2015·日照调研)若A为不等式组⎩⎪⎨⎪⎧x≤0,y≥0,y-x≤2表示的平面区域,则当a从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.【解析】平面区域A 如图所示,所求面积为S =12×2×2-12×22×22=2-14=74.【答案】7429.(2014·高考浙江卷)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.【解析】画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.【答案】⎣⎢⎡⎦⎥⎤1,3230.(2015·石家庄二检)已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.【解析】由目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,结合图形分析可知,直线kx +y =0的倾斜角为120°,于是有-k =tan 120°=-3,所以k =3.【答案】 331.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .【解析】变换目标函数为y =-1m x +z m ,由于m >1,所以-1<-1m<0,不等式组表示的平面区域如图中的阴影部分所示,根据目标函数的几何意义,只有直线y =-1m x +zm在y 轴上的截距最大时,目标函数取得最大值.显然在点A 处取得最大值,由y =mx ,x +y =1,得A ⎝ ⎛⎭⎪⎫11+m ,m 1+m ,所以目标函数的最大值z max=11+m +m 21+m<2,所以m 2-2m -1<0,解得1-2<m <1+2,故m 的取值范围是(1,1+2).【答案】(1,1+2)32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.【解析】不等式组表示的可行域如图中阴影部分(包括边界)所示,目标函数可变形为y =x -z ,当z 最小时,直线y =x -z 在y 轴上的截距最大.当z 的最小值为-1,即直线为y =x +1时,联立方程⎩⎪⎨⎪⎧y =x +1,y =2x -1,可得此时点A 的坐标为(2,3),此时m =2+3=5;当z 的最小值为-2,即直线为y =x +2时,联立方程⎩⎪⎨⎪⎧y =x +2,y =2x -1,可得此时点A 的坐标是(3,5),此时m =3+5=8.故m 的取值范围是[5,8].目标函数z =x -y 的最大值在点B (m -1,1)处取得,即z max =m -1-1=m -2,故目标函数的最大值的取值范围是[3,6].【答案】[3,6]33.(2013·高考广东卷)给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.【解析】线性区域为图中阴影部分,取得最小值时点为(0,1),最大值时点为(0,4),(1,3),(2,2),(3,1),(4,0),点(0,1)与(0,4),(1,3),(2,2),(3,1),(4,0)中的任何一个点都可以构成一条直线,共有5条 ,又(0,4),(1,3),(2,2),(3,1),(4,0)都在直线x +y =4上,故T 中的点共确定6条不同的直线. 【答案】634.(2011·湖北改编)已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.【解析】∵a =(x +z,3),b =(2,y -z ),且a ⊥b ,∴a ·b =2(x +z )+3(y -z )=0,即2x +3y -z =0.又|x |+|y |≤1表示的区域为图中阴影部分,∴当2x +3y -z =0过点B (0,-1)时,z min =-3,当2x +3y -z =0过点A (0,1)时,z min =3. ∴z ∈[-3,3]. 【答案】[-3,3]35.(2016·衡水中学模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.【解析】作出线性约束条件表示的平面区域,如图中阴影部分所示.若m =0,则z =x ,目标函数z =x +my 取得最小值的最优解只有一个,不符合题意. 若m ≠0,则目标函数z =x +my 可看作斜率为-1m 的动直线y =-1m x +zm,若m <0,则-1m>0,由数形结合知,使目标函数z =x +my 取得最小值的最优解不可能有无穷多个;若m >0,则-1m<0,数形结合可知,当动直线与直线AB 重合时,有无穷多个点(x ,y )在线段AB 上,使目标函数z =x +my 取得最小值,即-1m=-1,则m =1.综上可知,m =1. 【答案】1。

推荐高中数学必修5优质课件:简单的线性规划问题 精品

推荐高中数学必修5优质课件:简单的线性规划问题 精品
以u最大值=73,u最小值=0.
(2)v=x-y 5表示可行域内的点 P(x,y)到定点 D(5,0)的斜率, 由图可知,kBD 最大,kCD 最小,
又 C(3,8),B(3,-3), 所以 v 最大值=3--35=32, v 最小值=3-8 5=-4.
[类题通法] 非线性目标函数最值问题的求解方法

y x
表示点(x,y)与原点(0,0)连线的斜率;
y-b x-a
表示点(x,y)与
点(a,b)连线的斜率.这些代数式的几何意义能使所求问题得 以转化,往往是解决问题的关键.
[对点训练] 2.已知变量x,y满足约束条件
xx- ≥y1+,2≤0,
x+y-7≤0.

