第2讲 简单线性回归

合集下载

简单线性回归模型的公式和参数估计方法以及如何利用模型进行

简单线性回归模型的公式和参数估计方法以及如何利用模型进行

简单线性回归模型的公式和参数估计方法以及如何利用模型进行数据预测一、简单线性回归模型的公式及含义在统计学中,线性回归模型是一种用来分析两个变量之间关系的方法。

简单线性回归模型特指只有一个自变量和一个因变量的情况。

下面我们将介绍简单线性回归模型的公式以及各个参数的含义。

假设我们有一个自变量X和一个因变量Y,简单线性回归模型可以表示为:Y = α + βX + ε其中,Y表示因变量,X表示自变量,α表示截距项(即当X等于0时,Y的值),β表示斜率(即X每增加1单位时,Y的增加量),ε表示误差项,它表示模型无法解释的随机项。

通过对观测数据进行拟合,我们可以估计出α和β的值,从而建立起自变量和因变量之间的关系。

二、参数的估计方法为了求得模型中的参数α和β,我们需要采用适当的估计方法。

最常用的方法是最小二乘法。

最小二乘法的核心思想是将观测数据与模型的预测值之间的误差最小化。

具体来说,对于给定的一组观测数据(Xi,Yi),我们可以计算出模型的预测值Yi_hat:Yi_hat = α + βXi然后,我们计算每个观测值的预测误差ei:ei = Yi - Yi_hat最小二乘法就是要找到一组参数α和β,使得所有观测值的预测误差平方和最小:min Σei^2 = min Σ(Yi - α - βXi)^2通过对误差平方和进行求导,并令偏导数为0,可以得到参数α和β的估计值。

三、利用模型进行数据预测一旦我们估计出了简单线性回归模型中的参数α和β,就可以利用这个模型对未来的数据进行预测。

假设我们有一个新的自变量的取值X_new,那么根据模型,我们可以用以下公式计算对应的因变量的预测值Y_new_hat:Y_new_hat = α + βX_new这样,我们就可以利用模型来进行数据的预测了。

四、总结简单线性回归模型是一种分析两个变量关系的有效方法。

在模型中,参数α表示截距项,β表示斜率,通过最小二乘法估计这些参数的值。

简单线性回归模型 PPT课件

简单线性回归模型 PPT课件
• 我们可以通过写出关于y和x的一个方程来 消除这些疑惑。一个简单的方程是:
• y = b0 + b1x + u…………(2.1)
• 且假定方程(2.1)在我们所关注的某个总体 中成立,它定义了一个简单线性回归模型 (simple linear regression model)。因为它把 两个变量x和y联系起来,所以又把它叫做 两变量或者双变量线性回归模型。我们现 在来讨论等式(2.1)中每个量的含义。
• 在写出用x解释y的模型时,我们要面临三 个问题。
– 首先,既然两个变量之间没有一个确切的关系, 那么我们应该如何考虑其他影响y的因素呢? – 第二,y和x的函数关系是怎样的呢? – 第三,我们怎样知道是否抓住了在其他条件不 变的情况下y和x之间的关系(如果这是我们所 追求的目标的话)呢?
简单回归模型的定义
关于u和x的关系的关键性假定
• 需要一个关键假设来约定u和x之间 的关系。我们希望关于x的信息不会 透露关于u的任何信息,也就是说, 两者应该是完全无关的。
关于u和x的关系的关键性假定
• 因为u和x是随机变量,所以我们能够在任 何给定的x值下得到u的条件分布。具体地 说,对于任何一个x值,我们都能够在x的 值所描述的总体剖面上求得u的期望(或平 均)值。因此,一种好的方法是对给定x时 u的期望值作出假定。 • 故关键的假定是:u的平均值不依赖于x值。 也即: E(u|x) = E(u) = 0…… (2.6) • 也就意味着: E(y|x) = b0 + b1x
y ie ld b 1 fe r tiliz e r
• 例2.2 一个简单的工资方程 • 以下模型表示一个人的工资水平与他的可测教育水 平及其他非观测因素的关系:

