一元一次方程解数字问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【学习目标】
1.初步学习列一元一次方程解数字问题;
2.了解列方程解实际问题的一般步骤;
【学习重点】利用一元一次方程解决数字问题。
【学习难点】根据实际问题列方程求解。
课前自主学习(查阅教材和相关资料,完成下列内容)
考点一.数字问题
1.要搞清楚数的表示方法:
(1)一个二位数,十位数字是a,个位数字为b(其中a、b均为整数,且1≤a≤9,0≤b≤9)则这个二位数表示为.
(2)一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:.
2.数字问题中一些表示:两个连续整数之间的关系,较大的数比较小数的大;偶数用2N表示,连续的偶数用或表示;奇数用或表示。
学练提升
问题一:两位数问题
例1.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数.
分析:设十位上的数位x, 则个位上的数位, 这个两位数可表示为;对
调后的两位数为.
等量关系:
可列方程:
【规律总结】
【同步测控】
在解上面例1时,若设个位上的数为x,怎样解这个问题?观察结果你有什么发现?
问题二:三位数问题
例2. 一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上
的数是十位上的数的3倍,求这个三位数
[分析]由已知条件给出了百位和个位上的数的关系,若设十位上的数为x,则百位上的数为,个位上的数是;
等量关系为:
由此可列方程:
【规律总结】
【同步测控】
1. 一个三位数,它的个位上的数比百位上的数的3倍大1,它的十位上的数比百位上的数的4倍小3,如果把这个三位数的十位上的数与百位上的数对换,得到的三位数比原来的三位数大270,求原来的三位数。
2. 一个四位数,左边第一位数字是7,若把这个数字调到末位,得到的新数比原来四位数少864,求原来的数。
【规律总结】