y x
的最
大值是________,最小值是________.
[对点训练] x-4y≤-3,
1.设 z=2x+y,变量 x、y 满足条件3x+5y≤25, x≥1,
求 z 的最大值和最小值.
[解] 作出不等式组表示的平面区域,即可行域,如图所示.把 z =2x+y 变形为 y=-2x+z,则得到斜率为-2,在 y 轴上的截距为 z, 且随 z 变化的一组
平行直线.由图可以看出,当 直线 z=2x+y 经过可行域上的点 A 时,截距 z 最大,经过点 B 时,截距 z 最小. 解方程组x3-x+4y5+y-3=250=,0, 得 A 点坐标为(5,2), 解方程组xx= -14,y+3=0, 得 B 点坐标为(1,1), ∴z 最大值=2×5+2=12,z 最小值=2×1+1=3.
[解析] 由约束条件作出可行域(如图所示),目标函数z=
y x
表示坐标(x,y)与原点(0,0)连线的斜率.由图可知,点C与O

【优化方案】2012高中数学 第3章3.3.2简单的线性规划问题课件 新人教A版必修5

【优化方案】2012高中数学 第3章3.3.2简单的线性规划问题课件 新人教A版必修5
3.3.2 简单的线性规划问题 .
学习目标 1.了解线性规划的意义. 了解线性规划的意义. 了解线性规划的意义 2.准确利用线性规划知识求解目标函数的最 . 值. 3.掌握线性规划在解决实际问题中的两种类 . 型.
3. 3.2 简 单 的 线 性 规 划 问 题
课前自主学案
课堂互动讲练
知能优化训练
例3
【 思 路 点 拨 设未知数, 设未知数,确定线性约束条件和目标函数 → 画出可行域和目标函数对应的初始直线 → 平移直线确定最优解 → 求目标函数的最大值
【解】 设需要预订满足要求的午餐和晚餐分

别为x个单位和 个单位 所花的费用为z元 别为 个单位和y个单位,所花的费用为 元, 个单位和 个单位, 则依题意, = 则依题意,得z=2.5x+4y,且x,y满足 + , , 满足
变式训练2 变式训练
某公司计划2010年在甲、乙两个电 年在甲、 某公司计划 年在甲
视台做总时间不超过300分钟的广告,广告总费 分钟的广告, 视台做总时间不超过 分钟的广告 用不超过9万元, 用不超过 万元,甲、乙电视台的广告收费标准 万元 分别为500元/分钟和 分钟和200元/分钟 假定甲、 分钟. 分别为500元/分钟和200元/分钟.假定甲、乙两 个电视台为该公司所做的每分钟广告, 个电视台为该公司所做的每分钟广告,能给公司 带来的收益分别为0.3万元和 万元 带来的收益分别为 万元和0.2万元.问该公司 万元和 万元. 如何分配甲、乙两个电视台的广告时间, 如何分配甲、乙两个电视台的广告时间,才能使 公司的收益最大.最大收益是多少万元? 公司的收益最大.最大收益是多少万元?
例1
(2010 年高考山东卷 设变量 x、y 满足约 年高考山东卷)设变量 、 则目标函数 z=3x-4y = - ) B.- ,- .-3,- .- ,-11 D.11,3 .

高中数学人教A版必修5第三章3.3.2简单的线性规划问题(二)课件

高中数学人教A版必修5第三章3.3.2简单的线性规划问题(二)课件

学段 初中 高中
硬件建设 班级学生数 配备教师数 万元
45
2
26/班
40
3
54/班
教师年薪 万元
2/人 2/人
分别用数学关系式和图形表示上述限制条件。若 根据有关部门的规定,初中每人每年可收学费1600 元,高中每人每年可收学费2700元。那么开设初中 班和高中班多少个?每年收费的学费总额最多?
解:设开设初中班x个,高中班y个。因办学规模以 20~30个班为宜,所以, 20≤x+y≤30
2x+y=15 x+y=12 x+2y=18
x 27
x+3y=27
当直线经过点A时z=x+y=11.4, 但它不是最优整数解. 作直线x+y=12
B(3,9)和C(4,8)在直线上,且在可行域内, 整点是B(3,9)和C(4,8),它们是最优解. 答(略)
{2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈N* y≥0 y∈N*
目标函数t = x+y
y 15
B(3,9)
9
C(4,8)
A(18/5,39/5)
打网格线法
x+y =0
2 1 0 12 78
x
18
27
作出直线 x+y=0,
2x+y=15
x+2y=18 x+3y=27
当直线经过点A时t=x+y=11.4,但它不是最优整数解,
在可行域内打出网格线, 将直线x+y=11.4继续向上平移,
7 x 7 y 5
14x 7 y 6
x
1 7
得M点的坐标为:

人教A版数学必修五3.《简单的线性规划问题》实用PPT优质课件

人教A版数学必修五3.《简单的线性规划问题》实用PPT优质课件
简单线性规划(二)
问题情景:
同学们闭上眼睛憧 憬一下未来,假如十 年后你是公司的生产 设计工程师,坐在宽 敞的办公室里,思考 着如何安排公司的生 产,你会考虑什么问 题呢?
问题探究:
若你负责下的某车间能生产甲、 乙两种产品,每天生产甲产品x吨, 乙产品y吨,由于生产设备和人员 的限制 ,每天生产两种产品的总 量不小于1吨,不大于3 吨,两种 产品的相差值不超过1吨.
人教A版数学必修五3.《简单的线性规 划问题 》实用 PPT优 质课件
探究猜想: (特殊---一般) 线性约束条件一定下, 目标函数 Z AxBy(A,B) 最优解的取得和什关么系有?为什么
(一般---特殊)
人教A版数学必修五3.《简单的线性规 划问题 》实用 PPT优 质课件
人教A版数学必修五3.《简单的线性规 划问题 》实用 PPT优 质课件
探究二:
变1:求z=x-2y,z的最大值和最优解?
人教A版数学必修五3.《简单的线性规 划问题 》实用 PPT优 质课件
人教A版数学必修五3.《简单的线性规 划问题 》实用 PPT优 质课件
探究二:
变1:求z=x-2y,z的最大值和最优解? 设问: 1、该点 相应的x2y等于多 少? 2、怎么求z 的值?
人教A版数学必修五3.《简单的线性规 划问题 》实用 PPT优 质课件
人教A版数学必修五3.《简单的线性规 划问题 》实用 PPT优 质课件
解题反思
人教A版数学必修五3.《简单的线性规 划问题 》实用 PPT优 质课件
人教A版数学必修五3.《简单的线性规 划问题 》实用 PPT优 质课件
求 Z Ax By ( A , B ) 最值的一般步骤?
人教A版数学必修五3.《简单的线性规 划问题 》实用 PPT优 质课件

人教A版高中数学必修五课件3.3.2简单的线性规划问题2.pptx

人教A版高中数学必修五课件3.3.2简单的线性规划问题2.pptx

5.已知线性目标函数 z=3x+2y,在线性约束条件
x+y-3≥0 2x-y≤0 y≤a
下取得最大值时的最优解只有一个,则实数 a
的取值范围是________.
x+y-3≥0
解析: 作出线性约束条件2x-y≤0
y≤a
表示的平面
区域,
如图中阴影部分所示.
• 因为取得最大值时的最优解只有一个,所以目 标函数对应的直线与平面区域的边界线不平行, 根据图形及直线的斜率,可得实数a的取值范 围是[2,+∞).
元.该企业在一个生产周期内消耗A原料不超过 13吨、B原料不超过18吨,那么该企业可获得最 大利润是( )
• A.12万元
B.20万元
• C.25万元D.27万元
解析: 设该企业在一个生产周期内各生产甲、乙产品
x、y 吨,获得利润 z 万元,根据题意,得
3x+y≤13
2x+3y≤18 x≥0
• (3)求:解方程组求最优解,进而求出目标函数的 最大值和最小值.
• [注意] 画可行域时,要特别注意可行域各边 的斜率与目标函数直线的斜率的大小关系,以 便准确判断最优解.
• 2.最优解的确定
• 最优解的确定可有两种方法:
• (1)将目标函数的直线平行移动,最先通过或 最后通过的顶点便是最优解.
交点 A(4,5)时,目标函数 z=200x+300y 取到最小值为 2 300
元,故所需租赁费最少为 2 300 元.
• 答案: 2300
• 2.某企业生产甲、乙两种产品,已知生产每吨 甲产品要用A原料3吨、B原料2吨;生产每吨乙产
品要用A原料1吨、B原料3吨.销售每吨甲产品可 获得利润5万元、每吨乙产品可获得利润3万
规格类型 钢板类型

高中数学 3.3.2简单的线性规划(一)新人教A版必修5

高中数学 3.3.2简单的线性规划(一)新人教A版必修5

3.3.2简单的线性规划【教学过程】 2.讲授新课1.引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么? (1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组:2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩ ……………………….(1) (2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。

(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为:当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少?把z=2x+3y 变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z的直线。

当z 变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(2833y x =-+),这说明,截距3z可以由平面内的一个点的坐标唯一确定。