第二章-简单线性回归模型-PPT精选文档

第二章-简单线性回归模型-PPT精选文档

经济变量之间的因果关系有两种
:确定性的因果关系与随机的因果关 系。前者可以表示为数学中的函数关 系,后者不能像函数关系那样比较精 确地描述其变化规律,但是可以通过 分析大量的统计数据,找寻出它们之 间的一定的数量变化规律,这种通过 大量统计数据归纳出的数量变化规律 称之为统计相关关系,进而称为回归 关系。研究回归关系的方法称为回归 分析方法,表示回归关系的数学式子 称为回归方程。
由于变量Y的非确定性是由于它受
一些随机因素的影响,因此可以 认为,当给定变量 X 的一个确定 值之时,所对应的变量 Y 是一个 随机变量,记作Y|X 。假定条件随 机变量 Y|X 的数学期望值是存在 的,即 E( Y|X ) 存在,由于同一随 机变量的数学期望值是惟一的, 故 E(Y|X ) 能够由 X 的值惟一地确 定,于是 E(Y|X )是变量X 的函数
二、总体回归模型
假设 X 为一个经济变量,Y 为另一个经 济变量,且变量 X 与 Y 之间存在着非确定 性的因果关系,即当 X 变化时会引起 Y 的 变化,但这种变化是随机的。例如,某种 饮料的销售量与气温的关系,销售量受气 温的影响而变化,但其变化又不能由气温 惟一确定;再比如,家庭的周消费额与周 收入之间的关系等等。
第二章 简单线性回归模型
本章主要讨论:
●回归分析与回归函数 ●简单线性回归模型参数的估计 ●拟合优度的度量 ●回归系数的区间估计和假设检验 ●回归模型预测
第一节 回归分析与回归函数
一、相关分析与回归分析 (一)经济变量之间的相互关系
相关关系 1、总体相关 变量之间具有本质上的联系 2、样本相关 变量的样本观察值之间相关
2400
X
非线性相关:
Y
80
70

简单线性回归模型的估计与解释

简单线性回归模型的估计与解释

简单线性回归模型的估计与解释简介简单线性回归模型是统计学中常用的一种回归模型,用于分析两个变量之间的关系。

本文将介绍简单线性回归模型的估计与解释方法。

一、模型的建立简单线性回归模型可以表示为:Y = β0 + β1X + ε,其中Y是因变量,X是自变量,β0是截距,β1是斜率,ε是误差项。

二、模型参数的估计为了估计模型参数,常用的方法是最小二乘法。

最小二乘法的目标是使残差平方和最小化。

通过最小二乘法,我们可以得到β0和β1的估计值。

三、模型的解释1. 截距(β0)的解释截距表示当自变量X等于0时,因变量Y的平均值。

截距的估计值可以用来解释在X为0时的预测值。

2. 斜率(β1)的解释斜率表示因变量Y对自变量X的变化率。

当自变量X增加1个单位时,因变量Y的平均变化量为斜率的估计值。

斜率的正负决定了变量之间的正向或负向关系。

3. 模型的拟合优度拟合优度是用来评估模型对数据的拟合程度。

常用的指标是R方(R-Squared),它表示因变量的变异中能够被自变量解释的比例,取值范围为0到1。

R方越接近1,说明模型对数据的拟合越好。

四、模型的显著性检验为了检验自变量和因变量之间的关系是否显著,我们可以进行假设检验。

通常使用t检验对截距和斜率进行检验。

若p值小于显著性水平(通常为0.05),则认为存在显著关系。

五、模型的诊断与改进在应用简单线性回归模型时,需要进行模型诊断和改进。

常见的诊断方法包括残差分析、离群值检测和多重共线性检验等。

根据诊断结果,可以尝试改进模型,如加入非线性项或引入其他解释变量。

六、模型的应用简单线性回归模型广泛应用于各个领域,如经济学、金融学、社会学等。

通过建立和解释简单线性回归模型,可以分析变量之间的相关性,预测未来趋势,为决策提供科学依据。

结论通过对简单线性回归模型的估计与解释,我们可以得到模型参数的估计值,解释截距和斜率的含义,评估拟合优度以及进行显著性检验。

同时,还需进行模型诊断和改进,以提高模型的准确性和可解释性。

简单线性回归与多元线性回归

简单线性回归与多元线性回归

简单线性回归与多元线性回归简单线性回归与多元线性回归是统计学中两个常用的回归分析方法。

它们用于分析自变量与因变量之间的关系,并建立数学模型来预测或解释因变量的变化。

本文将对简单线性回归与多元线性回归进行详细介绍,并比较它们的不同之处。

一、简单线性回归简单线性回归是一种基本的回归分析方法,适用于只包含一个自变量和一个因变量的情况。

它基于以下线性模型:Y = β0 + β1X + ε其中,Y表示因变量,X表示自变量,β0和β1表示回归系数,ε表示误差项。

简单线性回归的目标是通过寻找最佳拟合直线来描述X和Y之间的关系。

常用的拟合方法是最小二乘法,即通过最小化观测值与拟合值之间的残差平方和来确定回归系数的估计值。

根据最小二乘法,可以得到回归方程的估计值:Ŷ = b0 + b1X其中,Ŷ表示Y的估计值,b0和b1表示回归系数的估计值。

简单线性回归的模型可以用来预测因变量Y的取值,以及解释自变量X对因变量Y的影响程度。

然而,它只适用于关系简单、因变量唯一受自变量影响的情况。

二、多元线性回归多元线性回归是一种扩展的回归分析方法,适用于包含多个自变量和一个因变量的情况。

它基于以下线性模型:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示误差项。

多元线性回归的目标是通过寻找最佳拟合超平面来描述X1、X2、...、Xn和Y之间的关系。

与简单线性回归类似,多元线性回归也采用最小二乘法来估计回归系数的取值。

根据最小二乘法,可以得到回归方程的估计值:Ŷ = b0 + b1X1 + b2X2 + ... + bnXn其中,Ŷ表示Y的估计值,b0、b1、b2、...、bn表示回归系数的估计值。

多元线性回归的模型可以用来预测因变量Y的取值,以及解释自变量X1、X2、...、Xn对因变量Y的影响程度。

计量经济学(第二章简单线性回归)

计量经济学(第二章简单线性回归)
Y SRF1 SRF2
X
样本回归线不是总体回归线,只是未知 总体回归线的近似。
1.6.3 残差 ei
定义:ei = Yi −Y i ∧ Y 那么有: i = Yi + ei 对上例,有:

Yi = Yi + ei = β 1 + β 2 X i + ei



回归分析的思路
样本
一定方法得出 近似看成是
零均值:E (Yi / X i ) = f ( X i ) Var (Yi / X i ) = σ 2 同方差: Cov 无自相关: (Yi , Y j ) = 0, i ≠ j 正态性: Yi ~ N ( f ( X i ), σ 2 )
2.2 普通最小二乘法(OLS)
基本思想 数学过程 估计结果
相关系数取值区间[-1,1]。 相关系数具有对称性,即 ρ xy = ρ yx; X,Y都是随机变量,相关系数只说明其 线性相关程度,不说明其非线性关系, 也不反映他们之间的因果关系; 样本相关系数是总体相关系数的样本估 计量; 简单线性相关包含了其他变量的影响。
1.3 回归分析和相关分析
1.3.1 回归分析 古典意义:高尔顿遗传学的回归概念; 现代含义:一个应变量对若干解释变 量依存关系的研究; 回归分析的目的:由固定的解释变量 去估计和预测应变量的平均值;
三种距离
Y A( X i , Yi ) 横向距离 纵 向 距离 距 离

SRF A B
B( X i , Y i )
X
纵向距离 e i = Yi − Yi = Yi − β 过程
详见课本P24 举例:见Eviews练习1
2.2.3 OLS估计结果的离差形式

计量经济学课件:第二章 简单线性回归模型

计量经济学课件:第二章 简单线性回归模型

第二章 简单线性回归模型第一节 回归分析与回归方程一、回归与相关 1、变量之间的关系(1)函数关系:()Y f X =,其中Y 为应变量,X 为自变量。

(2)相关关系或统计关系:当一个变量X 或若干个变量12,,,k X X X 变化时,Y 发生相应的变化(可能是不确定的),反之亦然。

在相关关系中,变量X 与变量Y 均为不确定的,并且它们之间的影响是双向的(双向因果关系)。

(3)单向因果关系:(,)Y f X u =,其中u 为随机变量。

在计量经济模型中,单一线性函数要求变量必须是单向因果关系。

在(单向)因果关系中,变量Y 是不确定的,变量X 是确定的(或可控制的)。

要注意的是,对因果关系的解释不是靠相关关系或统计关系来确定的,并且,相关关系与统计关系也给不出变量之间的具体数学形式,而是要通过其它相关理论来解释,如经济学理论。