可以看到,直线233zy x =-+与不等式组(1)的区域的交点满足不等式组(1),而且当截距3z最大时,z 取得最大值。

因此,问题可以转化为当直线233zy x =-+与不等式组(1)确定的平面区域有公共点时,在区域内找一个点P ,使直线经过点P 时截距3z最大。

(5)获得结果:由上图可以看出,当实现233zy x =-+经过直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z 的值最大,最大值为143,这时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元。

高中数学:3.3.3 线性规划的实际应用 课件新人教A版必修5

高中数学:3.3.3 线性规划的实际应用 课件新人教A版必修5

可行解 :满足线性约束条
件的解(x,y)叫可行解; 2x+y=3
2x+y=12
可行域 :由所有可行解组
成的集合叫做可行域;
最优解 :使目标函数取得 最大或最小值的可行解叫 线性规划问题的最优解。
可行域
(1,1)
(5,2)
7
复习线性规划
解线性规划问题的一般步骤: 第一步:在平面直角坐标系中作出可行域; 第二步:在可行域内找到最优解所对应的点; 第三步:解方程的最优解,从而求出目标函数 的最大值或最小值。
式x点+3400y组-1成>的0的平解面为区域坐。标不的点的 集 合等20{式( xa,x+yb)y|+xc+<0y表- 1示>的0 } 是
O
1
x+y-1<0
东部
西 北部 部 x
什么是1图0另形一?侧的平面区域。
x+y-1=0
0
第一季度
第二季度
第三季度
第四季度 探索结论
4
复习判断二元一次不等式表示哪一 侧平面区域的方法
新课标人教版课件系列
《高中数学》
必修5
1
3.3.3《线性规划的 实际应用》
审校:王伟
2
教学目标
❖ 1.知识目标: ❖ 会用线性规划的理论和方法解决一些较简单的实际问题; ❖ 2.能力目标:培养学生观察、分析、联想、以及作图的能力,渗透集合、
化归、数形结合的数学思想,培养学生自主探究意识,提高学生“建模” 和解决实际问题的能力; ❖ 3.情感目标:培养学生学习数学的兴趣和“用数学”的意识,激励学生 创新,鼓励学生讨论,学会沟通,培养团结协作精神. ❖ 教学重点:把实际问题转化成线性规划问题,即建模,并给出解答. ❖ 教学难点: ❖ 1.建立数学模型.把实际问题转化为线性规划问题; ❖ 2.寻找整点最优解的方法.

简单的线性规划问题(3) 高中数学必修五课件(共16张PPT)

简单的线性规划问题(3) 高中数学必修五课件(共16张PPT)
子需木工和漆工两道工序完成.木工做一张型 桌子分别需要1小时和2小时,漆工油漆一张型 桌子分别需要3小时和1小时;又知木工、漆工 每天工作分别不得超过8小时和9小时,而两类 型桌子分别获利润(lìrùn)2千元和3千元,试问
工利解润厂:(设每lìr每天ù天n应)生最生产大产A?型两桌类子x型 x2桌张y ,子 B 8型各, 桌多子少张y张,,每才天能所获
有可能(kěnéng)的日生产安排是什么?
按甲、乙两种产品分别(fēnbié)生产x、y件, 由条件可得二元一次不等式组
x+ 2 y 8
x 2y 8
4 4
x y
16 1
Z
x
0 ,x
Z
y 0 , y Z y 第三页,共16页。 0 , y Z
A.-2 B.-1 C.1 D.2
第十二页,共16页。
x y 20 探索2:不等式组xy20 ,所确定的平面区域为D,
2x y 20 若点(x,y)是区域D上的点,则2x+y的最大值是___; 若圆O:x2 y2 r2上的所有点都在区域D内,则圆O面积 的最大值是______.
第十三页,共16页。
【教学重点(zhòngdiǎn)】 用图解法解决简单的线性规划问题 【教学难点】 准确求得线性规划问题的最优解
第二页,共16页。
例1 某工厂用A、B两种配件生产甲、乙两种产品,每 生产一件甲产品使用4个A配件耗时1h,每生产一件乙产 品使用4个B配件耗时2h,该厂每天最多可从配厂获得 16个A配件和12个B配件,按每天工作8h计算,该厂所
探索3:设实数x,y满足不等式组1yx2y2x43, (1)求点(x,y)所在的平面区域; (2)设-1<a<0,在(1)所求的区域内,求函数f(x)=y-ax 的最大值和最小值.

人教A版高中数学必修5精品课件3-3-2简单的线性规划问题

人教A版高中数学必修5精品课件3-3-2简单的线性规划问题
【思路分析】 这是一类流传很广的题目,其常见的错误 解法是由f(1)、f(2)的范围,去求a,c的范围,连续多次运用同向 不等式相加这一性质,导致范围扩大.实际上,可以看做关于 a、c的线性规划问题.
第30页
第三章 3.3 3.3.2 第一课时
高考调研
新课标A版 ·数学 ·必修5
【解析】 由-4≤f(1)≤-1,得-4≤a-c≤-1.
A.-7 C.-5
B.-6 D.-3
第18页
第三章 3.3 3.3.2 第一课时
高考调研
【解析】
新课标A版 ·数学 ·必修5
第19页
第三章 3.3 3.3.2 第一课时
高考调研
新课标A版 ·数学 ·必修5
如图所示,约束条件所表示的区域为图中的阴影部分,而
目标函数可化为y=
2 3
x-
z 3
,先画出l0:y=
高考调研
新课标A版 ·数学 ·必修5
课后巩固
第35页
第三章 3.3 3.3.2 第一课时
高考调研
新课标A版 ·数学 ·必修5
x+2y≥2,
1.已知x、y满足3x≥x+0y,≥1, 则z=2x+y(
)
y≥0,
A.有最大值1
B.有最小值1
C.有最大值4
D.有最小值4
答案 B
第36页
第三章 3.3 3.3.2 第一课时
高考调研
Байду номын сангаас
新课标A版 ·数学 ·必修5
第三章 不等式
第1页
第三章 不等式
高考调研
新课标A版 ·数学 ·必修5
3.3 二元一次不等式(组)与简单的线性规划问题
第2页
第三章 不等式

高中数学人教A版·必修5:简单的线性规划问题(67张PPT)

高中数学人教A版·必修5:简单的线性规划问题(67张PPT)

新知初探
线性规划问题的有关概念: 1.线性约束条件:不等式组是一组对变量x,y的约 束条件, 这组约束条件都是关于x,y的 一次不等式 . 2.目标函数:欲达到最大值或最小值所涉及的变量 x,y的解析式是 线性目标函数,目标函数又是x,y的一次 解析式.
3.线性规划问题:在线性约束 条件下求线性目标函数 的 最大值或最小值问题. 4.可行解:满足线性约束条件的解(x,y). 由所有可行解组成的集合叫做可行域. 5.最优解:使目标函数取得 最大值或最小值 的可行 解. 6.通常最优解在可行域的 边界处或顶点处 取得.
(2)函数u=x2+y即为y=-x2+u,此函数图象是抛物 线,顶点(0,u)在y轴上移动; y+1 y+1 (3)t= 令我们想起了两点连线的斜率公式, = x +1 x+1 y--1 为两点(x,y)与(-1,-1)连线的斜率. x--1
[解]
画出不等式组
2x+y-2≥0 x-2y+4≥0 3x-y-3≤0 括边界及其内部.
表示的平面区域,如图为△ABC,包
(1)因为w=x2+y2=(x-0)2+(y-0)2,表示的是可行域 内的动点M(x,y)到原点距离的平方,可知当点M在边AC 上滑动,且OM⊥AC时,w取得最小值,于是wmin=d2= |0+0-2| 2 4 ( 2 2 ) = 5 ;当动点滑到与点B(2,3)重合时,取得最大 2 +1 值,即wmax=( 2-02+3-02)2=13, 4 故wmin=5,wmax=13.
2x+y=40 联பைடு நூலகம் x+2y=50,

x=10 y=20,
∴A(10,20). ∴z=3x+2y的最大值为z=3×10+2×20=70. 故选C.
答案:C

高中数学人教A版必修5第三章线性规划课件

高中数学人教A版必修5第三章线性规划课件

∴在a+点3Ab=处5/3有×最(a大+b值)-26/3,×在(a边-2界bB) C处有最小值 1 ;
B =∴(ma++3nb)a=+5(/3m×-2(na)+bb)-2/3×(a-2 b)
在解法点1A:由处待有定最系大数值法6:,设在边a+界3bB=Cm处(a有+b最)+小n(值a-21 b;)
由=(m图+形n)知a+:(m-1(-12/n3)1≤bz,≤12 )
延伸学习
y
如图所示,已知△ABC中的三顶点B(-1,2) A(2,4) ,B(-1,2),C(1,0),点P(x,y)在
A(2,4)
△ABC内部及边界运动,请你探究并
讨论以下问题:
0
x
C(1,0)
① z=x+y在_____处有最大值___,在____处有最小值____;
② z=x-y在___处有最大值____,在____处有最小值____;
目标函数为:z=a+3b ∵-1≤a+b≤1,1≤a-2 b≤3
D
O
A
P
C
B
a
由图形知:-11/3≤z≤1 即 -11/3≤a+3 b≤1
想一想
实数 x 、 y 满足
x y 2 0
x
2
y
5
0
y 2 0

z
xy x2
的最小值 y2
.
问题三:线性规划研究距离、斜率范围
2x y 2 0 2、已知 x 2 y 4 0则z x2 y2 的最大值
解 : 设 {则 { 2xy a 1、已知:-1≤a+b≤1,1≤a-2b≤3,求a+3b的取值范围。