例如,我们说消费支出依赖于实际收入是引用了消费理论的观点。

2、相关关系的类型 (1) 简单相关 (2) 复相关或多重相关 (3) 线性相关 (4) 非线性相关 (5) 正相关 (6) 负相关 (7) 不相关3、用图形法表示相关的类型上述相关类型可直观地用(EViews 软件)画图形来判断。

例如,美国个人可支配收入与个人消费支出之间的相关关系可由下列图形看出,它们为正相关关系。

15002000250030003500150020002500300035004000PDIP C E其中,PDI 为(美)个人可支配收入,PCE 为个人消费支出。

PDI 和PCE 分别对时间的折线图如下PROFIT 对STOCK 的散点图为05010015020025050100150STOCKP R O F I T其中,STOCK 为(美)公司股票利息,PROFIT 为公司税后利润,表现出明显的非线性特征。

以下是利润与股息分别对时间的序列图(或称趋势图)05010015020025020406080100120140GDP 对M2的散点图为02000040000600008000010000050000100000150000M2G D P其中M2为(中国)广义货币供应量,GDP 为国内生产总值。

高考线性回归知识点

高考线性回归知识点

高考线性回归知识点线性回归是高考数学中的一个重要知识点,它是一种统计学上常用的方法,用于分析两个变量之间的线性关系。

在高考中,线性回归经常被应用于解决实际问题和预测未知数据。

本文将介绍线性回归的基本概念、公式以及应用示例,帮助大家更好地理解和应用这一知识点。

一、线性回归的基本概念线性回归是建立一个自变量X和一个因变量Y之间的线性关系模型,通过最小化实际观测值与模型预测值之间的误差,来拟合和预测因变量Y的值。

线性回归的模型可以表示为:Y = β0 + β1*X + ε其中,Y是因变量,X是自变量,β0是截距,β1是斜率,ε是误差项,代表模型无法准确拟合数据的部分。

二、线性回归的公式1. 简单线性回归如果模型中只有一个自变量X,称为简单线性回归。

简单线性回归的公式为:Y = α + βX + ε其中,α表示截距,β表示斜率,ε为误差项。

我们利用给定的数据集,通过最小二乘法来估计α和β的值,从而得到一条最佳拟合直线。

2. 多元线性回归如果模型中有多个自变量X1、X2、X3...,称为多元线性回归。

多元线性回归的公式为:Y = α + β1*X1 + β2*X2 + β3*X3 + ... + ε同样,我们利用最小二乘法来估计α和每个β的值,从而得到一个最佳拟合的平面或超平面。

三、线性回归的应用示例线性回归在实际问题中有广泛的应用。

下面通过一个简单的例子来说明线性回归的具体应用过程。

例:某城市的房价与面积的关系假设我们要研究某个城市的房价与房屋面积之间的关系。

我们收集了一些房屋的信息,包括房屋的面积和对应的价格。

我们可以使用线性回归来建立一个房价和面积之间的模型,从而预测未知房屋的价格。

1. 数据收集首先,我们收集了一些房屋的面积和价格数据,得到一个数据集。

2. 模型建立根据数据集,我们可以建立一个线性回归模型:价格= α + β*面积+ ε通过最小二乘法,估计出α和β的值。

3. 模型评估为了评估模型的好坏,我们需要计算误差项ε。

第二讲stata画图和线性回归基础

第二讲stata画图和线性回归基础
条形图(bar)、饼图(pie)、函数曲线 (function)以及矩阵图(matrix)等。
同时,对时间序列数据有以ts 开头的一系列 特殊命令,如tsline。还有一类是对双变量 的回归拟合图(lfit、qfit 、lowess)等。
作图时命令方式比较复杂,建议多用菜单方式。 一起来做下列图形: 简单图形 打开wage1.dta 1。 男性和女性工资均值的条形图 2。 白人和其他人的工资的饼状图 3。 wage的直方图,并检验是否服从正态分布。 4。 wage的核密度分布图。
Predict 1。拟合值的获得: predict yhat, xb 或者 predict yhat 2。残差的获得 predict e , residuals 或者 predict e, res 3。 残差分布图 rvfplot yline(0)
回归结果的存放:e()
e(N)
number of observations
调整的R2
Root MSE=sqrt(RMS)
Coef:回归系数
Std.Err:系数的标准误差
t统计量 t的临界值
95%置信区间
自由度 R2=MSS/TSS p值
模型常用的其他形式:
对数 半对数 平方项 n次方 指数 交乘项
虽然对函数形式和自变量的选取有选择和检 验的方法,但最好还是从“经济意义”角度 确定。
例如:考察消费受收入影响的方程,即使参 数项不显著,也不能把它删除掉。
例题
例一:利用wage2的数据检验明瑟(mincer) 工资方程的简单形式: Ln(wage)=b0+b1*educ+b2*exper
+b3*exper^2+ u
例二:利用phillips的数据拟合预期增强的菲 利普斯曲线为