高中数学人教A版必修5第三章简单线性规划ppt课件

高中数学人教A版必修5第三章简单线性规划ppt课件
下列条件:
3xx45yy235 x 1
求z的最大值与最小值。
线性约 束条件
可行域
y
x=1 C 3x+5y-25=0
B
A x-4y+3=0
O
x
有关概念
约束条件:由x、y的不等式(方程)构成的不等式组。
线性约束条件:约束条件中均为关于x、y的一次不等式或方程。
目标函数:欲求最值的Z关于x、y的解析式。
x≥1
y
2x-y=0
当z=0时,设直线 l0:2x-y=0 3x+5y=25
平移l0, 得l:y=2x-z,当l经过可行域上点A时,
C (1,4.4)
-z 最小,即z最大。
o 当l经过可行域上点C时,-z最大,x-4y=-3
即z最小。
B
x=1

(5,2)
x
由 x3-x+4y5=y=-235得A点坐标__(5_,_2_);由 x3=x1+5y=25得C点坐标_(_1_,_4_.4_)_;
线性目标函数:欲求最值的解析式是关于x、y的一次解析式。
-1 O 1 2 3 4
A
x-4y+3=0

3x+5y-25=0
56 7
x
zmin12252359l 0
-1
l2
同理,当直线取最小截距时,z有最大值
zmax5221
变题:若改为求z=3x+5y的最大值、最小值呢?
解:不等式组表示的平 面区域如图所示:
2 3
练习:
2x+3y≤24 设Z=x+3y,式中变量x、y满足下列条件 x - y ≤ 7 ,
求z的最大值和最小值。
y ≥0 y ≤6 x≥0