简单的线性回归实验原理

简单的线性回归实验原理

简单的线性回归实验原理
线性回归是一种用于预测数值型数据的统计模型。

其原理是通过寻找一条最佳拟合直线,以最小化实际观测值与模型预测值之间的差异。

线性回归模型的假设是,自变量和因变量之间存在一个线性关系。

这意味着,当自变量发生变化时,因变量也会按照固定比例发生变化。

在线性回归实验中,首先收集到一组自变量值和对应的因变量值。

然后,通过最小二乘法来拟合一条最佳拟合直线,该直线能够在自变量和因变量之间建立一个最合适的线性关系。

最小二乘法的目标是最小化实际观测值和模型预测值之间的误差平方和。

它通过调整直线的斜率和截距,来找到使误差平方和最小化的最佳拟合直线。

一旦得到了最佳拟合直线,就可以使用该直线来预测新的因变量值,给定特定的自变量值。

线性回归模型的评估指标包括平均绝对误差、均方误差和决定系数等。

这些指标可以用来评估拟合直线的质量和预测准确性。

计量经济学实验简单线性回归模型

计量经济学实验简单线性回归模型

计量经济学实验简单线性回归模型引言计量经济学是经济学中的一个分支,致力于通过经验分析和实证方法来研究经济问题。

实验是计量经济学中的重要方法之一,能够帮助我们理解和解释经济现象。

简单线性回归模型是实验中常用的工具之一,它能够通过建立两个变量之间的数学关系,预测一个变量对另一个变量的影响。

本文将介绍计量经济学实验中的简单线性回归模型及其应用。

简单线性回归模型模型定义简单线性回归模型是一种用于描述自变量(X)与因变量(Y)之间关系的线性模型。

其数学表达式为:Y = β0 + β1X + ε其中,Y表示因变量,X表示自变量,β0和β1为未知参数,ε表示误差项。

参数估计在实际应用中,我们需要通过数据来估计模型中的参数。

最常用的估计方法是最小二乘法(OLS)。

最小二乘法的目标是通过最小化观测值与拟合值之间的平方差来估计参数。

具体而言,我们需要求解以下两个方程来得到参数的估计值:∂(Y - β0 - β1X)^2 / ∂β0 = 0∂(Y - β0 - β1X)^2 / ∂β1 = 0解释变量与被解释变量在简单线性回归模型中,解释变量(X)用来解释或预测被解释变量(Y)。

例如,我们可以使用房屋的面积(X)来预测房屋的价格(Y)。

在实验中,我们可以根据收集到的数据来建立回归模型,并利用该模型进行预测和分析。

应用实例数据收集为了说明简单线性回归模型的应用,我们假设收集了一些关于学生学习时间与考试成绩的数据。

下面是收集到的数据:学习时间(小时)考试成绩(百分制)2 723 784 805 856 88模型建立根据收集到的数据,我们可以建立简单线性回归模型来分析学生学习时间与考试成绩之间的关系。

首先,我们需要确定自变量和因变量的符号。

在这个例子中,我们可以将学习时间作为自变量(X),考试成绩作为因变量(Y)。

然后,我们使用最小二乘法来估计模型中的参数。

通过计算,可以得到如下参数估计值:β0 = 69.85β1 = 2.95最终的回归方程为:Y = 69.85 + 2.95X预测与分析通过建立的回归模型,我们可以进行预测和分析。

金融学《简单线性回归模型》课件

金融学《简单线性回归模型》课件

4500
2277 2388 2526 2681 2887 3050 3189 3353 3534 3710 3834
Hale Waihona Puke 30395000 5500
2469 2924 2889 3338 3090 3650 3156 3802 3300 4087 3321 4298 3654 4312 3842 4413 4074 4165
9
“线性”的判断p39
计量经济学中,线性回归模型的“线性” 有两种解释: ◆就变量而言是线性的 ——Y的条件期望(均值)是 X 的线性函数 ◆就参数而言是线性的 ——Y的条件期望(均值)是参数 β 的线性函数:
例如: E(Yi Xi ) 1 2Xi 对变量、参数均为“线性”
E(Yi Xi ) 1 2 ln Xi 对参数“线性”,对变量”非线性”
样本回归函数:
Y
SRF
如果把被解释变量Y的样本条件
均值Yˆi 表示为解释变量X的某种
函数,这个函数称为样本回归函
Yˆi
•• •••
数(SRF)。
Xi
X
13
样本回归函数的表现形式
条件均值形式:
将样本条件均值表现为解释变量的函数,样本回归函数如果为
线性函数,可表示为 Yˆi ˆ1 ˆ2 Xi
其中:Yˆi 是与 X i相对应的 Y 的样本条件均值 ˆ1 和 ˆ2 分别是样本回归函数的参数
一、明确几个概念(为深刻理解“回归”)
●被解释变量 Y 的条件分布:
当解释变量 X 取某固定值时(条件),Y 的值不确定, Y的不同取值会形成一定的分布,这是Y的条件分布。 ●被解释变量 Y 的条件概率:
X取某固定值时,Y 取不同值的概率称为Y的条件概率。

简单线性回归分析

简单线性回归分析

例10.1
为研究大气污染一氧化氮(NO)的浓度 是否受到汽车流量等因素的影响,选择24个工 业水平相近的一个交通点,统计单位时间过往 的汽车数(千辆),同时检测空气中一氧化氮 (NO)的浓度(×10-6),数据如下表。
问:
考虑NO浓度 和车流量的关 系,问之间是 否存在数量依 存关系?
1. 基本概念
简单线性回归分析
相关(correlation)和回归(regression)分析
:研究两个或多个变量间相互关系的统计方法。
线性相关分析 linear correlation analysis
:研究两个或多个变量之间关联性或关联程度的一 种统计分析方法。 1.是否有线性联系? 2. 正向的还是负向的? 3. 联系的程度?
n
(1) b
i 1
(
X
i (X
X )(Yi i X )2
Y
)

Lxy Lxx
,
(i
1,2,...,n)
(2) a Y bX
回归方程: Yˆ a bx
以NO浓度 为Y,以车流量 为X,作线性 回归分析。
解:⑴由样本数据了解计算统计量,带入下公式,求出
回归系数b
n
(Xi X )(Yi Y ) b i1 ( Xi X )2 =0.1584
H1 :总体回归方程成立, 即总体中自变量X对;因变时Y有贡献。
a=0.05 (单侧)
2. 计算检验统计量F值:
查F 界值表(P572):a =0.05,v回归=1、 v残差=n-2=22 得:F(k-1, n-k)= F(1,22) =4.30 3. 确定P值,作出推断结论:
由于F=41.376>4.30,则P<0.05,故拒绝H0,接受H1,

最简单的线形回归模型

最简单的线形回归模型

最简单的线形回归模型线性回归是一种基本的统计分析方法,用于研究两个或多个变量之间的线性关系。

它是一种预测模型,通过拟合一条直线,来描述自变量和因变量之间的关系。

线性回归模型可以用于预测因变量的值,并对自变量的影响进行量化。

线性回归模型的基本形式是y = β0 + β1x,其中y是因变量,x 是自变量,β0和β1是回归系数。

β0是截距,表示当自变量x为0时,因变量y的值。

β1是斜率,表示因变量y对自变量x的变化率。

通过最小化残差平方和,也就是实际值与预测值之间的差异的平方和,可以得到最佳拟合直线。

线性回归模型的建立需要满足一些假设条件,包括线性关系、独立性、常态性、同方差性等。

如果这些假设条件不满足,可能会导致回归结果不准确或失效。

因此,在进行线性回归分析时,需要对数据进行严格的前处理,检验假设条件的合理性。

线性回归模型的拟合程度可以通过R方值来衡量,R方值越接近1,说明模型拟合程度越好。

然而,R方值并不是唯一的评估指标,还可以通过残差分析、方差分析等方法来评估模型的准确性。

线性回归模型的应用非常广泛。

在经济学领域,线性回归模型可以用于分析不同因素对经济增长的影响;在医学领域,可以用于预测某种疾病的发生风险;在市场营销领域,可以用于分析广告投放对销售额的影响等。