【高中数学人教A版必修】五3.《简单的线性规划问题》 课件

【高中数学人教A版必修】五3.《简单的线性规划问题》 课件

答:每天食用食物A为 1 kg,食物B为 4 kg,
7
7
能够满足日常饮食要求,又花费最低,
最低成本为16元.
高中数学人教A版必修五3.《简单的线 性规划 问题》 课件
高中数学人教A版必修五3.《简单的线 性规划 问题》 课件
归纳梳理
1.了解了线性规划问题中有关的基本概念; 2.会用图解法求线性目标函数的最大值和最小值; 3.体会数形结合和转化、划归的数学思想方法. 4.感受数学来源于生活,又服务于生活.
高中数学人教A版必修五3.《简单的线 性规划 问题》 课件
高中数学人教A版必修五3.《简单的线 性规划 问题》 课件
设工厂获得利润为z万元,则z=2x 3y.
把z=2x+3y变形为y= 2 x,
3
斜率为
2 ,在y轴上的截距为 3
z 3
的直线.
当z变化时,可以得到一组平行线.
解方程组
x=4 ,解得M(4,2). x+2 y=8
(1) 用x,y列出满足营养学家指出的日常饮食要求的 数学关系式,并画出平面区域;
(2) 在营养学家指出的日常饮食要求的情况下,该人 每天需要食用食物A和食物B各多少kg才能使花费最低, 最低花费是多少?
高中数学人教A版必修五3.《简单的线 性规划 问题》 课件
高中 2.若变量x,
y满足约束条件
x
y
0
,则z=x 2 y的最小值是( )
x y 2 0
A3
B1
C -3
D -4
高中数学人教A版必修五3.《简单的线 性规划 问题》 课件
高中数学人教A版必修五3.《简单的线 性规划 问题》 课件
课后作业
1.(教材93页习题3.3A组第3题) 电视台应某企业之约播放两套连续剧,其中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
________.
y , 则 的 最 大 值 是 ________ , 最 小 值 是 x
解析:由约束条件作出可行域 y (如图 5 所示),目标函数 z=x表示坐 标(x,y)与原点(0,0)连线的斜率.由 图可知,点 C 与 O 连线斜率最大;B 与 O 连线斜率最小,又 B 点坐标为 5 9 (2,2),C 点坐标为(1,6),所以 kOB 9 y = ,kOC=6.故 的最大值为 6,最小 5 x 9 值为5.
迁移变式4
某公司租赁甲、乙两种设备生产A,B两类产品,
甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天
能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为 200元,设备乙每天的租赁费为300元.现该公司至少要生产A类产 品50件,B类产品140件,所需租赁费最少为________元.
再次调整最优解: 36-4x 令 4x+3y=36,即 y= ,代入约束条件①,②,可解 3 2 得 0≤x≤4(x∈N). x=0 时, 当 y=12; x=1 时, 当 y=10 ; 3 1 2 当 x=2 时,y=93;当 x=3 时,y=8;当 x=4 时,y=63. 所以最优解为(0,12)和(3,8),这时 zmax′=36,zmax=1800. 所以应隔出小房间 12 间或大房间 3 间、小房间 8 间,可以 获得最大收益.
解析:如图3所示.
作出可行域,作直
线l0:x+y=0,平移l0, 当l0 过点A(2,0)时,z有最 小值2,无最大值. 答案:B
x-y+5≥0, [例 2] 设 x,y 满足条件x+y≥0, x≤3.
(1)求 u=x2+y2 的最大值与最小值; y (2)求 v= 的最大值与最小值. x-5
下的
最大值或最小值
的问题.
4.可行解:满足线性约束条件的解(x、y)
由所有可行解组成的集合叫做 可行域 .
5.最优解:使目标函数取得 最大值或最小值 时 的 可 行 解. 6.通常最优解在可行域的 边界处或顶点处 取得.
1.目标函数z=4x+y,将其看成直线方程时,z的几何意义
是 ( A.该直线的截距 B.该直线的纵截距 C.该直线的横截距 D.该直线的纵截距的相反数 )
第2课时
简单的线性规划问题
线性规划问题的有关概念: 1.线性约束条件:不等式组是一组对变量x、y的约束条件, 这组约束条件都是关于x、y的 一次不等式 .
2.目标函数:欲达到最大值或最小值所涉及的变量x、y的解
பைடு நூலகம்
析式是 线性目标函数 ,目标函数又是x、y的 一次 解析式.
3.线性规划问题:求线性目标函数在 线性约束 条 件
[解] 设隔出大房间 x 间,小房间 y 间,获得收 益为 z 元,则
18x+15y≤180, 1000x+600y≤8000, x≥0,y≥0,且x,y∈N, 6x+5y≤60,① 即5x+3y≤40,② x≥0,y≥0,且x,y∈N.
目标函数为 z=200x+150y, 画出可行域如右图 8 所示.
-4x+3y=12, 解方程组 4x+3y=36.
得 D 点坐标为(3,8)
∴zmax=2x+3y=30 z 当直线经过可行域上的点 B 时,截距3最小,即 z 最 小.由已知得 B(-3,-4) ∴zmin=2x+3y=2×(-3)+3×(-4)=-18. (2)同理可求 zmax=40,zmin=-9.
解析:把z=4x+y变形为y=-4x+z,则此方程为直线方程
的斜截式,所以z为该直线的纵截距.
答案:B
2.若
则目标函数z=x+2y的取值范围是
(
A.[2,6] C.[3,6] B.[2,5] D.[3,5]
)
解析:本题考查线性规划问题的图象解法.只需画出约束条 件对应的可行域,平移直线x+2y=0使之经过可行域,观察图形, 找出动直线纵截距最大时和最小时经过的点,然后计算可得答 案.
x-y=3, 解方程组 x+y=1,
得 B(2,-1),
所以 zmax=2×2-3×(-1)=7. 所以 2x-3y 的取值范围是[-5,7]
x≥-3, y≥-4, [例 1] 设 x,y 满足约束条件 -4x+3y≤12, 4x+3y≤36.
(1)求目标函数 z=2x+3y 的最小值与最大值; (2)求目标函数 z=3x-y 的最小值与最大值;
[例3]
已知变量x,y满足约束条件1≤x+y≤4,-2≤x-y≤2.若
目标函数z=ax+y(其中a>0)仅在点(3,1)处取得最大值,则a的取值
范围为________.
[分析] 由题目可获取以下主要信息:
①可行域已知;
②目标函数在(3,1)处取得最大值. 解答本题可利用逆向思维,数形结合求解.
[解]
作出直线 l:200x+150y=0,即直线 4x+3y=0.当 l 经过平移过可 20 60 行域上的点 A( , )时,z 有最大值,由于 A 的坐标不是整数, 7 7 又因为 x,y∈N,所以 A 不是最优解. 调整最优解: 37-4x 由 x,y∈N,知 z′=4x+3y≤37,令 4x+3y=37,即 y= , 3 5 代入约束条件①,②,可解得 ≤x≤2,由于 x∈N,得 x=2,但此 2 25 时 y= ∉N. 3
[点评]
(1)中z并不是直线2x+3y=z在y轴的截距,而是截距
的3倍,因此,直线过点B时, 最小,z最小.
(2)中z并不是直线3x-y=z在y轴的截距,而是截距的相反数, 过A(-3,0)截距最大而z值最小,注意不要搞反.
迁移变式1
设x,y满足
则z=x+y(
)
A.有最小值2,最大值3 B.有最小值2,无最大值 C.有最大值3,无最小值 D.既无最大值,也无最小值
[分析]
把所求问题赋给相关的几何意义,即圆与斜率.
[解]
画出满足条件的可行域如图4所示,
(1)x2 +y2 =u表示一组同心圆(圆心为原点O),且对同一圆上
的点x2+y2的值都相等,由图可知:当(x,y)在可行域内取值时,
当且仅当圆O过C点时,u最大,过(0,0)时,u最小.又C(3,8),所 以umax=73,umin=0.
x-y=0使之经过可行域,观察图形,找出动直线纵截距最大时和 最小时经过的点,然后计算可得答案. 答案:C
1 4.求 z= 3 x+2y 的最大值,使式子中的 x、y 满足
y≤x, 1 x+y≤1, 该问题中的不等式组叫做________,z=3x+2y y≥1.
叫做________.
x≥0 迁移变式 3 已知点 P(x, y)满足条件y≤x (k 2x+y+k≤0
为常数),若 x+3y 的最大值为 8,则 k=________.
解:作出可行域如图 7 所示, 作直线 l0:x+3y=0, 平移 l0 知当 l0 过点 A 时,x+3y 最大, k k 由于 A 点坐标为(-3,-3). k ∴-3-k=8,从而 k=-6.
[例4]
某人有楼房一幢,室内面积共180 m2,拟分隔成两类
房间作为旅游客房.大房间每间面积为18 m2,可住游客5名,每 名游客每天住宿费为40元;小房间每间15 m2,可住游客3名,每 名游客每天住宿费为50元;装修大房间每间需1000元,装修小房 间每间需600元.如果他只能筹款8000元用于装修,且游客能住满 客房,他应隔出大房间和小房间各多少间,才能获得最大收益?
3.寻找整点最优解的方法
(1)平移找解法:先打网格,描整点,平移直线l,最先经过
或最后经过的整点便是最优整点解,这种方法应充分利用非整点 最优解的信息,结合精确的作图才行,当可行域是有限区域且整 点个数又较少时,可逐个将整点坐标代入目标函数求值,经比较 求最优解. (2)调整优值法:先求非整点最优解及最优值,再借助不定方 程的知识调整最优值,最后筛选出整点最优解.
由约束条件画出可行域(如图6所示),为矩形ABCD(包
括边界).点C的坐标为(3,1),z最大时,即平移y=-ax时使直线在
y轴上的截距最大, ∴-a<kCD,即-a<-1,∴a>1.
[答案]
a>1
[评析]
这是一道线性规划的逆向思维问题.解答此类问题
必须要明确线性目标函数的最值一般在可行域的顶点或边界取得, 运用数形结合的思想方法求解.
解析:设需租赁甲种设备 x 台,乙种设备 y 台, 租赁费 z 元, 由题意得
5x+6y≥50 10x+20y≥140 , x,y≥0且x,y∈N
z=200x+300y. 作出如图 9 所示的可行域.
令z=0,得l0:2x+3y=0,
平移l0可知,当l0过点A时,z有最小值.
又由 得A点坐标为(4,5).
所以zmin=4×200+5×300=2300. 答案:2300
[分析]
求目标函数最大值或最小值的步骤:作可行域、画
平行线、解方程组、求最值.
[解] 作出可行域如图 2 (1)z=2x+3y 变形为 y=- x 3 z 2 +3,得到斜率为-3,在 y 轴上的截 z 距为3, z 变化的一族平行直线. 随 由 图可知, 当直线经过可行域上的点 D z 时,截距3最大,即 z 最大.
所表示的
平面区域(如图阴影部分所示),即可行域. 画出直线 2x-3y=0,并平移使之经过可行域,观察图形 可知,当直线经过点 A 时,直线的纵截距最大,此时 z 最 小.
x-y=-1, 解方程组 x+y=5,
得 A(2,3),
所以 zmin=2×2-3×3=-5. 当直线经过点 B 时, 直线的纵截距最小, 此时 z 最大.
解析:本题运用线性规划问题中的有关概念,即变量x,y的
一次不等式组称为问题的线性约束条件,研究最值的函数解析式
相关文档
最新文档