线性回归模型还可以进行扩展,包括多元线性回归模型、多项式回归模型、非线性回归模型等。

这些模型可以更好地拟合数据,提高预测准确性。

在实际应用中,线性回归模型也存在一些局限性。

例如,线性回归模型假设自变量和因变量之间存在线性关系,但实际情况中很多关系是非线性的。

此外,线性回归模型对异常值和离群点比较敏感,需要进行异常值检测和处理。

线性回归模型是一种简单但常用的统计分析方法,可以用于研究变量之间的线性关系。

通过拟合一条直线来描述自变量和因变量之间的关系,并对自变量的影响进行量化。

线性回归模型的应用广泛,但也需要满足一些假设条件,并进行严格的前处理和模型评估。

lecture 02 OLS:简单线性回归2

lecture 02 OLS:简单线性回归2
(xi x)2
i1
过原点的回归
• 回归式:
~y ~1x
• 估计方法,仍然是OLS:
n
2
min yi %1xi
i 1
n
~1
xi yi
i1 n
xi2
i1
关于该情况下R2的说明
• 在过原点回归的情况下,原来推导出的三 个代数性质完全失效。
• 所以,它的推论也失效。 • 所以,SST=SSE+SSR就不一定成立。 • 所以, R2就不一定再介于0和1之间。
• 实际上,要估计出 s 2 ,怎样进行估计呢?
var(u) E(u2 ) (Eu)2 E(u2 ) s 2
• 用样本去代替总体。
E(uˆ2 ) s 2
• 一个关于 E(uˆ2 ) 的无偏估计量
sˆ 2 1
n 2
uˆi2
Var ˆ1 n s 2
(xi x)2
i 1
Var ˆ1 n sˆ 2
E ˆ1 1
• 简要证明过程。
n
(xi x ) yi
ˆ1
i 1 n
(xi x )2
i 1
ˆ1 1
xi x ui xi x 2
• 取期望:
Eˆ1 那里用到了?
• 无偏性得到证明。“空对空”的证明过程。
• 有效性呢?下章内容中详细讲,这里先做 一些准备。估计值的方差。
( (xi x )2 )2 i 1
• 还有:yi = 0 + 1xi + ui
• 因此:
n
(xi x )2 var(ui )
var(ˆ1) i1 n
( (xi x )2 )2 i 1
Var ˆ1 n s 2
(xi x)2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20
条件期望零值假定
我们需要对u和 x之间的关系做一个关键假定。理 想状况是对x的了解并不增加对u的任何信息。换 句话说,我们需要u和x完全不相关:
E(u|x) = E(u)
21
条件期望零值假定
由于我们已经假定了E(u) = 0,因此有E(u|x) = E(u) = 0。该假定是何含义?
E(u|x) = E(u) = 0.
score =b0 + b1attend +u
那么上述模型中假设(2.6)何时能够成立?
24
OLS斜率估计法总结
斜率估计量等于样本中x 和 y 的协方差除以x的方 差。
若x 和 y 正相关则斜率为正,反之为负。
n
xi x yi y
bˆ1 i1 n
xi x 2
i 1
25
关于OLS的更多信息 OLS法是要找到一条直线,使残差平方和最小。 残差是对误差项的估计,因此,它是拟合直线
b0 , b1被称为回归系数。 b0也被称为常数项或截矩项,或 截矩参数。 b1代表了回归元x的边际效果,也被成为斜率 参数。
u 为误差项或扰动项,它代表了除了x之外可以影响y的
因素。
5
线性的含义: y 和x 之间并不一定存在线性关系, 但是,只要通过转换可以使y的转换形式和x的转 换形式存在相对于参数的线性关系,该模型即称 为线性模型。
3
术语注解
在简单二元回归模型y = b0 + b1x + u中, y通常被称 为因变量,左边变量,被解释变量,或回归子。
x通常被称为自变量,右边变量,解释变量,回归元, 协变量,或控制变量。
4
等式y = b0 + b1x + u只有一个非常数回归元。我们称之为 简单回归模型, 两变量回归模型或双变量回归模型.
uˆi 2
yi bˆ0 bˆ1xi 2
i 1
i 1
10
推导方法(一)
如果直接解上述方程我们得到下面两式:
n
yi bˆ0 bˆ1xi 0
i 1
n xi yi bˆ0 bˆ1xi 0
i 1
11
普通最小二乘法的推导
n
xi yi y bˆ1x bˆ1xi 0
根据样本均值的定义以及加总的性质,可将第一个条件 写为
y bˆ0 bˆ1x,
or
bˆ0 y bˆ1x
14
普通最小二乘法的推导(二):矩方法
回归的基本思想是从样本去估计总体参数。 我们用{(xi,yi): i=1, …,n} 来表示一个随机样本,
并假定每一观测值满足yi = b0 + b1xi + ui。
y3 y2
u2{.
.} u3
y1
.} u1
x1
x2
x3
x4
x
8
样本回归线,样本数据点和相关的误差估计项
y
y4
.
û4{
yˆ bˆ0 bˆ1x
y3 y2
û2{.
.} û3
y1
.} û1
x1
x2
x3
x4
x
9
推导方法(一):OLS
正式解一个最小化问题,即通过选取参数而使下列值最 小:
n
n
(样本回归函数)和样本点之间的距离。
26
讲义总结 介绍简单线性回归模型 介绍通过随机样本的数据运用普通最小二乘法估
计斜率和截距的参数值
27
(2) 简单二元回归
y = b0 + b1x + u
28
本章大纲
简单回归模型的定义 推导普通最小二乘法的估计量 OLS的操作技巧 测量单位和回归方程形式 OLS估计量的期望值和方差 过原点的回归
如, y=eb0+b1x+u 。
6
简单二元回归模型例子 如:简单的工资方程
wage= b0 + b1(years of education) + u
上述简单工资函数描述了受教育年限和工资之间的关
系, b1 衡量了多接受一年教育工资可以增加多少。
7
总体回归线y|x) = b0 + b1x
计量经济学
(1) 简单二元回归
y = b0 + b1x + u
1
本章大纲
简单回归模型的定义 普通最小二乘法的推导 OLS的操作技巧
测量单位和函数形式
OLS估计量的期望值和方差 过原点回归
2
讲义大纲
一些术语的注解 一个简单假定 条件期望零值假定 何为普通最小二乘法 普通最小二乘法的推导
(2.6)
22
条件期望零值假定 在教育一例中,假定u 代表内在能力,条件期望
零值假定说明不管解释教育的年限如何,该能力 的平均值相同。
E(ability|edu=6)=E(ability|edu=18)=0.
23
条件期望零值假定 假设期末成绩分数取决于出勤次数和影响学生现
场发挥的因素,如学生个人素质。
这样我们可以得到两个矩条件约束:
E(y – b0 – b1x) = 0 E[x(y – b0 – b1x)] = 0
17
普通最小二乘法的推导(二)
目标是通过选择参数值,使得在样本中矩条件也可以成立。 样本中矩条件可以表示为:
n
n 1
yi bˆ0 bˆ1xi 0
i 1
n
n1 xi yi bˆ0 bˆ1xi 0
i 1
18
关于u的假定
假定总体中误差项u的平均值为零
E(u) = 0
(2.5)
该假定是否具有很大的限制性呢?
19
关于u的假定
比如, E(u)=5. 那么
y = (b0 +5)+ b1x + (u-5),
所以, E(u*)=E(u-5)=0.
上述推导说明我们总可以通过调整常数项来实现 误差项的均值为零, 因此该假定的限制性不大。
29
讲义大纲 OLS的代数特性
i 1
n
n
xi yi y bˆ1 xi xi x
i 1
i 1
n
n
xi x yi y bˆ1 xi x 2
i 1
i 1
12
因此OLS估计出的斜率为
n
xi x yi y
bˆ1 i1 n
xi x 2
i 1 n
给定条件: xi x 2 0 i 1
13
普通最小二乘法的推导
15
普通最小二乘法的推导
首先由E(u|x) = E(u) = 0 可知: Cov(x,u) = E(xu) = 0
为什么?
Cov(x,u) = E(xu) – E(x)E(u)
而由E(u|x) = E(u) = 0 可得Cov(x,u) = E(xu) =0。
16
普通最小二乘法的推导
可将u = y – b0 – b1x代入以得上述两个矩条件。
相关文档
最新文档